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Abstract— Direct policy search has achieved great empirical
success in reinforcement learning. Recently, there has been
increasing interest in studying its theoretical properties for
continuous control, and fruitful results have been established
for linear quadratic regulator (LQR) and linear quadratic
Gaussian (LQG) control that are smooth and nonconvex. In
this paper, we consider the standard H∞ robust control for
output feedback systems and investigate the global optimality
of direct policy search. Unlike LQR or LQG, the H∞ cost
function is nonsmooth in the policy space. Despite the lack of
smoothness and convexity, our main result shows that for a class
of non-degenerate stabilizing controllers, all Clarke stationary
points of H∞ robust control are globally optimal and there is no
spurious local minimum. Our proof technique is motivated by
the idea of differentiable convex liftings (DCL), and we extend
DCL to analyze the nonsmooth and nonconvex H∞ robust
control via convex reformulation. Our result sheds some light
on the analysis of direct policy search for solving nonsmooth
and nonconvex robust control problems.

I. INTRODUCTION

Inspired by the empirical successes of reinforcement learn-
ing, direct policy search techniques have recently received
extensive interest in the field of control. Significant ad-
vances have been established in terms of understanding the
theoretical properties of direct policy search on a range
of benchmark control problems, including stabilization [1],
linear quadratic regulator (LQR) [2]–[4], linear risk-sensitive
control [5], linear quadratic Gaussian (LQG) control [6]–[8],
dynamic filtering [9], and linear distributed control [10], [11];
see [12] for a recent survey.

All these control problems are known to be nonconvex
in the policy space. One typical approach to deal with the
nonconvexity in classical control theory is to reparameterize
the problem into a convex form, e.g. via a suitable change of
variables [13], [14], for which efficient algorithms exist [15],
[16]. The reparameterization often relies on the underlying
system model explicitly and is thus a model-based design.
On the other hand, despite the nonconvexity, a series of
recent findings have revealed favorable optimization land-
scape properties in many benchmark control problems. For
example, global convergence of model-free policy gradient
methods has been established for both discrete-time [2] and
continuous-time LQR [4] thanks to the gradient dominance
property of the cost functions; the LQG cost function has no
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spurious stationary points that correspond to controllable and
observable controllers [6]. Beyond LQR and LQG, global
or local convergence results of direct policy search have
also been established for linear risk-sensitive control [5] and
distributed control problems [10], [11].

For all the aforementioned benchmark control problems,
the cost functions are typically linear and quadratic in terms
of the system trajectories. Their policy optimization formula-
tions thus admit a smooth cost function over the feasible re-
gion. This basic fact underpins most of the existing landscape
results and convergence guarantees [1]–[11]. In addition to
linear quadratic (LQ) control, another fundamental control
paradigm, known as robust control, addresses the worst-case
performance against uncertainties [15]. In this case, the per-
formance measure is the H∞ norm of a certain closed-loop
transfer function. It is known that the closed-loop H∞ norm
is not always differentiable in the policy space [17], which
requires techniques from nonsmooth analysis to investigate
the behavior of direct policy search. Indeed, a large class of
nonsmooth policy search algorithms has been proposed [17]–
[19], but these studies do not address the global optimality
of direct policy search. The most relevant studies are [20],
[21]. In particular, the work [20] has established a global
convergence result of direct policy search for state-feedback
H∞ control. The work [21] considers output-feedback H∞
dynamic control and reveals that there always exists a
continuous path connecting any initial stabilizing controller
to a global optimal controller.

In this work, we focus on the policy optimization per-
spective for output-feedback H∞ dynamic control. The H∞
policy optimization formulation is known to be nonsmooth
and nonconvex [17]. Our main result reveals that Clarke
stationary points corresponding to non-degenerate dynamic
controllers are globally optimal (Theorem 1); the precise
definition of non-degenerate dynamic controllers will be
discussed in Section III. Our analysis employs tools from
the classical convex reformulation of H∞ control [13], [22]
and is also inspired by the recent works [9], [20]. Especially,
we extend and tailor the technique of differentiable convex
liftings (DCL) in [9] to the nonsmooth setting. Our results
and analysis shed light on policy optimization methods for
solving nonsmooth and nonconvex robust control problems.

The rest of the paper is structured as follows. We present
preliminaries and policy optimization formulation of H∞
control in Section II. Our main results on global optimality
are presented in Section III, and many technical proofs are
provided in our report [23]. We show numerical experiments
in Section IV and conclude the paper in Section V.
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Notations. We use Sn++ to denote the set of n × n real
symmetric and positive definite matrices, and use GLn to
denote the set of n×n real invertible matrices. For two real
symmetric matrices A,B, we use A ⪰ B or B ⪯ A (resp.
A ≻ B or B ≺ A) to mean that the matrix A−B is positive
semidefinite (reps. positive definite).

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Formulation of H∞ Control

We consider a continuous-time linear time-invariant (LTI)
system of the form

ẋ(t) = Ax(t) +B1w(t) +B2u(t),

z(t) = C1x(t) +D11w(t) +D12u(t),

y(t) = C2x(t) +D21w(t),

(1)

where x(t) ∈ Rnx is the state of the plant, w(t) ∈ Rnw

represents exogenous disturbance, u(t) ∈ Rnu is the control
input, z(t) ∈ Rnz represents the regulated performance
signal, and y(t) ∈ Rny is the measured output. We make
the following standard assumption.

Assumption 1. (A,B1) and (A,B2) are controllable, and
(C1, A) and (C2, A) are observable.

A typical control task is to synthesize a feedback controller
(policy) that maps the output y(t) to the control input
u(t), which stabilizes the plant and minimizes a certain
performance metric. When we only have access to the output
signal y(t), a static feedback policy is typically not sufficient
to ensure good closed-loop performance [15]. We consider
a full-order dynamic feedback policy of the form

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t) +DKy(t),
(2)

where ξ(t) ∈ Rnx represents the internal state of the dynamic
controller. Then it is not difficult to see that the closed-loop
transfer function from the exogenous disturbance w to the
output z is given by

Tzw(s) = Ccl(K) (sI −Acl(K))
−1
Bcl(K) +Dcl(K), (3)

where we denote

Acl(K) :=

[
A+B2DKC2 B2CK

BKC2 AK

]
,

Bcl(K) :=

[
B1 +B2DKD21

BKD21

]
,

Ccl(K) :=
[
C1 +D12DKC2 D12CK

]
,

Dcl(K) := D11 +D12DKD21.

The goal of H∞ control [15] is to find a controller (2) to min-
imize the H∞ norm of the transfer function Tzw defined by

∥Tzw∥∞ := sup
ω∈R

σmax(Tzw(jω)), (4)

where σmax(·) denotes the largest singular value.
H∞ control is a classical problem in control theory.

Different approaches have been developed to find a sub-
optimal H∞ controller, including the Riccati-equation-based

approach [24] and the linear matrix inequality (LMI)-based
approach [25]. Unlike H2 optimal control, the problem of
finding an optimal H∞ controller, in general, does not have
a closed-form solution1.

B. Problem Statement: Nonsmooth Policy Optimization

In this paper, we investigate the perspective of policy
optimization that directly searches over the (parameterized)
controller/policy space. We parameterize the dynamic con-
troller by its associated system matrices as

K =

[
DK CK

BK AK

]
∈ R(nu+nx)×(ny+nx),

where we fix the dimension of ξ(t) to be nx. Define

C := {K : Acl(K) is stable} . (5)

The closed-loop system is internally stable if and only if
K ∈ C [15]. Therefore, any internally stabilizing controller
can be parameterized by K ∈ C. The H∞ control problem
can then be reformulated as policy optimization of the form

min
K

J(K) subject to K ∈ C, (6)

where J(K) denotes the H∞ norm ∥Tzw∥∞ for each K ∈ C.
The idea of direct policy search is to start from an initial

policy K0 ∈ C and conduct the iteration Kt+1 = Kt +
αtFt, t ≥ 0, where αt > 0 is a step size and Ft is a search di-
rection, such that the H∞ cost J(Kt) is gradually improved.
However, the H∞ cost function J(K) in (4) is known to be
nonconvex and also nonsmooth with two possible sources of
non-smoothness: One from taking the largest singular value
of complex matrices, and the other from maximization over
all the frequencies ω ∈ R. For the nonconvex and nonsmooth
H∞ policy optimization problem (6), it is unclear yet how to
certify the global optimality of direct policy search methods.
This motivates the main question of our work:

Can we characterize a class of stationary points that are
globally optimal to (6) despite the non-convexity and

non-smoothness?

This paper provides a positive answer to this question. Our
analysis employs the classical convex reformulation [13],
[22], and is also motivated by the idea of differentiable
convex liftings (DCL) for dynamic filtering [9] and the study
on state-feedback H∞ control [20]. We make non-trivial
extensions to dynamic output feedback H∞ control (6).

Remark 1. Direct policy search has been used in earlier
studies [17]–[19] to address H∞ controller synthesis, but no
optimality guarantees are given. It has regained increasing
attention due to recent advances in policy optimization for
learning-based control [6], [9], [20], [21]. In particular,
the recent work [20] has established a global optimality
guarantee of policy search for state-feedback H∞ control.

1Given any γ that is greater than the infimal value of ∥Tzw∥∞, one
can find a controller satisfying ∥Tzw∥∞ < γ by employing the Riccati-
equation-based approach [24]. However, this controller in general is a
suboptimal controller and does not achieve the optimal value of ∥Tzw∥∞.
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Apart from better scalability compared to the classical ap-
proaches [17], [18], the direct policy search approach appears
more amenable to model-free control when a model of the
plant (1) is lacking.

C. Clarke Subdifferential

We review the notion of Clarke subdifferential [26] that
enables the analysis of a large class of nonsmooth functions.
Let f(x) : C → R be a function defined on an open subset
C ⊆ Rn. We say that f is locally Lipschitz near x ∈ C,
if there exists ϵ > 0 and L > 0 such that for any y1, y2 ∈
C satisfying ∥y1 − x∥ < ϵ and ∥y2 − x∥ < ϵ, we have
|f(y1) − f(y2)| ≤ L∥y1 − y2∥. The function f is said to
be locally Lipschitz over C if it is locally Lipschitz near
any x ∈ C. The Rademacher theorem [27, Theorem 3.2]
guarantees that a locally Lipschitz function is differentiable
almost everywhere in the domain.

Let f(x) be locally Lipschitz over C. We define its Clarke
directional derivative at x ∈ C in the direction v ∈ Rn by

f◦(x; v) = lim sup
x′→x,t↓0

f(x′ + tv)− f(x′)

t
.

The local Lipschitz continuity of f guarantees that f◦(x; v)
is finite for all x ∈ C and v ∈ Rn. It can be shown that for
any fixed x ∈ C, f◦(x; ·) is a convex function and satisfies
f◦(x;λv) = λf◦(x; v) for any λ > 0. We then define the
Clarke subdifferential of f at x ∈ C as the set

∂f(x) := {g ∈ Rn : f◦(x; v) ≥ ⟨g, v⟩ for all v ∈ Rn} ,

which is nonempty for any x ∈ C. It is shown that f◦(x, ·)
is the support function of ∂f(x) [26, Proposition 2.1.2]:

f◦(x, v) = max
g∈∂f(x)

⟨g, v⟩. (7)

Moreover, the following equality holds [26, Theorem 2.5.1]:

∂f(x) = conv

{
lim

xk→x
∇f(xk)

∣∣∣∇f(xk) exists, xk ∈ C

}
,

where conv denotes the convex hull of a set.
We call x ∈ C a Clarke stationary point if 0 ∈ ∂f(x).

The following result relates local minima and local maxima
with Clarke stationary points [26, Proposition 2.3.2].

Lemma 1. Let f(x) be locally Lipschitz over C. If x ∈ C
is a local minimum or maximum of f(x), then x is a Clarke
stationary point, i.e., 0 ∈ ∂f(x).

Note that the converse of Lemma 1 does not hold in
general. The function f is called subdifferential regular, if
for any x ∈ C, the ordinary directional derivative exists
and coincides with the Clarke directional derivative for all
directions, i.e.,

lim
t↓0

f(x+ tv)− f(x)

t
= f◦(x, v), ∀v ∈ Rn, x ∈ C.

We denote the ordinary directional derivative by f ′(x; v)
whenever it exists. From (7), the following result is clear.

Lemma 2. Suppose that f is subdifferential regular. If x is
a Clarke stationary point, then f ′(x, v) ≥ 0 for all v ∈ Rn.

III. MAIN RESULTS

In this section, we first summarize some useful properties
of the H∞ cost function J(K) in Section III-A. Our main
technical result is then presented in Section III-B, which
characterizes a large class of stationary points that are
globally optimal. The rest of this section presents its proof.

A. Basic Properties of the H∞ Cost

We first review a fact for H∞ policy optimization.

Lemma 3. The set of internally stabilizing controllers C
is nonconvex, potentially disconnected, but has at most two
connected components. The cost function J(K) is nonconvex.

We refer to [6], [21] for relevant proofs and examples. The
following result is also known in the community.

Proposition 1 ([18, Proposition 3.1]). For the H∞ policy
optimization problem (6), the following statements hold.

1) J(K) is locally Lipschitz over K ∈ C.
2) J(K) is subdifferentially regular.

The proof idea in [18, Proposition 3.1] is to view J(K) as
a composition of a convex mapping ∥ · ∥∞ and the mapping
K 7→ Tzw that is continuously differentiable over K. Then,
the subdifferential regularity of J(K) follows from [26]. We
provide some missing details in [23, Appendix A].

Proposition 1 justifies that J(K) is Clarke subdifferen-
tiable. It is now clear from Lemma 1 that if a dynamic
controller K ∈ C is a local minimum of J(K), then K is
a Clarke stationary point. Our main goal is to establish a
class of Clarke stationary points that are globally optimal
to (6). In our analysis, the following bounded-real lemma
will be fundamental.

Lemma 4 (Bounded real lemma). Let A be stable, and
consider a transfer function G(s) = C(sI − A)−1B + D.
Let γ > 0 be arbitrary. The following statements hold.

1) (Strict version, [28, Lemma 7.3]) ∥G∥∞ < γ if and only
if there exists P ≻ 0 such thatATP + PA PB CT

BTP −γI DT

C D −γI

 ≺ 0. (8)

2) (Nonstrict version, [16, Section 2.7.3]) ∥G∥∞ ≤ γ if there
exists P ≻ 0 such thatATP + PA PB CT

BTP −γI DT

C D −γI

 ⪯ 0. (9)

The converse holds if (A,B,C) is controllable and ob-
servable.

B. Main Technical Results

To state our main results, we introduce a special class
of controllers in C, which we will call non-degenerate
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stabilizing controllers below. Specifically, we define

Snd :=

{
(K, P, γ) :P =

[
P11 P12

PT
12 P22

]
∈ S2nx

++ ,

P12 ∈ GLnx
, N (K, P, γ)⪯ 0

}
.

(10)

where we denote

N (K, P, γ) :=

Acl(K)
TP+PAcl(K) PBcl(K) Ccl(K)

T

Bcl(K)
TP −γI Dcl(K)

T

Ccl(K) Dcl(K) −γI

 .
It is clear that for any triple (K, P, γ) ∈ Snd, we have K ∈
C and J(K) ≤ γ by the non-strict version of Lemma 4.
Note that when defining Snd in (10), we require the off-
diagonal block P12 to have full rank, which will be explained
in Remark 2. We further define

Cnd := {K ∈ C : ∃P such that (K, P, J(K)) ∈ Snd} . (11)

Controllers in Cnd will be called non-degenerate stabilizing
controllers, since each controller in Cnd admits a P with a
non-degenerate off-diagonal block P12 to certify the associ-
ated H∞ cost J(K) in (9).

By definition, we have Cnd ⊆ C. We conjecture that
non-degenerate stabilizing controllers are “generic” in the
sense that the complement set C\Cnd has measure zero. A
rigorous proof of this conjecture seems challenging and is
still ongoing work. In Section IV, we shall provide some
numerical evidence of this conjecture.
Remark 2 (Invertibility of P12). In (10), we require the
off-diagonal block P12 to have full rank. This requirement
on P12 is essential in deriving the convex reformulation of
H2 or H∞ control proposed in [13], [22]. On the other
hand, when only strict LMIs (e.g., (8)) are imposed, we
can slightly perturb P to ensure that P12 has full rank
without violating the strict LMIs, which is a trick that has
been employed in [13], [22] as well as some recent studies
[6], [21]. But in this paper, we aim to directly analyze the
H∞ cost function J(K) instead of its upper bound, meaning
that our subsequent results and proofs need to use the non-
strict LMI (9). Therefore, we need to explicitly require
the off-diagonal block P12 in (10) to be invertible. Similar
requirements appear in the setting of dynamic filtering in [9],
which were called informativity by the authors.

We are now ready to state our main technical result.

Theorem 1. Given any non-degenerate stabilizing controller
K ∈ Cnd, if K is a Clarke stationary point, i.e., 0 ∈ ∂J(K),
then it is a global minimum of J(K) over C.

This result also highlights that there are no spurious local
minima in the set of non-degenerate stabilizing controllers
K ∈ Cnd. The following corollary is immediate.

Corollary 1. For the H∞ policy optimization problem (6),
we have
• Any local minimum of J(K) in Cnd is a global minimum.
• There exists no local maximum of J(K) in Cnd.

Remark 3. It is known that the feasible region of (6) has
at most two connected components [6]. Moreover, [21] has
also shown that there always exists a continuous path from
any initial point K0 ∈ C to a global minimum. Thus it makes
no difference to search over either connected component in
C when solving (6) via direct policy search. Our result in
Theorem 1 has further provided a global optimality certificate
for (6), showing positive news for direct policy search
methods. Note that any stationary points corresponding to
controllable and observable controllers in H2 control are
globally optimal [6, Theorem 4.3]. Theorem 1 can thus be
viewed as the counterpart in output-feedback H∞ control.

The proof of Theorem 1 was inspired by the idea of differ-
entiable convex liftings (DCL) for output estimation [9] and
the recent analysis on state-feedback H∞ control [20]. In this
paper, we make non-trivial extensions of the DCL analysis
to the nonsmooth output feedback H∞ control problem. The
following subsection gives the proof of Theorem 1.

C. Proof of Theorem 1

We first introduce some auxiliary quantities. Given a set of
matrices X ∈ Snx , Y ∈ Snx ,M ∈Rnx×nx , H ∈Rnx×ny , F ∈
Rnu×nx , G ∈ Rnu×ny , γ ∈ R, we define an affine function
M (X,Y,M,H,F,G, γ) by (12), and then define a convex
set

F=

{
(X,Y,M,H,F,G, γ) : X,Y ∈ Snx ,M ∈Rnx×nx ,

H∈Rnx×ny , F ∈Rnu×nx , G∈Rnu×ny , γ∈R,[
X I
I Y

]
≻ 0,M (X,Y,M,H, F,G, γ) ⪯ 0

}
, (13)

and an extended set

G = GLnx
×F . (14)

We note that the LMI M (X,Y,M,H,F,G, γ) ⪯ 0 resem-
bles the structure in the non-strict bounded real lemma (9)
as well as the LMI in Snd (10). Indeed, based on a non-
trivial change of variables in [13] that reformulates an output
feedback H∞ control problem into a set of LMIs, we can
build a smooth bijection between the set Snd and set G.

In particular, for each (K, P, γ) ∈ Snd, we define the
mapping Φ(K, P, γ) by

Φ(K, P, γ)=
(
P12, (P

−1)11,P11,ΦM ,ΦH ,ΦF ,DK,γ
)
, (15)

where

ΦM := P12BKC2(P
−1)11 + P11B2CK(P

−1)21

+ P11(A+B2DKC2)(P
−1)11 + P12AK(P

−1)21,

ΦH := P11B2DK + P12BK,

ΦF := DKC2(P
−1)11 + CK(P

−1)21,

and (P−1)12, for instance, denotes the nx×nx submatrix of
P−1 corresponding to the first nx row and last nx columns.

We have the following result that shows the connection
between the sets Snd, G, and the mapping Φ.
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M (X,Y,M,H, F,G, γ)

:=


AX+B2F+(AX+B2F )

T MT+A+B2GC2 B1+B2GD21 (C1X+D12F )
T

M+(A+B2GC2)
T Y A+HC2+(Y A+HC2)

T Y B1+HD21 (C1+D12GC2)
T

(B1+B2GD21)
T (Y B1+HD21)

T −γI (D11+D12GD21)
T

C1X+D12F C1+D12GC2 D11+D12GD21 −γI

 , (12)

Proposition 2. Φ is a diffeomorphism from Snd to G, i.e., Φ
is indefinitely differentiable and invertible, and Φ−1 is also
indefinitely differentiable.

The proof of this proposition is mostly based on direct
constructions which are motivated by the change of variables
in [13]. We first notice that each element of Φ is a rational
function over the domain Snd, and thus Φ is real analytic.
By direct verification, we can show that Φ maps Snd into
G. Further, we can explicitly construct the inverse mapping
of Φ, which is also real analytic. This proves that Φ is
a diffeomorphism from Snd to G. The detailed steps are
provided in [23, Section IV].

After establishing the connection between Snd and G via
the mapping Φ, we can further derive the following two
technical results. Their proofs are inspired by the recently
proposed framework of DCL, but we extend and tailor the
relevant techniques to the nonsmooth H∞ control setting.
The details are technically involved, and can be found in
[23, Section IV].

Proposition 3. Let (K, P, γ) ∈ Snd be arbitrary, and
suppose there exists (K′, P ′, γ′) ∈ Snd such that γ > γ′.
Then there exists a C∞ curve ψ : [0, δ) → Snd satisfying
ψ(0) = (K, P, γ) such that

lim
t↓0

πγ(ψ(t))− πγ(ψ(0))

t
< 0,

where πγ : Snd → R denotes the canonical projection
πγ(K, P, γ) = γ.

Proposition 4. Let K ∈ Cnd be arbitrary, and suppose there
exists K′ ∈ C such that J(K) > J(K′). Then there exists
V ̸= 0 such that

lim
t↓0

J(K+ tV)− J(K)

t
< 0,

i.e., the ordinary directional derivative of J at K in the
direction V is strictly negative.

The proof of Theorem 1 becomes immediate by combining
Proposition 4 with Proposition 1 and Lemma 2. Indeed,
Proposition 1 confirms that J(K) is subdifferentially regular,
and then Lemma 2 states that for any Clarke stationary
point K, we have J ′(K,V) ≥ 0 for all directions V. Now
consider a Clarke stationary point K ∈ Cnd. If it is not
a globally minimum, then there exists another controller
K′ ∈ C such that J(K) > J(K′). Then, Proposition 4
guarantees that J ′(K,V) < 0 for some direction V, which
contradicts Lemma 2. Therefore, a Clarke stationary point
K ∈ Cnd must be a global minimum of J(K).

IV. NUMERICAL EXPERIMENT

In this section, we provide some numerical evidence
suggesting that the set C\Cnd has measure zero.

We consider the H∞ control problem for the LTI system

ẋ(t) = − x(t) +
[
1 0

]
w(t) + u(t),

z(t) =

[
x(t)
u(t)

]
, y(t) = x(t) +

[
0 1

]
w(t),

(16)

where x(t), u(t), y(t) ∈ R and z(t), w(t) ∈ R2. The
dynamic controller will then be parameterized by K =[
DK CK

BK AK

]
∈ R2×2. Our task is to numerically search for

points in C\Cnd, and inspect whether they form a set of
measure zero. Note that dynamic controllers with the same
value of BKCK will be similarity transformations of each
other. Therefore, for visualization purposes, we fix CK = 1
and only examine the set {K ∈ C : CK = 1} instead. We also
impose the constraints AK ∈ [−2, 2], BK ∈ [−4, 4], DK ∈
[−1.5, 1.5] when searching over the set {K ∈ C : CK = 1}.

We first generate a set of points {Kj}Nj=1 by discretizing
the region [−2, 2] × [−4, 4] × [−1.5, 1.5] into a spatial grid
with N = 101×101×61 points that are equally spaced. Then
for each j = 1, . . . , N , we numerically compute γj = J(Kj),
and try to construct Pj ⪰ 0 such that N (Kj , Pj , γj) ⪯ 0.2

We then check whether the minimum eigenvalue of Pj is
sufficiently bounded away from zero (say greater than or
equal to 10−4), and record the value of (Pj)12.

Our numerical experiments show that we can find matrices
Pj satisfying Pj ≻ 0 and N (Kj , Pj , γj) ⪯ 0 for all j in
the test case. Figure 1 illustrates several typical heatmaps of
ln |P12| with fixed DK and varying (AK, BK), generated from
the recorded values {ln |(Pj)12|}Nj=1. It can be observed from
the heatmaps that for each fixed value of DK, the points with
very low values of ln |P12| seem to lie near a straight line that
passes through (0, 0). These observations seem to suggest
that, for the LTI system (16), the points in C\Cnd with CK =
1 and some fixed DK form a straight line passing through
(0, 0) with a slope depending on DK, and consequently, the
set C\Cnd could be represented as{[

DK CK

BK AK

]
∈C : cos θ(DK)·AK + sin θ(DK)·BKCK = 0

}
for some function θ(DK) of DK, which has measure zero.

2Due to numerical errors, we can only find an approximate value γ̂j of
J(Kj). In our numerical experiments, we set the tolerance so that |γ̂j −
J(Kj)|/J(Kj) < ϵ and find Pj satisfying N (Kj , Pj , γ̂j/(1 − ϵ)) ⪯ 0
instead, where ϵ = 10−9. We employ the Riccati-equation-based approach
for finding Pj when the associated Riccati equation is well-posed and has a
positive definite solution, and turn to the LMI-based approach if the Riccati-
equation-based approach does not work.
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Fig. 1: Heatmaps of ln |P12| for different values of DK. The x-axes and
y-axes represent AK and BK respectively. Points with very low values of
ln |P12| (i.e., points whose corresponding P12 are very close to 0) are
colored in dark blue, and we can observe that they roughly form a line
passing through (0, 0) in each sub-figure.

We remark that the above claim is only based on numerical
results but not on rigorous derivation. Nevertheless, we be-
lieve that such results can indeed serve as numerical evidence
supporting the conjecture that C\Cnd has measure zero. The
code can be found at https://github.com/tyj518/H_
inf_Global_Optimality.

V. CONCLUSIONS

We consider the policy optimization for output-feedback
H∞ control and show that the class of non-degenerate Clarke
stationary points are globally optimal controllers, providing a
global optimality certificate for direct policy search methods.
Future directions include examining whether C\Cnd has
measure zero, designing data-driven approaches for checking
whether a controller is non-degenerate, convergence analysis
of model-free policy search methods for H∞ control, etc.
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