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Modeling and Predicting Transients of Microgrids
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Abstract— Modularized Koopman bilinear form (M-KBF) is
presented to model and predict the transient dynamics of micro-
grids in the presence of disturbances. As a scalable data-driven
approach, M-KBF divides the identification and prediction of
the high-dimensional nonlinear system into the individual study
of subsystems, and thus, alleviates the difficulty of intensively
handling high volume data and overcomes the curse of dimension-
ality. For each subsystem, Koopman bilinear form is established
to efficiently identify its model by identifying isotypic eigenfunc-
tions via the Extended Dynamic Mode Decomposition (EDMD)
method with an eigenvalue-based order truncation. Extensive
tests show that M-KBF can provide accurate transient dynamics
prediction for the nonlinear microgrids and verify the plug-and-
play modeling and prediction function, which offers a potent tool
for identifying high-dimensional systems with reconfiguration
feature. The modularity feature of M-KBF enables the provision
of fast and precise prediction for the power grid operation and
control, paving the way towards online applications.

Index Terms— Modularized Koopman bilinear form (M-KBF),
data-driven modeling, Koopman operator, extended dynamic
mode decomposition (EDMD), transient dynamics prediction,
microgrids, distributed energy resources (DERs).

I. INTRODUCTION

D ISTRIBUTED energy resources (DERs), such as pho-
tovoltaic (PV) and wind power, are seen as important

solutions to modernizing the power system. There have been
growing research interests on the application of microgrids for
the integration of DERs, which differs from traditional power
systems in that the microgrid systems often operate under more
severe transient conditions due to the unpredictable nature of
the DERs and the larger instantaneous load and generation
imbalance compared to the system capacity. Thus, it is of
utmost importance to develop generic data-driven modeling
and prediction algorithms to assimilate the nonlinear dynamics
exhibited during normal microgrid operations, which is closely
related to the study of system identification.

Although several nonlinear system identification methods
for power systems have been proposed over the past decade,
the most widely recognized methods for monitoring the state
of power systems are linear methods. Existing linear tech-
niques include model-based linear system identification meth-
ods such as Prony’s method [1], [2], minimal realization algo-
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rithm [3], eigenvalue realization algorithm (ERA) [4], matrix
pencil method [5], Hankel total least squares (HTLS) [6], and
subspace identification [7]. There are also frequency domain
methods such as Yule-Walker [8] and frequency domain de-
composition [9] as well as non-parametric frequency analysis
methods such as Welch periodgram [10]. Linear methods are
useful for assessing system stability by analyzing the changes
in the dominant eigenvalues of the system and have been one
of the most important methods in studying nonlinear systems
due to the abundance of techniques in dealing with linear
systems.

Fundamentally, linear system identification methods try to
fit the system responses with a linear combination of complex
exponential functions, which are good approximations when
a single operating point is concerned. However, a typical mi-
crogrid system can have highly nonlinear responses spanning
a wide range of operating points that cannot be assimilated
with complex exponential functions. Therefore, the informa-
tion obtained from linear methods is lacking to support the
operation of a microgrid.

For nonlinear system identification, many existing methods
are applicable to the specific types of system and require
prior knowledge along with the input and output data of the
system. A typical example involves expanding the unknown
part of a gray box model into infinite series such as Taylor
series [11] and Volterra series [12], and fitting the parameters
using linear regression or some nonlinear optimization method.
More recently, methods such as sparse identification of non-
linear dynamics (SINDy) [13], neural networks [14], particle
filters [15], and expectation-maximization algorithm (EM) [16]
aim at identifying general nonlinear systems. However, due to
the intractable types of nonlinearities, the ability to obtain a
globally optimal solution may vary.

As an emerging class of data-driven modeling methods,
Koopman operator has gained significant attention with re-
search in machine learning and control [17]–[20]. The Koop-
man theory states that dynamical systems in general can be
linearized in the function space using the eigenfunctions asso-
ciated with the infinite-dimensional Koopman operator. This
is different from traditional nonlinear identification problems
because the focus is shifted from recovering nonlinear equa-
tions to finding linearly evolving eigenfunctions in the infinite-
dimensional space of observable functions. The advantage of
Koopman operator-based methods is that in the coordinates
of Koopman eigenfunctions, the equivalent linear dynamics is
amenable to linear control [21]–[23], while the difficulty is to
numerically approximate those eigenfunctions without general
analytical forms to compare against.
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Based on the linear evolution of Koopman eigenfunctions,
the methods for linear system identification are modified
through the so-called lifting technique to identify or approx-
imate linearly evolving eigenfunctions within an extensive
set of function basis, examples such as generalized Laplace
analysis (GLA) [24], extended dynamic mode decomposition
(EDMD) [25], kernel EDMD [26], and extended subspace
identification [27]. EDMD is by far the most studied with
convergence properties characterized in [28]. Various other
types of methods [29], [30] exploit the connection between the
linearization spectrum and the Koopman spectrum to obtain
eigenfunctions on a static basin of attraction.

Data-driven Koopman operator methods have been exten-
sively applied to power system coherence identification [31],
Koopman model predictive control [32], [33], and LQR sec-
ondary microgrid control with stability guarantee [34], [35].
However, existing methods suffer from two limitations. First,
due to the fast response of inverter-based DERs and the ex-
tended range of steady-state operating points at the distribution
level, microgrids generally exhibit complex nonlinear dynam-
ics that cannot be identified through the direct reduction of
coherency of different types of DERs [36]. A data-driven mod-
eling method applied to the microgrid as a whole thus would
involve finding eigenfunctions on a much higher-dimensional
state space, leading to inefficiency in training data collection
and in singular value decomposition for EDMD. Second, most
existing Koopman identification or control methods extend
poorly to situations where the system receives multiple input
disturbances [37], while a data-driven model for microgrid
dynamics needs to include the disturbances to DER power or
load power, thus limiting the number of control and power
components in the network.

To address the above limitations, a distributed data-driven
Koopman method is proposed in this paper called modularized
Koopman bilinear form (M-KBF) for the modeling and pre-
diction of microgrid nonlinear dynamics. Similar to existing
modular modeling methods that decompose the system accord-
ing to the interaction between modules through the input and
output voltage and current [38], the task of Koopman modeling
the high-dimensional microgrid dynamics is reduced to prob-
lems of modeling each module (DER subsystem) with bilinear
inputs [39], [40]. In this configuration, the interaction between
the modules serves as the excitation for the identification of
the dynamics of each module, instead of relying on external
inputs that can interrupt the operation of the microgrid. At
the same time, the large number of input disturbances to the
system assigned to each module can be clearly distinguished
in their effect towards the whole system.

The contributions of this paper are:
• A distributed data-driven modeling method (M-KBF) that

combines the bilinear Koopman operator modules in
network to study the nonlinear dynamics of microgrids
with reduced data-sharing

• An algorithm for predicting microgrid dynamics with
the data-driven M-KBF model which stands out for its
flexibility and scalability: It is capable of predicting the
dynamics across various microgrid topologies, distinct
from the training data, by only necessitating the re-

training of new bus dynamics because of the explicit
network structure of M-KBF model.

• An isotypic observable dictionary that preserves the angle
symmetry of the dynamics in the Koopman bilinear
model for accurately predicting the complex nonlinear
interactions that constitute the microgrid dynamics.

The remainder of this paper is organized as follows. Sec-
tion II establishes the modularized Koopman bilinear form.
Section III introduces the determination of eigenfunctions
through the EDMD method with order truncation. Section IV
presents the prediction of transient dynamics based on M-KBF.
In Section V, tests on a microgrid system verify the effective-
ness and efficiency of the presented method in modeling and
predicting transients. Conclusions are drawn in Section VI.

II. MODULARIZED KOOPMAN BILINEAR FORM

A microgrid consists of a local connection of DERs and
loads by an electrical network of electrical lines. Each con-
nection point between the electrical network to a DER or load
is a bus with its instantaneous bus voltage and bus current.
Each DER subsystem with the renewable source interfaced by
the power electronics control apparatus is connected to the
electrical network through its bus voltage and bus current.
The objective of identification through M-KBF is to build
individual KBF models for each DER subsystem up to the bus
connection with the network as in Fig. 1, while the electrical
network being linear algebraic equations can be calculated in
advance through the known or identified line impedance data.

A. Overview of M-KBF Model and the Network Equations

The data-driven modeling of the microgrid system by M-
KBF begins with modeling the electrical network as a hybrid
parameter matrix [41]. The hybrid parameter matrix, which is
derived from the power network’s nodal admittance matrix,
maps from a set of bus voltages and currents to bus currents
and voltages of the same buses. The input and output equations
of the network model is written as

ynet = Hunet (1)

with

ynet =

[
I1
V 2

]
, unet =

[
V 1

I2

]
, (2)

where subscript 1 denotes the set of grid-forming (GFM)
buses, and subscript 2 denotes the set of grid-following (GFL)
and/or load buses. Then, the internal bus dynamics of either
DERs or power loads from I1 to V 1 (from V 2 to I2) are fitted
through KBF models, with the bus voltage and current as the
interaction between the network model (1) and the internal bus
dyanmics. Since each bus can have different functionalities in
balancing power injection and maintaining overall stability,
namely GFM or GFL [42], [43], the input to the internal bus
dynamics is either the bus current or the bus voltage. The
condition and formula for the hybrid parameter matrix from
the nodal admittance matrix is provided in the Appendix.

The DER system shown in Fig. 1 interacts with the network
through the bus voltage VC and current IN . The input of the
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DER internal dynamics depends on whether the control is
GFM or GFL. GFM control regulate the voltage and maintains
overall stability under constant perturbations in power supply
and demand, so the input of the GFM dynamics is the bus
current. GFL control regulate their individual power output
with no stability functionality to the overall system, thus the
input of the GFL dynamics is the bus voltage.1 Additionally,
GFL DER systems can receive power reference inputs as their
target power outputs.

Denote the set of buses of the microgrid as N and the
subsets of GFM and GFL buses as respectively N1 and N2

such that N1 ∪ N2 = N , N1 ∩ N2 = ∅. The two type of
DER bus dynamics can be written in general as the following
control-affine systems

GFM: ẋp = fp(xp) +Gp(xp)I
gen
1,p , p ∈ N1 (3a)

GFL: ẋp = fp(xp) +Gp(xp)
[
V gen
2,p , S

ref
p

]T
, p ∈ N2 (3b)

where xp ∈ Cnp is the state vector of the internal dynamics,
Igen1,p , V gen

2,p are the DER generator current and voltage of bus
p, and Sref

p is the complex power reference input for the GFL
control.

The power loads can be modeled as GFL buses with
negative power reference input. In this paper, the power loads
are modeled by their instantaneous complex power. In general,
we can define a constant power load at every bus k ∈ N by
allowing zero load power. Denote the load power and load
current respectively as

Sld =

[
Sld
1

Sld
2

]
, I ld =

[
I ld1
I ld2

]
. (4)

Using the definition of complex power, we can combine the
network model (1) with the load constraints (4) to get

Sld = diag
( [ V gen

1

H21V
gen
1 +H22

(
Igen2 + I ld2

)] ) conj(I ld),
(5)

where H21 and H22 are the appropriate submatrices of H. The
constraint (5) is used for solving the load current I ld given the
outputs of the DER dynamics V gen

1 and Igen2 at each time step.
We refer to (5) as the hybrid power flow equations because
from its solution for I ld we obtain the vector of inputs to the
DER dynamics as[

Igen1

V gen
2

]
= H

[
V gen

1

Igen2 + I ld2

]
−

[
I ld1
0

]
. (6)

B. KBF Model for the DERs

In this subsection, we introduce the Koopman bilinear
form (KBF) of (3) for GFM and GFL DERs in the function
space, while the data-driven procedure is discussed in the next
section. The discussion of KBF in this section is based on

1From a mathematics perspective, either bus current or voltage can be
chosen as the input for either GFM or GFL bus dynamics. However, the
causal relation between the bus voltage and current is different for GFM and
GFL controls. The specific inputs for GFM and GFL bus dynamics is found
to be imperative to the success of the data-driven modeling in our tests.
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Fig. 1. Schematics of the DER system

complex state space and complex valued functions, which is
suited to the study of power networks expressed in terms of
complex voltage and current phasors. We begin by considering
the general control-affine system of the following form before
specializing to the case of DER dynamics (3):

ẋ = f(x) +
m∑
i=1

gi(x)ui (7)

The KBF of (7) is introduced in the following three aspects.
1) Observable Function: An observable function φ : Rn →

C is a complex-valued function of the state vector x. Let F
be a suitable function space, e.g., C1, so that φ ∈ F . Let
Φu(t,x0) be the flow map of the system (7) at time t > 0
starting from an initial condition x0 with input u. The time-
varying observable ψ(t,x) ≜ φ(x)

∣∣
x=Φu(t,x0)

of the system
(7) is the solution of the following partial differential equation,
which is the starting point for bilinearization.

∂ψ

∂t
= Lfψ +

m∑
i=1

uiLgiψ,

ψ(0,x) = φ(x),

(8)

where Lf ≜ f · ∇, Lgi
≜ gi · ∇, i = 1, . . . ,m are the Lie

derivatives [44] with respect to the drift and control vector
fields f(x) and gi(x), which are linear operators on C1.

2) Koopman Operator: The Koopman operator is defined
for the unactuated part of the system (7)

ẋ = f(x). (9)

Assume Φ(t,x0) is the flow map of (9) for time t > 0, the
continuous-time Koopman operator is defined as Kt : F → F
such that,

(Ktφ)(·) = φ ◦Φ(t, ·), (10)

where ◦ represents function composition. Based on (10), we
can see that the Koopman operator is linear, namely,

Kt(α1φ1 + α2φ2) = α1φ1 ◦Φ(t, ·) + α2φ2 ◦Φ(t, ·)
= α1Ktφ1 + α2Ktφ2.

(11)

Therefore, the Koopman operator can be characterized by its
eigenvalues and eigenfunctions,

Ktϕ = etλϕ, (12)

where λ ∈ C is the Koopman eigenvalue and ϕ ∈ F is the
corresponding eigenfunction.

From the definition of Lie derivatives, the infinitesimal gen-
erator of the Koopman operator is equal to the Lie derivative
of the drift vector field, i.e., Lf = limt→0

Kt−I
t , where I is

the identity operator, so Lf is also referred to as the Koopman
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generator. The eigenvalue and eigenfunction relation in (12)
can also be expressed in terms of the Lie derivative,

Lfϕ = λϕ. (13)

From (13) and the definition of Lf , for any two eigenpairs
(λ1, ϕ1) and (λ2, ϕ2), we have

Lf (ϕ1 · ϕ2) = (λ1 + λ2)(ϕ1 · ϕ2). (14)

Thus, there exist infinitely many eigenfunctions and eigenval-
ues for the Koopman operator.

In the same way, we can define Koopman operator for each
input-linear part ẋ = uigi(x) assuming that ui is constant in
time. Due to the mixing of the dynamics in the control-affine
system, the overall Koopman operator is no longer affine in
the input u (compare with the Koopman generator in (8)).

3) Bilinearization: The goal of bilinearization of (7) is to
choose a set of observable functions,

T (x) =
[
φ1(x) φ2(x) . . . φM (x)

]T
, (15)

such that their evolution over time is that of a bilinear system
(16), which mirrors (8) with the observable function basis z =
T (x).

ż = Az+
m∑
i=1

uiBiz, z(0) = T (x0), (16)

where A and Bi will be determined in Section III. The
condition for bilinearizability into the form (16) using, as the
observable functions, the infinite number of eigenfunctions of
Lf , is provided by Theorem 1 from [40]. And furthermore, bi-
linearizability condition with finite eigenfunction embeddings
is provided in the following theorem for completeness.

Theorem 1: [ [40, Theorem 2]] If a set of Koopman eigen-
functions ϕ1, ϕ2, . . . , ϕM of the unactuated system forms an
invariant subspace for every Lgi

, i = 1, . . . ,m, then the sys-
tem (7) is bilinearizable with the M -dimensional embedding
ϕ1, ϕ2, . . . , ϕM .

4) Isotypic Embedding for DER Dynamics: An important
property of the DER system (3) which should be preserved
in the KBF model is that the system (3) remains invariant as
the angle reference is changed. Such dynamical systems are
called symmetric, where one trajectory of the system always
implies the existence of a symmetry transformed trajectory.
Because the KBF models for DER dynamics to be separately
identified need to predict the collective behavior of the mi-
crogrid including the interaction between DER systems, it is
necessary that the KBF models preserve this symmetry to
avoid erroneous dynamics in the prediction. One such way is
to non-dimensionalize the state vector of the system to obtain
a KBF model in isotypic function space that is independent to
the symmetry of the underlying system [45] We illustrate how
to obtain isotypic embedding with the examples of Vf control.

Voltage frequency (Vf) control is an example of GFM
control (3a). The state vector and the input can be expressed
as

x =
[
x1, θ, IL, VC ]

T,u = IN , (17)

where x1 ∈ R5 is the controller state vector in the internal
reference frame, θ ∈ R is the angle of the internal ref-
erence frame relative to the external reference frame, and
IL, VC , IN ∈ C are the RLC filter currents and voltages in
the external reference frame. The internal reference frame is
provided by the controller to transform the three-phase signals
into phasors, while the external reference frame is shared
between the DER system and the network. The symmetry of
the system involves the angles of θ, IL, VC and IN . Notice
in this case, that we can identify another symmetry involving
the scaling of αejθ, IL, VC and IN , where α = 1 without the
scaling of the trajectory. Thus, we define the non-dimensional
state vector and input as

x′ =

[
x1,

ejθ

VC
,
IL
VC

]T
, u′ =

IN
VC

, (18)

and the isotypic observable functions are written as

φq(x) =φq

(
x1,

ejθ

VC
,
IL
VC

)
V −q
C , (19)

where q ∈ Z is the isotypic index [45]. The isotypic ob-
servable function with isotypic index q has the property that
it has a single frequency (q/2π) with respect to symmetry
transformation, i.e., simultaneous shifting of the angles of
ejθ, IL, VC , and it can be seen in (16) that this embedding
guarantees the symmetry of the KBF model without even
considering the accuracy of the approximated eigenfunctions.
Using the invariance of the Koopman operator in isotypic
subspaces [45] and the group property of Koopman operator
(14), all possible groups of eigenfunctions can be found in one
isotypic subspace. Thus, in the training of the KBF model, it
is sufficient to choose the observable dictionary to have the
same isotypic index q ̸= 0; q = 0 is a degenerate case where
the global angle dynamics is eliminated from the KBF model.

Constant power (PQ) is an example of GFL control (3b)
with the state vector and input

x =
[
x1, θ, IL

]T
, u =

[
VC , S

ref
]T
. (20)

The isotypic observable function is found by separating the
angle symmetry as

φq(x) =φq
(
x1,

IL
ejθ

)
e−jqθ (21)

with the non-dimensional state and input

x′ =

[
x1,

IL
ejθ

]T
, u′ =

[
VC
ejθ

,
Srefejθ

VC

]T
, (22)

where, as in the case of Vf control, we can choose a single
isotypic space with q ̸= 0 as the embedding space for the
KBF model. In the remaining part of this paper, we choose
the isotypic index q = −1 for both Vf and PQ systems without
loss in expressiveness.

In the next section, the data-driven method for approximat-
ing finite-dimensional Koopman invariant subspaces is devel-
oped for DER subsystems based on the EDMD algorithm.
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III. DATA-DRIVEN IDENTIFICATION OF KBF

The data-driven identification of the KBF equivalent model
(16) of the DER subsystem is performed through a least-
squares formulation using a predetermined set of observable
functions. The eigenfunction embeddings and the KBF system
are identified simultaneously from the state and input measure-
ments of the DER subsystems.

The general rule for selecting a dictionary of observable
functions is that these functions should span a rich subspace
so that a certain set of eigenfunctions can be approximated by
their projections onto this subspace. There are several choices
of observable functions [46], including monomials, radial basis
functions, Hermite and Chebyshev polynomials. In this paper,
we choose the real monomial functions for building the first
part φ1(x) of the isotypic observable function, (19) or (21), to
cover the function space of polynomials up to a certain order.
Thus we have

T (x) =
[
φ1(x

′)φ2(x
′) . . . φM (x′)

]T
VC (23)

in the case of GFM DER, or

T (x) =
[
φ1(x

′)φ2(x
′) . . . φM (x′)

]T
ejθ (24)

in the case of GFL DER. The real monomials φi(x
′) are

functions of the real and imaginary parts of its arguments and
are important for implementing the error correction step in
prediction. The monomials, in particular, include the (zeroth-
order) constant function and the first-order monomials so that
the outputs of the GFM and GFL systems can be found in the
dictionary as

GFM: y = 1 · VC , (25a)

GFL: y =

[
Re

(
IL
ejθ

)
+ jIm

(
IL
ejθ

)]
· ejθ. (25b)

The data-driven EDMD algorithm for fitting the KBF model
is discussed next.

A. Approximated Eigenfunctions

Given the conditions in Theorem 1, the original system (7)
can be identified by the KBF model (16) in the coordinates
of a finite invariant set of eigenfunctions of Lf . One option
to approximate such invariant sets of eigenfunctions is by
applying EDMD on the sampled trajectories of the system with
zero inputs [40]. However, as the inputs to DER subsystems
include node current or voltage that cannot be held constant
during system transients, it is not feasible to independently
identify the eigenfunctions using EDMD. Instead, the invariant
eigenfunction embeddings and the bilinear system can be iden-
tified together using a predetermined dictionary of observable
functions.

The requirement on the observable functions is that their
span covers an invariant eigenspace of Lf with respect to
(8), which is defined in Theorem 1. Then, given a finite KBF
system (16) and the observable functions T (x), for each left
eigenvector wi and eigenvalue λi of A, ϕ(x) = wH

i T (x)
can be shown to be an eigenfunction of Lf with eigenvalue
λi [37]. Assuming that A is diagonalizable, denote the left

eigenvector matrix W and eigenvalue matrix D of A such
that WHA = DWH. Then the approximated eigenfunction
embeddings z̃ = WHz = WHT (x) is a linear transformation
of the predetermined observable function embeddings, which
gives us the following KBF system with the eigenfunction
embedded state,

˙̃z = Dz̃+
m∑
i=1

uiB̃iz̃, z̃(0) = WHT (x0), (26)

where B̃i = WHBi(W
H)−1.

B. Discretization of KBF for Identification

Since the measurement data are discrete-time data, the
continuous-time KBF system (16) needs to be discretized to
provide the discrete-time template for identification. Again, we
assume that the span of the observable functions T (x) covers
an invariant eigenspace of Lf . Assume the sampling period
is ∆t and that the inputs ui(t) are constant within each time
step (zero-order hold). The KBF system is linear time-invariant
with the solution (27) within each time step.

z(t+∆t) = exp

[(
A+

m∑
i=1

ui(t+∆t)Bi

)
∆t

]
z(t) (27)

Then, by expanding (27) into Taylor series and taking the
first order approximation on ∆t, we can get the discretized
KBF model in explicit (28a) and implicit (28b) forms:

zk+1 = Ad zk +
m∑
i=1

ui,k+1B
d
i zk +O(∆t2), (28a)

zk+1 = Ad zk +
m∑
i=1

ui,k+1B
d
i zk+1 +O(∆t2), (28b)

where Ad = exp(A∆t), Bd
i = Bi∆t.

C. Least-Squares Formulation and Singular Value Truncation

Assume that the isotypic dictionary of observable functions
T (x) ∈ CM is selected, we can identify the discretized
KBF models (28) using least-squares formulation similar to
EDMD [37], which gives us the approximated eigenfunction
coordinates and the discretized KBF (28). In the following,
we assume that the explicit model (28a) is used, while the
implicit model (28b) can be obtained in a similar way.

Assume that the measurement data is collected from a single
sampled trajectory that contains various transient responses
of the DER to be modeled. Denote the state and input data
point at each sampling interval as (xk, uk), k = 1, . . . , N .
In order to linearly identify (28a), the following data matrices
are combined from the trajectory data as

X1 =
[
T (x1) . . . T (xN−1)

]
, X2 =

[
T (x2) . . . T (xN )

]
,

(29)
and the input matrices are combined as

Γi =
[
ui,1T (x1) . . . ui,N−1T (xN−1)

]
, i = 1, . . . , m. (30)
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Then, the approximated discrete matrices in (28a) is found by
minimizing the cost function ∥X2 −GΩ∥2F where

Ω =
[
XT

1 ΓT
1 . . . ΓT

m

]T
, (31)

and
G =

[
Ad Bd

1 . . . Bd
m

]
(32)

is the unknown. The least-squares problem has a closed-form
solution in terms of the pseudoinverse of Ω [47], Ĝ = X2Ω

†.
Since the assumed discretization of KBF is only first-

order accurate with respect to the time step ∆t and the
selected observable functions are usually not guaranteed to
represent the eigenspace, to regularize the solution, singular
value truncation [47] needs to be applied to the solution Ĝ.
For the identification of discrete-time system matrices as in
EDMD, singular value truncation essentially adds to the cost
function a regularization term ε∥G∥2F [47].

To proceed, assume that the singular value decomposition
(SVD) of Ω is given by Ω = UΣVH, and the singular value
truncated data matrix by Ω̃ = ŨΣ̃ṼH, where Σ̃ is a diagonal
matrix of the reduced singular values with its dimension R <
M . The regularized solution can then be expressed as

Ĝ = X2Ω̃
†, (33)

and the discrete-time system matrices are found by

Âd = X2ṼΣ̃−1ŨH
0 , B̂d

i = X2ṼΣ̃−1ŨH
i , (34)

where
[
ŨT

0 , Ũ
T
1 , . . . , Ũ

T
m

]T
= Ũ is the appropriate parti-

tioning of Ũ.
The system of (34) is in the M observable coordinates,

which contains the original states. The original state can be
reconstructed from the predictions under certain conditions
discussed in the next subsection. Now, since the rank of the
system is R < M by the singular value truncation, the system
can be further reduced to dimension R for reduced computa-
tion in the prediction stage by taking the state transformation
on the observable state z = (X2Ṽ)†z = P†z, which results
in the reduced system

A
d
= Σ̃−1ŨH

0X2Ṽ, B
d

i = Σ̃−1ŨH
i X2Ṽ. (35)

Here, we made the assumption that X2Ṽ has full rank R,
i.e., the least-squares problem is linearly consistent after the
singular value truncation [47].

D. Original State Reconstruction

Since the isotypic functions with monomial embeddings
T (x) contains the original state vector x, the original state can
be linearly extracted from the observable state vector through
a constant matrix C such that

x = Cz. (36)

For the reduced model (35) with the reduced observable
function embedding, the potential linear reconstruction takes
the form

x = CPz = CP(P†z). (37)

However, due to reduction in dimension from the transforma-
tion z = P†z, the product PP† has rank R < M , which
means that the original state reconstruction from the reduced
observable state z in (37) may be ill-conditioned so that the
predictions from the reconstructed state are incomplete. The
prediction error resulting from original state reconstruction
needs to be distinguished from the error in the Koopman
approximation as the two are independent of each other. To
distinguish the reconstruction error from the modeling error,
in the validation step, the full embedded system (34) should be
used. Then, the reduced model (35) may be used for speeding
up the prediction if the original state reconstruction from the
reduced observable state z is well-conditioned.

IV. M-KBF MICROGRID DYNAMICS PREDICTION

The prediction of the microgrid dynamics follows the usual
DAE solution method of recursively advancing the KBF
models (28) for the DER systems and solving the hybrid power
flow equations (5). In the following, we first discuss the details
of prediction of the individual KBF models of DER systems
before we present the full M-KBF prediction algorithm.

Recall the isotypic observable functions and inputs derived
in (18)-(22) and the real monomials for building the first
part of the isotypic observable functions in (23) and (24).
Because the input from the solution to the hybrid power flow
is dimensional, the KBF prediction uses the the reference (VC
or ejθ) from the last time step to transform the input at the
current time step; that is, for the GFM DER system,

zk+1 = Adzk +Bdzk+1
IN [k+1]

VC [k]
(38)

with xk = Czk, and, for the GFL DER system,

zk+1 = Adzk +Bd
1zk+1

VC [k+1]

ejθ[k]
+Bd

2zk+1
Sref [k+1]ejθ[k]

VC [k+1]
(39)

with xk = Czk.
Under perfectly identified KBF models, all elements of the

observable state zk of both the GFM and GFL model should
always share the same complex angle, i.e., the real monomials
for the first part of the observable (23) and (24) should always
be real. In addition for GFL system, the first element ejθ

should have constant absolute value. Since the KBF model in
isotypic embedding is, in theory, only valid if the observable
state zk is found on this manifold, small error in the KBF
model, which cumulates over time to cause the observable
state to leave the manifold, can lead to catastrophic failures.
Thus, to make the prediction algorithm more robust to data-
driven modeling errors, we add the following correction to the
observable state at each time step to project the predicted state
at time k+1 onto the manifold. For the GFM or GFL model,
the corrected observable state is given by (the subscript for
time is omitted),

GFM: z∗ = diag
{
sign

[
Re(conj(z1) · z)

]}
|z| z1

|z1|
(40a)

GFL: z∗ = diag
{
sign

[
Re(conj(z1) · z)

]}
|z| z1

|z1|2
(40b)
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where z1 = VC for GFM or z1 = ejθ for GFL is the first
observable state.

Combining the hybrid power flow equation, the data-driven
KBF models in isotypic embedding for the DERs, and the
manifold correction, the full M-KBF prediction algorithm for
microgrid dynamics is summarized in Algorithm 1. Notice
that the KBF model for both GFM and GFL DERs on
Line 7 and 12 are the explicit model (28a) While in the
model identification phase the implicit form (28b) is more
accurate and usually gives the best results, we find in our
tests that changing to the explicit form in the prediction phase
produces almost identical trajectories of microgrid dynamics
with reduced computation cost due to the elimination of matrix
inversion.

Algorithm 1: M-KBF Enabled Prediction Algorithm
Input : KBF model for each DER system

(Ad
p, B

d
p, C

d
p, Tp(·)), p = 1, . . . , |N |, hybrid

network parameter matrix H, initial
conditions ynet[1], unet[1], xp[1] for
p = 1, . . . , |N |, prediction length len, and
input disturbances Sld[k], Sref [k] for
k = 1, . . . , len

Output: Predicted microgrid bus voltages and currents
ynet[k], unet[k] for k = 1, . . . , len

1 zp[1] = Tp(xp[1]), p = 1, . . . , |N |;
2 for k = 1 to len do
3 Calculate DER system inputs Igen1 , V gen

2 using (6);
4 for p = 1 to |N | do
5 if Bus p is GFM then
6 u′

p[k+1] =
IN,p[k+1]
VC,p[k]

;
7 ẑp =

(
Ad

p +
∑

i B
d
i,pu

′
i,p[k+1]

)
ẑp[k];

8 zp[k+1] =

diag
{
sign

[
Re(conj(ẑ1,p) · ẑp)

]}
|ẑp| ẑ1,p

|ẑ1,p| ;
9 xp[k+1] = Cpzp[k+1];

10 else

11 u′
p[k+1] =

[
VC,p[k+1]

ejθp [k]
,

Sref
p [k+1]ejθp [k]

VC,p[k+1]

]T
;

12 ẑp =
(
Ad

p +
∑

i B
d
i,pu

′
i,p[k+1]

)
ẑp[k];

13 zp[k+1] =

diag
{
sign

[
Re(conj(ẑ1,p) · ẑp)

]}
|ẑp| ẑ1,p

|ẑ1,p|2 ;
14 xp[k+1] = Cpzp[k+1];
15 end if
16 end for
17 Update V gen

1 [k+1] and Igen2 [k+1];
18 Calculate hybrid power flow with input Sld[k+1]

based on (5) to get I ld[k + 1];
19 Update ynet[k+1] and unet[k+1];
20 end for

V. NUMERICAL EXAMPLES

For testing the effectiveness of M-KBF in identifying
nonlinear microgrid dynamics under large disturbances, a
numerical example is set up in Matlab using the microgrid
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Fig. 2. Example microgrid test system

system shown in Fig. 2. Details of the test system including
the per-unit system, the nominal power flow condition, and the
line impedance are given in the Appendix. In Fig. 2, Bus 1
is the slack bus that is connected to the grid-forming DER
controlled by Vf control, and all the other DERs are grid-
following generators with PQ controls. All PQ controllers have
the same control parameters, which allows us to identify their
KBF model built with the local data of a few PQ-controlled
DERs and, in the prediction phase, apply the PQ model for
all PQ-controlled DERs in the system to demonstrate the
modularity of our method. All power loads in the microgrid are
modeled as constant power loads. Using the DER controller
model given in the Appendix, the detailed phasor model of the
microgrid is built as a DAE with the approximation of quasi-
static electrical network and RLC filter dynamics. Please refer
to [48] for more details on the microgrid test system.

In Table 1, information about data preparation and training
data size are summarized. To generate the dynamic responses
of the system to provide both the training data and the test data,
the DAE model is simulated with a step size of 10−3 s. The in-
put to the system includes random step changes to power loads
and PQ-controlled DERs’ power references. Every simulated
trajectory starts from the same nominal condition and spans
20 s, where random step changes of uniformly distribution are
introduced to each input at every 0.5 s interval. The simulated

TABLE I
DATA PREPARATION AND TRAINING INFORMATION

Item Value
Simulation timescale 10−3 s

Koopman modeling timescale 10−3 s
Vf nd state/input dimension (18) 9/2
PQ nd state/input dimension (22) 8/4

Vf training data size 312 step changes (8 × 20 s duration)
PQ training data size 1, 248 step changes (32 × 20 s duration)

Vf truncation order/# observables 100/220
PQ truncation order/# observables 70/120
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Fig. 3. Prediction and absolute errors for the Vf-controlled DER of 100%-
range step changes in a 0.05 radian shifted reference frame by KBF models
obtained with different orders of monomial functions

trajectories are distinguished by the percentage of the of the
maximum step change magnitudes relative to the nominal
conditions of each load or DER. For example, for 80% random
changes, every step change has a uniform distribution in
0.8 [−P0, P0] (or 0.8 [−Q0, Q0]) depending on the nominal
power value.

A. Data-Driven Modeling for Individual DER via KBF

Thanks to the modularity of the proposed method, the DER
models are trained and validated individually with only data
pertaining to the DER system. The DER system interactions,
in the form of transient bus current bus voltage for Vf or PQ
system, serve as the perturbation for the dynamics identifica-
tion without the need for separate excitation to induce larger
microgrid-level transients. For the Vf system, the training
data includes local data of four 20 s periods of 50% range
step disturbances and four 20 s periods of 80% range step
disturbances, with a total of 312 transient events. For the PQ
system, the training data includes local data of the PQ DER
at Bus 13, 18, and 25 during the same microgrid transients,
with a total of 1, 248 transient events. Since the PQ-controlled
DERs are identical, their data are combined for the training of
the common KBF model. The implicit form of KBF is used
for identifying both the Vf and PQ system.
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Fig. 4. Prediction and absolute errors for a PQ-controlled DER at Bus 31
of 100%-range step changes in a 0.0342 radian shifted reference frame by
KBF models obtained with different orders of monomial functions

The test results of the KBF models of the Vf and PQ
systems are shown in Fig. 3 and Fig. 4, where the test
data is part of a microgrid trajectory under 100% range step
disturbances. It is worth noting the difference between the
training and the prediction result in testing. Although the
training data only see non-dimensional input u′ in (19) and
(22), the prediction in Fig. 3 and Fig. 4 uses the predicted
reference to transform the input at each time step as in
Algorithm 1. Since the input in the testing is dimensional, i.e.,
affected by angle symmetry, the result shows that the isotypic
embedding introduced in Section III successfully separates the
symmetry from the training process without the drawback of
losing dynamics information in the dimensional coordinates.

Detailed explanations of the result are:
• For both the Vf model and the PQ model, an observable

dictionary with up to 3rd order monomial can accurately
capture the nonlinear DER dynamics. While the predic-
tion from 2nd order model is similar, the prediction error
is accumulates faster than the 3rd order model.

• For the PQ system in Fig. 4, the isotypic embedding
leaves the dynamics to be learned by KBF only mildly
nonlinear. While the 1st-order model can make reasonable
predictions with the correction step (40b), the 3rd-order
model prediction has the lowest error.
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• The nonlinearity of the Vf DER system mainly results
from the complex phasor calculations and the resulting
angle and amplitudes. The 1st-order model is thus not
expressive enough to fit the corresponding dynamics.

B. SVD Order Truncation and Eigenfunctions
In order to obtain an appropriate KBF model for prediction

and overcome the discretization error when arriving at the
template model (28), it is necessary to apply singular value
truncation to the data matrix. Here we show that an optimal
truncation order can be inferred by the eigenvalue distribution.
Fig. 5 shows the distribution of the approximated Koopman
eigenvalues on the Vf model with monomial observables of
up to 3rd order when different truncation orders are applied.
We can see that:

• When a higher SVD truncation order (less regularization)
is applied to the KBF model solution, there exists an
eigenvalue pattern repetition of the eigenvalues to the
right of the figure, as illustrated in Fig. 5a. This is
due to the fact that the sum of two Koopman eigenval-
ues is another Koopman eigenvalue with the associated
eigenfunction being the product of the two existing
eigenfunctions, as given in (14). As a consequence, the
repeated eigenvalues to the left correspond to higher order
eigenfunctions that are less likely to be approximated
accurately by the monomials of lower orders, which may
result in an unstable KBF model for prediction.

• When the appropriate SVD truncation order is applied,
the identified Koopman eigenvalues contain no repetitive
pattern and the associated eigenfunctions can be well
approximated by the selected low-order monomials so
that the resulting KBF model is not only stable but can
accurately represent the dynamics of the DER subsystem,
as has been demonstrated in Fig. 3 and Fig. 4.

We have tested Vf- and PQ-controlled DER models with
both the 2nd-order and 3rd-order monomials and find that in
each setup there is a narrow range of SVD truncation order that
results in the KBF model having the lowest prediction error.
The optimal truncation order is inferred by the distribution
of the identified Koopman eigenvalues by retaining only the
number of eigenvalues with no repetitive pattern.

The coefficient matrices of the identified eigenfunction
embeddings with the optimal SVD truncation orders for the Vf
and PQ models are shown in Fig. 6 and Fig. 7, where the abso-
lute values of the monomial coefficients of the approximated
eigenfunctions are plotted. The vertical axes in both figures
correspond to the eigenfunctions in the descending order of
the real parts of their eigenvalues. We can see from Fig. 6
that eigenfunctions number 38 to 68, which are highlighted in
Fig. 5, have large coefficients corresponding to the monomials
x3 multiplied with the first and second order combinations
of the filter current, with x3 being the state variable for the
voltage amplitude outer loop. This agrees with the fact that
theses variables have fast dynamics in the original DAE model.

C. Prediction Based on M-KBF and Error Analysis
Based on Algorithm 1, the independently identified KBF

models are integrated to predict the whole system’s transient

Fig. 5. The existence of repeating patterns of the locations of the trans-
formed continuous-time eigenvalues as an indication for unusable models for
prediction: (a) r = 150, (b) r = 100 (selected truncation order)

Fig. 6. Eigenfunction coefficients for Vf model

Fig. 7. Eigenfunction coefficients for PQ model

responses. Fig. 8 and Fig. 9 show the voltage and current
predictions of the connected M-KBF model under 100% range
disturbances. From the predictions, we can see that

• The Vf and PQ models trained on 80% range data of
individual DER systems is capable of predicting 100%
range disturbances of the whole microgrid system. The
PQ model trained on local data of Bus 13, 18, and 25
accurately represents every PQ-controlled DER system
located in different parts of the microgrid.

• The prediction results demonstrate the M-KBF’s plug-
and-play functionality, since the identified KBF model for
PQ-controlled DERs is repeatedly used in the system.

• Every KBF model for the DER systems fully respects
the angle symmetry such that the prediction of the whole
system including the complex phase angle interactions is
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acurately predicted without limits on the angle range of
each DER.

• The prediction errors in the whole system prediction is
does not accumulate as in the individual tests because
each DER model’s input in the connected system is a
dynamic feedback from the rest of the system.

In Fig. 10, the average prediction errors are shown. For each
range of disturbance, the average mean absolute percentage
error (MAPE) is calculated from five test trajectories. As in
Fig. 10, the bus voltage amplitude MAPEs remain below
0.01%, and the bus current MAPEs remain below 0.03%
for the disturbance range of 100%. In Table II, the average
simulation times for 20 s of microgrid system trajectory on
a 3.6GHz PC is shown for different models and solution
methods. Without the potential for parallel update of each DER
model, the proposed M-KBF method uses half the time of the
standard Euler method for the DAE model while being similar
to the numerical differentiation formula (NDF) method.

D. Prediction under Changing Microgrid Topologies

The modularity and scalability of M-KBF is tested by
prediction of the microgrid dynamics under both quadrupled
and halved topology compared to the nominal 35-bus topology
of Fig. 2 as well as 50% range random step disturbances.
The prediction results are shown in Fig. 11. At 5.0 s, four
identical microgrids with the topology in Fig. 2 are joined
together, each one connected to the next one between Bus 16
and Bus 3, which results in a 140-bus connected microgrids
with 44 DERs. The additional microgrid is initialized to the
same state at 5.0 s as the original microgrid, and the random
step changes are independent for each microgrid. At 7.5 s, the
microgrid topology is halved by disconnecting the additional
microgrids and, at the same time, disconnecting the part of
the original microgrid below Bus 6, which results in a smaller
microgrid with 19 buses and 6 DERs. The detailed discussions
are:

• Since the dynamics of the microgrid consists of the
interactions between the symmetry preserving KBF DER
models, the prediction of M-KBF remains accurate under
different system topologies and during system topology
changes.

• In Fig. 11c and Fig. 11d, where the voltage amplitudes
for microgrid one and four in the joined system is shown,
the voltage transients are both qualitatively different than
the original microgrid. This confirms the necessity of the
modular design of M-KBF for reconfigurable microgrids.

Thus, the flexibility and scalability of M-KBF in terms of
changing system topologies is verified.

TABLE II
SIMULATION TIMES OF 20 S TRAJECTORIES

Method Average simulation time [s]
DAE model (Euler) 60.51
DAE model (NDF) 26.95

M-KBF 30.09

Fig. 8. Microgrid voltage dynamics prediction under 100% range random
disturbances, (a) voltage amplitude, (b) voltage angle, (c) zoomed in of voltage
amplitude, (d) zoomed in of voltage angle

Fig. 9. Microgrid current dynamics prediction under 100% range random
disturbances, (a) current amplitude, (b) current angle, (c) zoom-in of current
amplitude, (d) zoom-in of current angle

VI. CONCLUSIONS AND FUTURE WORK

The paper contributes a scalable data-driven method, M-
KBF, to efficiently model and predict the transient dynamics
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Fig. 10. Bus voltage and current prediction errors in terms of mean absolute
percentage (MAPE).

Fig. 11. Prediction under changing topology (joined by three identical
microgrids between 5 and 7.5 s and isolating half of microgrid one after
7.5 s) as well as 50% range random disturbances, (a) voltage amplitude of
microgrid one, (b) voltage angle of the microgrid one, (c) zoom-in of voltage
amplitude of microgrid one, (d) zoom-in of voltage amplitude of microgrid
four

of nonlinear microgrids under disturbances. The data-driven
models for subsystems are developed through EDMD with
eigenvalue-based order truncation, which are integrated into
a combined model for the microgrid system. With the pro-
posed M-KBF model, predictions of the system’s responses
to various external disturbances including load and generator
changes and changes to the network topology can be produced
in a distributed manner using the individual subsystem models.
Test results have demonstrated the effectiveness of M-KBF
in providing fast and precise transient predictions. For future

TABLE III
SYSTEM-WIDE PER-UNIT BASE

PB VBl−l ω0

1 MW 400 V 60 Hz

work, M-KBF will be further developed to handle data with
noise, to identify the system by using output-only measure-
ments like bus voltage and current, and to perform predictive
control based on the predictions obtained from M-KBF.

APPENDIX

A. Derivation of the Hybrid Parameter Matrix

Let the set of buses of the network be denoted by N . Denote
Y as the nodal admittance matrix, which after permutation of
the rows and columns, corresponds to buses in N1, N2, and
N3 which are respectively the GFM buses, GFL buses, and
buses with no power load or generator and assumed to be
mutually exclusive. Buses that are only connected to power
loads is included in N2. Perform the following partition of Y
according to the boundary between the buses N1 and N2∪N3,

Y =

[
Y11 Y12

Y21 Y22

]
. (41)

Then, the extended hybrid parameter matrix is found as

H′ =

[
Y11 −Y12Y

−1
22 Y21 Y12Y

−1
22

−Y−1
22 Y21 Y−1

22

]
. (42)

A sufficient condition by [41, Theorem 2] for Y22 to have
full rank (invertible) is for the network to be connected and
the branch resistance to be greater than zero for all branches.
If this condition is satisfie, H′ is well-defined. The hybrid
parameter matrix in (1) is found by taking the upperleft square
submatrix of H′ of size |N1|+ |N2|.

B. Phasor Model for the DER Subsystems

The DER connection circuit and the Vf-controller (given
as an example) are shown in Fig. 1 and Fig. 12, re-
spectively. Ten differential equations can then be devel-
oped, which are not given here. These equations form
a control affine system, where the state vector is x =[
x1, . . . , x6, V

D
C , V Q

C , IDL , I
Q
L

]T
, the input vector is the node

current u =
[
IDN , I

Q
N

]T
, and the output to the network is

the node voltage that is equal to the state variables y =[
V D
C , V Q

C

]T
. The input functions of the control affine system,

g1(x) and g2(x), associated with each input are given by

g1(x) =
[
0, 0, 0, 0, − cosx2, sinx2,

1

C
, 0, −

KIreg
p

L
, 0
]T

g2(x) =
[
0, 0, 0, 0, − sinx2, − cosx2, 0,

1

C
, 0, −

KIreg
p

L

]T
C. Details of the Test System

The parameters of the example microgrid in Fig. 1 are given
in Table III, IV, and V.
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Fig. 12. Vf controller with the phase-locked loop (PLL)

TABLE IV
NOMINAL POWER FLOW CONDITION [kW]

DERs Loads
Bus P0 Q0 Bus P0 Q0

1 190.93 102.96 4 -32.69 -15.97
13 5.36 3.65 14 -74.69 -41.26
16 15.36 10.25 17 -41.56 -27.64
18 20.00 15.25 23 -59.63 -38.57
20 10.25 5.68 25 -60.54 -40.63
25 64.59 54.26 28 -61.35 -37.59
27 25.69 15.75 31 -58.21 -36.78
29 25.00 12.00 33 -65.31 -39.45
31 45.30 30.65
34 36.78 14.23
35 29.24 14.96

TABLE V
LINE IMPEDANCE

From To Impedance [pu] From To Impedance [pu]
3 4 0.0763 + j 0.0197 21 22 0.0986 + j 0.0214
5 6 0.0763 + j 0.0197 22 23 0.0986 + j 0.0214
7 8 0.0763 + j 0.0197 23 24 0.0986 + j 0.0214
9 10 0.0763 + j 0.0197 24 25 0.0986 + j 0.0214
10 11 0.0763 + j 0.0197 26 27 0.1962 + j 0.0180
11 12 0.0763 + j 0.0197 27 28 0.1962 + j 0.0180
3 13 0.9750 + j 0.0272 28 29 0.1962 + j 0.0180
4 14 0.9750 + j 0.0272 30 31 0.8550 + j 0.0214
14 15 0.9750 + j 0.0272 32 33 0.2365 + j 0.0138
15 16 0.9750 + j 0.0272 33 34 0.2365 + j 0.0138
17 18 0.3074 + j 0.0153 34 35 0.2365 + j 0.0138
18 19 0.3074 + j 0.0153
19 20 0.3074 + j 0.0153
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