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Abstract—The increasing growth of the global energy demand
has become one of the key factors that necessitate the devel-
opment in the field of distributed energy resources (DERs).
The interconnection of the DERs with the main grid makes
the system extremely sensitive to disturbances, as they decrease
the overall system’s inertia. These disturbances are primarily
caused by variations in the loads connected to the distribution
system and environmental conditions affecting DER generation.
The system dynamics exhibit strong non-linearity, requiring the
use of various controllers to stabilize microgrids and maintain
steady-state operation. Predicting future states is challenging
yet crucial in power systems, as it enables the determination
of control strategies to enhance transient stability following
contingencies. This paper proposes a hierarchical multi-layered
sparse identification technique to comprehend the system and
forecast transient dynamics in different microgrid operation
modes. The developed algorithm employs a multi-layered struc-
ture, which reduces the overall computational cost while ensuring
accurate model dynamics. In the primary layer, the functions
influencing the system dynamics are derived from measured data.
These primary layer terms are then fitted into the secondary
layer to determine the precise system dynamics under different
disturbances. Numerical examples have been presented in this
paper to validate the effectiveness of the proposed algorithm. The
developed method proves particularly valuable in re-configurable
and scalable networked microgrids where the system structure
and the associated controls frequently change.

Index Terms—Sparse identification, prediction, distributed en-
ergy resources, transient dynamics, microgrid

I. INTRODUCTION

A microgrid is a localized energy system that operates
independently or in conjunction with the main power grid
[1], [2]. Tt consists of distributed energy resources, such
as renewable energy sources (solar panels, wind turbines),
energy storage devices (batteries), and local generators (diesel
generators, fuel cells) [3]. Microgrids are increasingly being
considered as a reliable and cost-effective option for power
supply in remote or off-grid areas [4]. An islanded microgrid
refers to a standalone power system that is disconnected from
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the main grid and operates independently. Various control
strategies have been proposed to ensure the stability, reliability,
and efficiency of islanded microgrids [5]. In an islanded
microgrid, there is no direct connection to the main grid,
which means there is no external support for voltage and
frequency regulation. Control mechanisms are necessary to
maintain stable voltage and frequency levels within acceptable
limits [6]. A control system can also intelligently distribute the
load to prevent overloading or under-utilization of distributed
energy resources, thereby optimizing the microgrid efficiency
and prolonging its lifespan. Model predictive control is a
powerful tool to address the new control challenges that appear
in microgrids [7].

Obtaining a prediction model for developing a reliable
model predictive controller can present several challenges.
Prediction of future states is a difficult, but an essential tool
in power systems for determining different control strategies
that can aide in maintaining the transient stability of the
overall system following a contingency. Building an accurate
prediction model that captures the dynamics of the system
can be challenging, especially for complex systems nonlineari-
ties, uncertainties, and interactions between multiple variables.
Acquiring the data necessary for model identification can
be challenging. Sufficient and representative data must be
collected from the system under various operating conditions.
Real-world systems often have uncertainties and measurement
noise, which can affect the accuracy of the prediction model.
Uncertainties may arise from unknown or immeasurable dis-
turbances, model errors, or parameter variations [9]. Data-
driven modeling is important for prediction because it allows
us to build models that can capture the underlying patterns and
relationships in the data without requiring a detailed under-
standing of the underlying physical processes or mechanisms
[10]-[13], [19].

While it is advantageous to model complex systems whose
underlying physics and mechanisms are not well understood
or are difficult to model explicitly, data-driven models may
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not be able to capture the underlying physics accurately
without abundance of data [14]. A physics-informed data-
driven model is a combination of physics-based modeling and
data- driven modeling. It incorporates prior knowledge and
assumptions about the underlying physics or mechanisms into
the model construction process, while also using data to refine
and validate the model. This approach aims to improve the
accuracy and physical consistency of the model by leveraging
the strengths of both approaches.

The purpose of developing mixed approaches is to improve
the reliability of the obtained relations through fundamental
principles. A physics informed neural network with sparse re-
gression has been discussed in [15] which possesses the salient
features of interpretability and generalizability, to discover
governing PDEs of nonlinear spatiotemporal systems from
scarce and noisy data. Another advantage of physics informed
data-driven modeling is its flexibility and adaptability. It can
be easily updated and retrained with new data, allowing them
to adapt to changing conditions and environments. They can
also be easily integrated with other models or systems, such as
control systems or optimization algorithms [16]. Developing
a reliable data-driven model involves using statistical and ma-
chine learning techniques in combination with a physics based
approach to extract patterns and relationships can be used to
make future predictions. These models are often based on
simple and interpretable functions, such as linear or nonlinear
regression models, decision trees, or neural networks [17]. In
the context of predictive models, computational complexity
can be a significant factor to consider, as it can impact the
feasibility and real-time applicability of the model [18].

Combining physics-informed model with sparse identifi-
cation for non-linear dynamics is a topic that is currently
being explored in multiple fields. The work in [21] shows
that the learned relationships can be utilized as a surrogate
model which, unlike typical data-driven surrogate models,
relies on the learned underlying dynamics of the system
rather than large number of fitting parameters. A structure-
preserving neural SINDy algorithm has been presented is
[22]. A physics-Guided Sparse Identification of Nonlinear
Dynamics for Prediction has been developed specifically for
application to Vehicle Cabin Occupant Thermal Comfort in
[23]. The precise identification of bistable nonlinear stiffness
force using the algorithm proposed in [24] is used to predict
and enhance the system performance of the vibration energy
absorption. The existing physics informed identification meth-
ods have been tailored to solve the prediction problem for
different application domains using some basic knowledge of
the system considered in the specific domains. Hence, it cannot
be directly extended for identification of microgrid dynamics.
Drawing inspiration from the aforementioned works, a physics
informed sparse identification has been proposed in this paper
for application in the power systems domain.

The major contributions of this paper can be listed as:

1. A hierarchical multi-layered sparse identification algo-

rithm is developed for power systems application to
capture the non-linearities in the microgrid transient dy-

namics. This method is successful in predicting the future
operating states of the microgrid model under various
disturbances.

2. While the offline training and identification of the model
has a high computational cost, it has been verified that
the validation and prediction of the model is much more
cost effective and can be considered as an improved step
towards developing a reliable model predictive controller.

The remainder of the paper is organized as follows. Section
IT outlines the different mathematical concepts that drive the
design and development of the prediction model. It includes
the physics behind the selection of a multi-layered hierarchi-
cal sparse identification method. Section III provides some
numerical examples to validate the efficiency of the proposed
algorithm. Conclusions are drawn in Section IV.

II. HIERARCHICAL MULTI-LAYERED SPARSE
IDENTIFICATION

A. Essential idea of hierarchical SINDy

In the hierarchical multi-layered Sparse Identification of
Non-linear Dynamics (SINDy)-based identification method,
two layers of sparse identifications are used to develop the
data-driven identification model. The first layer is used to
create different standard knowledge power system terms which
are primarily responsible for the non-linearities in the overall
system. The second layer uses the knowledge of the terms
identified in the primary layer to fit the dynamics and obtain
the set of all the differential equations that describe the
transients in the system.

The transient dynamics of the microgrid model can be
mathematically described by a set of differential-algebraic
equations (DAEs),

x(t) = £(x(t), y(t),u(t)),
0 = g(x(t),y(t),u(t)),

where x € R" is the state variable vector, e.g., state variables
in the controller of DER power-electronic interfaces, y € R™
is the algebraic variable vector, e.g., bus voltage amplitude
and angle, and u € RP represents the input variations/
disturbances, e.g., power output fluctuation of PV and power
load changes. Before moving on to detailed explanation of
the hierarchical SINDy model, the preliminary knowledge of
some of the non-linear terms in a microgrid are given below:

(1a)
(1b)

B. Trigonometric non-linearities

The dq transformation is used to convert a three-phase signal
into two orthogonal components, namely the d-axis and the g-
axis, which simplifies the analysis and control of three-phase
systems. The d-axis component is proportional to the average
value of the three-phase signal, while the g-axis component is
proportional to the quadrature component of the three-phase
signal. This consists of cosine and sine terms - trigonometric
non-linearities.

The dq transformation is a mathematical tool used in power
systems to convert a set of voltage or current phasors in a
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rotating reference frame into a two-dimensional space in the

dq reference frame.
d cos(f)  sin(0)| [zr
L]} - [— sin(0) cos(@)] [yl] @
Here, zr and y; denote the real and imaginary components
of the phasors respectively. The dq transformation allows for
easier control of the power electronic converters, as it separates
the control of the active and reactive power flows. The d-
axis component is responsible for controlling the active power
flow, while the g-axis component controls the reactive power
flow. This allows for more efficient and effective control of
the power flow, leading to better performance and stability of
the microgrid.
This transformation can be used to obtain the d- and g-axis
components of the voltage and current phasors.

B axis p

y axis

q axis

: /
C axis "

Fig. 1. Reference frame for voltage and current phasors transformation

Here, xr represents the real part of the phasor and y;
represents the imaginary part of the phasor. § represents the
phasor angle from the phase locked loop.

C. Quadratic non-linearities

The voltage magnitude is another important parameter that
is used to describe the state of the system. The non-linearity
of this term arises from the following equation formulation:

Vi =/ V2 + V2 3)

The quadratic term (polyorder = 2) contributes to the non-
linearity.

The input data required for the primary layer of the hierar-
chical SINDy model are the system state variables data (x(t))
and the output bus voltage (v(¢)) and line current data (i(¢)).
This is given by Eq. 4.

Xp1 =

Xl(tm) o xn(trn) Vl(tm> e Vp(tm) il(tm> c ip(tm)

Candidate functions are the set of different possible non-
linear functions that are typically used to represent the dynam-
ics of the desired application domain. The library of candidate
functions for the first layer of the heirarchical SINDy can be
established as:

On(X,V,I) =] 1 X XP o
sin(X) cos(X) vV XV
sin(V) cos(V)

I XI
sin(T) cos(I)
X sin(X) e
Isin(X) Vsin(X) --- ]

&)
Let the non-linear functional space of terms be defined by
P.

®=Z5,,07,(X,V,I) (6)

Sparse Regression is performed to identify these special
non-linear terms using input data sent to the first layer of
the SINDy algorithm. Eq. (7). represents the set of sparse co-
efficients that can fit the overall dynamics of the system with
the proposed candidate functional space. Eq. (8). provides the
details of the regression method used in this paper.

SIP) &iin) (N

Er1 = &

& = argmin[|O, — @lz + Mgl ®)
k

In addition to the already gathered system state variables
data, the identified non-linear functional data, represented by
® are added to develop the input data for the second layer
of the heirarchical SINDy model. Since, the non-linearities
are already identified in the previous layer, the computational
effort of the second layer can be significantly reduced. This
is because, the simple case of polyorder 1’ can be chosen to
build the candidate functions.

0nX,2,U)=1 X ¢ U] ©))

Here, X is the set of all the state variables. @ is the output
of the first layer of the developed model which comprises
of the algebraic terms contributing to the non-linearity in the
model. U is the external disturbances that drives the system
dynamics.

X = E7,0],(X, ®,U) (10)

=r1 and Zpo are the sparse vector coefficients identified
by regression. Multiple regression methods such as Ordinary
Least Squares (OLS) regression, Ridge regression, Least Op-
erator Shrinkage and Selection Operator (LASSO) can be
used. The LASSO-type optimization problems can be solved
by using various proximal Newton methods which are also
used for solving convex composite optimization problems [20].

Authorized licensed use limited to: Penn State University. Downloaded on July 20,2024 at 19:15:44 UTC from |IEEE Xplore. Restrictions apply.



TABLE I
DER GENERATIONS AT EACH BUS
Bus | Po(BW) | Qn(FVAR)
1 62.9 71.8
3 80.2 30.5
6 40.5 0
TABLE 11
POWER LOADS AT EACH BUS
Bus | Pn(EW) | Qn(kVAR)
2 12.7 7.9
5 42.5 26.3
7 61.1 37.9
8 40.0 24.8
9 12.7 7.9

This paper utilizes the LASSO regression technique which is
outlined by Eq. (7) in which A gives the sparsity constraint.
The differential equations of the microgrid DAE model are
identified using the heirarchical multi-layered SINDy algo-
rithm. In this work, the network topology details are assumed
to be known to the system operator and the algebraic part can
be modeled based on the prior knowledge.

III. NUMERICAL EXAMPLES

The microgrid system used for verifying the identification
and prediction of the transient dynamics using hierarchical
multi-layered sparse identification is given in Fig. 2. The
circuit breaker 1 in the test system is open making the
microgrid operate in islanded mode. The three generation units
in this system are the micro-turbine, battery storage and PV
system connected as buses 1,3 and 6 respectively. Constant
impedance load is considered at buses 2,5,7,8 and 9. The
system topology, the generation details and the load details
are given in Table I, II and III. Multiple disturbances are
introduced in the system to understand the transient dynamics
of the model which is used for preparing the training data.
The details of the disturbances used for training the model
are provided in Table IV. The input disturbances used in the
prediction model is given by Table V.

11y— Micro-turbine 1
2 10
Load 2 Load 7
Circuit
~, 4 Breaker 1
{ % B’
L/ 3 7 9J _®_®
Battery 3 Main Grid
5 8 Load9
-
PV 6 Load 5 Load 8

Fig. 2. 10 bus test system with 3 generation units

The circuit breaker connecting the microgrid with the main
grid is open. Thus, the simulated microgrid is being operated

TABLE III
LINE IMPEDANCE BETWEEN BUSES

From | To | R(Q2/km) L(H/km) Length(m)
10 2 0.0153 1.039 x 10~ 6 45
10 3 0.0020 1.606 x 106 30
3 1 0.0086 1.360 x 10—6 30
3 6 0.0096 3.761 x 10~6 50
3 4 0.0024 1.927 x 10~6 50
4 5 0.0032 8.061 x 10~6 50
4 7 0.0041 3.212 x 10~6 45
7 8 0.0345 2.338 x 10~6 20
7 9 0.016 4.449 x 10—6 20

in the islanded mode. Fig. 3 and Fig. 4 provides the plot
to show the effectiveness of the training and testing of the
proposed algorithm. The observable output variables of interest
are mainly the bus voltage magnitude and phase angle. The
grid forming generator’s bus voltage magnitude is depicted in
these figures. The identified data closely follows the training
data-set with minimal error.

Identified System
~——— System Prediction
= = Training Data

= = Testing Data

to
T

—_

Bus Voltage Magnitude (p.u.)

0.9 B
0.8 - B
0 2 4 6 8 10 12 14
Time (s)
Fig. 3. Voltage Magnitude Training and Prediction - Grid forming generator

bus

Identified System
——— System Prediction
= = Training Data

— = Testing Data

Phase Angle - Bus 1 (rad)
[=}
S

.
g
o
=1

o
(=}
=

-0.06 ! !
0

Time (s)

Fig. 4. Voltage Angle Training and Prediction - Grid forming generator bus
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TABLE IV
INPUT DISTURBANCES - TRAINING

Time (S) V;ef AWref R‘ef Qref
00-1.0s 1.0 0.0 —-10% | +20%
1.0-15s 1.03 0.05 —30% | +30%
15-20s 1.05 | -0.05 +1% —80%
20-25s 0.98 0.0 —-15% | +10%
25-30s 1.08 0.02 —60% | +10%
30-35s 095 | -0.04 | —40% | +10%
30-40s 095 | -0.04 | —40% | +10%
4.0-50s 0.92 0.04 +10% | +80%
50-60s 1.01 0.0 —60% | —40%
6.0-8.0s 0.98 0.0 —90% | —80%
80-85s 1.03 0.07 +30% | +40%
85-9.0s 095 | -0.08 —=50% | —70%
9.0-95s 0.92 0.08 +40% | +50%
9.5-100s 1.0 0.0 —20% 0%

TABLE V
INPUT DISTURBANCES - PREDICTION

Time (s) ‘/ref A“-)ref Pref Qref
10.0-11.0s | 1.0 0.0 —60% +5%
11.0 - 125 s 1.2 0.04 +10% | +20%
125-140s | 0.8 -0.04 +5% —15%
140-150s | 1.0 0.0 —40% | +85%

The trigonometric and quadratic transformations of the
voltage and line current data are obtained from the primary
layer of the proposed method. The secondary layer fits the
non-linear functions to determine the transient dynamics. It can
be observed that the effect of the dynamics propagate to the
algebraic network constraints, i.e. the bus voltage magnitudes
and phase angles obtained through power flow.

Based on the identified model, new input disturbances are
provided after ¢ = 10s to verify the prediction capabili-
ties of the proposed data-driven technique. The same input
disturbances are used to develop a test data set using the
actual microgrid model. Satisfactory performance is observed
through the prediction results.

It can be seen that the loads are connected to buses 2, 5, 7, 8
and 9. The input disturbances are usually provided in the form
of load changes and generation changes. Thus, it is important
to observe the tracking performance of the bus voltages at the
load buses as well. Fig. 5 provides the plot consisting of the
voltage magnitude at the load bus 2. It can be seen that the
predicted data is very close to the testing data under constant
load and power generation variations. This work utilizes a con-
stant impedance load model. As per the authors’ knowledge,
constant impedance, constant current and constant power loads
can also be leveraged in this identification algorithm to develop
a satisfactory prediction that can be used for controlling the
microgrid’s future operations.

The bus voltage magnitude and phase angles can be obtained
through the measurement devices. While, it is not common to
measure all the bus voltages, this work presumes the localized
measurement of all the bus voltages and line currents. The state
variables are not easily obtainable in real-time applications. In
this work, we assume the availability of all the state variables
data to further validate the proposed algorithm. In an inverter

Identified System _
~— System Prediction

’;. 1.1r — = Training Data )
8‘_ = = Testing Data
5
o0
s 1p
=) -
>
1
=3
Q0.9
o~
=
I3
Q
—

0.8+

0.7 - :

0 . 10 15
Time (s)

Fig. 5. Training and prediction results of the load bus voltage

based integration, the PLL output and the dg-axis modulation
indices are some of the most dominant state variables and the
training and prediction results of these states are provided to
elucidate the effectiveness of the developed prediction model.

The effective prediction of the dominant state variable can
be seen in Fig. 6. The average root mean square error between
the training data and the identified data was found to be
around +£1.79¢=4% across all the state variables. Similarly,
the average root mean square error between the testing data
and the predicted data was also calculated and was found
to be around +3.46e=2% across all the state variables. The
comparison of the proposed algorithm with SINDy is shown in
Fig. 7. It can be seen from the plot, that the identification and
the prediction of the proposed method performs significantly
better than the SINDy algorithm with the given set of data.

Another advantage of the proposed method is based on the
computational resource requirement. To successfully train 10s
of the model in MATLAB, 137.593s of simulation time was
required. To predict the model dynamics for 5s, the simulation
time required was 7.469s. Thus, it can be concluded, that the
model can be trained offline and the developed data-driven
model has can operate in a range close to real-time operation
which is advantageous while controlling the system in real-
time.

While the proposed algorithm is advantageous to determine
the dynamics of a microgrid subject to changes, the authors
observed a significant increase in the amount of data required
as the system complexity increases and can possibly pose some
challenges in the data collection process.

IV. CONCLUSION

A hierarchical multi-layered sparse identification algorithm
has been developed in this paper to capture and predict the
non-linear transient dynamics of the microgrid. Numerical
results have been provided to elucidate the successful training
and prediction of the operating states and output variables
of the microgrid model under varying input disturbances. An
accurate prediction model is advantageous while developing
model predictive controller as it enables the anticipation of

Authorized licensed use limited to: Penn State University. Downloaded on July 20,2024 at 19:15:44 UTC from |IEEE Xplore. Restrictions apply.



State Variable (xz)

State Variable (x,)

0.12
Identified System
0.1 == System Prediction il
= =Training Data
= =Testing Data
0.08
0.06
0.04
0.02
0
-0.02
-0.04
0 5 10 15
Time (s)
Fig. 6. PLL phase angle training and prediction data
0.12 T
Ground Truth - Training Data
0.1 - |= = SINDy Identification
Ground Truth - Testing Data
0.08 - |= = SINDy Prediction
Hierarchical SINDy Identification
0.06 | | Hierarchical SINDy Prediction
0.04 -
0.02
L N |
-0.02 \
%,
-0.04 q
-0.06 : :

Time (s)

Fig. 7. Training and prediction of the inverter side modulation index

the

future behavior of the microgrid system. To further elu-

cidate the advantages of the proposed method, the authors’

future work comprises of comparison with various network

topologies to verify the statistical significance of this method.
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