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Abstract—Dynamic Mode Decomposition with Control
(DMDc) is presented to develop a data-driven modeling
approach for microgrids when the accurate mathematical model
is unavailable. As a system identification method, it can precisely
model and predict the transient response of microgrids subject
to large disturbances. A modified DMDc method is introduced
to handle the piecewise constant inputs issue. Precautions on
applying the method on measurement data are also discussed.
Numerical examples on a typical islanded microgrid have
demonstrated that local dynamics can be accurately captured
through the DMDc-based data-driven model. By requesting a
small amount of data, the data-driven modeling is powerful for
performing system forecast and data-driven control.

Index Terms—Microgrids, Distributed Energy Resources
(DERs), transient dynamics, Dynamic Mode Decomposition with
Control (DMDc), data-driven, nonlinear.

I. INTRODUCTION

The development of Distributed Energy Resources (DERs),
such as photovoltaic (PV) and wind power, provides a great
opportunity to achieve the target of modernizing power sys-
tems. As a flexible energy architecture, microgrids have been
developed to deploy DERs for seeking an edge toward en-
ergy sustainability. Most DERs are integrated into micro-
grids through power-electronic interfaces such as inverters.
Although those distributed interfaces can enable rapid controls
of DERs and flexible operations of microgrids [1], they signifi-
cantly reduce the system’s inertia, making microgrids sensitive
to disturbances [2]. Consequently, the system’s transient stabil-
ity that is caused by large disturbances is severely undermined.
Although transient dynamics has been studied from many
aspects and several control approaches have been developed
for stabilizing the system’s transients, it is still elusive how
to study and predict the system’s transient dynamics when an
accurate mathematical model of microgrids is unavailable.

There exist two major categories of approaches to develop a
suitable model by using data for monitoring and controlling a
dynamical system, namely parameter estimation [3] and black-
box system identification [4]. For the parameter estimation,
an accurate model of the studied system is assumed to be
available, while the parameters of the model need to be
estimated from measurement data [3], [5]. Parameters can be
well estimated for linear systems. For nonlinear systems like
microgrids, high computational resources and a large volume
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of measurement data are often required for getting a high-
fidelity result via optimization. The black-box identification
methods identify both model and parameters of the system,
like Prony’s method [4], Empirical Mode Decomposition [6],
and subspace-based state space identification [7]. These iden-
tification methods are usually based on an equilibrium point
where the small-signal response of the system is used for
identifying the system’s model. It needs to properly design
experiments for efficiently generating informative data.

Among the black-box system identification, Dynamic Mode
Decomposition (DMD) is a powerful family. The conven-
tional DMD algorithms identify a linear autonomous system
from trajectories of states [8], while preserving the spectral
properties of the original system, i.e. the eigenvalues and
eigenvectors. The DMD algorithms have also been extended
to identify nonlinear autonomous systems using functions of
states. The Extended DMD (EDMD) has been shown to be
closely related to the Koopman operator theory that generates
a global linearization of a nonlinear dynamical system.

The DMD with control (DMDc) has been developed for
the identification of linear state-space system [9]. The DMDc
is similar to the classical Eigensystem Realization Algorithm
(ERA) but is formulated towards the identification of high-
dimensional systems, i.e., when the number of observables is
equal to or more than the number of states. This is the case
for microgrid systems. The EDMD has also been extended
to include control, leading to Koopman bilinear systems [10].
However, such algorithms require a large amount of training
data and the resulting model may not be amenable for control
purposes. In this paper, we modify and apply the DMDc
algorithm to the modeling and prediction of transient dynamics
of microgrids. The contributions are stated below.

o A data-driven model is developed based on the DMDc
method to predict the transient dynamics of microgrids.

o The uniqueness of DMDc are derived with the piecewise
constant inputs given as an example.

o Singular Value Decomposition (SVD) truncation is pre-
sented to determine the model order and add regulariza-
tion, simultaneously.

The remainder of this paper is organized as follows: Section
II introduces a modified DMDc method, where issues with
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step function input are discussed. In Section III, tests on a
microgrid have demonstrated that the local modes of the test
system can be accurately identified by DMDc. Conclusions
are drawn in Section IV.

II. DYNAMIC MODE DECOMPOSITION WITH CONTROL
A. The DMDc Algorithm

The basic assumption of DMDc is that the system state is
generated from an linear dynamical system written as

Xpy1 = Axy + Buy, (1)

where x; € R” and u; € R? are the state and input at the
discrete time k respectively. (1) can be obtained from a DAE
model of a microgrid system where x; in (1) include the
original differential and algebraic variables and uy is the
constant power load inputs. The derivation is given in the
appendix.

The training data consists of triplets (x(t),x(t+7),u(t)),
where the time step 7" should be small enough to be able to
capture the fastest mode of the system. In order to capture
the dynamics of nonlinear systems near an equilibrium point
with the model in (1), it is thus important to center the linear
model at an equilibrium point by subtracting the equilibrium
point from the training data. For a single trajectory of the
system, its measurement data can be denoted in discrete time
as {(xk,uk)};nzo. Then, we can construct the data matrices
as follows

X; = [Axq Axy AXp_1], (2
Xy = [Axl AXo Axm] , 3)
Y= [AUO Auy Aum—l] ; “4)

where Ax;, = x;, — X and Auy,, = u;, — u are centered at an
equilibrium point (X, ).

Based on the above data matrices of measurements and
the linear system model given in (1), a regression model as
follows, where G is the matrix to be determined.

. 1 [X .
X, = [A B {Tl} — Go. )
The least squares fit is defined as G = X,OF, where
superscript 4+ denotes Moore-Penrose pseudo-inverse. It is the
optimal solution to the following problems in the case where
(5) is consistent (having at least one solution) or where (5) is

inconsistent (having no solution):

ngn ||GH§ s.t. Xo = G if (5) is consistent

mci;n ||X2 — GQH? if (5) is inconsistent

In practice, since the data is from a nonlinear system
centered at close but different equilibrium points the regression
model (5) is not satisfied by the discrete-time linearization A
and B of the DAE system in (1), and even if (5) has no solution
the underlying model may still be underdetermined. On the
other hand, the local dynamics may have a lower rank than the
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number of state variables used to describe the global nonlinear
dynamics. It is thus necessary in many situations to reduce the
rank of the data matrix when calculating the pseudo-inverse
of 2 through singular value decomposition (SVD).

Denote the SVD of Q = UXV*, where X is a diagonal
matrix which has a dimension equal to the rank of 2. The
reduced €2 is obtained by truncating the smaller singular values
of ¥ and at the same time eliminating the corresponding

columns in U and V to get 2 = UXV*. And the regularized
least squares fit is given by

G =X,0t =X, VE-1U*, (7)

which approximates the solution to the regularized prob-
lem [11] ) )
min || Xz — GOl + |G| ®

where r is the threshold for singular value truncation.
Finally, the estimated system matrices A and B are obtained
from G

A =X, VvE'U, )
B =X,VE~'U;., (10)

where the rows of U = [UI UE]T is split according to (5).
Several issues that relates to the DMDc method with step
function inputs is discussed next.

B. Uniqueness of DMDc with Piecewise Constant Inputs

The input uy, in the DMDc model (1) include the load dis-
turbances to the system. Assuming that this input is piecewise
constant, the condition for the ability to uniquely identify A
can be found by modifying Theorem 4.8 in [12] for the case
of affine systems, which has the form x;,1 = x} + b.

To establish the connection between the DMDc system (1)
and the affine system, first assume that the matrix A has no
eigenvalues of 1 so that I— A is invertible. Then, the dynamics
of (1) can be rewritten as

(11)

where ¢;, = (I — A)~'Buy. Within each piecewise constant
period of the input uj, the DMDc dynamics is linear with
a constant bias c. Thus, the DMDc system with piecewise
constant input is an affine system whose bias is controlled by
the input u. Note that the bias cj is the equilibrium point
of the model if A is stable. The linear dependence of the
equilibrium c on the input u is a local approximation of
how the equilibrium of the power system shifts due to load
changes, e.g., the P-V plot [13]. The growing equilibrium error
farther from the training range can be addressed by introducing
successive DMDc or by using a bilinear model [10].

Based on the uniqueness of affine DMD in [12], the
uniqueness of the DMDc with piecewise constant inputs is
given as follows.

Definition 1 (DMDc Well-Posedness): Suppose the given
time series data {(xk,uk)}iv:o satisfies the linear dynamics
Xp+1 = Axp + Buy, where x5, € R", u;, € R?, where

Xk+1 — Cp = A(Xk — Ck)
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A is assumed to be diagonalizable with » < n distinct
nonzero eigenvalues Aq,..., A\, and eigenvectors vi,..., V..
For piecewise constant input u which takes values p, ..., pp
at times steps 0, Ny,..., Ny < N. We say that the DMDc
problem is well-posed if the conditions

1. A does not have an eigenvalue equal to 1,

2. XN, — Cj+1 is not orthogonal to vy,..., v,, where ¢; =
(I-A)"'Bu;
NZ‘—Ni,1 2T+2,’i:1,...7 h,
4. The matrix of distinct input vectors [Ho

maximum column rank ¢,

W

] have

Theorem 1: (Uniqueness of DMDc) Suppose that the time
series data follow linear dynamics (1) with rank 7 matrix
A and full rank matrix B. Let A’ and B’ be any other
matrices with A’ of rank 7 that satisfies the same dynamics
xp11 = A’xp + B'uy for k = 0,..., N — 1. If the DMDc
problem is well-posed by Definition 1, then ¢, = ¢;, ¢ =
0,...,h, B’ =B, and A’ has the same r nonzero eigenvalues
and corresponding eigenvectors as A, up to scaling.

A proof sketch is given in the Appendix. Note that the
well-posed condition in Definition 1 does not cover dynamics
with eigenvalue 1. This is because the mode with eigenvalue
1 is indistinguishable from the bias ¢j. For A’ with a rank
higher than r, additional eigenvalues of 1’s may be incorrectly
identified, which causes incorrect bias ¢, and the matrix B’.

A side effect of reducing the singular values in DMDc is
that the rank of A can be reduced to be closer to the number
of modes of the underlying linear system. If A has a rank
that is too high, from the above discussions, the eigenvalues
of A can include addition 1’s, and the resulting equilibrium
point is dependent both on the initial condition as well as
the input, rather than depending only on the input as in ¢ =
(I — A)~!Bu. Moreover, in practice since the DMDc model
A is calculated from data, the additional eigenvalues of A
cannot be exactly equal to 1, which means that the resulting
system will not maintain its equilibrium points on a time scale
much larger than N;, due to the existence of those almost 1
eigenvalues.

III. NUMERICAL EXAMPLE

A typical microgrid system shown in Fig. 1 is used to
test and validate the feasibility of the DMDc method in
obtaining a data-driven model for modeling and predicting
the operation of microgrids. The test system operates in the
islanded mode, i.e., Circuit Breaker is open; thus, the system
is sensitive to disturbances due to the integration of power-
electronic interfaces. Because Micro-Turbine has a large power
capability, in the test, bus 6 is set as the swing bus. Double-
loop controllers are used to control the DERs [14]. All the
five power loads are constant power type.

The training data is simulated from the DAE model of the
test microgrid with time step At = 1 ms and include two
initial condition responses where load changes are introduced
from a nominal equilibrium operating point. The two inputs are
chosen as the active power changes of Load 5 and Load 6, and
two input changes chosen for training data are shown as arrows
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in the input space shown in Fig. 8. The state variables for the
DMDc model (1) are selected as the state variables of the
DER controllers (excluding the PLL states) and the real and
imaginary parts of every bus voltage phasor xy coordinates.

A. Removal of Angle Shift Invariance

The eigenvalues of the linearization of the microgrid DAE
model are plotted as blue crosses in Fig. 2. Unfortunately, the
linearization includes an eigenvalue of 1, which corresponds
to the shift invariance in the phase angles and is characteristic
for all AC power systems. In the zy coordinates chosen, this
angle shift invariance manifests as rotations of the phasors in
the zy plane. To remove this angle shift invariance from the
identification, the swing bus angle is selected as a reference,
and all the phase angles in the training data are preprocessed
as differences to the reference angle. As a result, the DMDc
problem satisfies condition 1 in Definition 1.

B. Model Order Selection

From our test, the model order cannot be selected by finding
a gap in the distribution of the singular values of the data
matrix 2. However, from the uniqueness discussion when the
order is much higher than the underlying system there will be
additional eigenvalues of 1 from A In this example, we choose
the model order to be 18 where the identified eigenvalue is
shown in Fig. 2. Another case where the model order is much
higher than the underlying system is shown in Fig. 3, where we
see that additional incorrect modes are present in the second
model.

C. Eigenvalue and Eigenvector Verifications

To compare DMDc eigenvalues and eigenvectors to those of
the true system, the DAE converted into a discrete-time linear
system at the first of the two load conditions in the training
data. For the selected model order of 18, the eigenvalues of
DAE linearization and those identified by DMDc are compared
in Fig. 2.

Furthermore, the corresponding elements of the eigenvectors
associated with the eigenvalues 1 to 5 are compared between
DAE linearization and DMDc using Modal Assurance Crite-
rion (MAC) [15] as shown in Fig. 4. Two vectors are more
similar when their MAC is closer to 1. The diagonal elements
in Fig. 4 are the highest confirming that modes 1 to 4 are
correctly identified through DMDc. Since the fifth eigenvalue
is not identified by DMDec, the eigenvectors of DMDc that are
associated with eigenvalues #3 and #4 have a slightly higher
MAC with eigenvector #5 of DAE linearization. In Fig. 5, the
eigenvectors of DAE and DMDc associated with eigenvalue 1
are plotted.

D. Time-Domain Predictions

Figures 6 and 7 show the predictions of voltages at bus 1
under small and larger load change conditions. For larger load
changes, the frequency contents of the transient response is
farther from the local transient response learned by DMDc.

To evaluate the capability of the DMDc model to predict
transient dynamics, 169 test cases are used to compare the
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DMDc predictions and the simulated trajectories. Starting from
the nominal condition, Load 5 and Load 6 are stepped to
between -100% and 140% of the respective nominal loads
with an interval of 20%. In Fig. 8, the contour log of squared
errors for all 169 cases in the same prediction period of ten
seconds are plotted. The nominal equilibrium point is marked
by cross and the training data comprise of load changes
marked by the two arrows. The locally linearized dynamics
of the microgrid is correctly captured in the local region of
20% load changes compared to the nominal condition, while
the nonlinear dynamics becomes steadily different from the
DMDc model when much larger load changes are introduced.

IV. CONCLUSIONS

A data-driven modeling approach for microgrids under
disturbances is developed based on DMDec. Conditions on
the training data and the underlying model is discussed to
ensure the uniqueness of the solution, and the testing results
on a microgrid test system shows the ability of the method to
recover linear modes during microgrid transients due to load
changes. A future direction is to develop successive DMDc
models at different nominal conditions with applications for
data-driven model-predictive control.
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VI. APPENDIX
A. DAE Linearization
Consider a DAE system consisting of differential equations
f(x,y,u) and constraint 0 = g(x,y,u) with state
variables x, algebraic variables y, and input u. The linearized
system at an equilibrium point (X,y) can be formulated as

Ax| A.—B.D'.C, 0 Ax (12)
Ayl | -D'.C.A, -D'.C.B.| |Ay

where A, B, C., D, are the partial derivatives of f and g
with respect to x and y, which are functions of u. From (12),

assume that (X,y) changes linearly with u, and A, to D,. stay
constant. One can get the form (1).

B. Proof Sketch of Theorem 1

First we define the (p+1) x s Vandermonde matrices A,, as

X =

1 1 ... 1
Al Ao A

A= T (13)
NN
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and the n x s eigenvector matrix V. = [vy...v,]. From
Definition 1, we may write the matrix of state snapshots as

1
X — [Cl Ch] . =
1.
Al
v [M, M;,] (14)

-
A,

where M, are diagonal matrices such that x,,, — ¢; =
VM;1,, i = 1,...,h. Then using Theorem 4.7 in [12] on
each m; columns having constant input on each side of the
equation, we have that c;’s are unique and so are the r distinct
nonzero eigenvalues \; and their corresponding eigenvectors
are unique up to scaling.
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