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Abstract—The increasing growth of the global energy demand
has become one of the key factors that necessitate the devel-
opment in the field of distributed energy resources (DERs).
The interconnection of the DERs with the main grid makes
the system extremely sensitive to disturbances, as they decrease
the overall system’s inertia. These disturbances are primarily
caused by variations in the loads connected to the distribution
system and environmental conditions affecting DER generation.
The system dynamics exhibit strong non-linearity, requiring the
use of various controllers to stabilize microgrids and maintain
steady-state operation. Predicting future states is challenging
yet crucial in power systems, as it enables the determination
of control strategies to enhance transient stability following
contingencies. This paper proposes a hierarchical multi-layered
sparse identification technique to comprehend the system and
forecast transient dynamics in different microgrid operation
modes. The developed algorithm employs a multi-layered struc-
ture, which reduces the overall computational cost while ensuring
accurate model dynamics. In the primary layer, the functions
influencing the system dynamics are derived from measured data.
These primary layer terms are then fitted into the secondary
layer to determine the precise system dynamics under different
disturbances. Numerical examples have been presented in this
paper to validate the effectiveness of the proposed algorithm. The
developed method proves particularly valuable in re-configurable
and scalable networked microgrids where the system structure
and the associated controls frequently change.

Index Terms—Sparse identification, prediction, distributed en-
ergy resources, transient dynamics, microgrid

I. INTRODUCTION

A microgrid is a localized energy system that operates

independently or in conjunction with the main power grid

[1], [2]. It consists of distributed energy resources, such

as renewable energy sources (solar panels, wind turbines),

energy storage devices (batteries), and local generators (diesel

generators, fuel cells) [3]. Microgrids are increasingly being

considered as a reliable and cost-effective option for power

supply in remote or off-grid areas [4]. An islanded microgrid

refers to a standalone power system that is disconnected from

the main grid and operates independently. Various control

strategies have been proposed to ensure the stability, reliability,

and efficiency of islanded microgrids [5]. In an islanded

microgrid, there is no direct connection to the main grid,

which means there is no external support for voltage and

frequency regulation. Control mechanisms are necessary to

maintain stable voltage and frequency levels within acceptable

limits [6]. A control system can also intelligently distribute the

load to prevent overloading or under-utilization of distributed

energy resources, thereby optimizing the microgrid efficiency

and prolonging its lifespan. Model predictive control is a

powerful tool to address the new control challenges that appear

in microgrids [7].

Obtaining a prediction model for developing a reliable

model predictive controller can present several challenges.

Prediction of future states is a difficult, but an essential tool

in power systems for determining different control strategies

that can aide in maintaining the transient stability of the

overall system following a contingency. Building an accurate

prediction model that captures the dynamics of the system

can be challenging, especially for complex systems nonlineari-

ties, uncertainties, and interactions between multiple variables.

Acquiring the data necessary for model identification can

be challenging. Sufficient and representative data must be

collected from the system under various operating conditions.

Real-world systems often have uncertainties and measurement

noise, which can affect the accuracy of the prediction model.

Uncertainties may arise from unknown or immeasurable dis-

turbances, model errors, or parameter variations [9]. Data-

driven modeling is important for prediction because it allows

us to build models that can capture the underlying patterns and

relationships in the data without requiring a detailed under-

standing of the underlying physical processes or mechanisms

[10]–[13], [19].

While it is advantageous to model complex systems whose

underlying physics and mechanisms are not well understood

or are difficult to model explicitly, data-driven models may

978-1-6654-5556-5/23/$31.00 ©2023 IEEE20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
, C

on
tro

l, 
an

d 
C

om
pu

tin
g 

Te
ch

no
lo

gi
es

 fo
r S

m
ar

t G
rid

s (
Sm

ar
tG

rid
C

om
m

) |
 9

78
-1

-6
65

4-
55

56
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

Sm
ar

tG
rid

C
om

m
57

35
8.

20
23

.1
03

33
87

8

Authorized licensed use limited to: Penn State University. Downloaded on July 20,2024 at 19:15:44 UTC from IEEE Xplore.  Restrictions apply. 



not be able to capture the underlying physics accurately

without abundance of data [14]. A physics-informed data-

driven model is a combination of physics-based modeling and

data- driven modeling. It incorporates prior knowledge and

assumptions about the underlying physics or mechanisms into

the model construction process, while also using data to refine

and validate the model. This approach aims to improve the

accuracy and physical consistency of the model by leveraging

the strengths of both approaches.
The purpose of developing mixed approaches is to improve

the reliability of the obtained relations through fundamental

principles. A physics informed neural network with sparse re-

gression has been discussed in [15] which possesses the salient

features of interpretability and generalizability, to discover

governing PDEs of nonlinear spatiotemporal systems from

scarce and noisy data. Another advantage of physics informed

data-driven modeling is its flexibility and adaptability. It can

be easily updated and retrained with new data, allowing them

to adapt to changing conditions and environments. They can

also be easily integrated with other models or systems, such as

control systems or optimization algorithms [16]. Developing

a reliable data-driven model involves using statistical and ma-

chine learning techniques in combination with a physics based

approach to extract patterns and relationships can be used to

make future predictions. These models are often based on

simple and interpretable functions, such as linear or nonlinear

regression models, decision trees, or neural networks [17]. In

the context of predictive models, computational complexity

can be a significant factor to consider, as it can impact the

feasibility and real-time applicability of the model [18].
Combining physics-informed model with sparse identifi-

cation for non-linear dynamics is a topic that is currently

being explored in multiple fields. The work in [21] shows

that the learned relationships can be utilized as a surrogate

model which, unlike typical data-driven surrogate models,

relies on the learned underlying dynamics of the system

rather than large number of fitting parameters. A structure-

preserving neural SINDy algorithm has been presented is

[22]. A physics-Guided Sparse Identification of Nonlinear

Dynamics for Prediction has been developed specifically for

application to Vehicle Cabin Occupant Thermal Comfort in

[23]. The precise identification of bistable nonlinear stiffness

force using the algorithm proposed in [24] is used to predict

and enhance the system performance of the vibration energy

absorption. The existing physics informed identification meth-

ods have been tailored to solve the prediction problem for

different application domains using some basic knowledge of

the system considered in the specific domains. Hence, it cannot

be directly extended for identification of microgrid dynamics.

Drawing inspiration from the aforementioned works, a physics

informed sparse identification has been proposed in this paper

for application in the power systems domain.
The major contributions of this paper can be listed as:

1. A hierarchical multi-layered sparse identification algo-

rithm is developed for power systems application to

capture the non-linearities in the microgrid transient dy-

namics. This method is successful in predicting the future

operating states of the microgrid model under various

disturbances.

2. While the offline training and identification of the model

has a high computational cost, it has been verified that

the validation and prediction of the model is much more

cost effective and can be considered as an improved step

towards developing a reliable model predictive controller.

The remainder of the paper is organized as follows. Section

II outlines the different mathematical concepts that drive the

design and development of the prediction model. It includes

the physics behind the selection of a multi-layered hierarchi-

cal sparse identification method. Section III provides some

numerical examples to validate the efficiency of the proposed

algorithm. Conclusions are drawn in Section IV.

II. HIERARCHICAL MULTI-LAYERED SPARSE

IDENTIFICATION

A. Essential idea of hierarchical SINDy

In the hierarchical multi-layered Sparse Identification of

Non-linear Dynamics (SINDy)-based identification method,

two layers of sparse identifications are used to develop the

data-driven identification model. The first layer is used to

create different standard knowledge power system terms which

are primarily responsible for the non-linearities in the overall

system. The second layer uses the knowledge of the terms

identified in the primary layer to fit the dynamics and obtain

the set of all the differential equations that describe the

transients in the system.

The transient dynamics of the microgrid model can be

mathematically described by a set of differential-algebraic

equations (DAEs),

ẋ(t) = f
(
x(t),y(t),u(t)

)
, (1a)

0 = g
(
x(t),y(t),u(t)

)
, (1b)

where x ∈ R
n is the state variable vector, e.g., state variables

in the controller of DER power-electronic interfaces, y ∈ R
m

is the algebraic variable vector, e.g., bus voltage amplitude

and angle, and u ∈ R
p represents the input variations/

disturbances, e.g., power output fluctuation of PV and power

load changes. Before moving on to detailed explanation of

the hierarchical SINDy model, the preliminary knowledge of

some of the non-linear terms in a microgrid are given below:

B. Trigonometric non-linearities

The dq transformation is used to convert a three-phase signal

into two orthogonal components, namely the d-axis and the q-

axis, which simplifies the analysis and control of three-phase

systems. The d-axis component is proportional to the average

value of the three-phase signal, while the q-axis component is

proportional to the quadrature component of the three-phase

signal. This consists of cosine and sine terms - trigonometric
non-linearities.

The dq transformation is a mathematical tool used in power

systems to convert a set of voltage or current phasors in a
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rotating reference frame into a two-dimensional space in the

dq reference frame.

[
d
q

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
xR

yI

]
(2)

Here, xR and yI denote the real and imaginary components

of the phasors respectively. The dq transformation allows for

easier control of the power electronic converters, as it separates

the control of the active and reactive power flows. The d-

axis component is responsible for controlling the active power

flow, while the q-axis component controls the reactive power

flow. This allows for more efficient and effective control of

the power flow, leading to better performance and stability of

the microgrid.

This transformation can be used to obtain the d- and q-axis

components of the voltage and current phasors.

Fig. 1. Reference frame for voltage and current phasors transformation

Here, xR represents the real part of the phasor and yI

represents the imaginary part of the phasor. θ represents the

phasor angle from the phase locked loop.

C. Quadratic non-linearities

The voltage magnitude is another important parameter that

is used to describe the state of the system. The non-linearity

of this term arises from the following equation formulation:

Vm =
√
V 2
x + V 2

y (3)

The quadratic term (polyorder = 2) contributes to the non-

linearity.

The input data required for the primary layer of the hierar-

chical SINDy model are the system state variables data (x(t))
and the output bus voltage (v(t)) and line current data (i(t)).
This is given by Eq. 4.

XL1 =

⎡
⎢⎢⎢⎣

x1(t1) · · · xn(t1) v1(t1) · · · vp(t1) i1(t1) · · · ip(t1)
x1(t2) · · · xn(t2) v1(t2) · · · vp(t2) i1(t2) · · · ip(t2)

...
...

...

x1(tm) · · · xn(tm) v1(tm) · · · vp(tm) i1(tm) · · · ip(tm)

⎤
⎥⎥⎥⎦ (4)

Candidate functions are the set of different possible non-

linear functions that are typically used to represent the dynam-

ics of the desired application domain. The library of candidate

functions for the first layer of the heirarchical SINDy can be

established as:

ΘL1(X,V, I) = [ 1 X XP 2 · · ·
sin(X) cos(X) V XV
sin(V) cos(V) · · ·

I XI · · ·
sin(I) cos(I) · · ·

X sin(X) · · ·
I sin(X) V sin(X) · · · ]

(5)

Let the non-linear functional space of terms be defined by

Φ.

Φ = ΞL1Θ
T
L1(X,V, I) (6)

Sparse Regression is performed to identify these special

non-linear terms using input data sent to the first layer of

the SINDy algorithm. Eq. (7). represents the set of sparse co-

efficients that can fit the overall dynamics of the system with

the proposed candidate functional space. Eq. (8). provides the

details of the regression method used in this paper.

ΞL1 = [ξl11 ξl12 · · · ξl1n] (7)

ξk = argmin
ξ′k

||Θξ′k −Φk||2 + λ||ξ′k||1, (8)

In addition to the already gathered system state variables

data, the identified non-linear functional data, represented by

Φ are added to develop the input data for the second layer

of the heirarchical SINDy model. Since, the non-linearities

are already identified in the previous layer, the computational

effort of the second layer can be significantly reduced. This

is because, the simple case of polyorder ’1’ can be chosen to

build the candidate functions.

ΘL2(X,Φ,U) = [1 X Φ U] (9)

Here, X is the set of all the state variables. Φ is the output

of the first layer of the developed model which comprises

of the algebraic terms contributing to the non-linearity in the

model. U is the external disturbances that drives the system

dynamics.

Ẋ = ΞL2Θ
T
L2(X,Φ,U) (10)

ΞL1 and ΞL2 are the sparse vector coefficients identified

by regression. Multiple regression methods such as Ordinary

Least Squares (OLS) regression, Ridge regression, Least Op-

erator Shrinkage and Selection Operator (LASSO) can be

used. The LASSO-type optimization problems can be solved

by using various proximal Newton methods which are also

used for solving convex composite optimization problems [20].
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TABLE I
DER GENERATIONS AT EACH BUS

Bus Pn(kW ) Qn(kV AR)
1 62.9 77.8
3 80.2 30.5
6 40.5 0

TABLE II
POWER LOADS AT EACH BUS

Bus Pn(kW ) Qn(kV AR)
2 12.7 7.9
5 42.5 26.3
7 61.1 37.9
8 40.0 24.8
9 12.7 7.9

This paper utilizes the LASSO regression technique which is

outlined by Eq. (7) in which Λ gives the sparsity constraint.

The differential equations of the microgrid DAE model are

identified using the heirarchical multi-layered SINDy algo-

rithm. In this work, the network topology details are assumed

to be known to the system operator and the algebraic part can

be modeled based on the prior knowledge.

III. NUMERICAL EXAMPLES

The microgrid system used for verifying the identification

and prediction of the transient dynamics using hierarchical

multi-layered sparse identification is given in Fig. 2. The

circuit breaker 1 in the test system is open making the

microgrid operate in islanded mode. The three generation units

in this system are the micro-turbine, battery storage and PV

system connected as buses 1,3 and 6 respectively. Constant

impedance load is considered at buses 2,5,7,8 and 9. The

system topology, the generation details and the load details

are given in Table I, II and III. Multiple disturbances are

introduced in the system to understand the transient dynamics

of the model which is used for preparing the training data.

The details of the disturbances used for training the model

are provided in Table IV. The input disturbances used in the

prediction model is given by Table V.

Fig. 2. 10 bus test system with 3 generation units

The circuit breaker connecting the microgrid with the main

grid is open. Thus, the simulated microgrid is being operated

TABLE III
LINE IMPEDANCE BETWEEN BUSES

From To R(Ω/km) L(H/km) Length(m)

10 2 0.0153 1.039× 10−6 45
10 3 0.0020 1.606× 10−6 30
3 1 0.0086 1.360× 10−6 30
3 6 0.0096 3.761× 10−6 50
3 4 0.0024 1.927× 10−6 50
4 5 0.0032 8.061× 10−6 50
4 7 0.0041 3.212× 10−6 45
7 8 0.0345 2.338× 10−6 20
7 9 0.016 4.449× 10−6 20

in the islanded mode. Fig. 3 and Fig. 4 provides the plot

to show the effectiveness of the training and testing of the

proposed algorithm. The observable output variables of interest

are mainly the bus voltage magnitude and phase angle. The

grid forming generator’s bus voltage magnitude is depicted in

these figures. The identified data closely follows the training

data-set with minimal error.

0 2 4 6 8 10 12 14
Time (s)

0.8

0.9

1

1.1

1.2

B
us

 V
ol

ta
ge

 M
ag

ni
tu

de
 (p

.u
.)

Identified System
System Prediction
Training Data
Testing Data
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TABLE IV
INPUT DISTURBANCES - TRAINING

Time (s) Vref Δωref Pref Qref

0.0 - 1.0 s 1.0 0.0 −10% +20%
1.0 - 1.5 s 1.03 0.05 −30% +30%
1.5 - 2.0 s 1.05 -0.05 +1% −80%
2.0 - 2.5 s 0.98 0.0 −15% +10%
2.5 - 3.0 s 1.08 0.02 −60% +10%
3.0 - 3.5 s 0.95 -0.04 −40% +10%
3.0 - 4.0 s 0.95 -0.04 −40% +10%
4.0 - 5.0 s 0.92 0.04 +10% +80%
5.0 - 6.0 s 1.01 0.0 −60% −40%
6.0 - 8.0 s 0.98 0.0 −90% −80%
8.0 - 8.5 s 1.03 0.07 +30% +40%
8.5 - 9.0 s 0.95 -0.08 −50% −70%
9.0 - 9.5 s 0.92 0.08 +40% +50%
9.5 - 10.0 s 1.0 0.0 −20% 0%

TABLE V
INPUT DISTURBANCES - PREDICTION

Time (s) Vref Δωref Pref Qref

10.0 - 11.0 s 1.0 0.0 −60% +5%
11.0 - 12.5 s 1.2 0.04 +10% +20%
12.5 - 14.0 s 0.8 -0.04 +5% −15%
14.0 - 15.0 s 1.0 0.0 −40% +85%

The trigonometric and quadratic transformations of the

voltage and line current data are obtained from the primary

layer of the proposed method. The secondary layer fits the

non-linear functions to determine the transient dynamics. It can

be observed that the effect of the dynamics propagate to the

algebraic network constraints, i.e. the bus voltage magnitudes

and phase angles obtained through power flow.

Based on the identified model, new input disturbances are

provided after t = 10s to verify the prediction capabili-

ties of the proposed data-driven technique. The same input

disturbances are used to develop a test data set using the

actual microgrid model. Satisfactory performance is observed

through the prediction results.

It can be seen that the loads are connected to buses 2, 5, 7, 8

and 9. The input disturbances are usually provided in the form

of load changes and generation changes. Thus, it is important

to observe the tracking performance of the bus voltages at the

load buses as well. Fig. 5 provides the plot consisting of the

voltage magnitude at the load bus 2. It can be seen that the

predicted data is very close to the testing data under constant

load and power generation variations. This work utilizes a con-

stant impedance load model. As per the authors’ knowledge,

constant impedance, constant current and constant power loads

can also be leveraged in this identification algorithm to develop

a satisfactory prediction that can be used for controlling the

microgrid’s future operations.

The bus voltage magnitude and phase angles can be obtained

through the measurement devices. While, it is not common to

measure all the bus voltages, this work presumes the localized

measurement of all the bus voltages and line currents. The state

variables are not easily obtainable in real-time applications. In

this work, we assume the availability of all the state variables

data to further validate the proposed algorithm. In an inverter
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Fig. 5. Training and prediction results of the load bus voltage

based integration, the PLL output and the dq-axis modulation

indices are some of the most dominant state variables and the

training and prediction results of these states are provided to

elucidate the effectiveness of the developed prediction model.

The effective prediction of the dominant state variable can

be seen in Fig. 6. The average root mean square error between

the training data and the identified data was found to be

around ±1.79e−4% across all the state variables. Similarly,

the average root mean square error between the testing data

and the predicted data was also calculated and was found

to be around ±3.46e−2% across all the state variables. The

comparison of the proposed algorithm with SINDy is shown in

Fig. 7. It can be seen from the plot, that the identification and

the prediction of the proposed method performs significantly

better than the SINDy algorithm with the given set of data.

Another advantage of the proposed method is based on the

computational resource requirement. To successfully train 10s
of the model in MATLAB, 137.593s of simulation time was

required. To predict the model dynamics for 5s, the simulation

time required was 7.469s. Thus, it can be concluded, that the

model can be trained offline and the developed data-driven

model has can operate in a range close to real-time operation

which is advantageous while controlling the system in real-

time.

While the proposed algorithm is advantageous to determine

the dynamics of a microgrid subject to changes, the authors

observed a significant increase in the amount of data required

as the system complexity increases and can possibly pose some

challenges in the data collection process.

IV. CONCLUSION

A hierarchical multi-layered sparse identification algorithm

has been developed in this paper to capture and predict the

non-linear transient dynamics of the microgrid. Numerical

results have been provided to elucidate the successful training

and prediction of the operating states and output variables

of the microgrid model under varying input disturbances. An

accurate prediction model is advantageous while developing

model predictive controller as it enables the anticipation of
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the future behavior of the microgrid system. To further elu-

cidate the advantages of the proposed method, the authors’

future work comprises of comparison with various network

topologies to verify the statistical significance of this method.
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driven model predictive control with stability and robustness guarantees.”
IEEE Transactions on Automatic Control, 66(4), 1702-1717.

[12] Sun, Ying, Fariborz Haghighat, and Benjamin CM Fung. “A review
of the-state-of-the-art in data-driven approaches for building energy
prediction.” Energy and Buildings 221 (2020): 110022.

[13] Kaiser, Eurika, J. Nathan Kutz, and Steven L. Brunton. “Sparse identifi-
cation of nonlinear dynamics for model predictive control in the low-data
limit.” Proceedings of the Royal Society A 474.2219 (2018): 20180335.

[14] Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. “Physics-
informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations.” Journal of Computational physics 378 (2019): 686-707.
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engineering.” Comptes Rendus Mécanique 347, no. 11 (2019): 845-855.

[16] Chen, Zhao, Yang Liu, and Hao Sun. “Physics-informed learning of
governing equations from scarce data.” Nature communications 12, no.
1 (2021): 6136.

[17] Kim, Yong Soo. “Comparison of the decision tree, artificial neural
network, and linear regression methods based on the number and
types of independent variables and sample size.” Expert Systems with
Applications 34, no. 2 (2008): 1227-1234.

[18] Karamanakos, P., Liegmann, E., Geyer, T., Kennel, R. (2020). “Model
predictive control of power electronic systems: Methods, results, and
challenges.” IEEE Open Journal of Industry Applications, 1, 95-114.

[19] Nandakumar, Apoorva, Yan Li, Honghao Zheng, Junhui Zhao, Dongbo
Zhao, Yichen Zhang, Tianqi Hong, and Bo Chen. “Data-Driven Mod-
eling of Microgrid Transient Dynamics through Modularized Sparse
Identification.” IEEE Transactions on Sustainable Energy (2023).

[20] Li, Xudong, Defeng Sun, and Kim-Chuan Toh. “A highly efficient
semismooth Newton augmented Lagrangian method for solving Lasso
problems.” SIAM Journal on Optimization 28, no. 1 (2018): 433-458.

[21] M. Corbetta, ”Application of sparse identification of nonlinear dynamics
for physics-informed learning,” 2020 IEEE Aerospace Conference, Big
Sky, MT, USA, 2020, pp. 1-8, doi: 10.1109/AERO47225.2020.9172386.

[22] Lee, Kookjin, Nathaniel Trask, and Panos Stinis. ”Structure-preserving
sparse identification of nonlinear dynamics for data-driven modeling.”
Mathematical and Scientific Machine Learning. PMLR, 2022.

[23] Warey, A., Kaushik, S., and Han, T., ”Physics-Guided Sparse Identi-
fication of Nonlinear Dynamics for Prediction of Vehicle Cabin Oc-
cupant Thermal Comfort,” SAE Technical Paper 2022-01-0159, 2022,
https://doi.org/10.4271/2022-01-0159.

[24] Liu, Q., Cao, J., Zhang, Y., Zhao, Z., Kerschen, G. and Jing, X., 2023.
Interpretable sparse identification of a bistable nonlinear energy sink.
Mechanical Systems and Signal Processing, 193, p.110254.

Authorized licensed use limited to: Penn State University. Downloaded on July 20,2024 at 19:15:44 UTC from IEEE Xplore.  Restrictions apply. 


