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Abstract—Modeling from the perspectives of software engi-
neering and systems engineering have co-evolved over the last
two decades as orthogonal approaches. Given the central role of
software in modern cyber-physical systems and the increasing
adoption of digital engineering practices in complex systems de-
sign, there is now significant opportunity for collaborative design
among system users, software developers, and systems engineers.
Model-based systems engineering (MBSE) and systems modeling
languages can support seamless cross-domain connectivity for
design, simulation, and analysis of emerging technologies such
as Augmented Reality (AR). This paper presents a co-design
process for extending the capability of an existing AR application
referred to as a No-Code AR Systems (NCARS) framework.
NCARS enables content developed by multi-domain authors to be
deployed on AR devices through a software layer that bridges the
content to the game engine that drives the AR system. Utilizing
a software dependency diagram of the AR Annotation function,
an existing MBSE model of the AR system is extended to include
the structure and behavior of relevant software components.
This allows a modular design of the system to address needs in
integrating new requirements into the existing application. New
user requirements for tracking items in motion in the user’s
physical environment with virtual annotations in the augmented
space are collaboratively designed and visualized through use
case, block definition, internal block, and sequence diagrams.
They capture the required structure and behavior of the proposed
to-be system.

Index Terms—Augmented Reality, Digital Transformation,
Dynamic Annotation, Model-Based Systems Engineering, Item
Tracking, Software Engineering

I. INTRODUCTION

As immersive experiences with augmented reality (AR) and
virtual reality (VR) devices become more accessible, there
is a growing need for the design of applications that will
support more adaptable and customized human-technology
interactions with such systems. This is echoed in the premise
of emerging Industry 5.0 that expects industrial work contexts
and environments that have adopted the automation and data-
driven technology of the last decade to ensure the well-
being of workers who will interface with this technology [1]—
[3]. This goal includes leveraging the resilience of humans
in utilizing technology to enhance their skills, collaborative
capacity, and build safer work environments and practices.
Grech et al. [4] examine the potential of artificial intelligence

(AI) and VR technologies for product ideation in collaborative
spaces. The authors demonstrate that an Al-supported VR
environment facilitates brainstorming, creativity, and immer-
sion of team members in the design process. It enhances
focus and interpersonal relationships, ultimately improving
product creation and collaboration. Quandt et al. [5] present
a user-centered design approach for evaluating an AR-based
assistance system. They develop an AR system to assist users
in maintaining heating, air conditioning, and cooling systems.
The authors demonstrate that the integration of user-based
evaluations throughout development reduced users’ frustration
in interacting with the new system from 35 to 27.22 on the
grading scale. Villani et al. [6] evaluate an adaptive industrial
automation system, INCLUSIVE, through three real industrial
use cases with 53 shop workers. The framework assessment
considers performance metrics that include worker satisfaction
and usability. Their results indicate that 79% of workers
are satisfied with the human-machine interface and the task
completion time is reduced by 36.9%. Although some chal-
lenges are associated with user-technology interactions, the
methodology presented by these studies show that AR systems
can be iteratively refined based on practical user experiences
to align with the principles of Industry 5.0: emphasizing the
seamless integration of human and technological elements.
The integrated system comprising the AR device, the
physical environment of the user, associated data networks,
sensors, embedded systems, and computing infrastructure can
be recognized as a class of cyber-physical systems (CPS) that
also include humans in the loop. The use of AR systems
has been increasing across industrial, health, and manufac-
turing domains [7]-[9]. For example, there is a tremendous
opportunity for immersive technologies to provide point of
care diagnostics across a spectrum of scenarios, such as
during surgical operations [10], in clinical practices [11],
nursing [12], and health education [13]. The humans in the
loop include, in addition to AR system users, other decision-
makers who are often interested in better understanding if
these digital technologies are fit for purpose and their flex-
ibility for improving the efficiency of relevant operations in
their organization. The well-being of health professionals and
their clients is of paramount importance, and to support this, it



is critical that as digital transformation takes place across the
workplace, a systems and design thinking process is integrated
for addressing specific needs of individuals and units that are
adopting these technologies [14].

Model-Based Systems Engineering (MBSE) has the poten-
tial for the various partners involved to engage in the design
of AR applications and contribute to new capabilities required
by the system users. MBSE and Systems Modeling Language
(SysML), which is a graphical language for MBSE designed
to extend the Unified Modeling Language (UML) for software
specification, has been applied to describe the requirements,
structure, and behavior of complex systems. The potential of
SysML for describing the software that drives these systems
in a modular approach is explored in this work. As noted
by Hause and Thom [15], by modeling software specification
using SysML, software engineers can benefit from the system
model context, offering a level of rigor above what can be
achieved in standard software engineering approaches. This
paper demonstrates this advantage using the example of ap-
plying the AR Annotation function for a new requirement and
discusses a framework for systematic integration of software
engineering models in the MBSE framework.

The paper is organized as follows. A brief background of
the AR model-based system design using SysML is presented
in Section II. Section III discusses a software conceptual
dependency diagram for high-level mapping of the software
artifacts to a SysML-based representation. Section IV extends
our prior SysML model of the AR system to include essential
software dependencies and enable efficient design of new ca-
pabilities. An example of how such an extended software and
system model can enable agile software design is presented
in Section V. Section VI summarizes the paper and discusses
future work in democratizing human-centric AR design.

II. BACKGROUND

In our prior work [16], [17], a systems-level description
of the AR application design and deployment for a table-
top conveyor system shown in Fig. 1 was presented using
SysML. The AR application design was referred to as a No-
Code AR Systems (NCARS) framework, in keeping with the
objective of enabling users across multiple domains to create
their applications of interest and deploy them on the AR device
without the need for extensive coding expertise. In this work,
we extend this model to include the design of the underlying
software artifacts that enable NCARS to deploy user-generated
applications. When a user requires additional capability of the
AR system to support their application, software developers
can benefit from both a system and a software model to
efficiently extend the code to support the required capability.

The conveyor system is equipped with ferrous and non-
ferrous metal detector sensors placed at specific locations to
detect the presence of metal pegs and plastic washers. The
system consists of continuous belt loops that move across the
system, terminating in three different outlets. The integration
of AR devices into the conveyor system enhances the operation
efficiency by providing the operator with real-time information

Fig. 1. Conveyor belt system

and data about its various components. The AR augmentation
provides seamless monitoring and management of the material
in transit, allowing quick decisions and interventions.

A high-level use case of NCARS with its as-is capability
is shown in Fig. 2. NCARS supports the four activities of
Annotation, Guidance, Navigation, and Safety. In Annotation,
the user can request just-in-time information of physical items
of interest. With Guidance, the user is presented with virtual
information bubbles that contain information to complete a
sequence of tasks. The user may choose Navigation, which
presents virtual navigational signs such as arrows that support
them in navigating a physical environment. Through Safety,
the user will be informed of the status of various safety
parameters and alarms.

uc [Package] 2.1-NCARS[ NCARS As-Is ] )

«system context»
NCARS

«extend» _— — —
Use ARD —_ _«extend»
2] -
, -~

=~ — «extend»
&

User ~
I \ ~ =~
~
| \ ~ «extend»
«include» | \ «include» S
I N A
\ ~

~

| \

Register ARD

Fig. 2. Primary (As-Is) capabilities of NCARS

NCARS has been designed within the larger context of
an application stack. A game engine such as Unity [18]
or Unreal [19] is the bottom-most layer and provides the
rendering capability for the application. It renders multi-model
graphics and audio. NCARS rides on the game engine and
simplifies the use of the game engine for the supported four
activities. It offers a more restrictive interaction than a general
game but makes it easier for application development. On top
of NCARS is the Human-Centrc design layer, where content
from domain experts who are using the AR device is generated
and managed by the NCARS layer. This content can be in



the form of documents, audio, video, or other domain-specific
artifacts that are required to be produced in the augmented
space.

NCARS uses a registration method presented in [20]. The
registration method and NCARS architecture restrict the anno-
tation to prespecified fixed locations on the conveyor system in
the AR field of view (FOV). This paper considers an extension
of NCARS that will allow the annotation of items in motion,
i.e., pegs and washers, that move on the conveyor system in
the FOV.

By extending the MBSE model of the AR system to in-
clude software dependencies for functions such as Annotation,
programmers working at the NCARS layer are provided the
structure and behavioral models of the software that can be
extended to support new capabilities of the AR system.

III. AR APPLICATION SOFTWARE STRUCTURE

This section discusses the software design of the Annotation
function in NCARS. This function allows the system to present
annotations in the FOV that have useful information relating
to the user’s point of interest. The term object will refer to
an instance in the software engineering context, and the term
item will refer to any part or component that the user interacts
with in the physical world. Artifacts may refer to annotations
in the augmented space, such as an information bubble, an
audio clip, or an image presented to the user. The user interacts
with this artifact by accepting the cue and may, in response,
affect actions in the physical world via some physical item.
For example, an annotation may instruct the user how to reset
the system, and in response, the user may press and hold the
reset button.

The software architecture for the Annotation system in
NCARS is conceptualized and presented as a high-level class
diagram in Fig. 3. This diagram emphasizes the aspects of the
software that acquires and presents the annotations in the FOV
and attaches them to the corresponding physical items in the
user’s environment. This diagram is a typical class diagram
in object-oriented design where each block defines a class or
an interface. Classes are the template definition of a design
element and represent the elements that are changeable by
the software designer, whereas the interface blocks represent
elements from external systems whose behaviors are exposed
through Application Programming Interfaces (APIs) and are
normally considered as black-boxes. The properties and be-
haviors of the design element are represented by the block’s
properties and methods, respectively. They have a form of
<property: type> and <method(): return type>. The return
type of a method may be omitted if no element is returned. The
solid line arrows between class blocks represent an association
relationship. This indicates that an instance of the class at
the arrow’s tail references the instance of the class to which
the arrow is pointing, allowing access to their methods and
attributes. The value at the arrowhead (e.g., 0..1) specifies the
limit of permitted connections. The dashed line arrows from
one class block to an interface block represent the dependency

relationship, indicating that the internal structure of one class
relies on the given interface.

The central class is AnnotationController, which updates
and controls the life cycle of all virtual annotations. The
controller depends on the AR device’s interface for the inputs,
which are the user’s hand gestures, voice commands, and the
embedded camera’s direction. An interface to the external
Computer-Aided Design (CAD) server is required for ray
casting [20] to detect if the user is looking or pointing at
an item and to acquire the position of a known item. The
controller obtains the server information from AppConfig,
including IP addresses and API interfaces, and the communi-
cation is carried out asynchronously. Virtual annotations will
be generated and managed by the controller when the user’s
hand or AR device camera intersects with pre-defined items
in the physical environment. They are rendered in the form
of information bubbles and instruction panels. The former is
generated directly inside the controller, while a reference to
the InstructionPanel class is used to reduce the workload of
the controller class. The virtual annotations carry information
about the item and are placed at the exact position of the item.
The other classes in the diagrams are used to represent either
a data type or information exchanged between the classes.

Although this class diagram is a convenient visual tool in
object-oriented design, it lacks several behavioral details that
can be better represented in SysML. To demonstrate these
benefits, we translate and improve the design in a systems
modeling framework. The migration to SysML also brings
traceability and error detection capabilities that help to scale
up the design and extend the framework with new applications.

IV. EXTENDING THE AR SYSTEM MODEL WITH
SOFTWARE DEPENDENCIES

This section illustrates how SysML Block Definition
(BDD), Internal Block (IBD), and Sequence diagrams serve
to show the structure and behavior of various interacting
components in the NCARS system context, in more detail than
a typical object oriented design model.

The high-level system structure is depicted in Fig. 4. This
includes a layer of the AR application hardware and software,
the physical system, the communications network that inter-
connects all components, and the AR application data that
includes artifacts required for the application. The AR hard-
ware includes devices, such as the Microsoft® HoloLens and
Magic Leap®, and various servers for monitoring, computing,
and databases that store CAD models of the physical system
and application-specific data. The AR system users are also
included in this structural diagram, capturing the various users
that potentially interact with the system. Blocks within the red
dashed rectangle and thicker borders show new components
added to the as-is system as a proposed solution to extend
its capability. The use of these new components is further
described in Section V.

The relationship between the blocks is captured by the
specific direction and shape of the arrows that connect the
blocks. A solid line with a filled diamond arrow represents
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Fig. 3. The conceptualized class diagram of the Annotation Function in NCARS
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Fig. 4. High level NCARS system structure

a direct composition, indicating that NCARS is composed of
AR-App-HW, AR-App-SW, and AR-App-Data. The Servers
block is composed of the Monitoring Station, Data, CAD, and
Compute servers. If child blocks can exist independently of
the parent, a directed aggregation is shown as a solid line with
an open diamond. This is the case with physical systems and
networks, and the relation between AR-App-HW, AR devices,
and USB Cameras. A solid line with an open arrowhead
represents a unidirectional association with another block, as
seen in the AR system users’ interactions with the NCARS
system for particular purposes, noted against the arrow. The

type of dependency between blocks is indicated by the dotted
line with the open arrow. use indicates that a block utilizes
another whereas Item Flow specifies items being sent from one
element to the other. Fig. 5 elaborates on the AR contents and
coordinates Item Flow, describing the data types store in Data
and CAD servers. The data may correspond to the contents
generated by domain experts as described in Section III. The
solid line with a closed arrowhead in this figure shows the
generalization relationship, e.g., Animation is the sub-type of
3D AR content.
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Fig. 5. Components saved in DATA and CAD servers from Data sources

The AR-App-SW block is expanded in Fig. 6. While Fig. 3
focuses on the Annotation features, Fig. 6 includes software
assets that support NCARS for the four tasks. Blocks represent
classes or sub-classes in the software, and each block is further
classified into domain or functional classes. Domain class



blocks define attributes and methods specialized to each of
the activities that NCARS supports, whereas functional class
blocks define supporting features that are reusable by multiple
domain classes and also act as an interface to convey user
inputs to the software application.

The orange-colored, thinner highlighted boundaries indicate
that the object instances corresponding to these classes would
be executed once in the application. In contrast, object in-
stances shown without these boundary highlights have func-
tionalities that are executed multiple times until the object
instance is inactivated.

Note that the GestureRecognition and KeywordManager
interface classes in Fig. 3 belong to the User Input Manager
block. The AppConfig and InstructionPanel classes that in-
teract with the AnnotationController class are also included,
along with other classes such as Registration and Calibrate-
Menu, which are required for NCARS.

A block inside the red dashed rectangle denoted with thicker
boundary emphasizes a new class to be added to extend the
AR system’s as-is capability. Section V further describes this
new capability design.
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Fig. 6. High-level AR application software structure

With the high-level structure constructed, each of NCARS
functions will be further described. Fig. 7 shows the Annota-
tion as-is system. This is equivalent to the translation of the
conceptualized software diagram shown in Fig. 3, excluding
the interfaces. The Annotation Controller is composed of a Ray
with data type of Vector 3D, which is a reusable component.
The controller associates with User Input Manager and App
Config to perform the required operations. The two properties
with data type IP Address in the App Config block specify
the servers’ addresses in the network environment. Also, the
controller manages the Virtual Annotation.
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Fig. 7. Annotation as-is system structure

The particular detail, i.e., specifying what is being ex-
changed via object interactions is abstracted from software
models and naturally represented in IBD diagrams. This level
of detail, and other capabilities of the MBSE framework, can
be leveraged to engage systems and software engineers in
extending system capabilities. The IBD in Fig. 8 depicts how
the components in the NCARS system interact to perform the
Annotation feature. The small squares attached to the border
of blocks are ports, which are points where the component
and external entities interface. A line connector between two
ports conveys the transfer of data or objects. The Annotation
Controller block inputs user actions such as voice or gestures.
Through the controller, the CAD server receives these inputs
to process the user requests for specific annotation labels. The
controller then initiates or updates the virtual annotation with
this information from the CAD server.
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Fig. 8. Annotation as-is system connection



The sequence diagram shown in Fig. 9 provides further
detail on the dynamic behavior of the components described in
Fig. 8, depicting the operations that are invoked sequentially.
An open arrow indicates an asynchronous operation whereas
a closed arrow shows synchronous behavior. A response is
denoted by a dashed line. The first three messages represent
the sequence of behaviors invoked during the registration
process. The Calibration operation is only initiated when the
user chooses to generate new virtual landmark points. This
operation is required when the user starts the application and
the AR device is at a new position relative to the physical sys-
tem, i.e., the table-top conveyor belt. To account for the time
duration until the server completes the computation process,
the Calibration operation is called asynchronously. When the
Annotation feature of NCARS is activated without any error in
the registration process, the rest of the interactions are invoked
when the guard condition (viz. timeDiff and rayDiff) is met.
The user inputs, i.e., ray, are sampled at intervals of one second
when an angle difference between successive rays are smaller
than five degrees. If the ray intersects with an item, virtual
annotations will be generated. These interactions are repeated
until the user terminates the application.
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Fig. 9. Annotation as-is system interaction shown in sequence diagram

Representing the structure and behavior of the software
architecture in SysML helps inform where a new capability
can be added and which of the components would be affected
or reused. The next section describes the design of additional
components to achieve an extension of the system.

V. ADDING NEW AR CAPABILITY: OBJECT DETECTION
AND TRACKING IN AUGMENTED SPACE

This section discusses the approach to efficiently extend the
as-is system model described in the previous section with a

new AR application capability required by a user. The new
requirement is that a moving object in the physical space is to
be augmented with a new annotation label each time it changes
position. It includes tracking items of interest, classifying
them, and annotating their positions as they move with new
virtual information labels. Such applications are important in
several domains such as an assembly line worker following
annotated instructions as an object they are working on moves
to a new station or a physical therapist requiring their client to
follow a moving object with hand, head, or eye movements.
The new AR application capability is presented using an
updated use case diagram shown in Fig. 10. This extends the
use case diagram shown in Fig. 2 with a new function denoted
Tracking, which is shown to include functions for the user to
select items in the physical space that are to be tracked.

uc [Package] 2.2-NCARS[ NCARS To-Be ] J

«system context»
NCARS

«extend»
j«extend»
N>
|
l«include»

|
| T -
!

|«extend»

«extend»

l .
«include»
|

— Register ARD

Select items to
track and
annotate

«include»

Fig. 10. Use Case describing a new capability of NCARS

The new functionality can be achieved by various methods
such as sensor- or vision-based approach. The architecture
demonstrated in this paper utilizes streaming inputs from an
external camera for detection and tracking. The fo-be system is
designed based on this approach. The software developer will
need to integrate a new class in the software that is denoted
as Item Detection & Tracking Controller in the IBD shown
in Fig. 11. This class extends the Annotation functionality
with new operations of creating a position-dependent label and
augmenting the physical space with this label.

The to-be system shown in Fig. 11 is designed to have a
similar structure as the Annotation as-is system described in
Fig. 8. This is to leverage the use of existing functionality and
minimize the needs of additional components to be added to
achieve agile development. New components are highlighted
by the color blocked (red) rectangles. The Item Detection
& Tracking Controller receives data on the user’s items of
interest and sends it to the CAD server. The compute server
receives the target items from the CAD server and outputs
the results of the detection and tracking operations. The CAD
server saves and translates the data to virtual coordinates. The
controller will then receive the information and annotate the
virtual space. Once the target item is selected, the compute
server continuously outputs positional data to the CAD server
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Fig. 11. Tracking to-be system

as long as the target item is found in the streaming data from
the camera. This communication happens asynchronously;
thus, the connection protocol, such as the WebSocket, is
utilized with the controller being a client to maintain the
communication with the server.

Preparing the system to detect and classify specific items
in the physical space from a video capture device requires
a number of tasks. Components required to undertake these
tasks are summarized in Fig. 12. It includes the required
software and hardware components that enable these tasks.
The pre-trained You Only Look Once version 8§ (YOLOVS)
algorithm [21] is utilized for item classification, and it is
deployed onto the computer server. Pegs and washers are
examples of Item types of interest for the table-top conveyor
system which serves as the test-bench for the model-based
design of the AR applications.

With the structure and behavior of the system realized,
a prototype of software components for the new capability
is designed and tested with an AR device. The following
summarizes the results of a partial potential solution for
detecting items in motion and annotating them, which are tasks
required for the new requirements.

A. Demonstration of integration of new capability

A new class of Item Detection & Tracking Controller class
is coded and integrated into the existing AR application.
The tracking functionality is designed to be enabled when
an user sends out a voice command, i.e., “start tracking,’
within the Annotation app. The to-be system prototype is
designed to detect items of interest, pegs and washers, at eight
locations along the conveyor belt. Fig. 13 shows the result of
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Fig. 12. Item detection components

YOLOVS algorithm for real-time detection and classification
using images streamed from an external camera. The camera
is placed at a designated location; i.e., Fig. 1 is a view seen by
the camera. The bounding box with a label p2 indicates that a
peg is detected at position 2. The value next to the label is a
confidence score indicating the probability that the predicted
box contains the classified item, i.e., peg at position 2. Upon
detection, the system initiates the transmission of pertinent
information to the AR device in the form of an information
bubble with a latency of about 1 second. Fig. 14 demonstrates
the user’s view from the AR device. This virtual annotation
will move as the item in physical space changes its position.

Fig. 13. Camera view (zoom-in)

Fig. 14. AR user view (zoom-in)

The model-based representation of the AR as-is system
enabled an agile deployment of a new capability that was
required by a user, allowing iterative and incremental system
updates, and a modular SysML design. A short demonstration
of the as-is and ro-be AR application is presented in [22].

VI. DISCUSSION

A model-based representation of an existing AR application
was utilized to integrate new software capability to satisfy
a new user requirement. With a focus on the human-centric
design of emerging technologies, MBSE and SysML are pro-
posed as a means to engage system users, software engineers,
and systems engineers on a shared platform to conceptualize
and converge on new system requirements.

Whereas software engineering tools such as class diagrams
allow visualization of the structure of the software design, they
often include details that complicate the representation of the
key architecture as the system becomes complex. They also
have limitations in demonstrating the run-time connectivity of
the functions involved. To extract a minimum set of software



components that perform the required functions, software
developers who designed NCARS worked with systems engi-
neers in the co-design of the proposed architectural diagrams
using SysML.

An existing model-based representation of the AR system
that captured the high-level NCARS capability was first ex-
tended by incorporating the underlying software components
that supports the system functions. Software architecture, their
connectivity, and behavior are described by SysML block
definition, internal block, and sequence diagrams, respectively.
A modular design approach is implemented which supports
iterative and agile development. The extension was demon-
strated by adding a new capability to the NCARS Annotation
function, enabling it to detect and annotate moving items
in the physical space. A new class for Item Detection and
Tracking was proposed, and its dependence on existing objects
in NCARS and the requirement for new functions for the
software developer to implement was specified using a SysML
internal block diagram. A software update with the new
specifications was carried out and verified to meet the new
requirement.

In future work, the SysML platform will be accessible
through a virtual collaborative space to enable multi-domain
users, as discussed in [17], to propose new capabilities
(e.g., integration of event-based cameras or new interaction
gestures) and use cases. The result of these proposal will
be explored using and integrated model-based systems and
software engineering design. Additionally, a means to evaluate
the performance of the proposed framework is developed. The
integration of feedback from software and systems designers is
essential to ensure the value of the framework to help facilitate
the human-in-the-loop CPS design.
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