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ABSTRACT A Physics-Informed Dynamic Graph Neural Network (PIDGeuN) is presented to accurately,
efficiently and robustly predict the nonlinear transient dynamics of microgrids in the presence of
disturbances. The graph-based architecture of PIDGeuN provides a natural representation of the microgrid
topology. Using only the state information that is practically measurable, PIDGeuN employs a time
delay embedding formulation to fully reproduce the system dynamics, avoiding the dependency of
conventional methods on internal dynamic states, e.g., of controllers. Based on a judiciously designed
message passing mechanism, the PIDGeuN incorporates two physics-informed techniques to improve its
predictive performance, including a physics-data-fusion approach to determining the inter-dependencies
between buses, and a loss term to enforce the known physical law of the power system, i.e., the Kirchhoff’s
law, to ensure the feasibility of themodel prediction. Extensive tests show that PIDGeuN can provide accurate
and robust prediction of transient dynamics for nonlinear microgrids over a long-term time period. Therefore,
the PIDGeuN offers a potent tool for the modeling of large scale networked microgrids (NMs), with potential
applications to predictive or preventive control in real time applications for the stable and resilient operations
of NMs.

INDEX TERMS Graph neural network (GNN), networked microgrids (NMs), transient dynamics,
prediction, distributed energy resources (DERs).

I. INTRODUCTION
Modernization of electric power grid is critical for improv-
ing the system’s resiliency and reducing power outages,
e.g., Manhattan blackout. To solve this problem, microgrids
have been recognized as a promising archetype by integrating
Distributed Energy Resources (DERs), such as wind and
photovoltaic (PV). To further enhance the flexible and
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resilient operations of low- or medium-voltage distribution
networks, networked microgrids (NMs) are currently under
development. Microgrids and NMs are sensitive and vul-
nerable to disturbances such as PV fluctuations, leading to
frequent transient dynamics. To improve the power capability
of individual microgrids, it has been proposed to intercon-
nect multiple microgrids to form Networked Microgrids.
Interconnection enables microgrids to mutually support and
provide ancillary services to the entire power grid. More-
over, interconnection propagates dynamics like photovoltaic

49464

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4140-1911
https://orcid.org/0000-0002-0743-3429
https://orcid.org/0000-0001-6004-410X
https://orcid.org/0000-0002-4334-6904


Y. Yu et al.: PIDGeuN: GNN-Enabled Transient Dynamics Prediction of NMs Through Full-Field Measurement

output fluctuation-induced disturbances. In particular, when
the system is disconnected from the main grid, considering
networked microgrids’ inertia is significantly reduced due
to the high penetration of distributed energy resources
with power-electronic interfaces, this interconnected system
is sensitive to disturbances [1]. Therefore, studying and
improving the transient dynamics of such an interconnected
system is becoming a challenging scientific problem.

Power system stability has seen extensive efforts in the
past decade [2], [3], [4]. This paper studies the transient
dynamics of networked microgrids, which refers to the
ability of power generation unit such as distributed energy
resources or individual microgrid in the interconnected
system to remain synchronism under credible disturbances.
Although extensive research effort has been made on the
microgrids’ transient behavior [5], it is still a challenge to
study and stabilize the system’s transients. First, detailed
modeling is usually required for studying the transients;
however, the wide integration of DERs results in a high-
dimensional system, increasing the difficulty of efficiently
analyzing the transient behavior. Second, microgrids are
typical nonlinear systems, which is an inherent feature
stemming from power loads and dynamics of DERs; and
thus, the existing model may not be sufficiently accurate
to fully represent the nonlinear dynamical system. Third,
the operations of microgrids or NMs keep changing due
to the fluctuations of DERs and/or the changes of system
topology caused by the join or disconnection of microgrids
or DERs.With thewide deployment of the advancedmetering
infrastructure (AMI), the nonlinear dynamical system is more
observable than ever before. Hence, one inspiring solution
of transient dynamics is: to develop a data-driven approach
to precisely and efficiently model and predict the system’s
transient dynamics, so that predictive or preventive control
can be performed to stabilize microgrids and NMs.

There are several existing data-driven approaches to
identify the transient dynamics model of a nonlinear system
through its operating data, which can fall into two major
categories [6], namely linear models and data-driven non-
linear methods. First, the linear models are well-established
and commonly-used system identification methods [7],
which are relatively easy to implement and guaranteed to
converge given sufficient system responses. However, these
methods do not extrapolate due to their nature of local
linearization, therefore are not suitable to identify microgrid
systems that are typically nonlinear for the entire operating
envelope. Second, several data-driven methods have also
been developed to identify a nonlinear system to capture
the global transient dynamics over the entire state space [8].
These methods can theoretically identify an accurate model
if appropriate nonlinear terms are used. However, selecting
the correct nonlinear terms is not trivial, and the required
number of terms grows exponentially as the system size
increases. Moreover, these methods usually involve system’s
state variables that are impractical to measure. Therefore,
general nonlinear system identification methods may become

intractable when applied to the identification of practical
nonlinear systems such as microgrids.

Microgrids can be defined on buses and their pairwise
connections, i.e., a graph, and the graph topology may
significantly impact the microgrid transient dynamics. How-
ever, such topological information is not utilized in many
aforementioned data-drivenmodeling approaches. TheGraph
Neural Network (GNN), a recent variant of deep learning
models [9], [10], has emerged as a powerful tool for the
modeling of data defined on graphs, and thus a promising
candidate for the transient dynamics modeling of microgrids.

In general, the GNN-based methods have gained tractions
for many complex dynamical physics simulations that can
benefit from the graph representation of the underlying
systems [11], [12], where the temporal dependency in
the transient problems can be tackled with additional
recurrent architecture [13]. The superior modeling capabil-
ities of GNN has incurred interests in its application to
power systems including microgrids, that have a natural
graph structure. Most of the GNN-oriented studies on
power systems focus on static problems, e.g., optimal
power flow (OPF) problem [14], power flow approxima-
tions [15], [16], state estimation [17], [18], and anomaly
detection [19], [20]. Fewer efforts based on the GNNmethods
have been devoted to the modeling of transient dynamics
in power systems; relevant work include the short-term
power prediction of DERs [21], [22], and transient stability
assessment (TSA) [23], [24], [25]. However, these problems
are considered on a relatively slow timescale, where the
transient responses in microgrids are not well resolved.
Therefore, in the literature, it still remains an open question
whether a GNN-based data-driven model can be developed to
capture and resolve the transient dynamics of a power system,
esp. the NMs.

Most physical systems are governed by well-developed
algebraic or differential equations that can be used to
‘‘inform’’ the data-driven model of the physics [26]. For
power systems, Kirchhoff’s law equation can be directly
applied as the training objective in the power flow approxi-
mations to ensure that the network predictions are physically
feasible [15]; the grid impedance is also commonly used
as the edge weights of the underlying graph to indicate
the strength of correlation between buses [14]. However,
these approaches have been only applied to static problems,
which are inherently governed by an algebraic equation. This
paper focuses on transient problems of power systems, which
are nonlinear dynamics governed by coupled differential-
algebraic equations. Specifically, in dynamical modeling,
using only the power flow equation as the objective function
may overlook valuable time series data. In addition, the fixed
and predefined edge weights are not necessarily good repre-
sentations of time-dependent correlations between buses.

To bridge the gap identified above, we develop a
novel Physics-Informed Dynamic Graph Neural Network
(PIDGeuN), which is a data-driven approach for accurate,
efficient, robust and time-resolved prediction of microgrid
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transient dynamics. The PIDGeuN incorporates the under-
lying physical laws of power system in two aspects,
with the following motivations and novelties. First, long-
term forecasting becomes a challenge in many time-series
problems due to prediction error accumulation; in the context
of microgrids, the prediction error is likely to manifest in
the form of nonphysical loss or gain of conserved energy.
To account for the conservation of energy, a partial set of
the power system equations is implemented into the model
training, so as to produce a PIDGeuN model that respects
the physical laws during prediction. Second, the strengths
of correlation between buses, characterized by the pairwise
edge weights in the graph, are formulated to dynamically
adjust based on the bus states and admittance matrix, so as to
capture the time-varying inter-dependencies between buses
and enhance the predictive accuracy of transient dynamics.
The incorporation of the two physics-informed techniques
improves the network’s training efficiency and prediction
accuracy, and enables the unprecedented capability of accu-
rate long-term prediction for microgrid transient dynamics.
Such capability paves the way for performing real-time
control in microgrids, which is the authors’ next work.

The remainder of this paper is organized as fol-
lows: Section II poses the mathematical problem for the
graph-based dynamic modeling of networked microgrids.
Section III introduces the presented PIDGeuN method for
transient dynamics prediction. In Section IV, the PIDGeuN
model is benchmarked against existingmethods using numer-
ical examples to demonstrate the feasibility and effectiveness
of PIDGeuN. Conclusions are drawn in Section V.

II. PROBLEM STATEMENT
A. NETWORKED MICROGRID SYSTEMS
Networked microgrids consist of several distributed and
independent microgrids to provide local energy generation
and delivery. Each microgrid is a group of DERs and loads
within clearly defined electrical boundaries, which acts as a
single controllable entity and can connect to or disconnect
from NMs.

Assume in a NM system, there areGDERs,L power loads,
and N buses {Bi}Ni=1. The connection of buses is depicted by
the admittance matrix Y ∈ CN×N . Each Bi are described by
the following quantities: active power Pi ∈ R, reactive power
Qi ∈ R, voltage Vi ̸ δi ∈ C, and current Ii ̸ θi ∈ C, which are
measurable. These variables define a vector xgi ∈ R6,

xgi = [Pi,Qi,Re(Vi ̸ δi), Im(Vi ̸ δi),Re(Ii ̸ θi), Im(Ii ̸ θi)]

(1)

Note that the dynamics of microgrids are determined by
several factors such as controller of DERs, power loads,
network topology, etc.. In this work, only the measurable
variables such as {xgi}Ni=1 are utilized to identify the
system dynamics. It removes the dependence of conventional
data-driven methods on the internal states of DERs that
are hard to measure, making it feasible for real world
applications.

At the steady state, DERs produce power to satisfy the
consumption of power loads. When disturbance occurs, the
outputs of dispatchable DERs are adjusted accordingly as
well as power loads to compensate for the disturbance until a
new equilibrium is reached. Our goal is to accurately predict
the transients of the system in between two equilibrium
points.

Assuming buses are measured locally, we collect the
measurements within a period of time T to identify the
dynamical system. To model the transient dynamics of
microgrids subject to disturbances, the bus Bi at the time
instance k is then characterized by an extended state vector,

x(k)i = [xgi, dPi, dQi, γ, βi](k) ∈ R10, (2)

where the first six variables correspond to the standard
states xgi. The new variables are introduced below.
The power disturbances are parametrized by dP and dQ,

dP(k)i = P(k+1)
i − P(k)i , (3a)

dQ(k)
i = Q(k+1)

i − Q(k)
i , (3b)

and the values of dP and dQ are non-zero only in the buses
where the disturbance occurs such as load or DER buses.
A Boolean variable γ is introduced to indicate if disturbances
occur in any of the buses, i.e., γ (k)

= 1 means a disturbance
occurred in the system at the k th time step (though not
necessarily at bus Bi), and γ (k)

= 0 otherwise. βi is the type
index, meaning the type of the bus Bi, where,

βi =


0 Empty
0.5 Loads
1.0 DERs (w/ or w/o Loads)

. (4)

At the time step t = tk , denote the collection of the
extended states as X(k)

= {x(k)i }
N
i=1 ∈ RN×10 and the

standard states as X(k)
g = {x(k)gi }

N
i=1 ∈ RN×6. The transient

dynamics modeling and prediction of microgrids is stated
as follows: Given a sequence of states of C steps, X (k)

C =

[X(k),X(k−1), · · · ,X(k−C+1)] ∈ RN×10×C , predict the
system states X(k+1)

g at the future time t = tk+1. Motivated
by the time-delayed embedding technique [27], the use of
consecutive time steps compensates for the partial knowledge
of microgrids obtained through AMI and facilitate the
complete reconstruction of the microgrid dynamics.

B. GRAPH REPRESENTATION
Power systems including microgrids can be represented by
a graph, where the nodes are the buses of microgrids and
the edges are the connections between buses. The weights
of edges, i.e. the edge attributes, describe how correlated the
states xgi of two buses are. Formally, let G = (V, E,W) be a
graph with a set of N nodes, V , a set of edges E ⊆ V ×V and
the edge weightsW . The graph for microgrids is undirected,
meaning that if (i, j) ∈ E then (j, i) ∈ E . Conventionally the
edge weights are computed as given in (5) [14],

wij =

{
exp

(
−k|Yij|2

)
(i, j) ∈ E

0 otherwise,
(5)
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where k is tunable parameter chosen so that W is in the
range of [0.2, 1]. Since the admittance matrix Y is symmetric,
wij = wji. The adjacency matrix of a graph that describes
the connections between the nodes is defined by A ∈ RN×N

where [A]ij = wij if (i, j) ∈ E and 0 otherwise. Therefore, the
diagonal terms in the adjacency matrix A are always zero,
whereas those in the admittance matrix Y are not. The graph
is more conveniently represented by a normalized Laplacian
matrix L = I−D−1/2AD−1/2, where D is a diagonal degree
matrix with [D]ii =

∑
j[A]ij.

Data defined on a graph reside on a non-Euclidean space
and often comes with a variable size of unordered nodes
without a fixed spatial locality. The learning task on graph
therefore poses challenges to the conventional machine learn-
ing algorithms, e.g., convolutional neural networks (CNNs).
The convolution operation used by CNN is defined on
structured grid, and does not apply in the unstructured graph
data. Additionally, the edges in graphs contain connection
information among nodes. Such information can only be
treated as node features in standard neural networks, which is
inefficient and often inaccurate [28]. Graph neural networks
generalize the convolution operation from multi-dimensional
data arrays to data on irregular topology, i.e., on graphs, and
serve as an effective filter that extracts localized features from
graph data. Utilizing GNNs, microgrid transient dynamics is
characterized by the following differential equation,

Ẋ(k)
g = F(X (k)

C ,G;2), (6)

where a GNN F, parametrized by 2, maps the sequence
of C consecutive extended state vectors X (k)

C to the rate of
change Ẋ(k)

g for the states on all buses at the current time
step k , given the graph structure G of the system. Then the
states of the buses at the next time step can be numerically
calculated. (7) gives an example when the explicit integration
is adopted.

X(k+1)
g = X(k)

g + 1tẊ(k)
g , (7)

where 1t is the time step size.

III. FORMULATION OF PIDGeuN
In this section, we present the key components and salient
features of the proposed PIDGeuN architecture. The archi-
tecture builds upon the message passing (MP) mechanism
of GNNs and judiciously chooses a hybrid form of two
MP implementations as its building blocks to capture the
dynamical system’s transient dynamics. Furthermore, the
known physical knowledge of microgrids is infused into both
network architecture and loss function, in order to improve
the expressiveness and training efficiency of the network.

A. MESSAGE PASSING MECHANISM
The message passing mechanism is the corner stone for many
GNN architectures, which consists of multiple consecutive
MP steps. Consider an input graph G = (V, E,W) of N
nodes, and each node v ∈ V has a node feature vector

hv ∈ RD and a set of neighbor nodes u ∈ N (v). At the jth MP
step, the new feature of node v is computed using its previous
feature and information from its neighbors as [29],

mj
N (v) = AGGREGATE

(
{hju | u ∈ N (v)},W

)
, (8a)

hj+1
v = UPDATE

(
hjv,m

j
N (v),W

)
, (8b)

where AGGREGATE and UPDATE are nonlinear mappings,
e.g., neural networks, and mN (v) denotes the information
aggregated from the neighbors of node v. One MP step
corresponds to the information exchange between 1-hop
neighbors, i.e., the nodes that directly connected. It is possible
to stack different forms of aggregators over k MP steps, and
the feature vector of a node is influenced not only by its 1-hop
neighbors, but also by the more distant k-hop neighbors.
In PIDGeuN for microgrids, using the MP mechanism, the

change of states of each node is determined by the input
states of itself and its neighbors through a sequence of neural
network modules; the long-range interaction between the
buses during a disturbance is captured via a stack of MP
layers.

B. TWO TYPICAL MP IMPLEMENTATIONS
1) GRAPH CONVOLUTIONAL LAYERS (GCLs)
TheGCLs generalize the convolution frommulti-dimensional
data arrays to data on graphs, and serve as an effective filter
that extracts localized features from graph data. Under the
framework of graph Fourier Transform (GFT), the GCLs
performs the filtering on the spectrum of the Laplacian
matrix [30].
An efficient implementation of the GCL is the ChebConv

network [31], which performs the MP aggregation and
updating over all nodes simultaneously. Let the input be
Hj

= {hji}
N
i=1 ∈ RN×D, the ChebConv-based graph convolu-

tion is defined as

Hj+1
= σ

(
K∑
k=0

Tk (L̃)Hj2
j
k

)
, (9)

where σ is a nonlinear activation function, {2
j
k}
K
k=0 are

learnable parameters, and Tk (L̃) is a series of Chebyshev
polynomicals of a scaled Laplacian L̃ = (2/λmax)L− I with
λmax the largest eigenvalue of L. The ChebConv network
avoids the direct computation of GFT and approximates the
spectral filtering through the truncated series of Chebyshev
polynomials Tk up to K th order, which are equivalent to
performing K MP steps.

2) GRAPH ATTENTION LAYERS (GALs)
The GAL can be viewed as a nonlinear form of graph
convolution where the adjacency matrix is dynamically
adjusted according to the node features using the attention
mechanism [32]. One GAL effectively performs just one MP
step, but introduces stronger nonlinearity when compared
to GCL.
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FIGURE 1. The PIDGeuN architecture.

In the general attention mechanism, for node u and its
neighbor v, with feature vectors hju and h

j
v, one may compute

m attention coefficients {αjuv}mk=1 as

αjuv =
exp(LeakyReLU(f(hju,h

j
v;2

j
f )))∑

w∈N (u) exp(LeakyReLU(f(h
j
u,h

j
w;2

j
f )))

. (10)

In the attention calculation (10), fk is nonlinear function,
such as a neural network, which characterizes the correlation
between two feature vectors; LeakyReLU is a nonlinear
activation function f (x) = max(−ϵx, x), where ϵ = 0.2 as
a typical choice; the sum-of-exp formulation normalizes the
correlation to produce α

j
uv ∈ [0, 1]. Subsequently, defining

a set of new adjacency matrices, [Aj
α]uv = α

j
uv, the node

features are updated as

Hj+1
= σ (Aj

αH
j2j

α) ∈ RN×D. (11)

Note that in general Aj
α is not symmetric. It is possible that a

node u is strongly influenced by its neighbor v, quantified by
a large αuv, but not vice versa.

C. PIDGeuN METHODOLOGY
The PIDGeuN architecture, shown in Fig. 1, uses an encoder-
processor-decoder architecture and adopts a combination
of graph convolutional and attention layers with physics-
informed techniques. The key components of the PIDGeuN
architecture are detailed in the following.

1) ENCODER
First, the encoder is applied to each individual node. It maps
microgrid state vectors at a node xi, which consists of both
continuous and discrete variables, to a latent vector h0i ∈ RD.
The latent vector is a set of high-dimensional nonlinear
features that provide a continuous representation of the
states on each bus, which is amenable for NN computations.

For the ith node at time step k , the encoder fE is

h0i = fE (x
(k)
i , x(k−1)

i , · · · , x(k−C+1)
i ;20), (12)

where fE is implemented as a standard fully-connected
NN (FCNN) of NM layers with a set of trainable parame-
ters20. After the encoding, the latent vectors of all the nodes
are denoted H0

= {h0i }
N
i=1 ∈ RN×D.

2) PROCESSOR
Subsequently, a stack ofN = NA+NC graphMP layers serve
as processors that successively aggregate the latent features
from each node and its neighbors and update the latent vectors
at each node. Formally, the jth processor step is written as

Hj+1
= fjP(H

j
;2j), (13)

where fjP is either a GCL or a GAL, with parameter 2j.
Specifically, starting from the encoded latent vector H0,

the PIDGeuN first uses NA GAL layers in the processor to
successively generate a series of latent vectorsH1, · · · ,HNA ,
as well as the attention-based adjacency matrix ANA

α ,
using (10) and (11).

Next, to incorporate the physical knowledge of the
microgrid into the network, a new physics-infused adjacency
matrix Â is formed by combining the attention-based
matrix ANA

α and the admittance-based matrix A in (5),

Â =
1
2

(
ANA

α + A
)

(14)

Note that Â maintains the same graph topology as the
admittance-based A in (5), but with different non-symmetric
weights.

The processing step is finalized with NC K th-order GCL
layers that use the normalized Laplacian L̂ computed from Â,
and generate a series of the latent vectors HNA+1, · · · ,HN

using (9). The last output HN is sent to the subsequent
decoding step.

Over the entire processing step, the total number of
effective MP step performed is NMP = NA + KNC . In the
special case that NA = 0, the GCLs directly employ the
symmetric admittance-based A as the adjacency matrix;
while when NC = 0, the GALs outputs the last latent
vectorHNA for the next step and the attention coefficients are
not used.

3) DECODER
Finally, the decoder maps the latent vector of each node to the
desired output, i.e. the rate of change,

˜̇X(k)
g = fD(HN

;2N+1), (15)

where fD is a FCNN of NM layers with trainable para-
meters 2N+1.

4) LOSS FUNCTION
The network parameters 2 need to be trained using a loss
function, a typically choice of which is the Frobenius-norm
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FIGURE 2. Networked microgrid test system.

between the predicted and true rate of change over the training
sequence of Nt steps,

L1(2) =
Nt∑
k=1

∥∥∥ ˜̇X(k)
g (2)− Ẋ(k)

g

∥∥∥2
F

(16)

However, leveraging known physical principles, at each time
step the predicted states of the grid, computed using (7),
should satisfy the physical constraints, i.e. the Kirchhoff’s
law, at each node, or power flow computation for the system.
This fact motivates the inclusion of an additional term in the
loss function to penalize the violation of the Kirchhoff’s law
in the prediction at each node and at each time step,

L2(2) =
Nk∑
i=1

Nt∑
k=1

|P̃(k)i + iQ̃(k)
i − (Ṽ (k)

i
̸ δ̃

(k)
i )(Ĩ (k)i

̸ θ̃
(k)
i )|2

(17)

(17) is expanded to a formulation that contains only real
values in the implementation so that the network training
does not involve any complex arithmetics. Combining (16)
and (17), the loss function used to train the PIDGeuN
network is

L(2) = L1(2)+ νL2(2) (18)

where ν is a factor to control the penalty on physical violation;
in this study ν = 1 is used, which assigns both loss terms
equal weights.

5) ACTIVATION FUNCTIONS
In this study, the nonlinear activation function is designed to
have two components to ensure model convergence during
the training. First, a batch-normalization (BN) layer [33] is
used to reduce the potential differences in the latent vectors
caused by the differences due to disturbances. Second, the

Parametric Rectified Linear Unit (PReLU) function is
applied to compute the new latent vectors. From numerical
experiments, the PReLU performed more robustly than the
commonly used ReLU function, which suffered from the
dying neuron problem and caused premature convergence in
the training.

IV. NUMERICAL EXAMPLES
In this section, the PIDGeuN architecture is applied to
model and predict the transient dynamics of a typical
33-bus networked microgrid system [1], as shown in Fig. 2,
to demonstrate its accuracy, robustness and versatility inmod-
eling and predicting dynamics on graph. Circuit Breaker 1
is open and others are closed, so the NM system is in the
islanded operation. In this operation mode, the DER unit
connected to Bus 13 is under voltage-frequency (Vf) control,
and all other generators are under constant power output (PQ)
control. The power loads in the system are constant power
loads with the instantaneous load demands being the input
disturbances to the system.

A. DESCRIPTION OF THE NUMERICAL EXAMPLE
1) DATASETS
The dataset for training and testing the PIDGeuN models
contains the transient responses of the system starting from
different initial conditions with a step load change applied
to randomly chosen nodes at the start of simulation. The
magnitude of the load change is in the range of ±10% of
the nominal value of each load, which is beyond the regime
of linear analysis. The electromechanical DAE model of
the Vf and PQ control of each generator connected with
their individual phase-locked loop and the electrical network
is first built and simulated to provide synthetic data for
PIDGeuN. Two types of responses are generated: (1) com-
plete transient response that starts from an equilibrium point
and ends when the system reaches a new equilibrium point;
(2) initial transient response during which random load
changes are added every 0.01s so that the system is always
away from equilibrium and shows transient dynamics. The
training dataset consists of 90 complete transient responses
and initial transient responses with 5000 load changes. The
test dataset contains 30 complete transient responses and
initial transient responses with 500 load changes.

2) EVALUATION METRICS
The performance of the data-driven models are quantified
using three types of metrics:

a) One-step root mean squared error (RMSE): The error in
the rates of change of all buses is defined as

E1 =

√√√√ 1
TN

T∑
k=1

∥∥∥ ˜̇X(k) − Ẋ(k)
∥∥∥2
F
, (19)

where T is the total number of time steps in the time
series for prediction, and ˜̇X(k)

= F(X (k),G) is the
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predicted rate of change using the current true bus states.
The one-step RMSE is equivalent to the loss term in (16)
except that it is applied to the test dataset.

b) Cumulative RMSE (C-RMSE): The difference between
the predicted and true dynamics of bus states is
defined as

E2 =

√√√√ 1
TN

T∑
k=1

∥∥∥X̃(k) − X(k)
∥∥∥2
F
, (20)

where X̃(k) is the predicted bus states at time step k
that are evaluated iteratively using (7) given only the
initial condition X (0). The C-RMSE accounts for the
accumulation of prediction error in the time-series
prediction and thus is the major metric for assessing the
model performance.

c) Number of parameters, which measures the complexity
of eachmodel.More trainable parameters give the neural
network more expressive power but may result in the
overfitting issue and increased computational cost for
training and prediction.

3) IMPLEMENTATION DETAILS OF NOMINAL
PIDGeuN MODEL
The PIDGeuN architecture is implemented using PyTorch
Geometric (PyG) [34], an open-source PyTorch-based
machine learning framework for Graph Networks. The
hyperparameters used for the nominal PIDGeuN model are:
NM = 3, NA = NC = 5, K = 5, D = 128, and C = 3.
During the training, the states as well as the rate of change are
normalized to a range of [0, 1]. The loss is minimized using
the standard Adam optimizer with an exponential decay of
learning rate from 10−3 to 10−7.

B. COMPARISON WITH BASELINE METHODS
1) BASELINE METHODS
The PIDGeuN model is benchmarked with a number of base-
line methods that are specialized in time-series prediction,
ranging from conventional data-driven models that do not
account for graph topology to various forms of STGNNs.
These methods are widely used and benchmarked, and are
listed as follows:

a) Subspace identification [35]: A linear state-space system
identification method using only the measured states.

b) Long Short-Term Memory (LSTM) [36]: A type of
Recurrent Neural Network (RNN) that have been widely
applied for time-series prediction. We used 5 stacked
layers each with a hidden size of 128.

c) Graph Convolutional Recurrent Network (GCRN) [13]:
A type of STGNN that uses a Chebyshev GCN (i.e., GCL)
in space and a GRU in time for data correlation over a
larger spatiotemporal scale. We used 5 stacked layers each
with a hidden size of 128 and K = 5 for the GCL.

d) Spatial-Temporal GCN (STGCN) [37]: A type of STGNN
that uses a GCL in space and 1D convolution instead of

FIGURE 3. Complete and initial voltage dynamic response of a DER bus.

a RNN in time, which eliminates the usage of recurrent
architecture and allows for faster training with fewer
parameters. We used 2 temporal convolution layers,
and 5 GCL layers with K = 5, all with a hidden
size of 128.

The LSTM model is implemented with the PyTorch
package, and the two recurrent GNNmodels are implemented
using the PyTorch Geometric Temporal package [38]. The
LSTM does not utilize the graph structure, therefore at the
time step t = tk , the extended node states X(k)

∈ RN×10 are
stacked into a R10N vector as input to the network.

2) RESULTS AND DISCUSSION
In this experiment, we compare the performance of PIDGeuN
against other baseline methods in the predictions of transient
response of the test system.

The evaluation metrics are detailed in Table 1, including
the one-step RMSE’s for the training and test dataset, and the
C-RMSE’s for 200 and 700 time steps. The two C-RMSE’s
are chosen to quantify the short-term and long-term predictive
capabilities of the models. Note that, when compared to
the complete response cases, the dynamics of the initial
response is more complex due to the frequently introduced
disturbances, and thus the C-RMSE of initial responses is
expected to be higher than that of complete responses.

Overall, the PIDGeuN outperforms the baseline methods
by a significant margin. First, all the models achieve low
training and test one-step RMSE’s, showing that they are
sufficiently complex and expressive to predict the rate of
change if given the true states, and generalize to unseen
inputs. Yet the PIDGeuN achieved the lowest training
and test errors, highlighting its superior expressiveness
and generalizability over other models. Second, the high
C-RMSE’s show that most of the baseline models fail to
produce accurate predictions over a long time horizon;
particularly the STGCN quickly diverges beyond 200 time
steps. The best baseline model is in fact the subspace model,
a linear method. On the contrary, the PIDGeuN consistently
achieved the lowest C-RMSE’s in all cases and the slowest
growth in the error, which demonstrates its robustness in time
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TABLE 1. Comparison of PIDGeuN and baseline models.

FIGURE 4. Complete and initial current dynamic response of a DER bus.

FIGURE 5. Complete and initial power dynamic response of a DER bus.

series prediction. Finally, note that the superior performance
of the PIDGeuN is achieved only using an amount of
parameters that is comparable to the smallest and worst
learning-based baseline model, i.e., the STGCN.

Subsequently, a typical voltage response of a DER bus is
closely examined in Fig. 3. In the complete response case,
a large load change is introduced in the grid at time tk = 50
causing an initial step change in the DER voltage, followed
by a damped oscillatory response until a new equilibrium
in the system is reached. The complete response resembles
that of a linear system to a step input. In the initial response
case, smaller load changes are introduced every 10 time steps,
and the system never reaches equilibrium in between the
load changes. As a result, the system dynamics in the initial
response case is more dynamic and nonlinear, and thus more
challenging to predict. It also mimics the applications of
PIDGeuN in the real world when the system is under frequent
disturbances.

As visualized in Fig. 3, in the complete response case,
the PIDGeuN reproduces the DER’s response to the load
change by accurately predicting first the initial step voltage
of the DER and then the decay of signal oscillations that
matches the true dynamics in both magnitude and frequency.
The subspace method performs well overall except for not
capturing the peak voltages in each oscillation and the final
equilibrium voltage. The LSTM and STGCN are able to
follow the first few periods of oscillation but both diverged
because of themodeling error accumulation, resulting in large
error. The GCRN model does not capture any oscillatory
response and also diverged. In the initial response case, the
PIDGeuN captures the transient dynamics almost perfectly
despite the frequent introduction of load changes. The
subspace method performs worse than the previous case and
misses most of the peak voltages. The other three models
show similar trend as in the previous test case, and do
not make any useful prediction. The current and power
responses of the same DER bus are respectively shown
in Figs. 4 and 5, where PIDGeuN considerably outperforms
the baseline methods in predictions again.

Lastly, a brief comparison in time complexity is provided.
Leveraging the sparse graph structure, the cost in prediction
for STGCN, GCRN and PIDGeuN is only O(N ) when
compared to (N 2) for the subspace method and LSTM.
Among the learning-based methods, the cost in training
for PIDGeuN is O(K ), when compared to O(K 2) for the
LSTM, GCRN, and STGNN that all employed a recurrent
network architecture. Therefore, PIDGeuN has the lowest
time complexities in prediction and training among the
models considered.

From the comparison of the evaluation metrics and
typical response cases, it is clear that the PIDGeuN model
significantly outperforms the baseline models, including a
classical system identification method (subspace), a learning-
basedmethodwithout graph (LSTM), and two learning-based
methods with graph information (STGCN and GCRN),
in terms of the generalizability, predictive accuracy, robust-
ness in long-term prediction, and time complexity.

C. ABLATION STUDY
To explain the effectiveness of the PIDGeuN and study
how its components affect the performance, we conducted
an ablation study where a number of hyperparameters are
varied one by one while holding others at the nominal value.
Specifically, the composition of the processors, the sizes of
the MP layers, and the inclusion of physics-informed loss
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are examined. The complete list of tested models is provided
in Table 2, where in each group the varying parameters
are highlighted and the nominal model is labelled as C1.
In addition to the hyperparameters listed in Table 2, we also
studied the effects of varing the batch size of training data,
number of MLP layers in the encoder and decoder, training
learning rate, and number of attention heads in GALs. These
hyperparameters did not have a significant impact on the
model performance, and therefore not listed for concision.
For the same reason, only the test case using complete
response is presented.

TABLE 2. Ablation study.

FIGURE 6. Impact of processor layers on the model performance.

1) PROCESSOR LAYERS
To examine how the composition of the processor affects
the model performance, the models C2-C11, having different
combinations of GAL and GCL layers, are trained and tested.
The differences among the models are two-fold. First, when
NA = 0 (GCL-only) or NC = 0 (GAL-only), the PIDGeuN
model no longer uses a hybrid architecture; the GCL-only
models (C4, C5) and GAL-only models (C8, C9) use

only the physics-based and data-driven adjacency matrices,
respectively. Second, while the rest models all use a hybrid
architecture, they differ significantly in the number of
MP steps, which determines the capability of the network
to propagate information between distant nodes, as noted
in Sec. III-A.
The comparison of C-RMSE’s for these cases are listed

in Table 2 and the C-RMSE’s for 200 steps are visualized
in Fig. 6. First, the nominal PIDGeuN model (C1) and
the other hybrid models outperforms the models with only
GCLs (C4, C5) or only GALs (C8, C9) by a significant
margin. The difference indicates the performance gain
in microgrid dynamics prediction is facilitated by the
proposed physics-data-infusion strategy that combines the
physics-based admittance information and the data-driven
attention coefficients in the adjacency matrix.

Next, focusing on the models with hybrid architecture,
a strong correlation between prediction accuracy and number
of MP steps is identified. The hybrid models with relatively
fewer MP steps (C4, C7-C9, C11) tend to accumulate large
errors during time series prediction and diverge in some test
cases. Particularly, for models C7 and C11, the lack of MP
steps limits the long-range information propagation between
the nodes and the prediction performance is even worse
than the GCL-only and GAL-only models. The rest hybrid
models (C1-C3, C6, C10) achieved similar performance in
the 200-step prediction, with C3 being the best. But in the
700-step prediction, model C1, which has the most MP steps,
consistently produced the lowest prediction error for all test
cases. The comparison indicates the importance of using
sufficient number of MP steps to achieve high accuracy and
robustness in the long-term prediction.

For the microgrid problem, since a load disturbance on
the selected few load buses triggers a dynamical response
in the whole grid, the network needs sufficient MP steps
to ensure the global effects are captured. The lack of MP
steps may also explain the poor performance of GCRN and
STGCN in Sec. IV-B2. However, increasing the number of
layers in GCRN and STGCN makes them vulnerable to
over-smoothing issue in GNNs [39], and incurs prohibitive
computational cost in training.

Lastly, the frequency and damping ratio of the dynamic
responses are examined in further detail. Three models are
selected for analysis: (1) C1, the nominal and best model;
(2) C6, which is less accurate than C1; (3) C11, which
diverges in long-term prediction. The frequencies f and
damping ratios ζ of the first three dominating oscillation
modes are extracted from the voltage response using the
auto-regressive moving average (ARMA) method [40], and
compared against the true values obtained from the analytical
DAEmodel. The results are plotted in Fig. 7, where each data
point corresponds to a node in the system and the shaded
region illustrates the spread of the identified eigenvalues.
In the true model, most of the nodes share similar frequencies
but have different damping ratios. The eigenvalues of the
PIDGeuN models differ drastically. Model C1 accurately
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FIGURE 7. Frequencies and damping ratios of the first three modes in voltage dynamics, and the corresponding model predictions.

FIGURE 8. Comparison of loss function components in training.

captures most of the frequencies and damping ratios on
different nodes for all three modes, which aligns with its low
prediction errors. The model C6 over-predicts many damping
ratios in the third mode and misses most of the frequencies,
which leads to premature convergence to the equilibrium
voltage. The model C11 under-predicts most of the damping
ratios, and shows positive damping on some nodes, which can
explain its early divergence in many short-term predictions.

2) PHYSICS-INFORMED LOSS FUNCTION
Next, the effect of the physics-informed loss term (17),
based on the Kirchhoff’s law, is examined using model C12,
where the PI loss is removed during the training process.
Comparing the losses in Table 2, it is clear that the PI
loss positively contributed to model performance. A further
comparison of training loss of C1 and C12 is shown in Fig. 8.
For C12, the training of network depends solely on the
RMSE loss, and the additional loss term is only computed for
recording purpose. During the training process, the RMSE of
both cases decreased at a similar rate. However, the model
prediction of C12 violates the Kirchhoff’s law one order
of magnitude more than that of C1, resulting in a higher
total loss in training. As a result, in the actual prediction,
the C12 model may produce responses that prone to violate
the Kirchhoff’s law, which explains its higher C-RMSE’s
in both 200-step and 700-step predictions than C1. Further
examination of the predicted dynamics, though not shown in
paper due to space limit, reveals that C12 can only capture
the first few oscillations accurately and start to diverge after
around 400 steps. Mathematically speaking, the PI loss term
limits the learnable parameter space where the optimizer

FIGURE 9. The effects of different hyperparameter choices on prediction
performance.

searches during the training, and results in more feasible
model prediction in the tests.

3) OTHER HYPERPARAMETERS
Finally, we study the effects of three main hyperparameters in
the PIDGeuN network through a series of models: the order
of Chebyshev polynomials K (C13-C15), the latent size of
each hidden layer D (C16-C18), and the number of steps to
include in the input C (C19-C21). The results are provided in
Table 2 and visualized in Fig. 9. In these tests, the number of
GALs and GCLs are kept the same as C1, i.e., NA = NG = 5.

As found earlier, a sufficient number of MP steps is critical
in the microgrid prediction problem, which can be achieved
by increase the polynomial order K in the GCLs. In the
parametric study, increasing K from 1 to 3 rapidly decreases
the prediction error as expected, but improvement becomes
marginal beyond that. Once sufficient MP is reached, the
model performance does not benefit from a larger K .

The size of hidden layerD determines the size of a network.
The performance of PIDGeuN turns out to be less sensitive
to D, and D = 128 achieves a good balance between network
size and prediction accuracy.

The number of input steps C decides the amount of
previous information the network can access during predic-
tion. When C = 1, the network can only access the bus
state of the current step, which is insufficient to reconstruct
the dominating dynamics, resulting in poor performance.
The performance is improved immediately when another
step of states is included in the input (C = 2), but the
improvement becomes marginal as more steps of previous
states are included. This is likely due to the nature of the
current problem where a long-term temporal dependency is
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not significant, and two steps of measured states already form
sufficient time delay embedding to fully describe the system.

V. CONCLUSION
In this paper, we presented the Physics-Informed Dynamic
Graph Neural Network, PIDGeuN, for accurate, effi-
cient and robust prediction of transient dynamics in
microgrids. The PIDGeuN model exploits its graph-based
architecture to incorporate the topological information of
microgrids. Furthermore, based on a judiciously designed
message passing mechanism, the PIDGeuN incorporates
two physics-informed techniques to improve its predictive
performance. First, the PIDGeuN dynamically learns and
adjusts the underlying graph representation of the system
by combining the data-driven attention-based weights and
physics-informed admittance-based weights, and thus better
represents the inter-dependencies between buses. Second, the
PIDGeuN includes the known equation of physical law of the
power system in the loss function that ensure the feasibility
of the predictions.

The PIDGeuN is demonstrated using transient response
data of microgrids due to load changes that contain complete
transient responses, and initial transient responses. The
results show that the PIDGeuN can accurately and robustly
predict the dynamics of the microgrid using initial states and
load changes in the system, and outperforms a number of
baseline methods in the transient predictions. Specifically,
in the complete response cases, the PIDGeuN accurately
captures the frequencies and damping ratios of the system as
well as the new equilibrium states after the system stabilizes.
In the initial response cases, the PIDGeuN is capable of
capturing the transient and nonlinear dynamics due to the
frequent load changes. The physics-informed techniques are
proven to significantly contribute to the predictive accuracy
of the model.

As a new data-driven methodology, the PIDGeuN archi-
tecture may be further extended and tested towards its
real-world application. Currently the model assumes a high
level of availability and accuracy in the measurement data.
Yet, message passing and time-delay embedding can be
generalized to account for data that is missing spatially and
temporally; denoising and anomaly detection modules can
be added to preprocess potentially polluted inaccurate data.
Also, the PIDGeuN architecture shall be tested on larger
systems with more complex operation scenarios having,
e.g., un-balanced loads, and single and double phase laterals,
and with more load characteristics, e.g., daily variation and
dynamic motor models.

In sum, the results establish initial capability of the
PIDGeuN to be applied to large scale networked microgrids,
and show its potential as an online predictive tool to enable
predictive or preventive control in real time applications,
which is crucial to the stable operations of the NMs.
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