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Abstract— This work considers an information-theoretic
characterization of the set of achievable rates, costs, and
distortions in a broad class of distributed communication and
function computation scenarios with general continuous-valued
sources and channels. A framework is presented which involves
fine discretization of the source and channel variables followed
by communication over the resulting discretized network.
In order to evaluate the resulting achievable regions, convergence
results for information measures are provided under the
proposed discretization process. Prior works have considered
such convergence results for mutual information quantities
written in terms of univariate functions of random variables,
and sums of independent random variables. These convergence
results have been used to derive achievable regions in point-
to-point communication scenarios and specific multiterminal
scenarios with continuous alphabets. However, the best-known
achievability results for distributed communication and function
computation scenarios, which are based on structured coding
strategies, involve mutual information quantities written in
terms of bivariate functions of random variables, e.g., sum of
two (not necessarily independent) random variables. A main
contribution of this work is to show the convergence of mutual
information quantities written in terms of sums of quantized
random variables. This is an essential step in evaluating
the achievable regions in continuous distributed computation
scenarios by generalizing the structured coding strategies which
have been previously used to derive the best-known achievable
regions in discrete networks. The framework is used to provide
achievability results for the problems of function computation
over multiple-access channels, distributed source coding, function
reconstruction (two-help-one), and multiple-descriptions source
coding. In each scenario, discrete structured coding strategies
along with the aforementioned convergence results are used
to derive inner bounds to set of achievable rates, costs,
and distortions. Furthermore, structured coding strategies
are considered for distributed function computation scenarios
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involving computation of non-additive functions. The techniques
are used to study an example where the objective is to compute
the product of channel inputs over a multiple access channel,
and an inner bound to the achievable rate region is evaluated.
It is shown that, in contrast to many well-studied scenarios in
multiterminal information theory, Gaussian input distribution is
outperformed by the uniform input distribution.

Index Terms— Data communication, information theory, rate
distortion theory, channel capacity, channel coding, source
coding.

I. INTRODUCTION

OVER the past several decades, information theory has
provided a framework for the study of the fundamental

limits of communication — such as achievable rates, costs,
and distortions — and the design of source and channel
coding strategies in a wide range of communication scenarios,
particularly over discrete source and channel networks. Many
of the achievability results rely on the concept of strong
typicality, which is based on the frequency of occurrence
of symbols in sequences of discrete random variables [1].
The notion of strong typicality does not extend naturally
to sequences of continuous variables, and hence cannot be
used in studying continuous source and channel networks. To
address this, Wyner [2] proposed a method for the study of
the point-to-point (PtP) source coding with side-information.
Wyner’s method involves fine quantization of the source,
the side-information, and the auxiliary variables to create
a finite-alphabet problem, and then using the achievability
results for the finite-alphabet problem to derive performance
limits for the original problem using convergence properties
of mutual information. In particular, this approach relies
on two important techniques to guarantee convergence of
the associated mutual information terms: the data processing
inequality, and lower semi-continuity of mutual information as
a function of probability distributions [3]. This approach has
been proven to achieve the performance limits in the context of
random unstructured code ensembles in point-to-point source
coding and channel coding problems.

Our primary objective in this work is to characterize inner
bounds to the set of achievable rates, costs, and distortions in
multiterminal communication scenarios involving distributed
communication and function computation in continuous
networks. In contrast to point-to-point communications, in
multi-terminal communication settings such as the broadcast
channel [4], interference channel [5], variations of the MAC
channel [6], [7], distributed source coding problem [8], and
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multiple descriptions source coding problem [9], it has been
observed that the application of random structured coding
ensembles — such as random linear coding ensembles —
yields improved achievability results over random unstructured
code ensembles in the discrete alphabet settings. In fact, it has
been shown that in specific multiterminal communication
scenarios, any optimality achieving sequence of codes muse
be asymptotically algebraically closed (e.g., [10, Lemma
1]). Loosely speaking, the reason is that in these multiuser
communication scenarios, in order to derive the best-known
achievability results, in the discrete case, one needs to
incorporate bivariate function computation at certain terminals
of the system, which is facilitated by using structured codes
which are algebraically closed under the bivariate operation,
as opposed to random unstructured codes which do not
possess such closure properties [6], [11], [12], [13], [14],
[15], [16]. In these characterizations of performance limits,
the mutual information quantities involve bivariate functions
of random variables. For example, I(X1 � X2;Y ) appears
in the rate expressions in the problem of computation over
MAC, where X1 and X2 are the channel inputs and Y is
the channel output, and � refers to the addition operation of
a finite field [13]. Convergence of such mutual information
quantities is not guaranteed under the fine quantization of the
variables using techniques of [2]. Specifically, these techniques
rely on lower semi-continuity of mutual information and
the data processing inequality to ensure convergence of
mutual information quantities as the quantization step becomes
asymptotically small, however, the data processing inequality
does not guarantee that I( bX1 � bX2; bY )  I(X1 � X2;Y ),
where bX1,

bX2,
bY are the discretized versions of X1, X2, Y ,

respectively. In this work, we develop a new discretization
framework and provide a performance analysis to derive
such convergence guarantees. We use the framework to
derive achievability results for distributed communication and
function computation problems with continuous alphabets
via discretization followed by discrete structured coding
schemes. It should be pointed out that we do not introduce
new structured coding strategies, rather, we apply previously
developed structured coding techniques to the discretized
network, and use the aforementioned convergence results to
derive inner bounds to the achievable region. The preliminary
results of this framework appeared in [16] and [17]. In a
related work, this idea of discretizing the continuous random
variables, and then applying discrete coding strategies has
been recently used in the study of the compute-and-forward
communication scenario [18].

The proposed discretization method in this work builds upon
Wyner’s fine quantization technique [2] and our preliminary
work in [16] along with structured coding techniques for
discrete alphabets. To elaborate, our approach involves taking
a collection of jointly continuous random variables with
some Markov chain constraints — enforced by the physical
separation of distributed terminals — and performing three
operations: (a) clipping to produce bounded random variables,
(b) smoothing to produce random variables with continuous
probability density functions (PDFs), and (c) quantization
to produce finite alphabet random variables. Then, we use
the structured coding frameworks, specifically linear codes,

for discrete alphabets developed in the literature to derive
achievable regions written in terms of mutual-information of
discretized random variables and their sums, where the sum
is with respect to some finite field. We show convergence of
mutual information quantities involving random variables and
their sums, as the quantization becomes fine and the clipping
interval becomes large, to their continuous counterparts, where
the sum is with real addition. We further extend this result
to general bivariate functions such as products of pairs of
variables using a novel embedding concept. In order to be
able to apply the discrete coding strategies, one needs to
ensure that the discretized random variables satisfy the Markov
chains which capture the constraints on collaboration among
the various terminals of the given communication problems.
To address this, we preform the three discretization operations
such that the resulting discretized random variables satisfy the
Markov chains which are satisfied by the original continuous
variables (Section III).

There are two main challenges in proving the
above-mentioned convergence results for information
quantities. The first challenge is the presence of Markov chains
which need to be preserved throughout the discretization
process. To explain further, let us focus on the Berger
distributed source coding strategy [19]. Consider a distributed
memoryless source (X,Y ) with underlying joint distribution
PX,Y . Let U and V be the single-letter random variables
corresponding to the quantization of X and Y , respectively,
in the Berger-Tung coding strategy. Recall that the random
variables must satisfy the Markov chain U�X�Y � V

among the source variables X,Y and the auxiliary variables
U, V . If the Markov chain is not satisfied, one cannot use the
Markov lemma to ensure joint typicality of the compressed
sequences U

n and V
n in the distributed terminals, which

is an essential step in deriving the Berger achievable region
in the discrete alphabet setting [19]. However, one can
see that if the random variables are quantized individually,
then the quantized random variables do not satisfy the
long Markov chain in general (see Example 1). To address
this, we use a novel randomized clipping and discretization
operations for the random variables in the middle of the
chain, i.e., X and Y . The procedure clips and discretizes
the random variables using locally generated independent
noise variables with a carefully constructed distribution.
This is detailed in Section III. The second challenge is to
prove convergence of information quantities involving linear
combinations of random variables under the three Markov-
chain-preserving operations. We develop an analytical
technique to bound mutual information under the clipping
operation by iterative decomposition of the mutual information
and entropy-power inequality (see Appendix C). Additionally,
we develop analytical techniques to prove convergence
under discretization by uncovering new connections between
information quantities and variational distance (see Lemma 6).
Furthermore, we build upon a technique developed in [20]
for bounded and independent random variables, where
convergence of entropies of sums of independent quantized
random variables to that of quantized sum was addressed.
In the present case, the random variables are not independent,
and must maintain the given Markov structure throughout the
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discretization process. This requires new methods for proving
convergence of information measures under discretization.

The contributions of this work are summarized as follows:
• We prove convergence of mutual information terms involv-

ing linear combinations of (not necessarily independent)
random variables, under a discretization scheme involving
clipping, smoothing, and fine quantization that preserves
the underlying Markov chain constraints among the random
variables. The previous known convergence results for
mutual information terms involve univariate functions [2]
and sums of independent random variables [20]. These
convergence results are crucial in generalizing the previously
known structured coding techniques developed for discrete
networks and applying them to continuous networks
to characterize the fundamental performance limits in
multiterminal communication scenarios. (Theorem 1 and
Theorem 2).

• We apply this discretization framework to derive
inner bounds on the performance limits for general
continuous-valued sources and channels in multi-terminal
communication scenarios including computation over MAC,
distributed source coding, lossy two-help-one problem,
and multiple descriptions (MD) source coding, expressed
in terms of single-letter information quantities. The
achievability results are derived by applying the proposed
discretization technique along with previously known
discrete structured coding strategies. That is, structured
coding strategies are applied on the discretized channel and
source variables (Theorems 3-7).

• We provide an embedding technique for evaluating the
achievable regions in multiterminal communication scenar-
ios involving general bivariate functions such as product
of pairs of random variables. We provide an example
of computing such a function over an additive MAC
with Gaussian noise, and derive an inner bound to the
achievable rate region. We observe that in this scenario the
uniform input distribution outperforms the Gaussian input
distribution. (Section IV)
Other Related Work: Other than the aforementioned fine

quantization techniques, a second class of techniques which
has been considered for linear quadratic Gaussian (LQG)
sources and channels is to use subtractive dithered lattice
codes [21], [22]. The drawback of these lattice codes is that
(a) they are very specific to the LQG nature of the problem,
and hence are not amenable to extensions to non-Gaussian
and nonlinear problems, and (b) they are based on the PtP
communication perspective, and hence their applications to
the multiterminal problems such as distributed source coding
and multiple description source coding require a reduction
of the latter problems to a sequence of PtP problems [22],
[23], [24], [25]. However, it might be challenging to find
such reductions for many problems, for example, the multiple
description source coding with Gaussian sources and with
linear distortion criterion studied in this work (see Section VI).
A third approach which has been taken to study PtP
source coding, PtP channel coding, and communication over
MAC, derives performance limits using weak typicality [26]
instead of strong typicality. Weak typicality is based on
the empirical entropy of sequences of random variables,

and is defined for both discrete and continuous variables.
However, the weak typicality is not applicable in many
multiterminal communication problems such as distributed
source coding, and communication over broadcast channels,
since for instance, the Markov lemma [27] (a crucial step in the
derivation of achievable regions) is not valid for weakly typical
sequences. In [28], an alternative approach was proposed
by defining weak-* typicality which extends the notion of
weak typicality using bounded functions. The Markov lemma
has been shown to hold for weak-* typical sequences. The
results were applied to source compression in the presence of
side-information. The derivations in [2] and [28] are based
on unstructured random code ensembles. The applications
of this approach to multiterminal communication problems
involving function computation, which require structured
coding ensembles to achieve optimality, have not been studied.

The rest of the paper is organized as follows: Section II
provides the preliminaries needed for the rest of the paper.
Section III develops the first set of main results which form
the framework for the analysis of the achievability results in
the sequel. Section IV studies the problem of computation over
MAC. In Section V, we consider the distributed compression
of continuous sources and derive bounds on the fundamental
limits of communication in the lossy two-help-one problem.
Finally, Section VI considers the multiple descriptions source
coding problem. Section VII concludes the paper.

Notation: We represent random variables by capital letters
such as X,U and their realizations by small letters such as
x, u. Sets are denoted by sans-serif letters such as X,U. The
set of natural numbers, and the real numbers are represented
by N, and R respectively. Collections of sets are denoted
by calligraphic letters such as X ,U . The Borel sigma-field
is denoted by B. For n 2 N, we denote the sigma-field
generated by Bn as �(Bn). The random variable E is
the indicator function of the event E. The set of numbers
{1, 2, · · · , m}, m 2 N is denoted by [m] for brevity. For
a given n 2 N, the n-length vector (x1, x2, . . . , xn) is
written as x

n. The function h(·) denotes the differential
entropy. For the set A ⇢ Rn, we write cl(A) to denote
the convex closure. For a pair of distributions PX and QX

defined on alphabet X , the variational distance is denoted by
TV (PX , QX) : = 1

2

P
x2X |PX(x)�QX(x)|.

II. PRELIMINARIES

A. Source and Channel Models

We consider continuous memoryless source and channel
networks with real-valued inputs and outputs, and without
feedback. Such channel networks (source networks) are
completely characterized by their associated channel transition
probability (source distribution) and input cost functions
(output distortion functions). In this paper, we consider the
following formulation of the transition probability function.

Definition 1 (Transition Probability): A transition proba-
bility is a function P : R⇥ B ! R such that:

• For each x 2 R, P (·|x) : A 7! P (A|x) is a probability
measure on (R,B).

• For each A 2 B, P (A|·) : x 7! P (A|x) is a measurable
function.
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Definition 2 (Memoryless Channel Without Feedback): A
channel is characterized by i) a transition probability PY |X :
R⇥ B ! R, and ii) a continuous cost function  : R ! R+,
where X and Y are the channel input and output, respectively.

Remark 1: As noted in Definition 2, we assume that the
cost function is continuous. This smoothness condition implies
that (x) is bounded for all x 2 R.

We assume that the channel is memoryless and used without
feedback, i.e. the joint probability measure on (Rn

, �(Bn)) is
given by the unique extension of the product measure

P (Yi 2 Ai, i 2 [n]|Xn = x
n) =

nY

i=1

PY |X(Ai|xi), .

for all A1,A2, · · · ,An 2 B given x
n is transmitted over the

channel by using the channel n times.
Definition 3 (Joint Channel Probability Measure): For a

channel (PY |X , ), and given probability measure PX on
(R,B), the joint probability measure PXY on (R2

, �(B2)) is
the unique extension of the measure on product sets

PXY (A⇥ B) =
Z

A
PX(dx)PY |X(B|x)

=
Z

A
PX(dx)

Z

B
PY |X(dy|x), A,B 2 B.

We also consider PtP and multiuser source coding scenarios.
An information source is characterized by its associated
probability measure and distortion function as described
below.

Definition 4 (Memoryless Source): A source is character-
ized by i) a probability measure PX : B ! R, and ii) a
jointly continuous distortion1 function d : R⇥ R ! R+.

Remark 2: As noted in Definition 4, we assume that the
distortion function is a jointly continuous. This smoothness
condition implies that d(x, x̂) is finite for all x, x̂ 2 R.

B. Structured Coding Ensembles

In various multi-terminal communication settings with
discrete alphabets, it has been observed that the application
of random structured coding ensembles — such as random
linear coding ensembles — yields improved achievability
results over random unstructured code ensembles in the
discrete alphabet settings [4], [5], [6], [7], [8], [9]. In the
next sections, we provide a discretization framework which
allows us to discretize continuous networks and use structured
coding techniques developed for these discrete networks, along
with convergence results for the mutual information terms,
to characterize inner-bounds to the achievable regions. In this
section, we briefly define structured coding ensembles. A more
complete description can be found at [13].

Definition 5 (Structured Code): For a given alphabet X ,
a code of length n is a subset C of Xn. A code is said
to be structured if C is closed under a bivariate function
g : X ⇥X ! X applied symbol-wise, i.e., for all x

n
, y

n 2 C,
we have g

n(xn
, y

n) 2 C. A code which is not structured is
called unstructured.

1R+ denotes the set of non-negative real numbers.

For example, let X = {0, 1}, and g(x1, x2) = x1�2 x2, for
all x1, x2 2 X , where �2 denotes addition modulo-2. Then a
code that is closed under g is called a binary linear code.

Definition 6 (Code Ensemble): A code ensemble is a col-
lection of K codes C = {C1, . . . , CK} defined on the same
alphabet along with a probability distribution P on the set
{1, 2, . . . ,K}. A structured code ensemble is one where all
codes in the ensemble are structured with respect to the shared
bivariate function.

III. FRAMEWORK FOR CONTINUOUS TO DISCRETE
SOURCE AND CHANNEL TRANSFORMATION

This section introduces the components of a discretization
framework which is considered in subsequent sections to study
communication over continuous sources and channel networks.
We prove convergence of mutual information of sums of
discretized random variables to that of their continuous
counterparts. Theorems 1 and 2 are the main results of this
section.

As mentioned in the introduction, many multiterminal
communication problems require the use of structured code
ensembles to achieve the optimal rate region. The use
of generic quantization and clipping functions does not
guarantee convergence of the resulting mutual information
terms involving sums of random variables which characterize
the achievable region of the discretized problem. We consider
jointly continuous random variables X,Y, U and V , with
a joint PDF fXY fU |XfV |Y , so that the variables satisfy
the Markov chain U�X�Y � V , where fU |X denote the
conditional PDF of U given X . Furthermore, we consider
a jointly continuous distortion function d : R2 ! R+ and
continuous reconstruction function g : R2 ! R. This is a
very generic scenario, and the results derived in this section
are applied in multiterminal communication scenarios such
as computation over MAC (Section IV), distributed source
coding (Section V), and multiple descriptions source coding
(Section VI) to derive achievable regions. We denote the joint
probability measure as PXY UV . Considering applications in
distributed source coding, we refer to (X,Y ) as the source
variables, and (U, V ) the auxiliary variables.

In order to preserve the Markov chain U�X�Y � V ,
we discretize the variables in two steps. In Section III-A,
we quantize the auxiliary variables U and V to bU and bV ,
respectively. We note that the Markov chain bU�X�Y � bV
holds since bU and bV are individual transformations of U and
V , respectively. In the next step, in Section III-B, we discretize
the source variables X and Y to bX and bY , respectively.
We note that the Markov chain bU � bX � bY � bV may not
necessarily hold if the source variables are simply discretized
without modifying the auxiliary variables. To illustrate this
issue more clearly, we provide the following example:

Example 1: Let X be uniformly distributed over the
interval [�1/2, 1/2] and Y = X . Let U = 2X and V = 2Y .
Note that the Markov chain U�X�Y � V holds. Consider a
naive quantization of all variables with grid-size one, centered
at zero. Then, bX and bY , the quantized versions of X and
Y , are equal to 0, whereas bU and bV are non-trivial ternary
variables which are equal to each other with probability one.
So, bU � bX � bY � bV does not hold.
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To address this, we produce new variables U and V ,
such that the marginal distribution of (X,U) and (Y, V ) is
preserved, and the Markov chain U � bX � bY �V is satisfied.
In subsequent sections, we use discrete structured coding
techniques of [8] for source variables ( bX, bY ) and auxiliary
variables (U, V ) to derive new inner-bound to the achievable
regions of several multi-terminal communication problems.
As the discretrization becomes more fine, the latter distribution
approaches (i.e., convergence in variational distance as shown
in the proof of Theorem 2) the original joint distribution of
the continuous variables.

A. Discretization of Auxiliary Random Variables
Our objective is to provide characterizations of achievable

rate-distortion functions for source coding and achievable
rate-cost functions for channel coding by first clipping,
smoothing, and then quantizing the associated random
variables. We refer to this entire process as discretization.
Generic quantization and clipping operations have been used
in prior literature (e.g., [29]). We modify these operations in
the sequel to develop Markov-chain-preserving discretization
procedures. Some of the prior convergence results available
in the literature that are used in this work are included in
Appendix A for ease of reference. The (generic) quantization
operation is defined below.

Definition 7 (Quantization Function): Let n 2 N. The
quantization function Qn : R ! 2�nZ is defined as

Qn(s) = arg min
a22�nZ

|s� a|, s 2 R.

Fix `, `
0
, ✏ > 0, and n 2 N. We define the clipped variables

U`, V`0 as follows:

eU` =

(
U if U 2 [�`, `]
U
0 Otherwise

, eV 0
`0 =

(
V if V 2 [�`

0
, `
0]

V
0 Otherwise

,

where U
0
, V

0 are independent of each other and U, V , and
are generated according to fU 0(·) : = fU |U2[�`,`](·), and
fV 0(·) : = fV |V 2[�`0,`0](·), respectively. Note that the clipping
operation described above yields a continuous random variable
as opposed to the generic clipping operation. We take `, `

0

sufficiently large. In general, a continuous random variable U

may not have a continuous PDF. In such scenarios, a useful
technique is to ‘smoothen’ the variable using additive noise.

Remark 3: In this work, we assume that for any continuous
random variable X , the PDF approaches infinity in a finite
number of points, and that the set of points of discontinuity
has (Lebesgue) measure zero. Furthermore, we assume that
the continuous random variables have finite variances.

We define the smoothed random variables eU`,✏,
eV`0,✏, where

eU`,✏ : = eU` + eN`,✏,
eV`0,✏ : = eV` + eN 0

`0,✏,

f eN`,✏
(ñ) =

1
2✏

, ñ 2 (�✏, ✏),

f eN 0
`0,✏

(ñ0) =
1
2✏

, ñ
0 2 (�✏, ✏),

and the variables eN`,✏ and eN 0
`0,✏ are mutually independent

of each other, and of X,Y, V, U, U` and V`0 . This smoothing
operation ensures that the variables have a continuous PDF

which is required in our analysis. Next, we consider quantizing
eU`,✏ and eV`0,✏ to bU`,✏,n = Qn(eU`,✏) and bV`,✏,n = Qn(eV`0,✏),
respectively. Note that by construction the Markov chain
bU`,✏,n�X�Y � bV`,✏,n holds. We have the following theorem
which shows the convergence of information measures under
the above discretization operation. In proving the theorem,
we first develop three important lemmas regarding the
convergence of cost and distortion functions and smoothing
of random variables which are provided in Appendix B.

Theorem 1: For any ⇠ > 0 and all sufficiently large
n, `, `

0
> 0, and sufficiently small ✏ > 0, the following hold:

|I(bUn,`,✏ + bVn,`0,✏; bUn,`,✏)� I(U + V ;U)|  ⇠, (1)

|I(bUn,`,✏ + bVn,`0,✏; bVn,`0,✏)� I(U + V ;V )|  ⇠. (2)

Proof: For the complete proof please see Appendix C.
We provide an outline of the proof steps and techniques in the
following. In the first step, we consider randomized clipping
and show that for any ⇣ > 0, and all sufficiently large `, `

0,
we have:

|I(eU` + eV`0 ; eU`)� I(U + V ;U)|  ⇣, (3)

|I(eU` + eV`0 ; eV`0)� I(U + V ;V )|  ⇣. (4)

Note that one cannot directly apply the data processing
inequality to show Equations (3) and (4) since U` + V`0 is
not a processed version of U + V . As an intermediate step,
we show that

I(eU`; eU` + eV`0)  I(U ;U + eV`0) + 2⌘1 + �1,

where ⌘1 ! 0 as `, `
0 !1,

�1 : =
P (AU,` = 0, BV,`0 = 0)I(U 0;U 0 + V

0|AU,` =0, BV,`0 = 0)
+ P (AU,` = 0, BV,`0 = 1)I(U 0;U 0+V |AU,` = 0, BV,`0 = 1),

and we have defined AU,` as the indicator of U 2 [�`, `]
and BV,`0 as the indicator of V 2 [�`

0
, `
0]. Next, we bound

from above the term �1 by applying the law of total variance
and using the fact that U + V has finite variance,2 and show
that �1 ! 0 as `, `

0 ! 1. Finally, we show the desired
result by applying the entropy-power inequality and the law
of total variance. In the second step, we consider smoothing
of the random variables and show that for all � > 0, and all
sufficiently small ✏ > 0 we have:

|I(eU`,✏ + eV`0,✏; eU`,✏)� I(eU` + eV`0 ; eU`)|  � (5)

|I(eU`,✏ + eV`0,✏; eV`0,✏)� I(eU` + eV`0 ; eV`0)|  �. (6)

The proof uses the lower semi-continuity [30] of information
and a new lemma about convergence of mutual information
for additive channels with peak power constraint approaching
zero (see Lemma 5 given in Appendix B). In the next step,
we consider quantization and show that for any � > 0, and all
sufficiently large n 2 N, the following hold:

|I(bU`,✏,n + bV`0,✏,n; bU`,✏,n)� I(eU`,✏ + eV`0,✏; eU`,✏)|  � (7)

|I(bU`,✏,n + bV`0,✏,n; bV`0,✏,n)� I(eU`,✏ + eV`0,✏; eV`0,✏)|  �. (8)

2Note that this follows from the fact that V ar(U + V ) 
4 max(V ar(U), V ar(V )) and the assumptions made in Remark 3.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 20,2024 at 18:07:23 UTC from IEEE Xplore.  Restrictions apply. 



1634 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 3, MARCH 2024

The proof of this result is involved and relies on the fact that
feU`,✏,eV`0,✏

is continuous over a compact support, and hence is
uniformly continuous, which is ensured by the aforementioned
clipping and smoothing operations. We refer the reader to
Step 3 in Appendix C. ⇤

B. Discretization of the Source Variables
In the following, we describe the procedure for discretizing

the source variables while ensuring that the long Markov chain
holds. Let `, `

0
> 0, and Z and W be two independent

random variables that are independent of the source (X,Y )
such that Z 2 [�`, `] with probability one, W 2 [�`

0
, `
0] with

probability one, and the distribution PZPW is given by

PZ(A) =
PX(A \ [�`, `])

PX([�`, `])
, PW (B) =

PY (B \ [�`
0
, `
0])

PY ([�`0, `0])
,

for all events A and B in Borel sigma algebra. The PDFs of
the variables Z and W are the truncated versions of that of X

and Y , respectively. Define the clipped source variables as:

eX` =

(
X if X 2 [�`, `]
Z otherwise

(9)

and

eY`0 =

(
Y if Y 2 [�`

0
, `
0]

W otherwise.
(10)

Furthermore, let n 2 N, and define the quantized and clipped
source variables bXn,` : = Qn( eX`), and bYn,`0 : = Qn(eY`0).

Theorem 2: Consider a quadruple of random variables
(X,Y, U, V ), where i) (X,Y ) are jointly continuous with joint
PDF fX,Y , and ii) U, V are discrete random variables defined
on finite sets U and V, respectively, and iii) the long Markov
chain U�X�Y � V holds. Then, for any ⇠ > 0 for all
sufficiently large n, `, `

0
> 0, there exist random variables

Un,` and V n,`0 defined on U⇥ V such that the long Markov
chain Un,` � bXn,` � bYn,`0 � V n,`0 holds, and the following
conditions are satisfied

|I(Un,` + V n,`0 ;Un,`)� I(U + V ;U)|  ⇠, (11)
|I(Un,` + V n,`0 ;V n,`0)� I(U + V ;V )|  ⇠. (12)

Proof: The complete proof is given in Appendix D.
We give a brief outline of the proof here. Given the
quadruple (X,Y, U, V ), we use the discretization process
described above to generate ( bXn,`,

bYn,`) from (X,Y ) in
a distributed way. Then, we generate the random variables
( bXn,`,

bYn,`, Un,`, V n,`) satisfying the long Markov Chain
Un,` � bXn,` � bYn,`0 � V n,`0 such that

lim
n,`,`0!1

TV

⇣
P bXn,`

bYn,`0Un,`V n,`0
, PXY UV

⌘
= 0.

This relies on a new Pinsker-type inequality relating the mutual
information with the variational distance under Markov chain
constraints shown in Appendix B (see Lemma 6). Since the
random variables U, V have finite alphabets, one can use the
continuity of mutual information for finite-alphabet random
variables to complete the proof of the theorem. ⇤

Corollary 1: Given a triple of random variables (Y, U, V ),
for any ⇠ > 0, for all sufficiently large n, n

0
, `, `

0
, `
00

> 0, and
all sufficiently small ✏, the following condition is satisfied

|I(bUn,`,✏ + bVn,`0,✏,
bYn0,`00 ; bUn,`,✏)� I(U + V, Y ;U)|  ⇠,

(13)

where bYn0,`00 = Qn0(eY`00), and eY`00 is defined as in (10).
Proof: First, we apply clipping and quantization of the

random variable Y . Then by the data processing inequality
and the lower semi-continuity of mutual information, we have

|I(U + V, bYn0,`00 ;U)� I(U + V, Y ;U)|  ⇠,

for all sufficiently large n
0 and `

00. Next we note that

I(U + V, bYn0,`00 ;U) = I(U + V ;U |bYn0,`00) + I(U ; bYn0,`00).

Regarding the first term, since bYn0,`00 is has a finite alphabet,
we can apply Theorem 2 on each I(U +V ;U |bYn0,`00 = by) for
each value of by and show convergence. Regarding the second
term, I(bUn,`,✏; bYn0,`00) converges to I(U ; bYn0,`00) due to lower
semi-continuity of mutual information and data processing
inequality. ⇤

Remark 4: In this section, we have considered the addition
operation as the bivariate function operating on the pair of
variables U and V . The results obtained in this case can be
extended to a large class of bivariate functions by embedding
them into the addition operation, where an embedding is
defined below, and using the fact that mutual information is
invariant under any one-to-one univariate transformation of
its arguments. This is demonstrated through an example in
Section IV. This can potentially be further extended by using
the Kolmogorov representation theorem [31], [32].

Definition 8 (Embedding into Addition Operation):
A bivariate function g : R ⇥ R ! R is said to be
embedable in the addition operation if there exists
a triple of mappings (h(·), �1(·), �2(·)) such that
g(x, y) = h(�1(x) + �2(y)),8x, y 2 R.

Example 2 (Embedding the Absolute Value of the Product):
Consider the bivariate function g(x, y) = |xy|, x, y 2 R.
Take �1(x) = log |x|, �2(y) = log |y|, x, y 2 R and
h(x) = 2x

, x 2 R. Then, (h(·), �1(·), �2(·)) provides an
embedding of g(·, ·) into the addition operation.

IV. COMPUTATION OVER MAC
In this section, we consider a coding problem about the two-

transmitter MAC. We consider a simple formulation which
is purely a channel coding problem and that captures the
essence of the key concepts. In the standard formulation of the
multiple-access channel coding, the receiver wishes to recover
both the messages reliably. Now consider a variation of this
problem, where the decoder is interested in recovering only
a single-letter bivariate function g(·, ·) of the channel inputs
sent by the transmitters reliably. Originally, this problem was
formulated in [33], and has been studied extensively with
applications to interference channels and relay channels [34],
[35], [36]. We demonstrate that structured codes can better
facilitate the interaction between the two transmitters to
ensure that the decoder recovers the desired information while
transmitting information at a larger rate that can be sustained
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by unstructured codes. Formally, a memoryless stationary two-
transmitter MAC, used without feedback, is given by a tuple
(PY |X1,X2 , 1, 2), consisting of the transition probability
PY |X1,X2 : R⇥R⇥B ! R, and two continuous cost functions
1 and 2.

A. Problem Formulation and Main Result
Definition 9: Given a MAC (PY |X1,X2 , 1, 2), and a

bivariate function g : R ⇥ R ! R, a transmission system
with parameters (n, ⇥1,⇥2) for reliable computation consists
of a pair of encoder mappings and a decoder mapping ei :
{1, 2, . . . ,⇥i} ! Rn

i , i = 1, 2, and f : Rn ! Rn
. A

quadruple of rates and costs (R1, R2, ⌧1, ⌧2) is said to be
achievable if 8✏ > 0, and all sufficiently large n, there exists
a transmission system with parameters (n, ⇥1,⇥2) such that
for i = 1, 2,

1
n

log ⇥i � Ri � ✏,
1
⇥i

⇥iX

j=1

i(ei(j))  ⌧i + ✏,

⇥1X

j=1

⇥2X

k=1

1
⇥1⇥2

⇥ P
n
Y1,Y2|X1,X2

[f(Y n) 6= g(e1(j), e2(k))|e1(j), e2(k)]  ✏,

for i = 1, 2. Let the optimal capacity cost region
C(⌧1, ⌧2) denote the set of all rate pairs (R1, R2) such that
(R1, R2, ⌧1, ⌧2) is achievable.
From now on, we focus on the class of bivariate functions
g(·, ·) that are embeddable in the real addition operation with
the associated triple of functions (h(·), �1(·), �2(·)). In the
following, we provide an achievable rate region that is based
on linear codes and discretization.

Definition 10: Let P(⌧1, ⌧2) denote the collection of
distributions PQU1U2X1X2 defined on Q ⇥ R4 such that (i)
(U1X1)�Q � (U2X2) form a Markov chain, with Q being
a finite set, and (ii) E(i(Xi))  ⌧i, i 2 {1, 2}. For a
PQU1U2X1X2 2 P , let ↵F (PQU1U2X1X2) denote the set of
rate pairs (R1, R2) 2 [0,1)2 that satisfy

R1  I(U1;Y |U2Q) + I(Z;Y |U1U2Q)
� I(Z;X2|U1U2Q),

R2  I(U2;Y |U1Q) + I(Z;Y |U1U2Q)
� I(Z;X1|U1U2Q),

R1 + R2  I(U1U2;Y |Q) + 2I(Z;Y |U1U2Q)
� I(Z;X1|U1U2Q)� I(Z;X2|U1U2Q),

where the mutual information terms are evaluated with
PQU1U2X1X2PY |X1X2 , and Z = �1(X1) + �2(X2). Let the
information rate region be defined as

RF (⌧1, ⌧2) = cl

0

@
[

PQU1U2X1X22P(⌧1,⌧2)

↵F (PQU1U2X1X2)

1

A .

It should be noted that the standard capacity region of a
multiple access channel is defined by considering the complete
reconstruction of both messages, whereas in computation over
MAC, only a bivariate function of the two input sequences
needs to be reconstructed at the receiver.

Theorem 3: Given a MAC (PY |X1,X2 , 1, 2), and a
bivariate function g : R ⇥ R ! R, the optimal capacity
cost region C(⌧1, ⌧2) contains the information rate region
RF (⌧1, ⌧2), i.e., RF (⌧1, ⌧2) ✓ C(⌧1, ⌧2).

Proof Outline: We have two coding layers associated with
unstructured codes and structured codes. The two layers are
combined using superposition coding. The unstructured codes
yields the standard rate region for MAC. This can be shown
using superposition coding techniques. For the structured
coding layer, we discretize and smoothen the channel input
variables X1 and X2 first, and then discretize the channel
output Y to yield a discrete version of the problem with
variables bX1,n,`,✏,

bX2,n,`0,✏ and bYn0,`00 . Now one can use [13,
Theorem 4.2] to show that the following rates are achievable
for the structured coding layer using nested linear codes
over arbitrarily large finite fields, assuming that the messages
corresponding the unstructured coding layer are decoded
correctly:

R1  H( bX1,n,`,✏|U1U2Q)

�H( bX1,n,`,✏ + bX2,n,`0,✏|bYn0,`00U1U2Q)

= I( bX1,n,`,✏ + bX2,n,`0,✏; bYn0,`00 |U1U2Q)

� I( bX1,n,`,✏ + bX2,n,`0,✏; bX2,n,`0,✏|U1U2Q),

and

R2  H( bX2,n,`0,✏|U1U2Q)

�H( bX1,n,`,✏ + bX2,n,`0,✏|bYn0,`00U1U2Q)

= I( bX1,n,`,✏ + bX2,n,`0,✏; bYn0,`00 |U1U2Q)

� I( bX1,n,`,✏ + bX2,n,`0,✏; bX1,n,`,✏|U1U2Q).

Now using Corollary 1, we see that the mutual information
terms involving discrete variables converge to the corre-
sponding terms with continuous variables using the following
identity:

I(X1 + X2, Y ;X2) = I(X1 + X2;X2) + I(Y ;X1, X2)
� I(Y ;X1 + X2).

The desired result follows by noting that the real addition
is equal to the field addition for the discrete variables with
probability approaching one for asymptotically large `.

B. Computation of Products Over MAC
As mentioned in Remark 4, one can apply the techniques

developed in the prequel to the computation of bivariate
functions of variables other than the addition operation. In the
following, as a proof of concept, we characterize an achievable
rate region for the computation of products of pairs of random
variables over additive MAC with Gaussian noise and with
power constraint i(xi) = x

2
i and ⌧i = 1, i = 1, 2.

To elaborate, we let Y = X1+X2+N and Z = g(X1, X2) =
X1X2, where N ⇠ N (0, �

2), and the input alphabet is
R\{0}.3 Recall that Example 2 provides an embedding of
|X1X2| in the real addition operation. In order to compute
g(X1, X2) we compute the pair (|X1X2|, sign+(X1X2)),

3Note that if the symbol zero is allowed, then recovering the product is
trivial, and an infinite rate is achievable for any signal-to-noise ratio.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 20,2024 at 18:07:23 UTC from IEEE Xplore.  Restrictions apply. 



1636 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 3, MARCH 2024

TABLE I
THE ACHIEVABLE SYMMETRIC RATES FOR COMPUTING THE PRODUCT OF

RANDOM VARIABLES OVER THE NOISELESS ADDITIVE MAC

where we define4 sign+(x) : = (x > 0), and leverage the
fact that sign+(X1X2) = sign+(X1)�2 sign+(X2). We then
transmit |X1X2| and sign+(X1X2) separately by using the
coding strategy given in the proof of Theorem 3 twice. For
simplicity, we will restrict our analysis to a structured coding
scheme with trivial auxiliary random variables, i.e., U1 =
U2 = ;. We also restrict our attention to symmetric input
distributions for ease of computation. We use a superposition
of two layers of structured codes. In the first layer, we encode
the sign information yielding the rates as follows:

Rs,i = I(Zs;Y )� I(Zs; sign+(Xj)), i, j = 1, 2, j 6= i,

where Zs = sign+(X1) �2 sign+(X2). In the second layer,
we encode the information regarding the absolute value of the
random variables yielding rates as follows:

Rp,i = I(Zp;Y |Zs)� I(Zp; |Xj |
��Zs), i, j = 1, 2, j 6= i,

where Zp = |X1X2|. The resulting rates are Ri = Rp,i +
Rs,i, i = 1, 2 which can be simplified as given below:

Ri = Rp,i + Rs,i = I(Z;Y )� I(Z;Xj), i, j = 1, 2, j 6= i.

Note that characterizing the set of achievable rates in this
inner bound involves optimizing over the set of distributions
PX1PX2 under power constraints. We provide achievable rates
for three choices of random variables, namely the uniform,
Gaussian, and Laplacian variables from the generalized
Gaussian family all having zero mean and unit variance.
Table I provides the set of achievable rates for the noiseless
MAC scenario, i.e. �

2 = 0. It is worth noting that the
uniform distribution, achieves the best symmetric rate among
the three distributions. Note that the Gaussian lies between
the Laplacian and the uniform in the family with the shape
parameters being � = 2, 1 and 1, respectively. As can be
observed, the achievable rates follow a similar order. The
fact that uniform distribution achieves a higher symmetric rate
compared to Gaussian distribution is noteworthy. An outline
of the computational steps is given in Appendix E. For
the additive MAC with Gaussian noise, Figure 1 shows the
achievable rates for the uniform and the Gaussian input
distributions as a function of the channel signal-to-noise
ratio.

Remark 5: Note that when the channel is noiseless, the
capacity to compute the sum is infinite, however to compute
the product, the achievable rates in Table I are finite. This
illustrates the effect of mismatch between the structure in the
channel and the structure in the computational objective.

C. Computation of Sums Over Gaussian MAC Example
Consider the MAC given by Y = X1 + X2 + N , where N

is zero-mean Gaussian with variance �
2
N . The decoder wishes

4Note that this is different from the conventional definition of sign+(·).

Fig. 1. Achievable symmetric rates for computation of products over
an additive MAC with Gaussian noise for Uniform and Gaussian input
distributions as a function of SNR.

to compute the sum of the inputs, i.e., Z = g(X1, X2) =
X1+X2. We have power constraints on X1 and X2: 1(x1) =
x

2
1 and 2(x2) = x

2
2, for all x1, x2 2 R. Let ⌧i = Pi for

i = 1, 2. The rates achievable using unstructured code
ensembles is given by the standard MAC capacity region given
[26, Chapter 15] by
⇢
(R1, R2) :R1

1
2
log

✓
1+

P1

�
2
N

◆
, R2 

1
2

log
✓

1 +
P2

�
2
N

◆
,

R1 + R2 
1
2

log
✓

1 +
P1 + P2

�
2
N

◆�
.

This is achieved using independent Gaussian inputs X1 and
X2 of variances P1 and P2, respectively. Using the same
distribution, one can achieve the following rates while
employing structured code ensembles.

⇢
(R1, R2) : R1 

1
2

log
✓

P1(P1 + P2 + �
2
N )

(P1 + P2)�2
N

◆
,

R2 
1
2

log
✓

P2(P1 + P2 + �
2
N )

(P1 + P2)�2
N

◆�
.

Comparing the sum-rate we see that the structured coding
scheme performs better than the unstructured coding scheme
when

✓
1 +

P1

P2

◆ ✓
1 +

P2

P1

◆
 1 +

P1

�
2
N

+
P2

�
2
N

.

For the case when P1 = P2 = P boils down to the condition
that P

�2
N
� 1.5.

V. DISTRIBUTED SOURCE CODING

In this section we consider the distributed source coding
problem. Our objective is to derive an inner bound to
the achievable rate-distortion region for the two-help-one
problem [1] with continuous sources using structured codes.
As a first step, in Section V-A, we first prove the achievability
of the Berger-Tung rate-distortion region for the continuous
two-user distributed source coding problem. In Section V-B,
we add a structured coding layer and derive an inner bound.
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A. Two-User Distributed Source Coding
Next, we consider distributed source coding problem

consisting of two correlated and memoryless continuous-
valued sources X and Y , characterized by a probability
measure PXY , which needs to be compressed distributively
into bits to be sent to a joint decoder. The joint decoder
wishes to reconstruct the sources with respect to two separable
distortion measures dx : R⇥R ! R+ and dy : R⇥R ! R+.
The distributed source coding problem is a lossy version
of the Slepian-Wolf source coding problem. This is a well-
studied problem [19], [37], [38], and we skip the formal
definition for conciseness. Well-known inner and outer bounds
(called Berger-Tung bounds) on the performance limits of this
problem exist in the discrete case [19], [39], [40], [41]. For
the continuous source and reconstruction alphabet case, the
only available results in the literature are for jointly Gaussian
source distributions and quadratic distortion functions [42],
[43]. The results presented in the following are valid for
general distributions and distortion functions.

Let RD denote the set of all achievable rate and distortion
tuples (R1, R2, D1, D2). We denote R(D1, D2) as the set of
all rates (R1, R2) such that (R1, R2, D1, D2) is achievable.

Definition 11: Let P(D1, D2) denote the collection of
pairs of transition probabilities PU |X and PV |Y , and pairs
of continuous reconstruction functions gi : R2 ! R for
i = 1, 2, such that Edx(X, bX)  D1, Edy(Y, bY ) 
D2, where the expectations are evaluated with the joint
measure PXY PU |XPV |Y , i.e., with the Markov chain U�X�
Y � V , and bX = g1(U, V ) and bY = g2(U, V ). For a
(PU |X , PV |Y , g1, g2) 2 P(D1, D2), let ↵(PU |X , PV |Y , g1, g2)
denote the set of rate pairs (R1, R2) 2 [0,1)2 that satisfy

R1 � I(X;U |V ), R2 � I(Y ;V |U), R1 + R2 � I(XY ;UV ).

Let the information rate region be defined as

RQB(D1, D2) = cl

0

@
[

(PU|X ,PV |Y ,g1,g2)2P(D1,D2)

↵(PU |X , PV |Y , g1, g2)

1

A .

Theorem 4: For a given source (PXY , dx, dy), we have
RQB(D1, D2) ✓ R(D1, D2).

Proof: Please see Appendix F. ⇤

B. Lossy Two-Help-One Problem
Next, we consider a coding theorem for continuous

correlated sources for the two-help-one problem. Consider
a triple of memoryless continuous-valued sources (X,Y, Z)
characterized by a probability measure PXY Z . Let d : R2 !
R+ be a jointly continuous distortion function. The sources
X and Y act as helpers for the third source Z. The sources
need to be compressed distributively with rates R1, R2 and
R3, respectively, into bits to be sent to a joint decoder.
For simplicity we let R3 = 0. The joint decoder wishes
to reconstruct the source Z with respect to a distortion
function d.

1) Problem Formulation and Main Result:
Definition 12: An (n, ⇥1,⇥2) transmission system consists

of mappings ei : Rn ! {1, 2, . . . ,⇥i}, for i = 1, 2,
and f : {1, 2, . . . ,⇥1} ⇥ {1, 2, . . . ,⇥2} ! Rn. A triple

(R1, R2, D) is said to be achievable if there exists a sequence
of (n, ⇥1n,⇥2n) transmission systems such that for i = 1, 2,

lim
n!1

log ⇥i

n
 Ri, lim

n!1
Edn(Zn

, f(e1(Xn), e2(Y n)))  D,

where dn(·, ·) is the n-letter average distortion, i.e.,
dn(zn

, ẑ
n) = 1

n

Pn
i=1 d(zi, ẑi) for all z

n
, ẑ

n 2 Rn. Let
R(D) denote the set of rates (R1, R2) such that (R1, R2, D)
is achievable.

We provide a coding theorem for the continuous sources.
Definition 13: Let P(D) denote the collection of transition

probabilities PQU1V1UV bZ|XY such that (i) (UU1) � (XQ) �
(Y Q)� (V V1) form a Markov chain, (ii) Q is independent of
(X,Y ), (iii) bZ = g(U1, V1, U + V ) for some function g, and
(iv) Ed(Z, bZ)  D, where the expectations are evaluated with
distribution PXY ZPQU1V1UV bZ|XY . For a PQU1V1UV bZ|XY 2
P(D), let ↵F (PQU1V1UV bZ|XY ) denote the set of rate pairs
(R1, R2) 2 [0,1)2 that satisfy

R1 � I(X;UU1|QV1) + I(U + V ;V |QU1V1)
� I(U ;V |QU1V1),

R2 � I(Y ;V V1|QU1) + I(U + V ;U |QU1V1)
� I(U ;V |QU1V1)

R1 + R2 � I(XY ;UV U1V1|Q) + I(U + V ;V |QU1V1)
+ I(U + V ;U |QU1V1)� I(U ;V |QU1V1),

where the mutual information terms are evaluated with
PXY ZPQU1V1UV bZ|XY . Let the information rate region be
defined as

RF (D) = cl

0

@
[

PQU1V1UV bZ|XY 2P(D)

↵F (PQU1V1UV bZ|XY )

1

A .

Theorem 5: For a given source (PXY Z , d) we have
RF (D) ✓ R(D).

Remark 6: The concept of embedding, described in Defini-
tion 8, has been taken into account in the above rate-distortion
characterization through the function g(·, ·, ·) and the choice
of auxiliary variables in obtaining the reconstruction.

Proof Outline: We propose a coding scheme involving two
layers to prove the theorem. The first is the Berger-Tung
unstructured coding layer. The second is the structured coding
layer that uses nested linear codes. First we discretize the
auxilliary variables U and V , and then discretize the source
variables X and Y , as described in Section III, to come
up with a discrete version of the problem at hand with
discrete variables Un,`, V n,`0 , Xn,`, and Y n,`0 as stated in
Theorems 1 and 2. The Berger-Tung unstructured coding
rates are derived as in Theorem 4. The structured coding is
accomplished using nested linear codes. The rates associated
with this layer can be understood as follows: for ease of
explanation, assume that the unstructured coding auxiliary
variables U1, V1 and the time-sharing variable Q are trivial.
Then, for the discrete communication system, the rates

R1 � H(Un,` + V n,`0)�H(Un,`| bXn,`)

= I( bXn,`;Un,`)� I(Un,`;V n,`0)
+ I(V n,`0 ;Un,` + V n,`0),
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Fig. 2. General distributed source coding problem, where n 2 N is the blocklength.

and similarly

R2 � H(Un,` + V n,`0)�H(Un,`|bYn,`0)

= I(bYn,`0 ;V n,`0)� I(Un,`;V n,`0)
+ I(Un,`;Un,` + V n,`0),

can be achieved using nested linear codes (over arbitrarily
large prime fields) along with joint-typical encoding and
decoding as given in [13, Theorem 3.7]. Achievability for
the original problem with continuous variables follows by
Theorems 1, 2, and Theorem 4, and by noting that P (U +V 2
[�`, `]) ! 1 as ` ! 1, so that the field addition for the
discrete variables Un,` and V n,` is equal to real addition with
probability approaching one as ` !1. The two coding layers
can be combined using the technique of superposition coding.

2) Gaussian Lossy Two-Help-One Example: Consider a
pair of zero-mean, jointly Gaussian, unit-variance correlated
sources X and Y with correlation coefficient ⇢ > 0. Let
Z = X � cY for some c, and let d(z, ẑ) = (z � ẑ)2. Let
us evaluate a subset of the inner bound to the achievable
rate-distortion region using a specific test channel. Let us
denote �

2
Z = 1 + c

2 � 2⇢c, and let D denote the target
distortion. Let us choose Q = �, and U1 = V1 = 0. Moreover
consider

U = X + Q1, and V = cY + Q2,

where Q1 and Q2 are independent zero-mean Gaussian
random variables that are independent of the pair (X,Y ).
We take their variances to be q1 and D�2

Z

�2
Z�D

� q1. With this
choice we see that U + V = Z + Q1 + Q2, and we take
bZ = E(Z|U + V ) = �2

Z�D
�2

Z
(U + V ), which results in

Ed(Z, bZ) = D. Now let us see the achievable rates.

R1 �
1
2

log
�

4
Z

q1(�2
Z �D)

, R2 �
1
2

log
�

4
Z

D�
2
Z � q1(�2

Z �D)
.

Eliminating q1, we see that the rate distortion tuple
(R1, R2, D) satisfying the following equations is achievable:

2�2R1 + 2�2R2 
✓

�
2
Z

D

◆�1

.

This was obtained in [15] using lattice codes. Here we derived
this using nested linear codes and the convergence of random
variables.

VI. MULTIPLE DESCRIPTIONS SOURCE CODING

In this section, we consider the multiple descriptions source
coding problem, where given a source X , the encoder wishes
to construct a set of ` � 2 descriptions of the source, such
that given each subset of descriptions, the source can be
reconstructed with a desired distortion. The scenario has been
studied extensively in the discrete case [9], [44], [45], [46],
[47], [48]. We derive an achievable rate-distortion region for
general continuous sources, and demonstrate that structured
codes achieve a larger rate-distortion region compared to
unstructured codes in an example with Gaussian sources and
test-channels. It should be noted that the achievable region for
the Gaussian multiple descriptions problem with ` = 2 was
derived by [49]. The results presented in the following are
valid for general distributions and distortion functions.

A. Problem Formulation and Main Result
Definition 14: Let ` � 2, L = [`], L = 2L � �, n 2 N, and

⇥i 2 N, i 2 L. A coding system with parameters (n, ⇥i : i 2
L) for multiple description coding of a given source (PX , dN :
N 2 L), consists of ` encoder mappings and 2` � 1 decoder
mappings:

ei : Xn ! [⇥i], fN :
Y

i2N

[⇥i] ! Xn
,

where i 2 L, and N 2 L. A of rate-distortion tuple (Ri : i 2
L, DN : N 2 L) 2 (R+)`+2`�1 is said to be achievable if for
all ✏ > 0, and for all sufficiently large n, there exists a coding
system with parameters (n, ⇥i : i 2 L) such that

1
n

log ⇥i  Ri + ✏,

E[dN(Xn
, fN((ei(Xn))i2N))]  DN + ✏, i 2 L,N 2 L.

The operational rate-distortion region Rop(DN : N 2 L) is
given by the set of all achievable rate-distortion tuples (Ri :
i 2 L, DN : N 2 L).

We use the discretization techniques developed in prior
sections, along with the Sperner5 Set Coding (SSC) strategy
in [13, Theorem 6.2] to derive an achievable rate-distortion
region for multiple descriptions coding with continuous
sources. The SSC strategy is a generalization of the
Zhang-Berger strategy [44] to multiple descriptions scenarios

5A family of sets is called a Sperner family of sets if none of its elements
is a subset of another element. For instance {{1}, {2, 3}} is a Sperner set,
but {{1}, {1, 3}} is not.
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Fig. 3. The SSC codebooks for (a) ` = 2 and (b) ` = 3.

involving more than two descriptions and three decoders.
In the Zhang and Berger strategy, a common codebook C1,2

is used to encode the common information decoded at the
Decoder 1 and Decoder 2. The scheme uses a total of four
codebooks, corresponding to information decoded at all three
decoders, each of the individual decoders, and only the joint
decoder, respectively. In the SSC strategy, for each subset M of
decoders, one codebook CM is generated, which encodes the
common information decoded among this subset of decoders.
It is shown in [9] that only codebooks for which M is a Sperner
set are non-redundant. To elaborate more, we explain the
random variables decoded at each decoder for the SSC strategy
for the three-descriptions problem, i.e. ` = 3 (See Figure 3).
Note that in this case, we have 7 decoders corresponding to the
7 non-empty subsets of {1, 2, 3}. The complete explanation of
the scheme is provided in [9]. Let SL be the Sperner set for
` = 3. It is known that SL has 17 elements. Let UM,M 2 SL

be a vector of random variables with whose joint distribution
with source X is given by PX,UM,M2SL . The SSC strategy
generates 17 independent random codebooks CM,M 2 SL,
with blocklength n, where CM is generated based on the single
letter distribution PUM for M 2 SL. Each codebook is binned
independently ` times, once per description. Given a source
sequence X

n, the encoder finds codewords U
n
M 2 CM,M 2

SL which are jointly typical with each other and the source
sequence and sends the corresponding bin numbers on each
description. Each decoder decodes a subset of the codewords.
To elaborate, decoder N 2 2L � � recovers UM based on
the received bin numbers if N ✓ M. Let MN be the set of
indices of random variables whose corresponding codewords
are decoded at decoder N, and let fMN be the indices of those
which are decodable if we have access to strict subsets of the
descriptions received by N. Furthermore, for the collections
of families M1,M2 and M3, we write [U, V, W ](M1,M2,M3)

to denote the unordered collection of random variables
{UM1 , VM2 , WM3}. The following theorem provides an
achievable region for the multiple descriptions problem using
the discretization process developed in the previous sections
along with the SSC strategy with unstructured random codes
developed in [13, Theorem 6.2] for discrete sources and test-
channels.

Definition 15: Given a source (PX , dN : N 2 L), let
P(DN : N 2 L) denote the collection of pairs (P, gL)
of (a) joint distribution P on random variables X and
UM,M 2 SL with X-marginal distribution PX and (b) a set
of reconstruction functions gL : = (gN : U{N} ! X,N 2 L)

such that EdN(X, gN(U{N}))  DN, 8N 2 L, where the
expectations are evaluated with the distribution P . For a
(P, gL) 2 P(DN : N 2 L), define ↵SS(P, gL) as the set of
rate tuples (Ri : i 2 L) satisfying the following constraints for
some non-negative real numbers (⇢M,i, rM)i2fM,M2SL

:

I(UM) + I(UM;X) 
X

M2M

rM,8 M ⇢ SL,

(14)
X

M2MN\(L[fMN)

(rM �
X

i2fM

⇢M,i)  I(UMN\(L[fM))

+I(U
MN\(L[fM)

;UL[fM),8L ⇢MN,8N 2 L,

(15)

Ri =
X

M
⇢M,i, (16)

where we have defined I(Zk) : =
Pk

j=1 I(Zk;Zk�1) for a
random vector Z

k, MN is the set of all codebooks decoded
at decoder N, that is MN : = {M 2 SL|9N0 ⇢ N,N0 2M},
and fMN denotes the set of all codebooks decoded at decoders
Np ( N which receive subsets of descriptions received by N,
that is fMN : =

S
Np(N MNp . The mutual information terms

are evaluated with the distribution P . Define the Sperner Set
Coding rate-distortion region as

RSS(DN : N 2 L) : = cl

0

@
[

(P,gL)2P(DN:N2L)

↵SS(P, gL)

1

A .

Theorem 6: Given a source (PX , dN : N 2 L), the
operational rate-distortion region contains the information rate-
distortion region, i.e., RSS(DN : N 2 L) ✓ Rop(DN : N 2 L).

Proof Outline. Given the random variables X and UM,M 2
SL described in the theorem statement, the transmission system
first discretizes the source using techniques developed in
the prior sections and then uses the discrete SSC strategy
introduced in [13, Theorem 6.2] to achieve the rate-distortion
vector in (14), (15), and (16). The mutual-information terms
in (14), (15) for the discretized variables converge to that of
the continuous variables as the clipping limits are increased
asymptotically and the quantization step approaches zero by
similar arguments as in the prior sections.

The following theorem provides an achievable region for the
multiple descriptions problem using the discretization process
developed in the previous sections along with the SSC strategy
with both unstructured and structured random codes developed
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in [13, Theorem 6.8] for discrete sources and test-channels.
It should be noted that in [13, Theorem 6.8], the information
inequalities are stated in terms of the entropy terms. Whereas
in order to be able to apply the results of Theorems 1 and 2,
one needs to express the achievable region in terms of mutual
information quantities. The following theorem provides such
a representation.

Definition 16: Given a source (PX , dN : N 2 L), let
P(DN : N 2 L) denote the collection of pairs (P, gL) of
(a) joint distribution P on random variables X , UM,M 2
SL, VAin , VAout , VAsum , with X-marginal distribution PX ,
where Aj 2 SL, j 2 {in, out, sum}, are three distinct
families, and all the auxiliary random variables take values
in R, and (b) a set of reconstruction functions gL =
{gN : U0{N} ! X,N 2 L}, such that VAsum = VAin +
VAout , and EdN(X, gN(U 0{N}))  DN 8N 2 L, where
U
0
{N} : = (U{N}, VN) and N : = {Ai|Ai 2 MN, i 2

{in, out, sum}}, and the expectations are evaluated with P .
For a (P, gL) 2 P(DN : N 2 L), define ↵F (P, gL) as the set
of rate tuple (Ri, i 2 L) satisfying the following constraints
for some non-negative real numbers (⇢M,i, ro,M)i2fM,M2SL

,
r
0
Ain

, ⇢Ain,i, i 2 eAin, r
0
Aout

, ⇢Aout,i, i 2 eAout:
i) Covering Constraints: for all M ⇢ SL,E ⇢ A and
↵,� 2 F+

p ,
X

M2M

rM +
X

E2E

r
0
E �I(UM, VE) + I(UMVE;X), (17)

X

M2M

rM + r
0
Aout

�I(UM, VAout) + I(UMWAout,↵,� ;X)

�I(WAsum,↵,� ;VAin |UM) + I(VAin ;VAout |UM). (18)

ii) Packing constraints: for all L ⇢MN,Asum /2MN,
X

M2MN\fMN[L

⇣
rM �

X

j2fM

⇢M,j

⌘
+

X

E2MN\fMN[LT
{Ai|i2{in,out}}

⇣
r
0
E �

X

j2eE

⇢o,E,j

⌘

I([UV W ]MN\fMN[L)+I([UV W ]MN\fMN[L; [UV W ]cMN[L),
(19)

and for all L ⇢MN,Asum 2MN,Ain /2MN,Aout /2MN

X

M2MN\fMN[L

⇣
rM �

X

j2fM

⇢M,j

⌘
+ r

0
Aout

�
X

j2 eAsum

⇢o,Asum,j

 I(UMN , VAout) + I(UMNWAsum,1,1; [UV W ]cMN[L)
� I(WAsum,1,1;Vin|UMN) + I(Vin;Vout|UMN), (20)

where (a) Ri =
P

M ⇢M,i, (b) A : = {Ain,Aout},
(c) MN : = (MN, {Aj , j 2 {in, out}|Aj 2
MN}, {(Asum, 1, 1)|Asum 2MN}), (d) cMN : =

S
N0(N MN0 ,

(e) r
0
Ain

 r
0
Aout

, and (f) WA3,↵,� : = ↵VAin + �VAout .6 The
mutual information terms are evaluated with the distribution
P . Define information rate-distortion region as

RF (DN : N 2 L) : = cl

0

@
[

(P,gL)2P(DN:N2L)

↵F (P, gL)

1

A .

6The collection {A3, ↵, �} is used as the subscript for W since the random
variable is defined using ↵ and �.

Theorem 7: For a given source (PX , dN : N 2 L), the
operational rate-distortion region contains the information rate-
distortion region, i.e., RF (DN : N 2 L) ✓ R(DN : N 2 L).

Proof Outline. Given the random variables X and UM,M 2
SL, VAin , VAout , VAsum described in the theorem statement,
the transmission system first discretizes the source using
techniques developed in the prior sections, and then uses a
coding scheme based on nested linear codes considered in
[13, Theorem 6.8]. Next, we rewrite the entropy terms in [13,
Theorem 6.8] in terms of mutual information terms using the
fact that for any triple U, V, X the following holds

H(↵U + �V |X)�H(U |X) = H(↵U + �V |X)
�H(U, V |X) + H(V |X,U)

= H(↵U + �V |X)�H(↵U + �V, V |X) + H(V |X,U)
= �H(V |X,↵U + �V ) + H(V |X,U)
= I(↵U + �V ;V |X)� I(U ;V |X).

The resulting mutual-information terms in the covering bounds
given in (17),(18) and packing bounds given in (19),(20) for
the discretized variables converge to that of the continuous
variables as the clipping limits are increased asymptotically
and the quantization step size approaches zero by similar
arguments as in the prior sections.

B. Linear Quadratic Gaussian Examples
1) Vector Gaussian Example: We proceed to show through

an example that using structured codes gives gains in terms
of the achievable rate-distortion. In this example, we evaluate
inner bounds to the achievable rate-distortion region of
a vector Gaussian example. The vector Gaussian multiple
descriptions problem has been studied extensively in prior
works [50], [51], [52]. We consider a specifically tailored
vector Gaussian problem which allows for an analytical proof
of strict sub-optimality of the unstructured coding scheme
as compared to the structured coding scheme (Propositions
1 and 2). The set-up is shown in Figure 4. Here X and Z

are independent zero-mean, unit-variance, Gaussian sources.
The distortion function for the individual decoders is the mean
squared error. Decoder 1 and 2 want to reconstruct X and Z,
respectively, with mean squared error less than or equal to P ,
and Decoder 2 wants to reconstruct Y = X+Z with distortion
less than or equal to 2P . Each of the joint decoders wish to
reconstruct X and Z with distortion, given by the mean square
error, less than or equal to P .7

Proposition 1: The rate triple (R1, R2, R3) =
( 1
2 log( 1

P ), 1
2 log( 1

P ), 1
2 log( 2

P )) is achievable using the
SSC strategy with structured codes, i.e. (R1, R2, R3) 2 RF .

Proof: The proof follows by taking Ain = {1}, Aout =
{2}, and Asum = {3} with V{1} = X + NP , V{2} = Z + N

0
P

and V{3} = V{1}+V{2} in Theorem 7, where NP and N
0
P are

independent Gaussian variables with zero mean and variance
P , and all other variables are taken to be trivial. ⇤

Proposition 2: For P < 1/2, the rate triple (R1, R2, R3) =
( 1
2 log( 1

P ), 1
2 log( 1

P ), 1
2 log( 2

P )) is not achievable with SSC

7Note that here we have considered multiple distortion constraints at the
joint decoders. The arguments in Theorems 6 and 7 can be extended to the
scenario with multiple distortion constraints in a straightforward manner.
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Fig. 4. Example with the Vector Gaussian Source.

Fig. 5. Achievable rates R3 in Example 1 using the SSC strategy with
unstructured codes (red curve) and structured codes (blue curve).

strategy using unstructured codes with jointly Gaussian test
channels, i.e. (R1, R2, R3) is not in RSS restricted to jointly
Gaussian test channels.

Proof: The achievable rates are shown in Figure 5. The
details of the proof are provided in Appendix G. ⇤

Note that in the above example, as a result of the
independence between the two source components X and Z,
the extra covering bound in (18) is redundant. However, this
is not always the case, to illustrate this point we investigate
the following example.

2) Scalar Gaussian Example: Consider a three-descriptions
problem where the source X is a scalar zero-mean unit-
variance Gaussian random variable and the distortion is
measured with respect to mean squared error at every decoder.
We derive a set of achievable rate-distortions using the
expressions in Theorem 7 and jointly Gaussian test channels.

Consider the random variables U and V which are jointly
Gaussian with X and have the following covariance matrix
( 1
2 < P <

2
3 ):

Cov([X,U, V ]) =

2

4
1 1� P 1� P

1� P 1� P 0
1� P 0 1� P

3

5 .

We intend to transmit U on the first description
(i.e. V{1} = U ), V on the second description (i.e. V{2} = V )
and U + V on the third description (i.e. V{3} = U + V ).
In this case the covering bound (18) is not redundant. To see
this, note that the covering bound is non-redundant if I(U +
V ;V |X) � I(U ;V |X) < 0. Simplifying the inequality, the
bound is non-redundant if Var(V |X,U) < Var(V |X,U + V ).
Also,

Var(V |X,U) =
P (1� P )

2
, Var(V |X,U + V ) =

1� P

2

) Var(V |X,U) < Var(V |X,U + V ) () P <
2
3
,

which shows that the bound is non-redundant in this setting.
We calculate the achievable rates using Fourier–Motzkin
elimination yielding:

R1 =R2 = max
⇢

I(UV ;X)
2

,

I(U ;X)� I(↵U + �V ;V |X) + I(U ;V |X)
�

,

R3 = R1 �H(U) + H(U + V ).

We have

I(UV ;X) =
1
2

log(
1

2P � 1
), I(U ;X) =

1
2

log
1
P

,

I(U ;V |X)� I(↵U + �V ;V |X)

=
1
2

log
✓

↵
2
P

↵2 + �2 � (↵ + �)2(1� P )

◆
.

Hence the rates

R1 = R2 = max
⇢

1
2

log(
P

2

P + (1� P )2
),

1
4

log(
1

2P � 1
)
�

,

R3 = R1 + 1
2 , and the distortions D1 = D2 = P,

D3 = 2P,D12 = D13 = D23 = (2P � 1) are achievable.

VII. CONCLUSION

A new framework for deriving the fundamental performance
bounds of continuous source and channel networks was
introduced. The framework involves fine discretization of the

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 20,2024 at 18:07:23 UTC from IEEE Xplore.  Restrictions apply. 



1642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 3, MARCH 2024

source and channel variables followed by communication
over the resulting discretized network. Convergence results
for information measures under the proposed discretization
process were provided, and these results were used to
derive the fundamental limits of computation over MAC,
distributed source coding with distortion constraints, the
function reconstruction problems (two-help-one), and the
multiple-descriptions source coding problem.

APPENDIX A
PRELIMINARIES ON CONVERGENCE OF DISTRIBUTIONS

AND COST/DISTORTION FUNCTION

A. Convergence of Distributions and Information Measures
In this appendix, we present several known results on

convergence of information measures which are used in the
subsequent sections.

Definition 17 (Convergence of Probability Measures):
Consider a sequence of probability measures Pn, n 2 N,
defined on the probability space (⌦,F),

• Strong Convergence: Pn, n 2 N is said to converge
strongly to P if

lim
n!1

Pn(A) = P (A), for all A 2 F .

• Convergence in Total Variation: Pn, n 2 N is said to
converge in total variation to P if

lim
n!1

TV (Pn, P ) = 0,

where TV (P,Q) : = supA |P (A) � Q(A)| is the total
variation between P and Q.

Remark 7: It can be noted convergence in total variation
guarantees strong convergence, which in turn guarantees
convergence in distribution.

Lemma 1 (Lower Semi-Continuity of Mutual Information
[3]): Consider a sequence of pairs of random variables
(Sn, Tn), n 2 N, defined on (R2

, �(B ⇥ B)). If PSn,Tn

converges strongly to PS,T , then

I(S;T )  lim inf
n!1

I(Sn;Tn).

Intuitively, if we take n ! 1, then the discrete random
variable Qn(S) converges to the continuous random variable
S in distribution, and hence by Lemma 1, for variables S

and T , the mutual information I(Qn(S);Qn(T )) converges
to I(S;T ). This is stated formally in the following lemma.

Lemma 2 (Convergence of Discretized Variables [30]):
For any two random variables (S, T ), the sequence
(Qn1(S), Qn2(T )) converges in distribution to (S, T )
as n1, n2 !1. Consequently, if I(S;T ) < 1, we have

lim
n1,n2!1

I(Qn1(S);Qn2(T )) = I(S;T ).

Lemma 3 (Convergence of Clipped Variables): Let
`1, `2, u1, u2 > 0, then for any two random variables
(S, T ) with I(S;T ) < 1, we have

lim
`1,`2,u1,u2!1

TV (PeS`1,u1 ,eT`2,u2
, PST ) = 0

and hence

lim
`1,`2,u1,u2!1

I(eS`1,u1 ; eT`2,u2) = I(S;T ).

Proof: The lemma follows by noting that the total
variation between PST and PS`1,u1T`2,u2

is given by

TV (PeS`1,u1 ,eT`2,u2
, PST ) =

[1� P [(�`1  S  u1) \ (�`2  T  u2)]].

⇤

APPENDIX B
NEW AUXILIARY RESULTS ON CONVERGENCE OF

DISTRIBUTIONS AND COST/DISTORTION FUNCTIONS

A. Convergence of Cost/Distortion Functions and Smoothing
of Random Variables

The following lemma is used in evaluating the distortion
and cost of communication strategies in continuous networks
in the subsequent sections.

Lemma 4 (Convergence of Cost Functions and Distortion
Functions): Let S and T be two random variables. For any
continuous function  : R ! R+ such that E((S)) < 1,
there exist two increasing (and approaching 1) sequences of
lengths lm, um such that

lim
m!1

E(eSlm,um) = E(S).

For any jointly continuous function d : R2 ! R+ such that
E(d(S, T )) < 1, there exist four increasing (and approaching
1) sequences of lengths ln, un, and lm, um such that

lim
n!1

lim
m!1

Ed(eSln,un , eTlm,um) = Ed(S, T ).

Proof: Let us fix ✏ > 0 and let ↵1 = lim infs!1 (s)
and ↵2 = lim infs!1 (�s). Since E((S)) < 1, we have

Z

[�`,u]c
(s)dPS(s)  ✏, and

Z

[�`,u]c
dPS(s)  ✏ (21)

for all u > U(✏) and ` > L(✏) for some U(✏) and L(✏).
First consider the case when ↵1 < 1 and ↵2 < 1. In this

case, there exists U1(✏) such that for all u > U1(✏), we have

↵1 + 2✏ > ↵1 + ✏ �
✓

inf
ũ>u

(ũ)
◆
� ↵1 � ✏.

This implies that for all u > U1(✏) there exists u
⇤

> u

such that ↵1 + 2✏ > (u⇤). Hence, by choosing u >

max{U1(✏), U(✏)}, we obtain a u
⇤

> u such that

(u⇤)P (S � u
⇤)  (↵1 + 2✏)P (S � u

⇤)

= (↵1 � ✏ + 3✏)
Z 1

u⇤
dPS(s) 

Z 1

u⇤
(s)dPS(s) + 3✏

2
.

Similarly, there exists `
⇤ such that

(�`
⇤)P (S  �`

⇤) 
Z �`⇤

�1
(s)dPS(s) + 3✏

2
.

Now using the above results, consider

E(eS`⇤,u⇤) =
Z u⇤�

�`⇤+
(s)dPS(s) + (u⇤)P (S � u

⇤)

+ (�`
⇤)P (S  `

⇤)  6✏
2 + E(S). (22)
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Moreover,

E(eS`⇤,u⇤) �
Z u⇤�

�`⇤+
(s)dPS(s)

�
Z

(s)dPS(s)� 2✏ = �2✏ + E(S).

Next consider the case when ↵1 = 1. Define

u
⇤ : = arg min

{u�U(✏)}
(u).

We have

(u⇤)P (S � u
⇤) 

Z 1

u⇤
(s)dPS(s).

Using a similar argument for ↵2 we get the desired result
(second statement) for the cost function. The second statement
follows by similar arguments. Note that there exists a
T -measurable function d1 such thatEd(S, T ) = Ed1(T ).

This follows because
R R

A d(s, t)dPST (s, t) is a finite
measure on A for every A 2 B, and is absolutely continuous
with respect to PT , and d1 is the corresponding Radon-
Nikodym derivative. It follows by similar arguments as in the
proof of the statement for the cost function that there exists a
sequence of lengths `m, um such that

lim
m!1

Ed(S, eT`m,um) = Ed(S, T ).

Similarly, it follows that there exists a sequence of lengths
`n, un such that

lim
n!1

Ed(eS`n,un , eT`m,um) = Ed(S, eT`m,um),

for every `m, um. This completes the proof. ⇤
Lemma 5 (Smoothing of Random Variables): Consider

a bounded continuous random variable U defined on the
probability space ([�M, M ],B[�M, M ], PU ), such that
h(U) < 1 and M > 0, and let N✏ be uniformly distributed
over [�✏, ✏], ✏ > 0. Assume that U and N✏ are independent.
Then,

lim
✏!0

I(N✏;U + N✏) = 0.

Proof: Let U✏ : = U + N✏.

I(N✏;U✏) = h(U✏)� h(U)

=
Z

fU (u) log fU (u)du�
Z

fU✏(u) log fU✏(u)du.

The integral
R

fU✏(u) log fU✏(u)du converges toR
fU (u)) log fU (u)du as ✏ ! 0 by Fatou’s Lemma [53].

To see this, take g✏(u) : = fU✏(u) log fU✏(u)+ 1, u 2 [�M �
✏, M+✏] and g(x) : = fU (u) log fU (u)+1, u 2 [�M, M ], and
note that g✏(u) is non-negative for u 2 [�M � ✏, M + ✏] since
fU✏(u) log fU✏(u) � � 1

e log e > �1, u 2 R. So, by Fatou’s
lemma

R
u2R g(u)du  lim inf✏!0

R
u2R g✏(u)du since by

construction g✏(u) converges to g(u) in a pointwise manner
almost everywhere as ✏ ! 0. The last statement follows by
noting that fU✏(·) converges to fU (·) in a pointwise manner
almost everywhere as ✏ ! 0 using the assumptions made
in Remark 3. This implies that

R
fU (u) log fU (u)du 

lim inf✏!0

R
fU✏(u) log fU✏(u)du. Also, note thatR

fU (u) log fU (u)du �
R

fU✏(u) log fU✏(u)du , ✏ > 0 since

I(N✏;U✏) � 0. So,
R

fU (u) log fU (u)du � lim sup✏!0R
fU✏(u) log fU✏(u)du. Consequently, I(N✏;U✏) ! 0 as

✏ ! 0. ⇤
Lemma 6: For any quintuple of random variables

A, B,C, D and E with a joint distribution that satisfies
the Markov chain (A, B)�C � (DE), consider a pair of
random variables bA, bE that are correlated with (B, D) such
that PBA = PB bA, PDE = PD bE , and bA�B�C�D � bE, then

I(A;C|B) + I(E;C|D) � 1
2 ln 2

TV
2(PCAE , PC bA bE).

Proof: We have the following inequalities:

I(A;C|B) + I(E;C|D)

=
X

a,b,c,d,e

PC(c)PB|C(b|c)PD|C(d|c)PA|BC(a|b, c)

⇥ PE|DC(e|d, c) log
PA|BC(a|b, c)PE|DC(e|d, c)

PA|B(a|b)PE|D(e|d)

=
X

b,c,d

PC(c)PB|C(b|c)

⇥PD|C(d|c)D(PA|BC(·|b, c)PE|DC(·|d, c)||PA|B(·|b)PE|D(·|d))
(a)
�

X

c

PC(c)D(PAE|C(·|c)||P bA, bE|C(·|c))

(b)
� 1

ln 2

X

c

PC(c)TV
2(PA,E|C(·|c), P bA, bE|C(·|c))

(c)
� 1

2 ln 2
(
X

c

PC(c)TV (PA,E|C(·|c), P bA, bE|C(·|c)))2

=
1

2 ln 2
TV

2(PA,E,C , P bA, bE,C),

where (a) follows from the convexity of relative entropy,
(b) follows from Pinsker’s inequality and (c) follows from
Jensen’s inequality. ⇤

APPENDIX C
PROOF OF THEOREM 1

Proof: Step 1 (Clipping): In this step, we show that for
any ⇣ > 0, and all sufficiently large `, `

0, we have:

|I(eU` + eV`0 ; eU`)� I(U + V ;U)|  ⇣, (23)

|I(eU` + eV`0 ; eV`0)� I(U + V ;V )|  ⇣. (24)

First, note that I(eU` + eV`0 ; eU`)� I(U + V ;U) is bounded
from below in the limit as `, `

0 ! 1 by 0 due to lower
semi-continuity of mutual information. Next, we show that the
term is bounded from above by ⇣. Define AU,` as the indicator
of U 2 [�`, `] and BV,`0 as the indicator of V 2 [�`

0
, `
0]. Fix

an arbitrary small positive number ⌘1. Consider the following
arguments:

I(eU`; eU` + eV`0)  I(AU,`,
eU`; eU` + eV`0)

 H(AU,`) + P (AU,` = 0)I(eU`; eU` + eV`0 |AU,` = 0)

+ P (AU,` = 1)I(eU`; eU` + eV`0 |AU,` = 1)

 H(AU,`) + P (AU,` = 0)I(eU`; eU` + eV`0 , BV,`0 |AU,` = 0)

+ P (AU,` = 1)I(eU`; eU` + eV`0 |AU,` = 1)
 H(AU,`) + H(BV,`0)
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+ P (BV,`0 = 0|AU,` = 0)

⇥ P (AU,` = 0)I(eU`; eU` + eV`0 |AU,` = 0, BV,`0 = 0)
+ P (BV,`0 = 1|AU,` = 0)P (AU,` = 0)

⇥ I(eU`; eU` + eV`0 |AU,` = 0, BV,`0 = 1)

+ P (AU,` = 1)I(eU`; eU` + eV`0 |AU,` = 1)
= H(AU,`) + H(BV,`0)
+ P (BV,`0 = 0|AU,` = 0)P (AU,` = 0)
⇥ I(U 0;U 0 + V

0|AU,` = 0, BV,`0 = 0)
+ P (BV,`0 = 1|AU,` = 0)P (AU,` = 0)

⇥ I(U 0;U 0 + V |AU,` = 0, BV,`0 = 1)

+ P (AU,` = 1)I(U ;U + eV`0 |AU,` = 1)
(a)
 P (BV,`0 = 0|AU,` = 0)P (AU,` = 0)
⇥ I(U 0;U 0 + V

0|AU,` = 0, BV,`0 = 0)
+ P (BV,`0 = 1|AU,` = 0)P (AU,` = 0)

⇥ I(U 0;U 0 + V |AU,` = 0, BV,`0 = 1)
+ P (AU,` = 1)

⇥ I(U ;U + eV`0 |AU,` = 1) + 2⌘1

(b)
 I(U ;U + eV`0 |AU,` = 1) + 2⌘1 + �1

(c)
 I(AU,`;U + eV`0) + P (AU,` = 1)I(U ;U + eV`0 |AU,` = 1)

+ P (AU,` = 0)I(U ;U + eV`0 |AU,` = 0) + 3⌘1 + �1

= I(U ;U + eV`0) + 2⌘1 + �1,

where in (a) we have taken ` and `
0 large enough such that

H(AU,`) < ⌘1 and H(BV,`0) < ⌘1, in (b), we have defined

�1 : = P (AU,` = 0, BV,`0 = 0)
⇥ I(U 0;U 0 + V

0|AU,` = 0, BV,`0 = 0)
+ P (AU,` = 0, BV,`0 = 1)

⇥ I(U 0;U 0 + V |AU,` = 0, BV,`0 = 1).

and in (c), we have taken `, `
0 large enough such that

P (AU,` = 0)I(U ;U + eV`0 |AU,` = 1) < ⌘1. We show in the
following that such `, `

0 always exists. It suffices to show that
I(U ;U + eV`0 |AU,` = 1) < 1:

I(U ;U + eV`0 |AU,` = 1)  I(U ;BV,`0 , U + eV`0 |AU,` = 1)
 H(BV,`0) + P (BV,`0 = 1|AU,` = 1)

⇥ I(U ;U + eV`0 |AU,` = 1, BV,`0 = 1)
+ P (BV,`0 = 0|AU,` = 1)

⇥ I(U ;U + eV`0 |AU,` = 1, BV,`0 = 0)
= H(BV,`0) + P (BV,`0 = 1|AU,` = 1)
⇥ I(U ;U + V |AU,` = 1, BV,`0 = 1)

+ P (BV,`0 = 0|AU,` = 1)
⇥ I(U ;U + V

0|AU,` = 1, BV,`0 = 0).

Note that I(U ;U + V |AU,` = 1, BV,`0 = 1) < 1, since

1 > I(U ;U + V ) � I(U ;U + V |AU,`, BU,`)
�H(AU,`)�H(BV,`0)
� I(U ;U + V |AU,`, BU,`)� 2⌘1

� P (AU,` = 1, BU,` = 1)I(U ;U + V |AU,` = 1, BU,` = 1)
� 2⌘1

� 1
2
I(U ;U + V |AU,` = 1, BU,` = 1)� 2⌘1,

for large enough ` and `
0. Furthermore, we have using the

entropy power inequality [26],

I(U ;U + V
0|AU,` = 1, BV,`0 = 0)

= h(U + V
0|AU,` = 1, BV,`0 = 0)

� h(V 0|AU,` = 1, BV,`0 = 0)
= h(U + V

0|AU,` = 1, BV,`0 = 0)� h(V 0)

 1
2

log 2⇡eVar(U + V
0|AU,` = 1, BV,`0 = 0)

+
1
2
| log 2⇡eVar(V 0)|

(a)
 1

2
log 2⇡e

1
P (AU,` = 1, BV,`0 = 0)

Var(U + V
0)

+
1
2
| log 2⇡eVar(V 0)|

 1
2

log 2⇡e
1

P (AU,` = 1, BV,`0 = 0)
(Var(U) + Var(V 0))

+
1
2
| log 2⇡eVar(V 0)|

(b)
 1

2
log 2⇡e

1
P (AU,` = 1, BV,`0 = 0)

⇥

(Var(U) +
Var(V )

P (BV,`0 = 1)
) +

1
2
| log 2⇡e

Var(V )
P (BV,`0 = 1)

|,

 1
2

log 2⇡e
1

P (AU,` = 1, BV,`0 = 0)
(Var(U) +

Var(V )
1� ⌘1

)

+
1
2
| log 2⇡e

Var(V )
1� ⌘1

|,

where in (a) and (b) we have used the law of total variance.
As a result,

P (BV,`0 =0|AU,` = 1)I(U ;U + V
0|AU,` = 1, BV,`0 =0)<1,

for sufficiently large `, `
0, since Var(U), Var(V ) < 1 by

assumption as explained in Remark 3.
Next, we show that �1 can be made arbitrarily small for

large enough `, `
0. We consider the first mutual information

term in �1 as follows.

I(U 0;U 0 + V
0|AU,` = 0, BU,`0 = 0)

= I(U 0;U 0 + V
0) = h(U 0 + V

0)� h(V 0)

We have:

h(V 0) = h(V |BV,`0 = 1)

=
1

P (BV,`0 = 1)
(h(V )� P (BV,`0 = 0)h(V |BV,`0 = 0)

�H(BV,`0)),

and h(V |BV,`0 = 0) can be bounded from above as follows:

h(V |BV,`0 = 0)  1
2

log 2⇡eVar(V |BV,`0 = 0)

(a)
 1

2
log 2⇡e

1
P (BV,`0 = 0)

Var(V )

 1
2

log 2⇡e
1

1� ⌘1
Var(V ),
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where in (a) we have used the law of total variance. This
implies that h(V 0) � h(V ) � ⌘1 as ` ! 1. So, h(V 0) is
bounded from below. Next, we bound h(U 0+V

0) from above:

h(U 0 + V
0)  1

2
log 2⇡eVar(U 0 + V

0),

and using law of total variance, we have:

Var(U 0 + V
0) = Var(U 0) + Var(V 0)

= Var(U |AU,` = 1) + Var(V |BV,`0 = 1)

 1
P (AU,` = 1)

Var(U) +
1

P (BV,`0 = 1)
Var(V )

 1
1� ⌘1

(Var(U) + Var(V )).

As a result, we have

P (AU,` = 0, BV,`0 = 0)I(U 0;U 0 + V
0|AU,` = 0, BV,`0 = 0)

 P (AU,` = 0, BV,`0 = 0)⇥
✓

1
2

log 2⇡e
1

1� ⌘1
(Var(U) + Var(V ))� h(V )

◆
! 0

as ` !1.
Next, we consider the second mutual information term

I(U 0;U 0 + V |AU,` = 0, BV,`0 = 1) in �1. Note that:

h(U 0 + V |AU,` = 0, BV,`0 = 1)

 1
2

log 2⇡eVar(U 0 + V |AU,` = 0, BV,`0 = 1)

=
1
2

log 2⇡e(Var(U 0) + Var(V |AU,` = 0, BV,`0 = 1))

=
1
2

log 2⇡e(Var(U |AU,` = 1) + Var(V |AU,` = 0, BV,`0 = 1))

 1
2

log 2⇡e

✓
Var(U)

P (AU,` = 1)
+

Var(V )
P (AU,` = 0, BV,`0 = 1)

◆
.

So, P (AU,` = 0, BV,`0 = 1)h(U 0+V |AU,` = 0, BV,`0 = 1) !
0 as `, `

0 ! 1. Also, P (AU,` = 0, BV,`0 = 1)h(V |AU,` =
0, BV,`0 = 1) ! 0 as `, `

0 ! 1 following similar arguments
as above. Hence, P (AU,` = 0, BV,`0 = 1)I(U 0;U 0+V |AU,` =
0, BV,`0 = 1) ! 0 as `, `

0 !1 and consequently �1 ! 0 as
`, `

0 !1.
Next we focus on I(U ;U + eV`0):

I(U ;U + eV`0)  I(U ;U + eV`0 , BV,`0)
 H(BV,`0) + P (BV,`0 = 0)I(U ;U + V

0|BV,`0 = 0)
+ P (BV,`0 = 1)I(U ;U + eV`0 |BV,`0 = 1)
 P (BV,`0 = 1)I(U ;U + eV`0 |BV,`0 = 1) + �2

where

�2 : = H(BV,`0) + P (BV,`0 = 0)I(U ;U + V
0|BV,`0 = 0).

Note that:

h(U + V
0|BV,`0 = 0)  1

2
log 2⇡eVar(U + V

0|BV,`0 = 0)

 1
2

log 2⇡e(Var(U |BV,`0 = 0) + Var(V 0|BV,`0 = 0))
(a)
 1

2
log 2⇡e

✓
Var(U)

P (BV,`0 = 0)
+

Var(V)
P (BV,`0 = 1)

◆

 1
2

log 2⇡e

✓
Var(U)

P (BV,`0 = 0)
+

Var(V)
1� ⌘1

◆
,

where in (a) we have used the fact that by construction V
0 has

PDF fV |BV,`0=1 and used the law of total variance to conclude
that

Var(V 0|BV,`0 = 0) = Var(V 0) = Var(V |BV,`0 = 1)

 Var(V )
P (BV,`0 = 1)

 Var(V )
1� ⌘1

,

and that

Var(U) � E(Var(U |BV,`0)) � P (BV,`0 = 0)Var(U |BV,`0 = 0)

) Var(U)
P (BV,`0 = 0)

� Var(U |BV,`0 = 0).

So, P (BV,`0 = 0)h(U + V
0|BV,`0 = 0) ! 0 as `, `

0 ! 1,
and in turn using the arguments used above regarding h(V 0)
we infer that �2 ! 0 as `, `

0 !1.
Next, consider P (BV,`0 = 1)I(U ;U + eV`0 |BV,`0 = 1) as

follows:

P (BV,`0 = 1)I(U ;U + eV`0 |BV,`0 = 1)
= P (BV,`0 = 1)I(U ;U + V |BV,`0 = 1)
 I(U ;U + V,BV,`0)
 I(U ;U + V ) + H(BV,`0)
 I(U ;U + V ) + ⌘1.

Step 2 (Smoothing): In this step, we show that for all � > 0,
and all sufficiently small ✏ > 0, we have:

|I(eU`,✏ + eV`,✏; eU`,✏)� I(eU` + eV`; eU`)|  �, (25)

|I(eU`,✏ + eV`,✏; eV`,✏)� I(eU` + eV`; eV`)|  �. (26)

We argue that the CDF FX,Y,eU`,✏,eV`,✏
! FX,Y,eU`,eV`

as
✏ ! 0. We show convergence for FeU`,✏

. The convergence for
the joint distribution follows by similar arguments. To show
this, let u 2 [�`, `] be a point of continuity of FeU`

(·). Then,
by construction, we have FeU`,✏

(u) ! FeU`
(u) as ✏ ! 0 as

shown below:

P (eU`  u� ✏)  P (eU`,✏  u)  P (eU`  u + ✏)

) P (eU`  u� ✏)� FeU`
(u)

 P (eU`,✏  u)� FeU`
(u)

 P (eU`  u + ✏)� FeU`
(u)

) P (eU`  u� ✏)� FeU`
(u + ✏)  P (eU`,✏  u)� FeU`

(u)

 P (eU`  u + ✏)� FeU`
(u� ✏)

) |FeU`,✏
(u)� FeU`

(u)|  P (u� ✏ < eU`  u + ✏).

Towards showing (25), note that

I(eU`; eU` + eV`) = I(eU`; eU` + eV`| eN`,✏,
eN 0

`,✏)

= I(eU`,✏; eU`,✏ + eV`,✏| eN`,✏,
eN 0

`,✏)

= I(eU`,✏,
eN`,✏,

eN 0
`,✏; eU`,✏ + eV`,✏)� I( eN`,✏,

eN 0
`,✏; eU`,✏ + eV`,✏)

� I(eU`,✏,
eN`,✏,

eN 0
`,✏; eU`,✏ + eV`,✏)� I( eN`,✏,

eN 0
`,✏; eU`,✏,

eV`,✏)

= I(eU`,✏,
eN`,✏,

eN 0
`,✏; eU`,✏ + eV`,✏)

� I( eN`,✏,
eN 0

`,✏; eU`,✏)� I( eN`,✏,
eN 0

`,✏; eV`,✏|eU`,✏)

= I(eU`,✏,
eN`,✏,

eN 0
`,✏; eU`,✏ + eV`,✏)
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� I( eN`,✏; eU`,✏)� I( eN`,✏,
eN 0

`,✏; eV`,✏|eU`,✏)

= I(eU`,✏; eU`,✏ + eV`,✏) + I( eN`,✏,
eN 0

`,✏; eU`,✏ + eV`,✏|eU`,✏)

� I( eN`,✏; eU`,✏)� I( eN`,✏,
eN 0

`,✏; eV`,✏|eU`,✏)

= I(eU`,✏; eU`,✏ + eV`,✏)� I( eN`,✏; eU`,✏),

and I( eN`,✏; eU`,✏) ! 0 as ✏ ! 0 by Lemma 5. The
proof of (25) follows by lower semi-continuity of mutual
information. Equation (26) can be proved using a similar
argument. For later convenience, note that the joint PDF of
(eU`,✏,

eV`,✏) is jointly continuous on a compact support, and
hence uniformly continuous.

Step 3 (Quantization): In this step, we discretize eU`,✏,
eV`,✏ to

bU`,✏,n, bV`,✏,n by applying Qn(·). We show that for any � > 0,
and all sufficiently large n 2 N, the following hold:

|I(bU`,✏,n + bV`,✏,n; bU`,✏,n)� I(eU`,✏ + eV`,✏; eU`,✏)|  �, (27)

|I(bU`,✏,n + bV`,✏,n; bV`,✏,n)� I(eU`,✏ + eV`,✏; eV`,✏)|  �. (28)

We will show Equation (27) using the approach taken in [20]
to study entropy of linear combinations of independent
continuous variables. The proof of (28) follows by a similar
argument. We drop the subscript on Qn(·) when there is no
ambiguity.

Define modQ(eU`,✏) : = eU`,✏ � bU`,✏,n and modQ(eV`,✏) :
= eV`,✏ � bV`,✏,n, and the variables C : = Q(eU`,✏ + eV`,✏),
D : = bU`,✏,n + bV`,✏,n, E = Q( modQ(eU`,✏) + modQ(eV`,✏)).
Note that E 2 {�1

N , 0,
1
N } by construction, where N : = 2n.

We will show that i) H(C)�H(D) ! 0 as N !1, and ii)
H(bU`,✏,n, C) � H(bU`,✏,n, D) ! 0 as N ! 1. This implies
that I(bU`,✏,n; bU`,✏,n + bV`,✏,n) � I(bU`,✏,n;Q(eU`,✏ + eV`,✏)) !
0 as n ! 1. Consequently, by data processing inequality
and lower semi-continuity of mutual information, we have
I(bU`,✏,n; bU`,✏,n + bV`,✏,n)� I(eU`,✏; eU`,✏ + eV`,✏) ! 0.

First, we will show that H(C) � H(D) ! 0 as N !
1. Note that C = D + E using the distributive property of
lattices [54]. As a result,

H(C)�H(D) = I(C;E)� I(D;E).

First, let us consider I(D;E) as follows:

I(D;E) = I(bU`,✏,n + bV`,✏,n;Q( modQ(eU`,✏) + modQ(eV`,✏)))

 I(bU`,✏,n + bV`,✏,n; modQ(eU`,✏) + modQ(eV`,✏))

 I(bU`,✏,n, bV`,✏,n; modQ(eU`,✏), modQ(eV`,✏)),

which goes to 0 as N !1 using Lemma 5 in [20]. Next, let
us consider I(C;E). Using Proposition 12 in [55], we have:

I(C;E)  (log 3� 1)T (E;C) + hb(T (E;C)),

where hb is the binary entropy function, and T (E;C) :
= TV (PE,C , PEPC), where PE,C is the probability mass
function of the pair (E,C). So, it suffices to show that
T (E;C) ! 0 as N !1. Note that

TV (PE,C , PEPC)

=
X

e2{�1
N ,0, 1

N }

P (E = e)TV (PC , PC|E(·|e))


X

e2{�1
N ,0, 1

N }

TV (PC , PC|E(·|e))


X

e,e02{�1
N ,0, 1

N }

TV (PC|E(·|e0), PC|E(·|e))

=
X

e,e02{�1
N ,0, 1

N }

X

d

|PD|E(d� e
0|e0)� PD|E(d� e|e)|


X

e,e02{�1
N ,0, 1

N }

X

d

|PD|E(d� e
0|e0)� PD|E(d� e

0|e)|

+ |PD|E(d� e
0|e)� PD|E(d� e|e)|

=
X

e,e02{�1
N ,0, 1

N }

X

d

|PD|E(d|e0)� PD|E(d|e)|

+ |PD|E(d� e
0|e)� PD|E(d� e|e)|. (29)

We investigate the first term in the summation in
Equation (29).

X

e,e02{�1
N ,0, 1

N }

X

d

|PD|E(d|e0)� PD|E(d|e)|


X

e,e02{�1
N ,0, 1

N }

X

d

|PD|E(d|e0)� PD(d)|

+ |PD(d)� PD|E(d|e)|,

which goes to 0 as N !1 due to Pinsker’s inequality. To see
this, fix ⌘ > 0, and let N be large enough so that I(D;E) < ⌘.
Note that such N exists since limN!1 I(D;E) = 0 as shown
above. Due to Pinsker’s inequality, we have:

⌘ � I(D;E) =
X

e

P (E = e)D(PD|E(·|e)||PD)

� 2(ln 2)
X

e

P (E = e)TV
2(PD|E(·|e), PD)

� 2(ln 2)P (E = e
0)TV

2(PD|E(·|e0), PD),

for all e
0 2 {�1

N , 0,
1
N }. Furthermore, we show that |P (E =

0)� 3
4 |! 0 and |P (E = 1

N )� 1
8 |! 0, and |P (E = �1

N )�
1
8 |! 0 as N !1:

P (E =
1
N

) =
Z

u,v:Q(modQ(u)+modQ(v)))= 1
N

feU`,eV`
(u, v)dudv

=
NX

i,j=1

Z

u,v2Ei⇥Ej :Q(modQ(u)+modQ(v))= 1
N

feU`,✏,eV`,✏
(u, v)dudv

=
NX

i=1

NX

j=1

Z

u,v2Ei⇥Ej :u+v>ei+ej+ 1
2N

feU`,✏,eV`,✏
(u, v)dudv


NX

i=1

NX

j=1

Z

u,v2Ei⇥Ej :u+v<ei+ej� 1
2N

feU`,✏,eV`,✏
(u, v)dudv+�N

= P (E = � 1
N

) + �N ,

where in the last inequality we have used the fact that feU`,✏,eV`,✏

is continuous over a compact support, and hence uniformly
continuous, to argue the existence of �N such that �N ! 0 as
N ! 0. Similarly P (E = �1

N )  P (E = 1
N ) + �N .

Furthermore,

P (E = 0) =
Z

u,v:Q(mod Q(u)+mod Q(v)))=0
feU`,✏,eV`,✏

(u, v)dudv
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=
NX

i,j=1

Z

u,v2Ei⇥Ej :Q(mod Q(u)+mod Q(v)))=0
feU`,✏,eV`,✏

(u, v)dudv

=
NX

i,j=1

Z

u,v2Ei⇥Ej :ei+ej+
�1
2N <u+v<ei+ej+ 1

2N

feU`,✏,eV`,✏
(u, v)dudv

 6
NX

i,j=1

Z

u,v2Ei⇥Ej :u+v<ei+ej� 1
2N

feU`,✏,eV`,✏
(u, v)dudv+�N

= 6P (E =
�1
N

) + �N .

Similarly, 6P (E = �1
N )  P (E = 0) + �N . So, |P (E =

0) � 3
4 |  �N and |P (E = 1

N ) � 1
8 |  �N , and |P (E =

�1
N ) � 1

8 |  �N . Consequently, TV (PD|E(·|e0), PD) ! 0 as
N !1 for all e

0 2 {�1
N , 0,

1
N }.

Next, we consider the second term in Equation (29). Fix
e, e

0 2 {�1
N , 0,

1
N }. Note that

D + e� e
0

= Q(eU`,✏) + Q(eV`,✏) + e� e
0

= Q(eU`,✏ + e) + Q(eV`,✏ � e
0),

So,
X

d

|PD|E(d� e
0|e)� PD|E(d� e|e)|

=
X

d

|PD|E(d + e� e
0|e)� PD|E(d|e)|

=
X

d

|P (Q(eU`,✏ + e) + Q(eV`,✏ � e
0) = d|E = e)

� P (Q(eU`,✏) + Q(eV`,✏) = d)|E = e)|
(30)

(a)
 2 sup

A
|PeU`,✏,eV`,✏|E(A + {(e,�e

0)}|e),�PeU`,✏,eV`,✏|E(A|e)|

= 2 sup
A

1
P (E = e)

|PeU`,✏,eV`,✏
((A + {(e,�e

0)}) \ {E = e})

� PeU`,✏,eV`,✏
(A \ {E = e})|

(b)
 2 sup

A

1
P (E = e)

|PeU`,✏,eV`,✏
(A+{(e,�e

0)})� PeU`,✏,eV`,✏
(A)|

=
1

P (E = e)

⇥
Z

u,v
|feU`,✏,eV`,✏

(u+e, v�e
0)�feU`,✏,eV`,✏

(u, v)|dudv, (31)

where in (a) we have used the data processing inequality for
variational distance, and in (b) we have used the fact that
the supremum over A is larger than that over A \ {E = e}.
Note that the last term goes to 0 as N ! 1 due to uniform
continuity of feU`,✏,eV`,✏

.
We have thus shown that T (C;E) ! 0 as N ! 1,

and hence I(C;E) ! 0, and consequently, H(C) ! H(D)
as N ! 1. Next, we will show that H(bU`,✏,n, C) �
H(bU`,✏,n, D) ! 0. Similar to the previous part, we have:

H(bU`,✏,n, C)�H(bU`,✏,n, D)

= I(bU`,✏,n, C;E)� I(bU`,✏,n, D;E).

The second term I(bU`,✏,n, D;E) goes to 0 as N ! 1 by
a similar argument as in the previous case. For
the first term, similarly it suffices to show that
TV (PE,C,bU`,✏,n

, PEPC,bU`,✏,n
) ! 0 as N !1. We have:

TV (PE,C,bU`,✏,n
, PEPC,bU`,✏,n

)

=
X

e2{�1
N ,0, 1

N }

P (E = e)TV (PC,bU`,✏,n
, PC,bU`,✏,n|E(·|e))


X

e,e02{�1
N ,0, 1

N }

TV (PC,bU`,✏,n|E(·|e0), PC,bU`,✏,n|E(·|e))

=
X

e,e02{�1
N ,0, 1

N }

X

d

X

u

|PD,bU`,✏,n|E(d� e
0
, u|e0)

� PD,bU`,✏,n|E(d� e, u|e)|


X

e,e02{�1
N ,0, 1

N }

X

d

X

u

|PbU`,✏,n,bV`,✏,n|E(u, d� e
0 � u|e0)

� PbU`,✏,n,bV`,✏,n|E(u, d� e
0 � u|e)|

+ |PbU`,✏,n,bV`,✏,n,|E(u, d� e
0 � u|e)

� PbU`,✏,n,bV`,✏,n|E(u, d� e� u|e)|

=
X

e,e02{�1
N ,0, 1

N }

X

v

X

u

|PbU`,✏,n,bV`,✏,n|E(u, v|e0)

� PbU`,✏,n,bV`,✏,n|E(u, v|e)|
+ |PbU`,✏,n,bV`,✏,n|E(u, v � e

0|e)
� PbU`,✏,n,bV`,✏,n|E(u, v � e|e)|. (32)

We will focus on the first term in equation (32):
X

e,e02{�1
N ,0, 1

N }

X

u,v

|PbU`,✏,n,bV`,✏,n|E(u, v|e0)

� PbU`,✏,n,bV`,✏,n|E(u, v|e)|


X

e,e02{�1
N ,0, 1

N }

|PbU`,✏,n,bV`,✏,n|E(u, v|e0)� PbU`,✏,n,bV`,✏,n
(u, v)|

+ |PbU`,✏,n,bV`,✏,n
(u, v)� PbU`,✏,n,bV`,✏,n|E(u, v|e)|,

where the last two terms go to 0 as N !1 due to Pinsker’s
inequality and the fact that I(bU`,✏,n, D;E) ! 0 as N ! 1.
Next we note the second term in (32) goes to 0 by a similar
argument as in Equation (31) and uniform continuity of
feU`,✏,eV`,✏

. As a result, H(bU`,✏,n, C)�H(bU`,✏,n, D) ! 0. This
completes the proof. ⇤

APPENDIX D
PROOF OF THEOREM 2

We provide a proof of Equation (11). The proof of
Equation (12) follows by symmetry.

Step 1 (Clipping X and Y , and Generating U ` and V `): Let
Z, W , eX`, and eY`0 be as defined in Section III-B. Let (U `, V `0)
be random variables that are correlated with (X,Y, Z,W ) such
that the distribution of U ` given eX` is given by

PU`| eX`
(·|x) = PU |X(·|x), x 2 [�`, `]

and the distribution of V `0 given eY`0 is given by

PV `0 |eY`0
(·|y) = PV |Y (·|y), y 2 [�`

0
, `
0].
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One can check that the following Markov chain holds:
U ` � eX` � (X,Y, Z,W ) � eY`0 � V `0 . Furthermore, for any
quadruple of events A,B,C, and D, the random variables
( eX`,

eY`0 , U `, V `0) have the following distribution:

P eX`,eY`0 ,U`,V `0
(A,B,C,D)

= P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R, R)

= P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `], R \ [�`
0
, `
0])

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `]c, R \ [�`
0
, `
0])

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `], R \ [�`
0
, `
0]c)

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `]c, R \ [�`
0
, `
0]c)

= PX,Y,U,V (A \ [�`, `],B \ [�`
0
, `
0],C,D)

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `]c, R \ [�`
0
, `
0])

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `], R \ [�`
0
, `
0]c)

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `]c, R \ [�`
0
, `
0]c)

Note that

0  P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `]c, R \ [�`
0
, `
0])

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `], R \ [�`
0
, `
0]c)

+ P eX`,eY`0 ,U`,V `0 ,X,Y (A,B,C,D, R \ [�`, `]c, R \ [�`
0
, `
0]c)

 1� PX,Y (R \ [�`, `], R \ [�`
0
, `
0]),

which approaches 0 as `, `
0 !1. As a result,

lim
`,`0!1

P eX`,eY`0 ,U`,V `0
(A,B,C,D) = PX,Y,U,V (A,B,C,D),

(33)

for all A,B,C,D. Hence as `, `
0 ! 1, P eX`,eY`0 ,U`,V `0

converges strongly to PX,Y,U,V . Recalling that U ` and V ` have
finite alphabets and using the continuity of mutual information
for finite alphabet variables we have

lim
`,`0!1

I(U `;U ` + V `0) = I(U ;U + V ),

lim
`,`0!1

I(V `0 ;U ` + V `0) = I(V ;U + V ).

Step 2 (Discretizing X and Y ): Next we quantize eX` and
eY`0 into bXn,` and bYn,`0 and enforce the Markov chain. Now
using

I( eX`
eY`0V `0 ;U `| bXn,`) = I( eX`,

eY`0V `0 ;U `)� I( bXn,`;U `),

and Theorem 2 we have

lim
n!1

I( eX`
eY`0V `0 ;U `| bXn,`) = I(eY`0V `0 ;U `| eX`) = 0, (34)

and similarly,

lim
n!1

I( eX`
eY`0U `;V `0 |bYn,`0) = I( eX`, U `;V `0 |eY`0) = 0. (35)

Define Un,` and V n,`0 as random variables having the same
alphabet as U ` and V `0 , and that are jointly correlated with
( bXn,`,

eX`,
eY`0 ,

bYn,`0) according to the probability distribution
that satisfies (i) the Markov chain V n,`0 � bYn,`0 � eY` � eX` �
bXn,`�Un,`, (ii) the pair ( bXn,`, Un,`) has the same distribution

as the pair ( bXn,`, U `), and (iii) the pair (bYn,`0 , V n,`0) has the
same distribution as the pair (bYn,`0 , V `0). We use Lemma 6 as
follows. From Equations (34) and (35), by taking the quintuple

A = U `, B = bXn,`, C = ( eX`,
eY`), D = bYn,`0 , and E = V `0 ,

we have

lim
n!1

V

⇣
P bXn,`

bYn,`0Un,`V n,`0
, P eX`

eY`0U`,V `0

⌘
= 0,

and using the continuity of mutual information for finite
alphabets, we have

lim
n!1

I(Un,`;Un,` + V n,`0) = I(U `;U ` + V `0),

lim
n!1

I(V n,`0 ;Un,` + V n,`0) = I(V `0 ;U ` + V `0).

This completes the proof.

APPENDIX E
COMPUTATIONAL STEPS FOR COMPUTING

PRODUCTS OVER ADDITIVE MAC
In this appendix we will provide some of the details

regarding the computational steps for computing the product
of pairs of uniform, Gaussian, and Laplacian random variables
over additive MAC with Gaussian noise. We wish to
compute two mutual information quantities: I(Z;Y ) and
I(Z;X1). We describe the steps in computing I(Z;Y ). The
steps to compute I(Z;X1) follow by similar techniques.
We estimate the mutual information empirically estimating
E(log fZ,Y (Z,Y )

fZ(Z)fY (Y ) ) by averaging over randomly generated
samples Z and Y . That is, we generate X1 and X2 randomly
and independently, based on their underlying distribution, e.g.
zero-mean and unit-variance uniform, Gaussian, or Laplacian
distribution. Then, we compute Z = X1X2 and Y = X1 +
X2+N , where N is a zero-mean Gaussian noise with variance
10�0.1SNR. Next, we compute the joint PDF fZ,Y (Z, Y ) and
the marginals fZ(Z) and fY (Y ). For Gaussian and Laplacian
pairs of variables, analytical expressions for fZ(·) are given
in [56] and [57]. In order to find fZ,Y and fY , we use the
analytical expressions for fZ,Y |N (z, y|n) = fZ,X1+X2(z, y �
n) and fY |N (y|n) = fX1+X2(y � n), given in [56] and [57],
and empirically estimate fZ,Y = E(fZ,Y |N ) and fY =
E(fY |N ), respectively. We estimate the information quantities
based on 5⇥ 105 Monte-Carlo trials, and the PDFs based on
105 Monte-Carlo trials.

APPENDIX F
PROOF OF THEOREM 4

Proof: We first prove the following lemma which shows
the convergence of expected distortion under the discretization
procedure.

Lemma 7: Under the discretization procedure of the
auxiliary variables U and V considered in Theorem 1, for any
⇠ > 0, and all sufficiently large n, `, `

0
> 0, and sufficiently

small ✏ > 0, the following hold:

|E(d1(X, g1(bUn,`,✏,
bVn,`0,✏)))� E(d1(X, g1(U, V )))|  ⇠,

(36)

|E(d2(Y, g2(bUn,`,✏,
bVn,`0,✏)))� E(d2(Y, g2(U, V )))|  ⇠.

(37)

Proof: The lemma follows by convergence in distribution
of (X, bUn,`,✏,

bVn,`0,✏) to (X,U, V ) and (Y, bUn,`,✏,
bVn,`0,✏) to

(Y, U, V ), which was shown in Appendix C, along with the

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 20,2024 at 18:07:23 UTC from IEEE Xplore.  Restrictions apply. 



SHIRANI AND PRADHAN: STRUCTURED CODING FRAMEWORK FOR COMMUNICATION AND COMPUTATION 1649

Portmanteau theorem [58], [59] and the arguments in the proof
of Lemma 4. ⇤

Lemma 8: Under the discretization procedure of the sources
X and Y considered in Theorem 2, and for a fixed finite
alphabet auxiliary variables bU and bV with the Markov chain,
for any ⇠ > 0, and all sufficiently large n, `, `

0
> 0, and

sufficiently small ✏ > 0, the following hold:

|E(d1( bXn,`, g1(Un,`, V n,`0)))� E(d1(X, g1(bU, bV )))|  ⇠.

(38)

|E(d2(bYn,`, g2(Un,`, V n,`0)))� E(d2(Y, g2(bU, bV )))|  ⇠.

(39)

Proof: Note that using Equation (33) in Appendix D,
along with the Portmanteau Theorem, for the clipped variables,
we have:

lim
`,`0!1

|Ed( eX`, g1(U `, V `0))� Ed(X, g1(U, V ))| = 0. (40)

For the quantized variables, since convergence in variational
distance, shown in Appendix D, implies convergence in dis-
tribution, the lemma follows using Portmanteau theorem [58],
[59] and Lemma 4. ⇤

Fix ⇠ > 0, and define d
0
1(x, u, v) : = d1(x, g(u, v)) and

d
0
2(y, u, v) : = d2(y, g(u, v)) for all x, y, u, v,2 R4. Using

the procedure described in Section III, we perform clipping,
smoothing, and discretization of random variables (U, V ) into
bUn0,`0,✏0 and bVn0,`0,✏ by choosing the parameters (n0, `0, ✏)
appropriately. Furthermore, using the procedure described
in Section III, we perform clipping, and discretization
of the source variables (X,Y ) to produce the quadruple
( bXn,`,

bYn,`, U
0
n0,`0,✏0 , V

0
n0,`0,✏0) by choosing the parameters

(n, `) appropriately. For ease of notation, we will drop
the subscripts from the random variables when there is no
ambiguity. Using the data-processing inequality, the lower
semi-continuity of mutual information and Theorems 1 and 2
and Lemmas 7 and 8, we have:

|I( bX;U)� I(X;U)|  2⇠, |I(bY ;V )� I(Y ;V )|  2⇠,

|I(U ;V )� I(U ;V )|  2⇠, (41)

Ed
0
1(X,U, V ) + ⇠ � Ed

0
1( bX, U, V ),

Ed
0
2(Y,U, V ) + ⇠ � Ed

0
2(bY , U, V ). (42)

We can use the coding theorem in [19] to show that the
rate-distortion tuple given by

R1 � I( bX;U)� I(U ;V ),

R2 � I(bY ;V )� I(U ;V ),

R1 + R2 � I( bX;U) + I(bY ;V )� I(U ;V ),

D1 � Ed
0
1( bX, U, V ), D2 � Ed

0
2(bY , U, V ),

is achievable for the finite-alphabet source ( bX, bY , d1, d2).
Based on Equations (41) the rates are within 2⇠ of the ones
in the theorem statement. To show that the claimed distortions
for the reconstruction of continuous source are achievable,
consider a transmission system with parameter (m, ⇥1,⇥2)
for compressing the finite-alphabet source such that

1
m

mX

i=1

Ed
0
1( bXi, U

0
i, V

0
i)  Ed

0
1( bX, U, V ) + ⇠, (43)

where (U 0m, V
0m) : = f(e1( bXm), e2(bY m)), and e1 and

e2 denote the encoders and f the decoder.
For the source (X,Y, d1, d2) we obtain an (m,⇥01,⇥02)

transmission system TSc as follows. We assume that the
encoder and decoder share common randomness. From (X,Y )
we create ( bX, bY ) and use TSd. Let T1 = {X2[�`,`]}. The
encoder of X in TSc sends information to the decoder in
two parts. The first part is e( bXm) and the second part is a
compressed (almost lossless) version of T

m
1 . If the sequence

T
m
1 is typical, the encoder sends the index of the sequence

in the typical set, otherwise, it sends the index 0. This
extra piece of information requires hb(PX([�`, `]) + ⇠ bits
per sample. Similar encoding strategy is used at the other
encoder. The decoder is constructed as follows. Let (Ǔm

, V̌
m)

denote the reconstruction vector. If the decoder receives index
0 in the second part from either of the encoders, then it uses
an arbitrary constant c as a reconstruction, i.e., Ǔi = c, V̌i = c

0

for all i. Otherwise, it can reconstruct (Tm
1 , T

m
2 ) reliably.

If T1i = T2i = 1, then the reconstruction is Ǔi = U
0
i

and V̌i = V
0
i, otherwise it is arbitrary constants (c, c0), i.e.,

Ǔi = c, V̌i = c
0.

Assume that the parameters of the transmission system that
of the discrete source are such that

• hb(PX([�`, `]))  ⇠, and hb(PY ([�`, `]))  ⇠

• P (Ac)Ed
0
1(Xi, c, c

0|Ac)  ⇠, and
P (Ac)Ed

0
2(Yi, c, c

0|Ac)  ⇠ for all 1  i  m,
where A denotes the event that (Tm

1 , T
m
2 ) is jointly

typical.
• P (Bc

i )Ed
0
1(Xi, c, c

0|Bc
i )  ⇠, and

P (Bc
i )Ed

0
2(Yi, c, c

0|Bc
i )  ⇠ for all 1  i  m,

where Bi denote the event (Xi, Yi) 2 [�`, `]⇥ [�`, `].
• |d01(x1, b1, b2) � d

0
1(x2, b1, b2)|  ⇠, for all (a) x1, x2 2

[�`, `], (b) b1 2 [�`
0
, `
0], (c) b2 2 [�`

0
, `
0], and (d) |x1�

x2|  1
2n .

• |d02(y1, b1, b2) � d
0
2(y2, b1, b2)|  ⇠, for all (a) x1, x2 2

[�`, `], (b) b1 2 [�`
0
, `
0], (c) b2 2 [�`

0
, `
0], and

(d) |x1 � x2|  1
2n .

Note that the constants c, c
0 satisfying the conditions in the

second and third bullets exist by the assumption that the
expected distortion is finite so that there exist c, c

0 such that
E(d01(X, c, c

0)) < 1 and E(d02(Y, c, c
0)) < 1. Let PXi,Yi|A,Bi

denote the probability distribution of (Xi, Yi) given the event
A and Bi. Consider for any i 2 {1, 2, . . . ,m},

Ed
0
1(Xi, Ǔi, V̌i)

 P (Ac)Ed
0
1(Xi, c, c

0|Ac) + P (Bc
i )Ed

0
1(Xi, c, c

0|Bc
i )

+ P (A \ Bi)Ed
0
1(Xi, Ǔi, V̌i|A,Bi)

a
 2⇠ + P (A \ Bi)Ed

0
1(Xi, Ǔi, V̌i|A \ Bi)

= 2⇠ + P (A \ Bi)Ed
0
1(Xi, U

0
i, V

0
i|A \ Bi)

 2⇠ + P (Bi)Ed
0
1(Xi, U

0
i, V

0
i|Bi)

(b)
= 2⇠ + P (Bi)

X

i,b,b0

Pi(b, b0|⇣(i))
Z

A(i)
d
0
1(x, b, b

0)
dPXi(x)
P (Bi)

(c)
 2⇠ + P (Bi)

h
Ed

0
1( bXi, U i, V i) + ⇠

i
,

where we have following arguments: (a) follows from third
and fourth bullets from the previous page. In (b) we have
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denoted the conditional probability of U i, V i given bXi as
Pi. (c) follows from the fifth bullet from the previous page.
Finally, we have

1
m

mX

i=1

Ed
0
1(Xi, Ǔi, V̌i)  2⇠ +

h
Ed

0
1( bX, U, V )) + 2⇠

i

 5⇠ + Ed
0
1(X,U, V ).

The proof for the distortion for reconstructing Y follows by
similar arguments. This completes the desired proof. ⇤

APPENDIX G
PROOF OF PROPOSITION 2

The proof follows similar steps as the one given in
[9, Example 3]. We provide an outline in the following.
Note that Decoders {1},{2} and {1, 2} operate at optimal
PtP rate-distortion. So by the same arguments as in steps
one through five in [9, Example 3], all codebooks except
C{1},{3}, C{2},{3}, C{1}, C{2}, C{3} can be eliminated. For
ease of notation, we denote the corresponding random
variables for these codebooks as U1,3, U2,3, U1, U2, U3,
respectively. Note that due to optimality at Decoders {1}, {2}
and {1, 2}, we must have: (U1,3, U1)�X�Z � (U2,3, U2).

In order to evaluate the achievable rates using Gaussian
test channels, let U1,3 = X + Q1,3 and U2,3 = Z +
Q2,3, where Q1,3, Q2,3 are two Gaussian variables which
are independent of each other and of X,Z with variances
✓1, ✓2 > 0, respectively. Note that E(X|U1,3) = 1

1+✓1
U1,3

and E(Z|U2,3) = 1
1+✓2

U2,3. In order to achieve the desired
distortion at Decoders {1} and {2}, we must have U1 =
X � 1

1+✓1
U1,3 + Q1 and U2 = Z � 1

1+✓1
U2,3 + Q2, where

Q1 and Q2 are Gaussian variables with zero mean and variance
P , independent of each other and all other variables. Then,
the reconstructions X̂ = U1,3 + U1 and Ẑ = U2,3 +
U2 satisfy the distortion constraints at Decoder {1} and
Decoder {2}, respectively. The Gaussian variable U3 can be
decomposed in terms of X,Z,Q1,3, Q2,3, Q1, Q2, Q3, where
Q3 is an independent Gaussian variable with zero mean and
unit variance, so that U3 = ↵1X +↵2Z +↵3Q1,3 +↵4Q2,3 +
↵5Q1 + ↵6Q2 + ↵7Q3 for some ↵i 2 R, i 2 [7]. Then, the
reconstruction at Decoder {3} of X +Z which minimizes the
distortion is given by:

\(X + Z)3 : = E(X + Z|U1,3, U2,3, U3)

= ⌃X+Z,U1,3U2,3U3⌃
�1
U1,3,U2,3,U3

⇥
U1,3 U2,3 U3

⇤T

=
1

1 + ✓1
U1,3 +

1
1 + ✓2

W2,3 +
↵1 + ↵2

V ar(U3)
U3,

where ⌃X+Z,U1,3U2,3U3 : = E((X + Z)[U1,3, U2,3, U3])
and ⌃U1,3,U2,3,U3 is the covariance matrix of U1,3, U2,3, U3.
Similarly, the reconstructions at Decoder {1, 3} are:

bX1,3 : = E(X|U1,3, U2,3, U1, U3)

= ⌃X,U1,3U2,3U1U3⌃
�1
U1,3,U2,3,U1,U3

⇥
U1,3 U2,3 U1 U3

⇤T
,

bZ1,3 : = E(Z|U1,3, U2,3, U1, U3)

= ⌃Z,U1,3U2,3U1U3⌃
�1
U1,3,U2,3,U1,U3

⇥
U1,3 U2,3 U1 U3

⇤T
.

The reconstructions bX2,3,
bZ2,3 at Decoder {2, 3} can be

written in a similar fashion. Furthermore, using the covering
and packing bounds in Theorem 6, we have:

R3 � I(X,Z;U3, U1,3, U2,3)+I(U1, U2;U3|U1,3, U2,3, X, Z)

=
1
2

log
|⌃X,Z ||⌃U1,3U2,3U3 |
|⌃X,Z,U1,3,U2,3U3 |
+ I(Q1, Q2;↵5Q1 + ↵6Q2 + ↵7Q3)

=
1
2

log
|⌃U1,3U2,3U3 |

|⌃X,Z,U1,3,U2,3U3 |
+

1
2

log (↵2
5P + ↵

2
6P + ↵

2
7).

Computer-assisted optimization over ↵i, i 2 [7], ✓1, ✓2 for
P = 0.5 yields the value 0.9317 which is strictly less
than 1

2 log 2
P = 1. The achievable rates for other values of

P 2 [0, 1] are plotted in Figure 5. ⇤
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