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Abstract—Dynamic Mode Decomposition with Control
(DMDc) is presented to develop a data-driven modeling
approach for microgrids when the accurate mathematical model
is unavailable. As a system identification method, it can precisely
model and predict the transient response of microgrids subject
to large disturbances. A modified DMDc method is introduced
to handle the piecewise constant inputs issue. Precautions on
applying the method on measurement data are also discussed.
Numerical examples on a typical islanded microgrid have
demonstrated that local dynamics can be accurately captured
through the DMDc-based data-driven model. By requesting a
small amount of data, the data-driven modeling is powerful for
performing system forecast and data-driven control.

Index Terms—Microgrids, Distributed Energy Resources
(DERs), transient dynamics, Dynamic Mode Decomposition with
Control (DMDc), data-driven, nonlinear.

I. INTRODUCTION

The development of Distributed Energy Resources (DERs),

such as photovoltaic (PV) and wind power, provides a great

opportunity to achieve the target of modernizing power sys-

tems. As a flexible energy architecture, microgrids have been

developed to deploy DERs for seeking an edge toward en-

ergy sustainability. Most DERs are integrated into micro-

grids through power-electronic interfaces such as inverters.

Although those distributed interfaces can enable rapid controls

of DERs and flexible operations of microgrids [1], they signifi-

cantly reduce the system’s inertia, making microgrids sensitive

to disturbances [2]. Consequently, the system’s transient stabil-

ity that is caused by large disturbances is severely undermined.

Although transient dynamics has been studied from many

aspects and several control approaches have been developed

for stabilizing the system’s transients, it is still elusive how
to study and predict the system’s transient dynamics when an
accurate mathematical model of microgrids is unavailable.

There exist two major categories of approaches to develop a

suitable model by using data for monitoring and controlling a

dynamical system, namely parameter estimation [3] and black-

box system identification [4]. For the parameter estimation,

an accurate model of the studied system is assumed to be

available, while the parameters of the model need to be

estimated from measurement data [3], [5]. Parameters can be

well estimated for linear systems. For nonlinear systems like

microgrids, high computational resources and a large volume

of measurement data are often required for getting a high-

fidelity result via optimization. The black-box identification

methods identify both model and parameters of the system,

like Prony’s method [4], Empirical Mode Decomposition [6],

and subspace-based state space identification [7]. These iden-

tification methods are usually based on an equilibrium point

where the small-signal response of the system is used for

identifying the system’s model. It needs to properly design

experiments for efficiently generating informative data.

Among the black-box system identification, Dynamic Mode

Decomposition (DMD) is a powerful family. The conven-

tional DMD algorithms identify a linear autonomous system

from trajectories of states [8], while preserving the spectral

properties of the original system, i.e. the eigenvalues and

eigenvectors. The DMD algorithms have also been extended

to identify nonlinear autonomous systems using functions of

states. The Extended DMD (EDMD) has been shown to be

closely related to the Koopman operator theory that generates

a global linearization of a nonlinear dynamical system.

The DMD with control (DMDc) has been developed for

the identification of linear state-space system [9]. The DMDc

is similar to the classical Eigensystem Realization Algorithm

(ERA) but is formulated towards the identification of high-

dimensional systems, i.e., when the number of observables is

equal to or more than the number of states. This is the case

for microgrid systems. The EDMD has also been extended

to include control, leading to Koopman bilinear systems [10].

However, such algorithms require a large amount of training

data and the resulting model may not be amenable for control

purposes. In this paper, we modify and apply the DMDc

algorithm to the modeling and prediction of transient dynamics

of microgrids. The contributions are stated below.

• A data-driven model is developed based on the DMDc

method to predict the transient dynamics of microgrids.

• The uniqueness of DMDc are derived with the piecewise

constant inputs given as an example.

• Singular Value Decomposition (SVD) truncation is pre-

sented to determine the model order and add regulariza-

tion, simultaneously.

The remainder of this paper is organized as follows: Section

II introduces a modified DMDc method, where issues with
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step function input are discussed. In Section III, tests on a

microgrid have demonstrated that the local modes of the test

system can be accurately identified by DMDc. Conclusions

are drawn in Section IV.

II. DYNAMIC MODE DECOMPOSITION WITH CONTROL

A. The DMDc Algorithm

The basic assumption of DMDc is that the system state is

generated from an linear dynamical system written as

xk+1 = Axk +Buk, (1)

where xk ∈R
n and uk ∈R

q are the state and input at the

discrete time k respectively. (1) can be obtained from a DAE

model of a microgrid system where xk in (1) include the

original differential and algebraic variables and uk is the

constant power load inputs. The derivation is given in the

appendix.

The training data consists of triplets (x(t),x(t+T ),u(t)),
where the time step T should be small enough to be able to

capture the fastest mode of the system. In order to capture

the dynamics of nonlinear systems near an equilibrium point

with the model in (1), it is thus important to center the linear

model at an equilibrium point by subtracting the equilibrium

point from the training data. For a single trajectory of the

system, its measurement data can be denoted in discrete time

as
{
(xk,uk)

}m

k=0
. Then, we can construct the data matrices

as follows

X1 =
[
Δx0 Δx1 . . . Δxm−1

]
, (2)

X2 =
[
Δx1 Δx2 . . . Δxm

]
, (3)

Υ =
[
Δu0 Δu1 . . . Δum−1

]
, (4)

where Δxk = xk − x̄ and Δuk = uk − ū are centered at an

equilibrium point (x̄, ū).
Based on the above data matrices of measurements and

the linear system model given in (1), a regression model as

follows, where Ĝ is the matrix to be determined.

X2 =
[
Â B̂

] [X1

Υ

]
= ĜΩ. (5)

The least squares fit is defined as Ĝ = X2Ω
+, where

superscript + denotes Moore-Penrose pseudo-inverse. It is the

optimal solution to the following problems in the case where

(5) is consistent (having at least one solution) or where (5) is

inconsistent (having no solution):

⎧⎪⎨⎪⎩
min
G

∥∥G∥∥2
F

s.t. X2 = GΩ if (5) is consistent

min
G

∥∥X2 −GΩ
∥∥2
F

if (5) is inconsistent
(6)

In practice, since the data is from a nonlinear system

centered at close but different equilibrium points the regression

model (5) is not satisfied by the discrete-time linearization A
and B of the DAE system in (1), and even if (5) has no solution

the underlying model may still be underdetermined. On the

other hand, the local dynamics may have a lower rank than the

number of state variables used to describe the global nonlinear

dynamics. It is thus necessary in many situations to reduce the

rank of the data matrix when calculating the pseudo-inverse

of Ω through singular value decomposition (SVD).

Denote the SVD of Ω = UΣV∗, where Σ is a diagonal

matrix which has a dimension equal to the rank of Ω. The

reduced Ω is obtained by truncating the smaller singular values

of Σ and at the same time eliminating the corresponding

columns in U and V to get Ω̃ = ŨΣ̃Ṽ∗. And the regularized

least squares fit is given by

Ĝ = X2Ω̃
+ = X2ṼΣ̃−1Ũ∗, (7)

which approximates the solution to the regularized prob-

lem [11]

min
G

∥∥X2 −GΩ
∥∥2
F
+ r

∥∥G∥∥2
F

(8)

where r is the threshold for singular value truncation.

Finally, the estimated system matrices Â and B̂ are obtained

from Ĝ

Â = X2ṼΣ̃−1Ũ∗
1, (9)

B̂ = X2ṼΣ̃−1Ũ∗
2., (10)

where the rows of U =
[
UT

1 UT
2

]T
is split according to (5).

Several issues that relates to the DMDc method with step

function inputs is discussed next.

B. Uniqueness of DMDc with Piecewise Constant Inputs

The input uk in the DMDc model (1) include the load dis-

turbances to the system. Assuming that this input is piecewise

constant, the condition for the ability to uniquely identify A
can be found by modifying Theorem 4.8 in [12] for the case

of affine systems, which has the form xk+1 = xk + b.

To establish the connection between the DMDc system (1)

and the affine system, first assume that the matrix A has no

eigenvalues of 1 so that I−A is invertible. Then, the dynamics

of (1) can be rewritten as

xk+1 − ck = A(xk − ck) (11)

where ck = (I −A)−1Buk. Within each piecewise constant

period of the input uk, the DMDc dynamics is linear with

a constant bias c. Thus, the DMDc system with piecewise

constant input is an affine system whose bias is controlled by

the input u. Note that the bias ck is the equilibrium point

of the model if A is stable. The linear dependence of the

equilibrium c on the input u is a local approximation of

how the equilibrium of the power system shifts due to load

changes, e.g., the P-V plot [13]. The growing equilibrium error

farther from the training range can be addressed by introducing

successive DMDc or by using a bilinear model [10].

Based on the uniqueness of affine DMD in [12], the

uniqueness of the DMDc with piecewise constant inputs is

given as follows.

Definition 1 (DMDc Well-Posedness): Suppose the given

time series data {(xk,uk)
}N

k=0
satisfies the linear dynamics

xk+1 = Axk + Buk, where xk ∈ R
n, uk ∈ R

q , where
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A is assumed to be diagonalizable with r ≤ n distinct

nonzero eigenvalues λ1, . . . , λr and eigenvectors v1, . . . , vr.

For piecewise constant input u which takes values μ0, . . . ,μh

at times steps 0, N1, . . . , Nh ≤ N . We say that the DMDc

problem is well-posed if the conditions

1. A does not have an eigenvalue equal to 1,

2. xNi
− ci+1 is not orthogonal to v1, . . . , vr, where ci =

(I−A)−1Bμi

3. Ni −Ni−1 ≥ r + 2, i = 1, . . . , h,

4. The matrix of distinct input vectors
[
μ0 · · · μh

]
have

maximum column rank q,

Theorem 1: (Uniqueness of DMDc) Suppose that the time

series data follow linear dynamics (1) with rank r matrix

A and full rank matrix B. Let A′ and B′ be any other

matrices with A′ of rank r that satisfies the same dynamics

xk+1 = A′xk + B′uk for k = 0, . . . , N − 1. If the DMDc

problem is well-posed by Definition 1, then c′i = ci, i =
0, . . . , h, B′ = B, and A′ has the same r nonzero eigenvalues

and corresponding eigenvectors as A, up to scaling.

A proof sketch is given in the Appendix. Note that the

well-posed condition in Definition 1 does not cover dynamics

with eigenvalue 1. This is because the mode with eigenvalue

1 is indistinguishable from the bias ck. For A′ with a rank

higher than r, additional eigenvalues of 1’s may be incorrectly

identified, which causes incorrect bias ck and the matrix B′.
A side effect of reducing the singular values in DMDc is

that the rank of Â can be reduced to be closer to the number

of modes of the underlying linear system. If Â has a rank

that is too high, from the above discussions, the eigenvalues

of Â can include addition 1’s, and the resulting equilibrium

point is dependent both on the initial condition as well as

the input, rather than depending only on the input as in c =
(I−A)−1Bu. Moreover, in practice since the DMDc model

Â is calculated from data, the additional eigenvalues of Â
cannot be exactly equal to 1, which means that the resulting

system will not maintain its equilibrium points on a time scale

much larger than Ni, due to the existence of those almost 1
eigenvalues.

III. NUMERICAL EXAMPLE

A typical microgrid system shown in Fig. 1 is used to

test and validate the feasibility of the DMDc method in

obtaining a data-driven model for modeling and predicting

the operation of microgrids. The test system operates in the

islanded mode, i.e., Circuit Breaker is open; thus, the system

is sensitive to disturbances due to the integration of power-

electronic interfaces. Because Micro-Turbine has a large power

capability, in the test, bus 6 is set as the swing bus. Double-

loop controllers are used to control the DERs [14]. All the

five power loads are constant power type.

The training data is simulated from the DAE model of the

test microgrid with time step Δt = 1 ms and include two

initial condition responses where load changes are introduced

from a nominal equilibrium operating point. The two inputs are

chosen as the active power changes of Load 5 and Load 6, and

two input changes chosen for training data are shown as arrows

in the input space shown in Fig. 8. The state variables for the

DMDc model (1) are selected as the state variables of the

DER controllers (excluding the PLL states) and the real and

imaginary parts of every bus voltage phasor xy coordinates.

A. Removal of Angle Shift Invariance

The eigenvalues of the linearization of the microgrid DAE

model are plotted as blue crosses in Fig. 2. Unfortunately, the

linearization includes an eigenvalue of 1, which corresponds

to the shift invariance in the phase angles and is characteristic

for all AC power systems. In the xy coordinates chosen, this

angle shift invariance manifests as rotations of the phasors in

the xy plane. To remove this angle shift invariance from the

identification, the swing bus angle is selected as a reference,

and all the phase angles in the training data are preprocessed

as differences to the reference angle. As a result, the DMDc

problem satisfies condition 1 in Definition 1.

B. Model Order Selection

From our test, the model order cannot be selected by finding

a gap in the distribution of the singular values of the data

matrix Ω. However, from the uniqueness discussion when the

order is much higher than the underlying system there will be

additional eigenvalues of 1 from Â. In this example, we choose

the model order to be 18 where the identified eigenvalue is

shown in Fig. 2. Another case where the model order is much

higher than the underlying system is shown in Fig. 3, where we

see that additional incorrect modes are present in the second

model.

C. Eigenvalue and Eigenvector Verifications

To compare DMDc eigenvalues and eigenvectors to those of

the true system, the DAE converted into a discrete-time linear

system at the first of the two load conditions in the training

data. For the selected model order of 18, the eigenvalues of

DAE linearization and those identified by DMDc are compared

in Fig. 2.

Furthermore, the corresponding elements of the eigenvectors

associated with the eigenvalues 1 to 5 are compared between

DAE linearization and DMDc using Modal Assurance Crite-

rion (MAC) [15] as shown in Fig. 4. Two vectors are more

similar when their MAC is closer to 1. The diagonal elements

in Fig. 4 are the highest confirming that modes 1 to 4 are

correctly identified through DMDc. Since the fifth eigenvalue

is not identified by DMDc, the eigenvectors of DMDc that are

associated with eigenvalues #3 and #4 have a slightly higher

MAC with eigenvector #5 of DAE linearization. In Fig. 5, the

eigenvectors of DAE and DMDc associated with eigenvalue 1

are plotted.

D. Time-Domain Predictions

Figures 6 and 7 show the predictions of voltages at bus 1

under small and larger load change conditions. For larger load

changes, the frequency contents of the transient response is

farther from the local transient response learned by DMDc.

To evaluate the capability of the DMDc model to predict

transient dynamics, 169 test cases are used to compare the
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Fig. 1. A typical microgrid test system.

Fig. 2. Eigenvalue comparison for truncation order 18

Fig. 3. Eigenvalue comparison for truncation order 35

DMDc predictions and the simulated trajectories. Starting from

the nominal condition, Load 5 and Load 6 are stepped to

between -100% and 140% of the respective nominal loads

with an interval of 20%. In Fig. 8, the contour log of squared

errors for all 169 cases in the same prediction period of ten

seconds are plotted. The nominal equilibrium point is marked

by cross and the training data comprise of load changes

marked by the two arrows. The locally linearized dynamics

of the microgrid is correctly captured in the local region of

20% load changes compared to the nominal condition, while

the nonlinear dynamics becomes steadily different from the

DMDc model when much larger load changes are introduced.

IV. CONCLUSIONS

A data-driven modeling approach for microgrids under

disturbances is developed based on DMDc. Conditions on

the training data and the underlying model is discussed to

ensure the uniqueness of the solution, and the testing results

on a microgrid test system shows the ability of the method to

recover linear modes during microgrid transients due to load

changes. A future direction is to develop successive DMDc

models at different nominal conditions with applications for

data-driven model-predictive control.

Fig. 4. Modal assurance criterion between eigenvectors corresponding to
eigenvalues #1 to #5 in Fig. 2
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Fig. 5. DMDc eigenvector corresponding to eigenvalue 1 in Fig. 2 compared
to DAE linearization
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by 60%

V. ACKNOWLEDGMENT

This work is supported by National Science Foundation

under the award DMS-2229435.

979-8-3503-1360-4/24/$31.00 ©2024 IEEE
Authorized licensed use limited to: Penn State University. Downloaded on July 20,2024 at 19:15:11 UTC from IEEE Xplore.  Restrictions apply. 



0 1 2 3 4 5 6
Time [s]

0.85

0.9

0.95

1
V

ol
ta

ge
 [p

.u
.]

DMDc
True Data

0 1 2 3 4 5 6
Time [s]

0.025

0.03

0.035

0.04

A
ng

le
 [r

ad
] DMDc

True Data

Fig. 7. Voltage prediction after Load 5 changes by 80% and Load 6 change
by 100%

-6

-6

-6

-6

-5

-5

-5

-5

-4

-4

-4

-4

-4

-3

-3

-3

-3

-3

-3

-2

-2

-2

-2

-2-1

-1

-1

-1

-1

0

0

0

0

1

1

2

2
3

-33

3
4

1

-2-2

-6
1

3

22
0

1112 1231 2 1

30

2

-5

11

63

24

-

-2-2-2

2333

Fig. 8. Log of squared errors for prediction of load changes from the nominal
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VI. APPENDIX

A. DAE Linearization
Consider a DAE system consisting of differential equations

ẋ = f(x,y,u) and constraint 0 = g(x,y,u) with state

variables x, algebraic variables y, and input u. The linearized

system at an equilibrium point (x̄, ȳ) can be formulated as[
Δẋ
Δẏ

]
=

[
Ac−BcD

−1

cCc 0
−D

−1

cCcAc −D
−1

cCcBc

] [
Δx
Δy

]
(12)

where Ac, Bc, Cc, Dc are the partial derivatives of f and g
with respect to x and y, which are functions of u. From (12),

assume that (x̄, ȳ) changes linearly with u, and Ac to Dc stay

constant. One can get the form (1).

B. Proof Sketch of Theorem 1
First we define the (p+1)×s Vandermonde matrices Λp as

Λp =

⎡⎢⎢⎢⎢⎣
1 1 . . . 1
λ1 λ2 . . . λs

...
...

...
...

λp
1 λp

2 . . . λp
s

⎤⎥⎥⎥⎥⎦ , (13)

and the n × s eigenvector matrix V = [v1 . . .vs]. From

Definition 1, we may write the matrix of state snapshots as

X− [
c1 · · · ch

] ⎡⎢⎢⎣
1T
m1

. . .

1T
mh

⎤⎥⎥⎦ =

V
[
M1 · · · Mh

] ⎡⎢⎢⎣
ΛT

m1

. . .

ΛT
mh

⎤⎥⎥⎦ (14)

where Mi are diagonal matrices such that xm′
i
− ci =

VMi1s, i = 1, . . . , h. Then using Theorem 4.7 in [12] on

each mi columns having constant input on each side of the

equation, we have that ci’s are unique and so are the r distinct

nonzero eigenvalues λk and their corresponding eigenvectors

are unique up to scaling.
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