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Abstract

The minimum linear ordering problem (MLOP) generalizes well-known combinato-
rial optimization problems such as minimum linear arrangement and minimum sum
set cover. MLOP seeks to minimize an aggregated cost f(-) due to an ordering o of the
items (say [n]), i.e., min, Zie[n] f(Ei s), where E;  is the set of items mapped by o
to indices [/]. Despite an extensive literature on MLOP variants and approximations
for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle
this question through non-trivial reductions from mininimum latency vertex cover and
minimum sum vertex cover problems. We further propose a new combinatorial algo-
rithm for approximating monotone submodular MLOP, using the theory of principal
partitions. This is in contrast to the rounding algorithm by Iwata et al. (in: APPROX,

2012), using Lovasz extension of submodular functions. We show a (2 — lli—fEfl)—

approximation for monotone submodular MLOP where £y = ﬁ% satisfies
1 < £y < |E|. Our theory provides new approximation bounds for special cases of
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the problem, in particular a (2 — 11++’ \(1§|) )-approximation for the matroid MLOP, where

f = r is the rank function of a matroid. We further show that minimum latency ver-
tex cover is %—approximable, by which we also lower bound the integrality gap of its
natural LP relaxation, which might be of independent interest.

Keywords Minimum linear ordering problem - Submodular - Principal partitions -
Complexity - Approximation

Mathematics Subject Classification 90C59

1 Introduction

In the Minimum Linear Ordering Problem (MLOP), given a finite set of elements
E, and a function over the subsets, f : 2E 5 R, one seeks an ordering of the
elements, i.e., a bijection o0 : E — {1, ..., |E|}, that minimizes the aggregated cost
over prefixes (or equivalently suffixes) of the ordering. In other words, MLOP is of
the form min, s, Zli‘o f(Eis),where E; = {e € E : 6(e) < i}, and Sg is the set
of permutations of E. This is in contrast to the classical phenomenon of minimizing a
cost function over a combinatorial subset of the powerset of the elements, for example,
as in the set cover problem or the minimum spanning tree problem.

It is known that the MLOP is NP-hard even with additional assumptions, for
example, when the set function f(-) is monotone and submodular, or symmetric and
submodular, or supermodular (see Table 1). Despite a rich literature on hardness of
MLOP variants, it is unclear whether the problem remains NP-hard for many struc-
tured cases, for instance when f () is the rank function of a matroid (i.e., submodular,
monotone, bounded by set size, and integral). Furthermore, much is still unknown
about the related approximation guarantees. In this work, we push the envelope of
hardness and approximability for variants of submodular MLOP. In particular, we
show the following:

1. Matroid MLOP, graphic matroid MLOP, co-graphic matroid MLOP, and minimum
latency vertex cover (MLVC) are NP-hard.
2. Graphic matroid is polynomially-solvable for some classes of graphs.

3. We improve the approximation factors for matroid MLOP to 2 — Ltr (E)

1+|E|
minimum latency set cover (MLSC) to 2 — 6, where 6 > IEI% and it depends on
the instance, by exploiting the theory of principal partitions. These results provide
a refinement of the previously best-known factors for these problems [1].

4. We also show that MLVC can be approximated to %, improving upon the previously
best approximation achieving a factor 2 [1]. We analyze the fractional dimension
of a related poset to achieve this bound. We further lower bound the integrality
gap of the natural LP relaxation for MLVC.

and

Here, matroid variants of MLOP are when f(-) is the rank function of the corre-
sponding matroid, and the minimum latency set (vertex) cover problems are defined
on a hypergraph (graph) where the vertices must be ordered so that the sum of the
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maximum indices at which every hyperedge (edge) is covered must be minimized. We
include precise definitions of these problems in Sect. 4.

We summarize our hardness and approximation results on MLOP in Tables 1 and 2.
The paper is structured as follows: We give an overview of our results and techniques
in Sect. 2, discuss related work on MLOP variants in Sect. 3, and present preliminaries
in Sect.4. We discuss detailed proofs of our results in Sects. 5-8. We finally conclude
the paper with open problems in Sect. 9.

2 Overview of results and techniques

We next present an overview of our results and techniques.

1. Hardness of matroid MLOP:

We first show in Sect.5 the NP-hardness of matroid MLOP, by observing the fact
that a uniform matroid on a ground set £ (| E| = n) with rank k has the unique property
(up to isomorphism) of having (’,:) independent sets of size k. We will show that any
optimal matroid MLOP solution can detect this, thereby reducing the “uniform matroid
isomorphism" problem (known to be NP-hard [2]) to matroid MLOP.

Theorem 1 Matroid MLOP is NP-hard.

Furthermore, we show that matroid MLOP in decision form on a family of matroids
shares the same complexity class with matroid MLOP in decision form on the matroidal
dual family. This observation will be useful for upcoming results.

2. Hardness of graphic matroid MLOP:

Next, in Sect. 6, we further restrict f(-) to the special case of the rank function of
any graphic matroid. Tutte [3] gave a complete minor-free characterization for graphic
matroids. In particular, graphic matroids are regular, i.e., representable using a totally
unimodular matrix, and in particular, do not contain a rank-2 uniform matroid over 4
elements as a minor (e.g., see [4]). Therefore for graphic matroids, the reduction from
uniform matroid isomorphism does not suffice. We show that it is NP-hard using a
series of reductions beginning at the minimum sum vertex cover (MSVC) on simple
graphs G, which we show reduces to the minimum latency vertex cover (MLVC) on the
complement graph G, which we show finally reduces to the graphic matroid MLOP.

Theorem 2 Graphic matroid MLOP is NP-hard.

To reduce MLVC to the graphic matroid MLOP with graph G = (V, E), we first
create an auxiliary graph H by adding a new vertex z to V, and a weighted star graph 7
centered at z, connected to each vertex in V. We choose the edge weights for 7" in such
a way that they each induce a distinct flat in any optimal ordering for weighted graphic
MLOP. This implies solving (weighted) graphic matroid MLOP for H is equivalent
to solving MLVC on G. As we can keep the magnitude of the weights controlled, this
allows us to reduce MLVC to graphic matroid MLOP, thereby showing hardness of the
latter. As a by product, we also show that MLVC and the co-graphic matroid MLOP
are NP-hard, which was not known before our work.

3. Improved approximation of MLSC:
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We present two different approximation algorithms for minimum latency set cover
problem, both of which refine the best-known constant 2-approximation with improve-
ments in different settings, and use different techniques. The MLSC can be modeled
as a covering problem on a hypergraph (see Sect.3 for details), and in Sect.7, we
present our first randomized approximation algorithm based on scheduling theory,
whose approximation factor depends on rank of the hypergraph, i.e. the maximum
cardinality of its hyperedges (or in other words, the maximum cardinality of the can-
didate sets) (Theorem 3). Our second approach simply applies the approximation for
monotone submodular MLOP to MLSC, as the latter is a special case of the former
(Corollary 2). Both the resultant approximation factors depend on the properties of
the instance, and none of them dominate the other on all instances. They both improve
on the previous best-known approximation bound for MLSC of 2, using a reduction
to the single machine scheduling problem with precedence constraints [5-7].

Theorem 3 There is a randomized polynomial time algorithm that approximates
MLSC within factor 2— 1L+z’ where { is the maximum cardinality among all hyperedges
of H.

The idea for achieving our improved approximation bound for MLSC is to exploit
the structural complexity of the precedence constraints (corresponding to a poset) for
the subsequent scheduling instance. Bounding the fractional dimension of this poset
by 1 4 ¢ allows us to utilize a state-of-the-art scheduling algorithm by Ambiihl et al.

[8] to approximate the objective by a factor of 2 — ﬁ For the special case where the

input is a graph, this algorithm gives a factor % approximation for MLVC.

Corollary 1 There exists a randomized polynomial time factor %-approximation algo-
rithm for MLVC.

To the best of our knowledge, this is the current best approximation factor for
MLVC. For {£-uniform regular hypergraphs, i.e., where each hyperedge has size £ and
each vertex is contained in the same amount of hyperedges, we show that a simple

LP relaxation also achieves the 2 — % approximation factor. In particular, the LP

relaxation gives a factor %-approximation algorithm for MLVC on regular graphs.
From this result, we raise the question whether the LP relaxation for MLSC on ¢-

uniform hypergraphs has the same 2 — ﬁ approximation factor. Indeed, a better

approximation factor seems unlikely, as we observe a lower bound of 2 — % on

integrality gap of the LP relaxation for MLSC on £-uniform hypergraphs, matching
our current approximation result.

In Sect. 8.3, we discuss the use of principal partitions to obtain an approximation
for MLSC as a special case.

Corollary 2 There is a deterministic factor (2 — A?%‘ﬁ,ll))-approximation algorithm

for MLSC, where A is the maximum degree of hypergraph H = (V, E).

Note that A = maxyey [{e € E : v € e}|. Together Theorem 3 and Corol-
lary 2 imply that MLSC can be approximated within factor 2 — 6, where 6 =

max{li“, A?%‘ﬁ/ln}' Note 6 can be very small, for example, for £-uniform hyper-
graphs where / is large. However, since 6 > #, we get a slight improvement over
2.
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4. Polynomially solvable instances of matroid MLOP:

In Sect. 6.4, we propose a novel characterization of matroid MLOP, wherein one can
search through bases and permutations of bases, rather than permutations of the ground
set. In particular, whenever the number of bases of a matroid is small (polynomial in
|E|) and the rank of the matroid is also small (constant), we show that matroid MLOP
becomes polynomial time solvable.

Theorem 4 Let X be a family of matroids such that for all M = (E,ry) € X with
|E| = m, the number of bases of M is |B(M)| € O(g(m)), and the rank of M is
ry(m) € O(h(m)), for some g, h : Zy — Z.. Then, every matroid MLOP instance
in X can be solved in time O(g(m) - poly(m, g(m)) - (h(m))!) In particular, if g is
polynomial in m and h is bounded by a constant, then matroid MLOP for X is in P.

For the special case of graphic matroid MLOP on cactus graphs,' we show that an
optimal MLOP ordering can be found by fixing any spanning tree of the cactus graph.
To find an ordering of the edges of the spanning tree, we show that a greedy ordering
on the cycles of the cactus graph suffices (even though the size of the basis may not
be logarithmic in size with respect to the ground set).

Theorem 5 Given a simple cactus graph G, there is a polynomial time algorithm that
solves graphic matroid MLOP on G.

Furthermore, in Sect.7.2, we show how if a graph is regular, then the optimal
objective values for MLA, MSVC, and MLVC are all related by linear shifts in the
objective parameterized by the number and degree of the vertices. As many instances
of regular graphs have polynomial time algorithms (e.g. see [9—12]) this leads to many
new polynomial time algorithms for MSVC and MLVC for many instances of regular
graphs.

5. Improved approximation for monotone submodular MLOP:

For monotone submodular MLOP, Iwata, Tetali, and Tripathi [1] provided a (2 —
|El%)-approximation algorithm for monotone submodular MLOP based on Lovisz
extension in 2012. Another natural approach is to use the theory of principal partitions
induced by a given submodular function [13, 14]. The principal partition of a ground
set E of a monotone submodular function is a chain of subsetsC =@ C §; € ... C
Sr = E, such that each S; is the unique maximal minimizer of f(S) — A;|S| for some
i € Ry, As early as 1992, Pisaruk considered completing the chain C randomly to
add subsets of missing cardinality ([15], c.f. [16]). Later in 2019, Fokkink et al. [16]
considered the same algorithm for the submodular search problem, which includes
monotone submodular MLOP as a special case. They showed that this algorithm has
an approximation ratio based on the total curvature” of the submodular function, and
is always at most 2.

It was not known how these two results compare, as they use very different tech-
niques. We show that the algorithm based on principal partitions always has better
approximation guarantee than the (2 — IEI%) bound of Lovasz extension relaxation
proven in [1].

LA graph G is a cactus graph if every maximal 2-connected subgraph of G is a cycle or an edge.

2 The total curvature of a set function f is defined to be max,cg W, e.g., see [16].
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submodular
MLOP

Graphic Matroid I\S/[l(l)];l ’
MLOP MLOP MLOP
A

supermodular
MLOP

Fig. 1 Overview of related problems. A solid arrow from problem A to B indicates that B generalizes
A. A dashed arrow from problem A to B denotes that computation of A can be polynomially reduced to
computation of B, using our gadgets

Theorem 6 Let f : 28 — R be a non-trivial, normalized and monotone submodular

1+€r

function. There exists a factor (2 — rlEl)—appmximation algorithm to MLOP with

Sf(E)

f () in polynomial time, where £ y = Taxecr D

As £y is bounded below by 1, the above result is a refinement of the previous
2 - |E‘%)—approximation [1]. Our result is also independent from the analysis in
Fokkink et al. [16] using total curvature, and leads to nice approximation bounds for
some classes of matroids where £ 7 is large. For example, for graphic matroid MLOP on
connected graphs of bounded maximum degree A with A > 1, we obtain a (2 — %)-
approximation asymptotically. This constant factor improvement from 2 cannot be
obtained using either the Lovasz extension bound in [1] or the total curvature bound
in [16].

Our results have led to multiple open questions which may be of independent
interest, and are discussed in Sect. 9.

3 Related work

MLOP was formally introduced by Iwata et al. [1], generalizing many well-known
combinatorial optimization problems. In this section, we describe related work in
combinatorial optimization that can be viewed as different instances of MLOP. Some
of these MLOP variants (e.g., minimum latency set cover) will be utilized in our proof
that the graphic MLOP is NP-hard, as depicted in Fig. I.
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Table 1 Previously known results and our results on NP-hardness of different MLOP variants

MLOP class Problem Hardness  Source

General Multiple intents ranking (MIR) NP-hard  Azar et al. [25]

Monotone supermodular Minimum sum set cover (MSSC) NP-hard  Feige et al. [26]
Minimum sum vertex cover (MSVC) NP-hard  Feige et al. [26]

Monotone submodular matroid MLOP NP-hard Theorem 1
Graphic matroid MLOP NP-hard Theorem 2
Co-graphic matroid MLOP NP-hard Corollary 5
Graphic matroid MLOP for cactus graphs P Theorem 5
Minimum latency set cover (MLSC) NP-hard  Hassin and Levin [27]
Minimum latency vertex cover (MLVC) NP-hard Theorem 9

Submodular Sum cut (SUMCUT) NP-hard [28, 29]

Symmetric submodular ~ Minimum linear arrangement (MLA) NP-hard  [20, 30]

Bold values indicate the result of this paper

Minimum linear arrangement (MLA)

Motivated by applications in coding theory, Harper [17] introduced minimum linear
arrangement (MLA) in 1964, which seeks to find an arrangement of the vertices of a
given graph G = (V, E) such that the total “stretch” of each edge is minimized, i.e.,
MLA on a graph G = (V, E) is the following,

Note that any permutation 7 € Sy naturally induces a chain on V with prefix sets
Viz ={v eV :m(v) <i}. Let¢ be the cut function of the graph, i.e., forall S C V,
¢ (S) is the number of edges with exactly one end in S. Note then for any permutation
7w € Sy if an edge (u, v) € E is stretched to a value k = | (u) — 7 (v)], it must cross
the cut of exactly k prefix sets in the chain Vo € Viz € - € Vyi1x © Vir

= =

where |V (G)| = n. Thus, MLA on a graph G = (V, E) is equivalent to

n
min Vi),
min ;W i)

which is an instance of MLOP with ¢ being a symmetric submodular function. Solving
MLA for specific instances of graphs has received considerable attention due to its
many applications, see surveys [9-12]. While MLA is polynomial time solvable for
some classes of graphs, for example trees [18, 19], its decision form has been known
to be NP-complete since 1974 [20]. The best known approximation bound for MLA
is O(y/Tognloglogn) [21, 22]. Under the exponential time hypothesis [23] that there
does not exist a randomized algorithm to solve SAT in time 2" where 7 is the instance
size and ¢ > 0 is arbitrarily small, it is also known that MLA is inapproximable to
some constant [24].
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Table2 Summary of approximation factors known for MLOP variants

Problem Approximation Source

Matroid MLOP 2- L Corollary 8
Graphic MLOP# 2 — % Corollary 8
Monotone Submodular MLOP 2— 11%@ Theorem 6

MLA O ({/lognloglogn) Feige and Lee [21]
MLVC 4 Theorem 3

MLSC 2-0 Theorem 3 and Corollary 2
MIR 4.642 Bansal et al. [31]
SUMCUT O (logn) Rao and Richa [32]
Supermodular MLOP 4 Iwata et al. [1]
MSSC 4 Feige et al. [26]
MSVC il Bansal et al. [31]

Bold values indicate the result of this paper
For MLSC, 0 = max(ﬁ, %), where £ is the maximum cardinality of hyperedges, and A is the
maximum degree in the graph. For graphic MLOP, we assume that the graph is connected

Minimum latency set cover (MLSC)

MLSC was introduced by Hassin and Levin [27] with motivations from problems in
job scheduling, and they provided an e-approximation. The best known approximation
constant for MLSC is 2 [25, 27]. Later in our work, we show that MLSC can be viewed
as an instance of monotone submodular MLOP, for which Iwata, Tetali and Tripathi
[1] gave a factor (2 — IE\%) approximation algorithm using the Lovasz extension. We
give a more refined approximation algorithm for monotone submodular MLOP using
principal partitions, which applies to MLSC as well.

Minimum sum set cover

Minimum sum set cover (MSSC) was introduced by Feige, Lovasz, and Tetali
[26], who also presented a greedy algorithm that provides a 4-approximate solution
to MSSC, and showed it is NP-hard to do better. Later, Iwata et al. [1] showed that
MSSC is an instance of supermodular MLOP, and the greedy algorithm for MSSC can
be generalized to approximate supermodular MLOP within factor 4.

MSSC can be formulated as follows, using the notation of hypergraphs: given a
hypergraph H = (V(H), E(H)), MSSC seeks to find a permutation of vertices that
minimizes the total costs of all hyperedges, where the cost of each hyperedge is the
minimum of its vertex labels, i.e.,

min Z min 77 (v).
meSvan Cpi U

The special case when H is a graph is the well-known minimum sum vertex cover
(MSVC). Independent from MSSC, MSVC was introduced earlier by Burer and Mon-
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teiro [33] as a heuristic in solving semidefinite relaxation of the Max-Cut problem.
Feige, Lovasz, and Tetali [26] later showed MSVC has a 2-approximation based on
linear programming rounding, and also showed that it is NP-hard to approximate
for an unknown constant €, where 1 < € < 2. Later, Barenholz, Feige and Peleg
[34] improved to a 1.9946-approximation, and recently, Bansal et al. [31] gave a 19—6-
approximation for MSVC. The best possible approximation constant for MSVC is
still unknown. For the special case of regular graphs, Feige, Lovasz, and Tetali [26]
gave a %—approximation. This approximation guarantee for regular graphs was later
improved by Stankovi¢ [35] to 1.225.

These problems concern supermodular functions, but we only consider submodular
functions in this work.

Other variants of MLOP

Another variant of MLOP is called the multiple intents ranking (MIR), and has
been studied in [25, 31, 36-38]. Azar, Gamzu, and Yin [25] gave a 2-approximation
for MIR, for the case when the weight vector for each hyperedge is monotonically non-
decreasing. This variant of MIR includes MLSC as a special case. These problems have
found a broad spectrum of applications in query results diversification [39], motion
planning for robots [40], cost-minimizing search [41], and optimal scheduling [42],
among others.

Another example of an instance of submodular MLOP is the sum cut problem
(SUMCUT). The problem was independently introduced by Diaz et al. [28] and also
Yixun and Jinjiang [29] to study circuit layouts. SUMCUT is NP-complete [28, 29]
and Rao and Richa [32] gave a O (log n)-approximation algorithm for SUMCUT using
a divide-and-conquer approach.

Recently, Happach et al. [43] viewed MLOP under the umbrella of minimum sum
ordering/permutation problem, and generalized results of Feige et al. [26].

4 Preliminaries

We now present notation and background useful for parsing this work. We refer an
interested reader to [44] for further reading.

1. Submodular set functions

For a set of elements S and elements x ¢ S,y € S, weuse S + x, S — y to denote
SU{x}, S\ {y} respectively. Let f : 2f — R be aset function. We say f is submodular
ifforall S, T C E, f(S)+ f(T)> f(SUT)+ f(SNT). An equivalent definition
is f(S+e)— f(S) > f(T+e)— f(T)forall S € T and e ¢ T. This property is
sometimes called the diminishing return property. A set function f is supermodular
if — f is submodular, and is symmetric if f(S) = f(E \ S) forall § C E and is
monotone if f(S) < f(T)forall S C T C E. We say f is normalized if f () = 0.
A normalized monotone submodular function f is non-trivial if f(E) # 0, i.e., f
is not identically zero. For a normalized non-rivial monotone submodular function

f, we define the steepness of f as ky = maxyecg f({x}), which is the maximum
_ [(E)

function value of any singleton. We further define the linearity of f as £y o
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For a normalized symmetric submodular function f, and s,# € E,ans — ¢ cut is a
subset X € E suchthats € X, ¢ X ors ¢ X,t € X. The cut is said to have value
F(X) = f(E\X).

For a finite set £ with size m > 0, we define Sg to be the set of all bijective
functions o : E — {1, ..., |E|}. For every o € Sg, we define the prefix sets E; , =
{ee E:o(e) <i}.Note |Ejs|=iforalll <i<mandW C E; s C Ezs C---C
Eno=E.

2. Matroids

A rank function (for a matroid) is an integer-valued nonnegative monotone submod-
ular function r : 2 — Z>o, such that r(A) < |A|forall A C E. Apair M = (E,r)
where r is a rank function on E is a matroid. There are multiple equivalent definitions
for matroids and we refer to [4] for other equivalent definitions and basic theory. Note
if r is a rank function of a non-trivial matroid (where r(E) > 0) then k, = 1 and
£, = r(E). The set E is the ground set of the matroid M, which we also denote E(M).
A set I C E is independent if r(I) = |I|, and is dependent otherwise. A maximal
independent set is a basis, and the set of all bases of M is denoted as B(M). A circuit
of M is a minimally dependent set. Let e, ¢’ € E(M) for some matroid M, then e is a
loop if {e} is a circuit and e and ¢’ are parallel if {e, €'} is a circuit. Let B be a basis
for M and note for all e € E\ B, B + e is a dependent set. It is well known that B + e
contains a unique circuit, called the fundamental circuit of e with respect to B, which
will we denote C (B, ¢). A flat of a matroid is a subset X C E that is maximal with
respect to its rank. The closure of aset S € E,iscl(S) = {x € E : r(SU{x}) =r(9)}.

A matroid is uniform of rank k if its bases consists of all subsets of size k. We
denote a uniform matroid of size m and of rank k as U}". If the independent sets of
a matroid M is the family of acyclic sets of a graph G, then M is a graphic matroid,
which we denote M = M[G]. If M is a matroid with rank function r, then its corank
function is the following, r*(X) = |X| — r(M) 4+ r(E \ X). It is well known, see
[4], that * is also a rank function for a matroid M™* on E (M), and we let M* denote
the dual matroid of M. An element is a coloop if it is a loop in the dual matroid. A
cographic matroid is a matroid whose dual matroid is graphic.

For a positive integer m, let [m] = {1,2, ..., m}. Given a k x m matrix A with
integer entries, the vector matroid of A, denoted by M[A], is defined as follows: the
ground set is [m], and the rank function of J C [m] is the (matrix) rank of & x |J]|
submatrix A, which is obtained from A by deleting columns whose index is not in
J.

Givenamatroid M = (E, r), matroid MLOP solves min, ¢ s, Zli‘o r(E; ), where
Eis ={e € E:o(e) <i},and Sg is the set of permutations of E.

3. Graphs, hypergraphs and partial orders

A graph G over a set of vertices V(G), can be defined by a multiset of edges
E(G) € V x V. We allow graphs to have multiedges and loops, and a graph is
simple if it does not have multiedges or loops. A graph is a clique if every pair of
distinct vertices has a single edge joining them. The clique or complete graph on n
vertices is denoted K. The complement of a simple graph G, denoted G, is the graph
where V(E) = V(G) and for all distint u, v € V(G), (u,v) € E(G) if and only if
(u,v) ¢ E(G). A block of a graph G is a maximal connected subgraph, without a
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cut vertex. Note that the blocks of G are either an edge or a 2-connected subgraph.
It is well known that every pair of distinct blocks are either disjoint or intersect at a
cut vertex of G. A cactus graph is graph G in which every block of G is an edge or
a circuit. A hypergraph H = (V, E) is a generalization of graphs that allows each
edge e € E to be a subset of vertices V, where each such subset is referred to as a
hyperedge. A graph is a special case of a hypergraph where all hyperedges have size
2.

We now define the minimum latency set cover (MLSC). Given a hypergraph, MLSC
asks to find a permutation on its vertices that minimizes the aggregated cost of the
hyperedges, where the cost of an hyperedge is the maximum label of its vertices.

min Z max 7 (v)
T[ESV(H) e E(H) ecE(H)
The minimum latency vertex cover (MLVC) is an instance of MLSC where the input
is restricted to being a graph.
A partially ordered set or poset is a pair (P, <p) where P is a set and <p is an
antisymmetric and transitive relation on P, i.e., such that for all distinct x, y, z € P,
we have that

1. ifx <p yandy <p zthenx <p z,and
2. ifx <p ytheny #£p x.

For any x,y € P we say x and y are comparable if x <p y,y <p xorx = y. A
chain is a subset S C P of pairwise comparable elements of (P, <p). A partial order
(P, <p) is a total order if P is a chain. A poset (P, <p) is an extension of a poset
(P,<p)ifforall x,y € P,if x <p y implies x <p y. An extension (P, <p) is
linear if (P, <p) is a total order.

4. Principal partitions
We refer the readers to [14, 45] for the general theory on principal partitions. Here
we state some properties of principal partitions on monotone submodular functions.

Theorem 7 [45] Let f be a monotone submodular function such that f(A) = 0 if
and only if A = (. Then there exist positive integer s > 1 and nested sets ) =
Iy C -+ C IIy = E, called principal partitions of f, as well as real numbers
Ap < Al < -+ < Agyt1, called critical values, such that for all 0 < i < s, II; is
the unique maximal optimal solution to minxcg f(X) — Al X|, forall A € (A;, Aiy1).
Furthermore, {I1;}o<;<s as well as {A;}1<i<s can be computed in polynomial time.

Some authors refer to {I7; }o<;<s as the principal sequence of partitions, and/or use
the minimal (which is also unique) instead of maximal optimal solution. Note that the
principal partitions minimize the function value among subsets of the same size.

5 Matroid MLOP is as hard as uniform matroid isomorphism

Before we show NP-hardness of graphic matroid MLOP, we will first show in this
section that the more general case that matroid MLOP is indeed NP-hard using a
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reduction to the uniform matroid isomorphism problem. Although the uniform matroid
is one of the simplest matroids, it turns out that determining whether a given matroid
is uniform is NP-hard [2]. Formally, the uniform matroid isomorphism problem is the
following:

Givenak x m matrix A with integer entries, is M[A] isomorphic to U,]fl ?

where M[A] denotes the vector matroid of A.

In the following lemma we argue that the optimal matroid MLOP value is unique for
each uniform matroid. This provides a reduction to the uniform matroid isomorphism
problem.

Lemma1 Let M = (E, r) be a matroid, of size |E| = m, and rank at most k > 1. We
have

min » r(Eiq) = (k + 1) +k(m — k),

O'ESE N 2
i=1
if and only if M is isomorphic to the uniform matroid U}

Proof Forany uniform matroid U;" on ground set £, and for any ordering o of elements
in E we have, Y " r(Ej ») = (szrl) + k(m — k), for prefix sets E; , of the ordering.
If M is not isomorphic to the rank-k uniform matroid U,f‘, then it must have some
subset S C FE of k elements with rank less than k. As E has rank at most k, ordering
elements in S first, followed by elements in E \ S arbitrarily constructs a solution with
the matroid MLOP value less than the optimal solution for U}". The claim follows. O

Note if A is a k x m matrix, then M[A] is a matroid of size m and rank at most
k. By Lemma 1, if we solve matroid MLOP for M[A], we can determine if M[A]
is isomorphic to U,’fl. By NP-hardness of uniform matroid, we have the following
theorem.

Theorem 1 Matroid MLOP is NP-hard.

For matroid MLOP, the next lemma shows that solving matroid MLOP for any
matroid M = (E, r) is as hard as solving matroid MLOP for the dual matroid M* =
(E, r*). This will be useful to show the hardness of matroid MLOP for cographic
matroids.

Lemma2 Let M = (E,r) be a matroid with |E| = m and consider an ordering
o € Sg, then

m

1 m
3 (Eie) = ('"; ) —r(MEM)| + Y r(Ei 5°),

i=1 i=1

where o™ is the reverse permutation, i.e., c* = |[E|+ 1 — o0 € Sg.
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Proof One can easily verify that 0* € Sg. As r*(X) = |X| —r(M) +r(E\ X) it
follows,

m

> M Eio) =Y (1Eiel —r(M)+r(E\ Eiq))
i=1

i=1

m+1 "
=< ) )—r(M)|E(M)|+§r<E\Ei,G>

m-+1 "
= ( X ) —r(M)|E(M)] +§r(E,-,g*>.

Therefore, any optimal ordering of E for matroid MLOP for a given matroid M =
(E, r) also gives an optimal ordering for matroid MLOP on the dual matroid M* =
(E,r").

Corollary 3 Matroid MLOP is NP-hard on a family of matroids X if and only if matroid
MLOP is NP-hard on the dual family X* = {X* : X € X}.

6 Graphic matroid MLOP is NP-hard

We next consider the complexity of graphic matroid MLOP. This turns out to be non-
trivial, involving a series of reductions from minimum sum vertex cover, to minimum
latency vertex cover, to weighted graphic matroid MLOP, to matroid MLOP.

To show these reductions, we first argue that an optimal chain of matroid MLOP
has a useful structure of flats of the matroid, in Lemma 3. Next, in Lemma 4, we reduce
weighted matroid MLOP to matroid MLOP. In section 6.2, we provide a reduction
from minimum latency vertex cover (MLVC) to weighted graphic matroid MLOP.
Finally in Section 6.3, we argue that MLVC and minimum set vertex cover (MSVC)
are equivalent in decision form, thus completing the proof that graphic matroid MLOP
is NP-hard. In Sect. 6.4 we give an alternative characterization to matroid MLOP. In
matroid MLOP we optimize over permutations of the ground set, while in this new
formulation, we optimize over bases and then permutations of those bases. Using
this characterization, we argue that graphic matroid MLOP for cactus graphs has a
polynomial time algorithm.

6.1 Weighted graphic matroid MLOP

In this section, we first argue that any optimal matroid MLOP solution on a ground set
E of size m has a nice “flat-like" structure, i.e., for any optimal permutation o € Sg,
the set U{Ej,o :r(Ej o) <i}isaflatforalli € [m]. Thisis a useful structural result
for optimal solutions and is necessary step towards showing the hardness of graphic
matroid MLOP.
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Lemma3 Let M = (E, r) be a matroid of size m and rank k and let 6 € Sg be a per-
mutation that minimizes matroid MLOP. Then, there exists a basis B = {by, . .. ,‘bk} IS
B(M) and a partition {Xo, X1, ..., Xk} of E such that (i) b; € X;, and (ii) U{:O X;
is a flat for all 0 < j <k, and (iii) o (¢) < o (') fore € X;, ¢ € X;, andi < L.

Proof We may suppose k > 1, as otherwise the statement is trivial. Let o € Sk be a
permutation that minimizes matroid MLOP and X; := {e; : r(Ej ) = i} fori > 0
and note that {Xo, X1, ..., Xi} partitions the ground set E. Furthermore X; # ¢ for
alll <i <kasforalle € Eand X C E, we have r(X + ¢) < r(X) + 1. For each
1 <i <k,letb; € X; be the element e in X; with the lowest index o (e).

For each 1 < i < k, we claim {b1, ..., b;} is an independent set. For i = 1,
this is clear. Suppose the claim holds for all positive integers less than j, and
r({b1,...,bj}) = j — 1. Note that b; € cl({by,...,b;1}) = cl(U{;] Xi). As
r(cl({b1,...,bj_1})) = j — 1, this contradicts the fact that r(U{:_(} X;Ufbj}) =j.
In particular, this implies that {by, ..., by} is a basis of M and (i) holds.

We now show that | J/_, X; is a flat for each j < k. Suppose for ¢’ € X/ for
j' > j, that r(U{:0 X; U{e'}) = j.Let o’ € Sg be the permutation where we place
¢’ before b1 in o. That is,

o(e) ifo(e) <o(bj+1),
, objy) ife=¢,
o'(e) = ) .
o(e)+1 ifo(e) >o(bjy1)ando(e) < o(e),
o(e) ifo(e) > o ().

Note > /" r(E; o) < Yi; r(Ei ). This contradicts the optimality of o, thus
such an ¢’ cannot exist. It follows each U'z'/:o X; is a flat for each j, and hence (ii)
holds. As forall e € X; and ¢’ € X; withi < [, we have o (e) < o(b;) < o(€’), thus
(iii) holds as well. m|

We next introduce a weighted matroid MLOP, which given positive integer costs
¢ : E — Zy to the elements E of a matroid M = (E, r), checks if there exists a
permutation o € Sg with weighted MLOP cost at most K, i.e.,

min Zi:r(E,-,g)c(a*‘a)) <K.

We now argue that weighted matroid MLOP for a matroid M = (E, r) reduces to
matriod MLOP as long as the total integer costs are bounded by a polynomial in |E|.
This simply follows by duplicating an element e € E a c(e) number of times, and
solving unweighted matroid MLOP on the modified instance. For each duplication of
e, r(E; ) is counted c(e) times for each duplicate for any permutation o € Sg.

Lemma 4 Weighted matroid MLOP with cost function ¢ can be reduced to the matroid
MLOP in time poly(|E|, c(E)) where ¢c(E) := ), c(e).
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Proof Given a matroid M = (E,r) with cost function c, let N = (E’, r’) be the
corresponding matroid where for each ¢ € E(M) we add c(e) — 1 parallel elements to
get E/.Letm’ = |E'| = ¢(E) and let ¢’ € S’ be an optimal ordering for the matroid
MLOP on N. Since we only add parallel elements, the rank function of M induces a
natural rank function on N.

Let r'(N) = k. By Lemma 3, there exists a partition {X1, ..., Xx} of E’ such
that U;'Izl X;isaflatforalll < j < kandife € X; and ¢ € X, fori < £,
then o/(e) < o’(e’). Suppose ¢’ is parallel with e. As {€/, e} is a dependent set, we
have that ¢ € X; if and only if ¢/ € X; forall 1 < i < k. We now define a new
ordering o” by rearranging the elements in ¢’ such that parallel elements are grouped
together by consecutive indices. As parallel elements appear in the same X;, we have
Zinz/l r(Ez{,o/) = Zinz/l r(Et(,a”)'

Note that ¢ induces a permutation o € Sg on the original weighted matroid M
such that for any distinct e, ¢’ € E we have o (¢) < o (¢’) ifand only if o’ (e) < o’ (€’).
Note then as parallel elements appear in the same partition set X; we have,

m

D FEL ) =Y FEL) = r(Eig)e(e i)
i=1 i=1

i=1

Thus, the optimal weighted matroid MLOP value for M with cost function c is at
most the optimal matroid MLOP value on N. Furthermore, one can easily verify that
if o € Sk obtains the optimal weighted matroid MLOP value for the matroid M with
cost function c, there is a corresponding permutation o’ € S that obtains the same
matroid MLOP value for N. Thus, the optimal values for both problems are equal. As
we only added c¢(E) — |E| additional elements to N, this is a poly(|E|, c(E)) time
reduction. O

6.2 Reducing MLVC to graphic matroid MLOP

We now show that graphic matroid MLOP is as hard as minimum latency vertex cover
(MLVC). In MLVC we are given a graph G = (V(G), E(G)), and seek to find a
permutation of vertices that minimizes the total edge cost, where the cost of each edge
is the maximum label of its vertices, i.e.,

min Z max{m(x), 7(y)}.

€SV (¢ )eE(G)

Theorem 8 Minimum latency vertex cover (MLVC) problem can be reduced in poly-
nomial time to the graphic matroid MLOP.

Proof We will consider an instance of MLVC for a graph G, and construct an auxiliary
graph H from G. We will then show that MLVC is equivalent to solving weighted
graphic matroid MLOP on H with a specific cost function c¢. By showing a bound on

@ Springer



M. Farhadi et al.

the cost of edges c(E(H)) := ZeeE(H) c(e) in terms of a polynomial of |E(G)|, by
applying Lemma 4, we will complete the reduction.

(a) Construction of the graphic matroid MLOP instance: Let G be the given graph
with n vertices and m edges. We may assume without loss of generality, G has no
isolated vertices, as otherwise an optimal MLVC solution assigns isolated vertices last
which play no role in the MLVC cost. Therefore, we have that n < 2m, by counting
the endpoints of the edges which upper bounds the number of vertices.

Let H be a copy of G with an additional vertex z connected to each vertex of G,
ie, V(H) = V(G)U{z}and E(H) = E(G) U{(z,v) : v € V(G)}. Let T be the
spanning tree of H with E(T') = {(z, v) : v € V(G)}. Therefore, H has n+ 1 vertices,
and m + n edges. Let n := 9m? + 2 and define c(-) to be a cost function defined on
E(H), such that c(e) = nif e € E(T), and c(e) = 1 otherwise. Therefore, the total
cost of edges in H is polynomially bounded by size of the input graph G:

c(E(H) = Y cle)= > 14+ Y 7

ecE(H) ecE(G) ecE(T)
=m+ Om® + Dn <m—+ (9m2 + 2)2m.

Now, for the sake of brevity, let E := E(H), and m’ = |E(H)|. Let 0 € Sg be an
optimal ordering for weighted graphic matroid MLOP over H with costs c(-). Note,

m'

MLOP(H. c,0) := Y r(Ejq)e(o ()

i=1

=Y r(Eio)+ Y. r(Eowe.0)(n—1).
i=1

ecE(T)

(b) Optimal solutions of graphic matroid MLOP are “good”: We now argue that
optimal solutions to graphic matroid MLOP on H have a particular structure. We will
argue that if the weights for edges of 7' are large enough, then analogous to Lemma
3, each edge of T must belong to a different flat induced by o . This will be useful for
relating the solutions of of graphic matroid MLOP on H to MLVC on G.

Let a permutation m € Sg be good if its prefix sets in the ordering has no two
edges of T induce the same rank, i.e., r(E; ;) # r(E; ) for all distinct edges
7740, n7Y( Jj) € E(T). We now argue that ¢ is an optimal permutation for weighted
graphic matroid MLOP over H only if o is also a good permutation. To show this,
we will argue a stronger claim: any good permutation must achieve a lower MLOP
objective on H compared to any non-good permutation.

Let ¢/ € Sg be an arbitrary good permutation, and for the sake of contradiction,
assume that there exists an optimal permutation o which is not-good. We will argue
o’ must have lower MLOP value than o, giving a contradiction.
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Note MLOP(H, ¢, ') > MLOP(H, c, o). Furthermore, we have that

m’ ’

D r(Eig) <Y i <(m)? = (m+n)* <9m’,

i=1 i=1
as m + n < 3m. The difference in MLOP objective values of o and ¢’ is as follows,

0> MLOP(H, ¢, 0) —MLOP(H, ¢, o)

’ /

=> r(Eio) =Y r(Eio)+ (- 1)( > r(Ese)o) —r(Eo«e),af))
i=1 i=1 ecE(T)
> — Zr(Ei,U’) + M- 1)( Z r(EU(e),d) - r(Ea’(e),a’)>
i=1 ecE(T)
> _9m2 + - 1)( Z r(Eo(e),a) - r(Ea’(e),a’)>-

ecE(T)

Asn—1>9m?, wehave that Y, o7y 7(Eo(e).0) — I (Eq/(e).67) < 0, otherwise
the right hand side will be strictly positive (contradicting optimality of o, and we are
done).

Let Y; be the collection of prefix sets induced by o up to the edges of T such that the
rank is exactly i, i.e., Y; := {Eq(e),6 : € € E(T) and r(E(¢),o) = i}. Note that more
than one E, (), might belong to Y;. Furthermore we have {Y; : 1 <i < n} partitions
{Es(e),0 - € € E(T)}. Similarly, let Y/ := {Eg/() o' : 0’ € E(T) and r(Eg/(¢),6') =
i}. As o’ is a good permutation, we have that |Yl./ | =1 for all i. Note,

n n

0> Y r(Eow.o) = r(Epy o) =Y i(Yil = 1¥/) =Y i(Yi| = D).

ecE(T) i=1 i=1

We first argue that Z;=1 |Y;| <iforall 1 <i < n.Note the elements of Ui-:l Y;

form a chain of subsets. Define U; to be the maximum element of U;Zl Y;. In par-
ticular, as U; € Y; for some j < i, we have r(U;) < i. Furthermore, as E(T') is an
independent set,

i
r(Ui) = HEo(e.0 € € E(T) and Eq0) 0 € Ui}l = Y |Yil.
j=1

Thus we have 23:1 |Y;| <i.Noteas{Y; : 1 <i < n} partitions {Eg(e),s : € €
E(T)}, we also have Z?:l |Y;| = E(T) = n.

We now argue that the sum Z?:l i(]Y;|—1)is minimized,i.e., Z?:l i(JY;|—-1) =0,
ifonly if |Y;| = 1 forall 1 <i < n. Suppose |Y;| # 1 for some j. Let k be the first
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index such that |Yi| # 1. As k > Zle |Y;i| = |Yk| + (k — 1), we have that | Y;| = 0.
As Z?:l |Y;| = n, for some [ > k, we have that |Y;| > 1. Moving an element from Y;
to Y; would decrease the sum > i(lYi| —1). Thus Z?:l i(]Yi| — 1) is minimized,
ie, > i(]Y;| —1) = 0, only if |Y;| = 1 for all i. As we assumed o to be not
good, we have ) /| (|Y;| — 1) > 0, contradicting the optimality of . Thus we may
conclude any optimal permutation for graphic matroid MLOP on H must also be a
good permutation.

(¢). Translation of optimal solutions for graphic matroid MLOP to MLVC: We
have now argued all optimal solutions on graphic matroid MLOP on H are good,
i.e., each edge e € E(T) has a unique labeling r(E, ). As every vertex of V(G) is
incident with exactly one edge of E(T), this ordering of E(7) naturally induces a
permutation on V (G). We claim such an ordering will be an optimal MLVC ordering
on V(G).

Note as T is a star, all other edges of E(G) = E\E(T) = E(H)\E(T) eachforma
unique triangle with the edges of 7. Let w : V(G) — [n]suchthatm (v) = r(E(y 3),0)
where (v, z) € E(T). As o is a good permutation, we have that 7 € Sy ().

We claim that for all e = (u, v) € E(G), we have r (Es(¢),o) = max{m(v), w(u)}
for any optimal permutation o of V(H). If ¥ (E5(¢),s) > max{m(u), 7 (v)}, consider
the ordering ¢’ in which e appears before the edge f € E(T) where r(Eq( o) =
max{m (u), 7 (v)}. This would have strictly decreasing MLOP objective value, a con-
tradiction. Now suppose 7 (Eq(¢),6) < max{m(v), 7w (u)}, then the set

A={e}U{f": f e E(T)and r(E;(),0) < (Eq(e),0)}

isanindependent setof size 7 (Es (¢),0)+1. Now let f € A\({e}suchthatr(Es(y), 1) =
r(Eg(e),e) As either Eg(f) 5 or Eg (e, contains A, we have a contradiction.
Thus we may conclude

n
MLOP(H,c,0) = Y max{m(u), w(v)}+ Y i-(©Om>+2).
(u,v)€E(G) i=1

As c¢(E(H)) is bounded by a polynomial in m, by Lemma 4, the MLVC problem can
be reduced in polynomial time to the graphic matroid MLOP. O

6.3 Equivalence of MLVC and MSVC in decision form

The following theorem shows that solving an MLVC instance on a simple graph G =
(V, E) where | V| = n is equivalent to solving an MSVC instance on its complement
G =(V, E(Ky)\E). Since MSVC is known to be NP-hard, by Theorem 8, this will
imply graphic matroid MLOP is NP-hard.

Theorem 9 Let G be a simple graph on n vertices. For any labeling w € Sy (g), the
MLVC objective on G corresponds to the MSVC objective on its complement graph
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G with a linear shift, i.e.,

Y max{z(x), 7(M} =’ —n)/3 = (n+ DIEG)]

(x,y)€E(G)
+ Y min{r'(0), 7'M},
(x,y)€E(G)
wheren' :==n+1—m € SV(E)'

Proof Note that any labeling of the vertices of a complete graph K,, gives an optimal
MLVC objective value of Z?:l (i—Di=m— n)/3. It follows for all & € Sy (g),

Y max{z(), (M} + Y. max{r(), 7} =0’ —n)/3.

(x,y)€E(G) (x,9)€E(G)

This key observation in turn gives the equivalence between MLVC and MSVC as
following:

Yo maxiz),rWM} =07 —m/3— Y max{r(x), 7()}
(x,y)€E(G) (x,y)€E(G)

= =m/3+ Y min{-7x), 7))

(x,y)€E(G)
=’ —n)/3— (n+ D|EG)|

+ Y ((+ D+ min{—m(x), —7()})

(x,y)€E(G)
= (n* —n)/3 — (n+ D|E@G)|

+ Z min{n + 1 — w(x),n+ 1 — 7(y)}.
(x.)€E(G)

Ast'=n+1-meS§, (G)» this completes the proof. O
As MSVC is NP-hard [26], we have that
Corollary 4 MLVC is NP-hard.

In Theorem 8, we have reduced any instance of MLVC to graphic matroid MLOP.
Combining this with Corollary 4, we have the promise.

Theorem 2 Graphic matroid MLOP is NP-hard.

In Corollary 3, we showed if a matroid MLOP is NP-hard for a family of matroids,
we have that the corresponding dual family is NP-hard as well. It follows,

Corollary 5 Cographic matroid MLOP is NP-hard.
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6.4 Graphic matroid MLOP for cactus graphs isin P

We are now interested in further pushing the known boundaries of NP-hardness of
graphic matroid MLOP, in particular show that there is a polynomial time algorithm
to solve graphic matroid MLOP for cactus graphs. To achieve this we first introduce a
new formulation for matroid MLOP which we believe will be of independent interest.
In matroid MLOP we optimize over permutations of the ground set. In this new formu-
lation, we first optimize over the bases of the matroid, and then over all permutations
of the selected basis. To see this, given a basis B of a matroid and permutation 7 € Sp,
we construct an ordering o with the following rule, for each e ¢ B, find the minimal
prefix set X of B such that X U e is dependent. Place e anywhere after X but before
the next element of B in o. If B and 7 are chosen as described, this will always result
in an optimal MLOP permutation. Now we present this argument in detail.

Let M = (E, r) be a loopless matroid, let r(M) = k and let 0 € Sg have optimal
matroid MLOP value. By Lemma 3, there exists a partition of E, say X = {X; :
1 < i < k} such that U{zl X; is a flat for all 1 < j < k and there exists a basis

B = {by, ..., bt} suchthat b; € X;. Furthermore, we have thatife € X; and ¢’ € X,
fori < £,theno(e) < o(e).
We now observe how this partition {X7, ..., Xx} interacts with the values of

r(Eq(e),0) for optimal o. For all ¢ € E\B, B + e has a unique circuit, C(B, e).
As C(B, e) — e is an independent set, we have |{r(Eq(0),o) : € € C(B,e) —e}| =
|C(B,e) —e|. As C(B, e) is a dependent set and U{:] X;isaflatforall 1 < j <k,
we have that

r(Ea(e),(r) = max{r(Ea(e/),a) e e C(B,e) —e}.

Furthermore as B = {by, ..., by} with b; € X; forall 1 <i < k, we have that there
is a one-to-one correspondence between {by, ..., bx} and {r(Ey(),s) : € € B} =
{1, ..., r(M)}. With this in mind, we define for all 7 € Sp and fundamental circuits
C(B,e), the set C(B,e), := {m(e') : ¢ € C(B,e) — e}. Note that C(B, ) is the
set of positions in the ordering 7 of the edges present in C(B, e¢) — e.

We now build a permutation o of E as follows. First select a basis B of the matroid,
and permutation 7 € Sp. Given this ordering of basis elements, we create a linear
extension o of this order by ensuring that:

e For all distinct b, b’ € B, o(b) < o (b') if and only if 7 (b) < 7 (b');
e Foralle € E\ B,ifmax C(B, e); = i,theno(r (i) < o(e) < o(mLi+1)).

This process always constructs a permutation o € Sg, and if the correct basis and
7 are chosen, will find the optimal matroid MLOP permutation. In particular,

Proposition 1 Matroid MLOP is equivalent to the following problem,

min min Z max C(B, e)y.
BeB(M) neSp ccEQM)\B

The characterization Proposition 1 leads to a new class of matroids in which matroid
MLOP isin P.

@ Springer



Hardness and approximation of submodular minimum linear...

Theorem 10 Let X be a family of matroids such that for all M = (E, ry) € X with
|E| = m, the number of bases of M is |B(M)| € O(g(m)), and the rank of M is
ry(m) € O(h(m)), for some g, h : Z4 — Z. Then, every matroid MLOP instance
in X can be solved in time O(g(m) - poly(m, g(m)) - (h(m))!) In particular, if g is
polynomial in m and h is bounded by a constant, then matroid MLOP for X is in P.

Proof By Proposition 1, matroid MLOP for X" has the following formulation,

min min max C(B, e)y.
BeB(M) neSp Z ( )
ecE(M)\B

By [46], iterating over every basis requires poly(m, |B(M)|) time. As |B(M)| <
g(m) and |Sg| < (h(m))!, simply iterating over every basis B and its corresponding
permutations will solve matroid MLOP for X in time O(g(m) - poly(m, g(m)) -
(h(m))!). O

We will now use Proposition 1 to solve graphic matroid MLOP for cactus graphs.
We will first argue that the selection of spanning tree is arbitrary in finding an optimal
solution for cactus graphs. Then we order greedily with respect to the size of the
circuits of the graph to find an optimal solution.

Theorem 5 Given a simple cactus graph G, there is a polynomial time algorithm that
solves graphic matroid MLOP on G.

Proof Let G be a cactus graph. We may assume G is connected, as every graphic
matroid M has a connected graph H such that M = M[H]. Note as G is a cactus
graph, each edge of G belongs to at most one cycle. Our algorithm is as follows:

1. Order the cycles by length in nondecreasing order, temporarily regarding a bridge
as a cycle of infinite length.

2. Output any linear extension that respects this prior ordering. That is, first output
all edges in the shortest cycle (in any order), followed by all edges in the next
shortest cycle (in any order), and so on.

We now show its correctness. As bridges are coloops, a straightforward consequence
of Lemma 2 implies bridges must come last in an optimal order. Thus, without loss of
generality we may assume G is bridgeless as well. By Proposition 1, graphic matroid
MLOP can be formulated as follows,

min min Z max C(T, e),.
TeB(M)neSr ccEQINT

where T is a spanning tree of G, which again for convenience, we regard as a set
of edges. Note as G is a cactus graph, the set of fundamental circuits corresponds
to the set of cycles of G, i.e., does not depend on the choice of T'. The algorithm to
solve MLOP for G is clear, first select an arbitrary spanning tree 7', and then order the
cycles of G non-decreasing with respect to their lengths. Finally, choose aw € St that
respects this ordering of the circuits. It is straight forward to verify that this ordering
minimizes MLOP. O
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7 Approximations for minimum latency set cover (MLSC)

In Sect. 6, we introduced the MLVC problem in a series of reductions to show the
graphic MLOP is NP-hard. Here we study its more general version MLSC, intro-
duced by Hassin and Levin in 2005 [27]. In Sect. 7.1 we present a randomized factor
2- ﬁ)-approximation algorithm for MLSC, based on techniques from scheduling
theory, where ¢ is the size of largest input subset. Our result is better than previously
best-known factor of 2 for generic instances [25]. In particular, our result implies a
randomized factor %-approximation algorithm for MLVC, improving upon Azar et.
al’s result [25].

We also show that for £-uniform hypergraphs, the natural linear programming (LP)

relaxation (see eq. (MLSC-LP)) has an integrality gap of at least 2 — % As a special

case, we show that the integrality gap for MLVC is %. This implies that any approx-
imation algorithm for MLVC based on the rounding of the LP relaxation (without
additional inequalities) cannot improve upon our result.

In Sect. 7.2, we explore families of instances where MLVC admits polynomial time
algorithms. We show an equivalence between MLA and MLVC for regular graphs in
decision form. As many classes of regular graphs have previously been studied, this
yields exact polynomial time algorithms for MLVC on these families of instances,
and by Theorem 9, for MSVC problem for the graph complement of these families as
well.

7.1 Arandomized approximation algorithm for MLSC based on scheduling

Recall that minimum latency vertex cover is a special case of minimum latency set
cover (MLSC). MLSC can be similarly defined, as in our notation for MLVC. Instead
of a graph, we are given a hypergraph H = (V, E) with the objective

min Z max 7 (v).
TeSvH W Cpay U

The state-of-the-art approximation for MLSC is a factor 2, using a reduction to
a well studied problem in scheduling theory, known as 1|prec| ) w;C;j, or (single
machine) minimum sum scheduling with precedence constraints; that is defined as
follows. The input includes a set of jobs J, with corresponding processing times and
weights {p;}cs, {w;}jes, along with a partially ordered set (poset) P over the jobs.
We have a single machine that takes p; amount of time to process the job j. A feasible
schedule is one that processes job j earlier than job j whenever j <p j’ in the poset.
The objective is to minimize (weighted) sum of all completion times, } ; w; Cj, where
each C; is the completion time of job j, and is uniquely determined by the schedule
and processing times.

MLSC has been known to be reducible to single machine minimum sum scheduling
with precedence constraints since 2005 [27], using a simple construction as follows.
For every vertex v € V, consider a job v € J with processing time p, = 1 and weight
wy = 0. For every hyperedge ¢ € E, consider a job e € J with processing time
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pe = 0 and weight w, = 1. The poset P over the set of jobs J = V U E is defined
by all pairs v <p e suchthatv € V,e € E, and v € e. For convenience, we also
have for any distinct hyperedges e, ¢’ € E if e C ¢ then e <p ¢’. Furthermore, for
all multiples of the same edge in E, we order them as a chain in P in some arbitrary
manner. It is easy to verify the objective of this scheduling problem is equal to that
of the original MLSC. Moreover, the reduction is approximation preserving, i.e., an
a-approximate solution to the scheduling instance gives an «-approximate solution to
MLSC [27].

Note that the 2-approximability of MLSC is immediate, using various 2-approxi-
mations for scheduling [5-7]. Furthermore, by Proposition 6, MLSC is an instance of
monotone submodular MLOP. Thus the (2—2/(] E|+1)) approximation of [1] is appli-
cablein this case as well. A better constant than 2-approximation for all instances seems
unlikely, considering hardness results for the scheduling problem [47], or the vertex
cover problem that it reduces to [48-50]. We instead show an instance-dependent
improvement parameterized by the maximum size of the subsets. We achieve this
result by studying the dimension of the poset and its fractional dimension (e.g., stud-
ied by [8, 51] in the context of scheduling). In the rest of this section, we prove
Theorem 3 using the scheduling algorithm by [8].

Theorem 3 There is a randomized polynomial time algorithm that approximates
MLSC within factor 2 — %, where € is the maximum cardinality among all hyperedges
of H.

We now define the fractional dimension of a poset, that was introduced by [52]. A
poset P'(<p) is an extension of a poset P(<p),if x <p y thenx <p/ y, and P’ is
linear if x # y then we have x <pr y or y <p/ x. It is easy to see that the set of
feasible solutions for the single machine scheduling problem are all linear extensions
of the corresponding poset. Let 7 = {Ly, --- , L;} be a multiset of linear extensions
of P. F is a k-fold realizer of P, if for every incomparable pair (x, y) of P, there are
at least k linear extensions in F in which y < x. The fractional dimension of P is
defined as limg_, oo %, where ¢ is the size of a minimum k-fold realizer (note that the
fractional dimension of a poset > 2 if it is not a linear order). Ambiihl et al. [8] showed
I|prec| Y w;C; canbe (2 — %)-approximated, where f upper bounds the fractional
dimension of the corresponding poset. Specifically, they proved the following.

Theorem 11 [8] Given an efficient sampling algorithm for a k-fold realizer of P, of
size t (that is, to output each of the L;’s with probability at least 1/t), the problem
L|prec| Y w;Cj has a randomized approximation algorithm of factor 2 — I/Lk

Given an oracle that outputs a random linear extension P’ of P such that
Pr[j <p/ i] = b, for every pair of incomparable jobs (i, j) in P, Theorem 11 gives
a 2 — 2b approximate solution to the corresponding 1|prec| ) w;C;. Let us call the
sampling algorithm provided to the above theorem, a ];‘-balanced linear ordering ora-
cle for P. We show that it is easy to construct an %H-balanced linear ordering oracle
for posets corresponding to the MLSC’s reformulation to scheduling. This will result
ina(2— ﬁ)—approximation algorithm for MLSC, using the result of Ambiihl et. al
Theorem 11.
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Lemma5 Consider an arbitrary MLSC problem defined over a hypergraph H =
(V, E). Let P be the poset obtained from the reformulation of the MLSC instance as
a scheduling problem. Then, P admits a %H—balanced linear ordering oracle, where
L is the maximum size of any hyperedge in MLSC.

Proof Consider the following linear extensions to the poset P constructed randomly:
pick any random ordering {v;,, vy, . . . , v, } of the vertices V and let them appear in the
schedule in this order. To schedule any hyperedge e € E, inserte in the ordering as soon
as all its incident vertices have been scheduled. If edges are scheduled concurrently,
we break ties at random. It is easy to see that this random scheduling order leads to a
valid linear extension, satisfying all precedence constrains of P. Let’s call this linear
extension P’.

Now, we claim that any random order obtained above satisfies that the probability

of j <ps i for twoincomparable jobs i, j of P is at least ﬁ To see this, note that for a

pair of vertices, this trivially holds as Pr [u <pr v] = 0.5 > ﬁ for all distinct vertices
u and v. Let us show the inequality holds for a pair of incomparable hyperedges. For
an incomparable pair consisting of a vertex and a hyperedge, we overload the notation
to treat any vertex as a hyperedge of size 1. We can now consider any two distinct
incomparable hyperedges e, ¢'.

Leta = |e\é'|,leth = |e'\e|,and let c = |eNé’|. Note thata, b > 0, otherwise one
edge is a subset of another, i.e., they are not incomparable. We compute Pr [e <pre ]
conditioning on the last vertex of e U ¢’ with respect to the random permutation. Call

this last vertex v, .

Prie <p e|=Prle <p elvee €e\e] - Prlvee €e\e]
+Prle <p € €ene] -Prlv,e €ene]
+Prle <p €|vee € \e] Priv.e e \e]
a 1 c b

. Z. 1.
a+b—|—c+2 a+b+c+ a+b+c
b+c/2

:a—l—b—l—c'

We will now use the following well-known inequality: for positive numbers

o, B,y,8 such that /B8 < y/8, we have % < '2% < % If ¢ = 0, we have

Pr[e <ps e’] = ﬁ > llﬂ

abigfc > min{aib, %}. Considering that abﬂ is minimized at ﬁ subject to the
constraints 1 < a, b < ¢, we have the desired lower bound on Pr [e <pr e ] in both

cases. O

Suppose ¢ > 0, then we can write Pr [e <pré ] =

Therefore, we get a %H-balanced linear ordering oracle for the MLSC’s scheduling
reformulation, which ultimately gives us a (2 — li_‘_l)-approximation algorithm for
MLSC.

Integrality Gap for £-uniform MLSC:
Next, we consider the relaxed linear program for MLSC on £-uniform hypergraphs
on n vertices, i.e., where each hyperedge has size ¢. Here, variables u,; represent
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whether a hyperedge e is still uncovered (from MLSC perspective) until time ¢, and
Xy, indicates a vertex v to be scheduled at time step ¢, when these are constrained to
be integral.

(MLSC-LP) minimize Zue,,

et

subject to qu,,g 1, Vere{l,...,n} (1)
v

Uer + va,,r >1, Vuv,e tstve€e, 2)
t'<t

Uey, Xo0 20, Vet (3)

The constraints (1) and (2), respectively, ensure that at most one vertex is scheduled
during each time step, and every hyperedge remains unscheduled until all incident
vertices are scheduled, i.e., u,; is O only if all v € e are scheduled strictly before 7.

First we show a lower bound of 2 — 1%@ on the integrality gap, matching the
approximation factor of Theorem 3.

Proposition 2 The integrality gap of the LP relaxation for MLSC on £-uniform hyper-

graphs is at least 2 — IL_M

Proof Consider the complete £-uniform hypergraph on n vertices. By a well-known
binomial coefficient identity>, any ordering on the vertices gives the optimal objective
to the combinatorial problem, which can be shown to be

() -2e() - (L)

For ¢-uniform instances, the MLSC-LP objective can be upper bounded with a
uniform fractional solution, i.e., X, ; = }l and u,; =1 — % for all v, e, and . It
follows,

n
r—1 n\ n+1 (£+1/n+1
= |E|- ——)=(")- - .
;”e” IE] (;( n )> (z) 2 2 <e+1>

Thus, this family of examples provides a lower bound of % =2 - % for the
integrality gap. O
The integrality gap of MLSC-LP is therefore at least 2 — 1L+1 but it can be more

for certain families of graphs. We end this section by showing that the integrality gap
of the MLSC-LP is exactly 2 — ﬁ, for £-uniform hypergraphs where the degree of
each vertex is exactly d. We call these hypergraphs d-regular £-uniform hypergraphs.
We do not know i2f the integrality gap for non-regular uniform hypergraphs is strictly

larger than 2 — 37.

3 The hockey-stick idenitity states for positive integers £ < n, ZZ:Z (]z) = (Z_’H)
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Proposition 3 Let H be any d-regular C-uniform hypergraph with n vertices. Then the

integrality gap for H is at most2 — ﬁ.

Proof We first show that the MLSC-LP has an optimal objective value % for any
d-regular ¢-uniform hypergraph with n vertices. For all fixed 1 < ¢t < n, summing
over constraints 2 for all ¢ € E and all v € e, and we have:

ZZue,, = ZZ”” 4

e vee

2

=23 (1 - va,,) )
e vee t'<t

=dn —dzzxv,,/ (6)

t'<t v
1
>dn—d@—1), foralll <t <n. 7

Now summing over (7) for ¢ from 1 to n we have:

| — dn(n + 1)
P g(dn —d(t - )= ——F—.

et

It is easy to see that this objective value is achieved by letting x, ; = % and
Uey =1— % for all e, v, ¢, as this makes all inequalities satisfied with equality.

Now consider the MLSC problem. Using randomized rounding (e.g., [53]), we
will show there exists a permutation with objective value at most 2 — ﬁ of the LP
optimal value. Let 7 be a uniformly random permutation of vertices, i.e. 7 (v) = k
with probability 1/n for all 1 < k < n. Then, for any hyperedge e we have

n n+1
E [max{z(v),v € e}] = i Zk(k - 1> _ K(Hl) _ L(n + 1).
@)= \e-1 (2) t+1

Thus, by linearity of expectation, the expectation of the objective value for MLSC is

dn dn(n+1)

—FE [max{7r(v),v € e}] = ———.

7 [max{m (v) 1 1
Therefore, there exists a permutation with objective value at most %, which is
2 — ﬁ of the LP optimal value. O

7.2 Polynomial solvable instances for MLVC and MSVC
We next discuss classes of instances of MLVC and MSVC that can be solved in

polynomial time. The following theorem relates the objective value of MLA with
MLVC for the family of regular graphs.
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Theorem 12 Let G be a d-regular graph on n vertices. For any labeling o € S, we
have

1
2. Z max{m(x), 7(y)} =d<n; ) + Z |7 (x) — 7 (¥)I.

(x,)€E(G) (x,»)€E(G)

Proof We have that,

Yo @ -mli= Y [2-max{r(x), 7(»)} -7 (x) — 7 ()]

(x,)€E(G) (x,)€E(G)
=— ) wwd+2- Y max{r(x),7()
veV(G) (x,y)EE(G)

:_dZi+2- Z max{m(x), 7 (y)}
i=l1

(x.y)€E(G)

= —d(n + 1) +2- Z max{m(x), 7(y)}.

2
(x,)€E(G)
O

By Theorem 12, we have that MLA and MLVC for regular graphs are equivalent
in decision form. As the family of regular graphs is closed under graph complements,
we also have by Theorem 9 that MSVC and MLVC for the family of regular graphs
are equivalent in decision form as well. Thus we have the following,

Corollary 6 For the family of regular graphs, MLA, MLVC, and MSVC are equivalent
in decision form.

As an illustration of the utility of Theorem 12, we introduce Hamming graphs
H(d, c), which are obtained from d Cartesian graph products of the complete graph
K.. Motivated by designing error correcting codes, Harper [17] solved the MLA
problem for hypercubes, i.e. H(d, 2) where d is any positive integer. Later, Nakano
[54] generalized this result to all Hamming graphs H (d, ¢) where d and c are positive
integers. As Hamming graphs are regular, we have the following corollary of Theorem
12.

Corollary 7 MLVC is polynomial time solvable for Hamming graphs.

The literature for the MLA problem is vast and many other instances of regu-
lar graphs have been previously solved. Thus Theorem 12, while simple, provides
a powerful tool for providing polynomial time algorithms for many families of reg-
ular graphs. Some of these families of graphs include toroidal grids [55], complete
p-partite graphs [56], and de Bruijn graphs of order 4 [57]. This list is by no means
exhaustive, and we refer the reader to the following surveys for further reading [9—12].
Furthermore by Theorem 9, the complements of these families also have polynomial
time algorithms for the MSVC problem.
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8 Improved approximation for monotone submodular MLOP

Monotone submodular MLOP was introduced by Iwata et al. [1], where the authors
also provided a factor (2 — H_LE)-approximation algorithm using the Lovdsz extension
of submodular functions. Fokkink et al. [16] studied the submodular search problem,
which generalizes monotone submodular MLOP, and gave an approximation factor
based on the total curvature of the submodular function. It was not known if a tighter
approximation was possible. They considered the greedy contraction of the principal
partition induced by the submodular function, an idea that has been used as early as
1992 by Pisaruk [15]. In this section, we give a different analysis to the same algorithm
and improve the approximation factor to

L+tr where £y = L
1+ |E] T maxyxer f({x})

Our result can be applied to special cases including matroid and graphic matroid
MLOP. For general matroid MLOP, our approximation factor is 2 — 1;_’ \(EE|)’ which is
strictly smaller than 2 when r (E) = $2(]E|) (e.g., graphic matroid on sparse graphs).
Note that both approximation factors given by [16] based on total curvature and [1]
based on Lovasz extension are asymptotically 2 for all non-trivial instances of matroid
MLOP.

Throughout this section, let E be a nonempty set of size m and f : 2 — Rbea
normalized (f (¥) = 0) monotone submodular set function. Without loss of generality,
we can also assume that the maximum minimizer of the submodular function is the
empty set,* i.e., f(S) > Oforall § # . Recall from Sect. 4 that the steepness of a set
function f is defined as Ky = maxycg f({x}), and linearity of f is £y = %f) By
submodularity and monotonicity of f,forall S € T wehave f(T) < f(S)+«|T\S].

Note for any non-trivial (i.e., f(E) > 0) normalized monotone submodular func-
tion f : 2E 5 R, wehavel < ¢ r < |E|. Both of the bounds are tight, as the lower
bound £y = 1 is attained when f is the rank function on a graphic matroid with 2
vertices and |E| parallel edges between them, while the upper bound £y = |E]| is
attained when f(S) = [S| for all § € E. Thus, the linearity £ ; is a measure of how
uniform and linear a submodular function is. The function will have high linearity if
each singleton has approximately same function value, and the function is approxi-
mately linear, i.e., all submodular relations f(S) + f(T) > f(SNT)+ f(SUT)
are close to being tight. In the special case where f(S) is the rank function of some
matroid, we have ky = 1 and £y = f(E) (the rank of the matroid).

In this section, we show a (2 — lli—fgl)-approximation factor to monotone sub-
modular MLOP using any linear extension of the principal partition with respect
to the submodular function. Recall that a principal partition is a set of nested sets
W=Iy< ... C Il =E (s > 1) and a set of critical values Lo < A] < ... < Ag41,

4 We can simply contract the maximal minimizer U. The elements in U must appear (in any order) before
the other elements E \ U in any optimal solution for MLOP on monotone submodular functions (see
Appendix A.1).
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MLOP costs
11) = 1) ®
O principal partition ®

@ optimal MLOP solution °
upper bound '
FIligq) - @
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slope K g ,. o
upper bound *,* lower bound
fUL) ymmmm——- 3
’ .
, . "
slope k¢ A .
.
S i@,
£(S) e
o ’,* lower bound
f(Ti-1)
e O g
° [ ]
q\ bl
f(IIp) =0
Hlol=0 HTia| S| 115 [Hiq1| || = |B|

Size of the subsets

Fig. 2 Diagram of our lower and upper bounds in grey as well as the optimal solution in red. The black
circles represent the principal partitions

such that for all 0 < i < s, II; is the unique maximal optimal solution to
minxcr f(X) — A|X|, forall L € (A;, A;4+1) (Sect.4).

Theorem 13 Let {I1;}0<i<s be the principal partition of a non-trivial monotone sub-
modular function f : 28 — R satisfying f(#) = 0. Let Ky = maxyeg f({x})
and Ly = f E) Leto € S £ be any linear extension of the principal partition, i.e.,

Emo = 1'[ forall 1 <i <s. Then, the MLOP objective value of o is at most factor

1
2—

THET of the optimal solution.

Since 1 < £y < |E|, ourresultis arefinement on the 2— ST +| 7 factor approximation
of monotone submodular MLOP in [1]. For the lower bound, our key lemma (Lemma
7) is a more general version of the the well-known fact (see [14, 16, 58]) that any
member of the principal partition I7; is the “sparsest” subset® in the IT;_j-contracted
submodular function fir, ,, i.e., f(lg)lzi};;giJI) > f(‘g)‘_lj;;n’ D for all S D I_y.
We show, in Lemma 7, that this algebraic statement holds for all subsets S where
|S| # |IT;—1|, allowing us to lower bound the MLOP value of an arbitrary chain. For
the upper bound, we consider any MLOP solution that is a linear extension of the
principal partitions. The increase of the function value can be upper bounded using
K f, the linearity parameter of submodular function f, as well as the function value at
the principal partitions.

See Fig. 2 for an illustration. The horizontal axis denotes the sizes of subsets appear-
ing in an MLOP solution, and the vertical axis denotes the cost that these subsets incur

5 In our notation, ¢ ‘sparsest” subsets are the ones mmlmlzmg ! \gl Such subsets are referred to as being

“densest” by Fokkink et al. [16], as they maximize W.

@ Springer



M. Farhadi et al.

in the MLOP objective. The coordinates of the black circles are the sizes and costs
of the principal partitions. Between two adjacent black circles in the figure, the lower
bound is the linear segment joining them, and the upper bound is formed using two
linear segments, the first with positive slope « s and the second with slope 0. The red
points represent subsets in an optimal MLOP solution, and we show that they always
lie inside the triangular shaded regions formed by the lower and upper bounds. In
particular, the principal partitions must appear in any optimal MLOP solution, which
is also a consequence of Theorem 1 in [16].

The proofs for the lower and upper bounds are highly algebraic, and a lot of cal-
culations are deferred to the appendix. One of the challenges is that for the upper
bound, the difference between function values of two adjacent subsets in the principal
partition may not be an integer multiple of « , thus additional steps are needed to deal
with rounding as the upper bound approaches each horizontal segment.

8.1 Lower and upper bound on MLOP objective value

Consider a monotone submodular function f : 2 — R satisfying £(S) = 0 if and
only if § = @, its principal partition {I7;}o<;<s and the corresponding critical values
{Xi}1<i<s (Sect.4). The following lemma gives the relationship between the critical
values and the principal partition [14].

Lemma6 The principal partition {I1;}o<i<s and corresponding critical values
{Mi}1<i<s satisfy the following relation:

AR A
l \T;| — |T; 1]

, foralll <i <s.

Furthermore, I1;_1 and II; are the unique minimal and maximal minimizers of
minycg f(X) — A;[X].

We include a proof of Lemma 6 in Appendix A.2 for completeness. It simply uses
the definition of the principal partition and submodularity of the set function.

The following lemma lower gives an lower bound on the function value of any
subset. As mentioned before, this lemma is more general than stating that I7; \ IT;_;
is the unique maximal sparsest subset with respect to fi,_,, the I1;_i-contracted
submodular function.

Lemma7 Let f : 28 — R be a normalized monotone submodular function with
f(S) > 0ifS # 0, and principal partition {I1;}o<i<s. Let S C E, then

[ = fdli-y) _ fUL) = fULi-1)
IS| = 1Ti—1| = [Tl — i

’

for all i such that |S| # |IT;—1|.

Proof One can simply fix an arbitrary critical value A;, and use the fact that f(/1,_1) —
MilITi—1] < f(S)—A;|S|forany S C E.Rearranging terms we get f(S)— f(I1;_1) >
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2i(IS] = [IT;—11). Substituting the value of A; = % (Lemma 6) gives us

the desired result. O

Using the above lemma, we can sum up appropriate bounds for each subset E;
for any ordering o, and obtain the following lower bound for monotone submodular
MLOP. The proof after summation is purely algebraic manipulation, which is deferred
to appendix.

Proposition 4 Let f : 2F — R be a normalized monotone submodular function with
f(S) > 0ifS # @, and principal partition {I1;}o<i<s. Let 0 € Sg, then

s

- 1 1
> f(Ero) = SUEI+ DFE) = 2 3 (U] = £ (UT-)IT;])> 0.

k=1 i=1
Proof The proof is deferred to Appendix A.3. O

For the upper bound, we require that the chain must contain all sets in principal
partition, i.e. E|r,),c = [I1; for all i. We use the fact that each added element into
the subset can increase the function value by at most « s to upper bound the function
value of remaining sets. Pictorially, if we start from I7;_1, the upper bound starts at
S (I1;—1) and has slope « f, until it reaches f(11;) where it remains flat until /7; (refer
to Fig. 2). Also note that the increase of function value is integer multiple of « ¢ without
additional analysis, and the rounding as function value approaches f(I1;) has to be
taken care of.

Proposition5 Let f : 2F — R be a normalized monotone submodular function
with f(S) > 0if S # 0, and principal partition {I1;}o<i<s. Let 0 € Sg be such
that E\m, o = I; for all 1 < i < s. Then the MLOP objective value for f with
permutation o is at most

E)? E
NG A
K f 2

i FUT_)(fUT) — fUTi1))
K f ’

- Z(f(E) — fUI))(IT;| — [T —1]) +
i=1

i=1

Proof The proof is deferred to Appendix A.4. O

8.2 Proof of Improved Approximation for MLOP in Theorem 13

Both Proposition 4 and 5 together allow us to prove Theorem 13. Our goal is to show

. o . 1464

the upper bound obtained from Proposition 5 is at most 2 — %IKEfI the lower bound
obtained from Proposition 4, thus showing for a 0 € Sg such that E|;7,) » = IT; for
all 1 <i <, is our desired approximation for monotone submodular MLOP. First

comparing the non-summation terms in Proposition 4 and 5 we have
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FEIE -+ L g - LB 1,
5(E[+ 1) f(E) |E|+1 1+E|

To deal with the remaining summation terms, it suffices to prove that

N

S (FUINT 1| = fUT D) <D (FE) = U] — |- ))

i=1 i=1
B Z UL (fUT) — fUTi-1)

K
i=1 /

i.e., the decrease of upper bound from non-summation terms is at least twice the
decrease of lower bound from non-summation terms. To make computation easier we
rewrite the terms using differential notation. For all 1 < i < s,leté; = f([1;) —
SUI;—1) and A; = |I1;| — |IT;—1|. By definition of x , we have 0 < §; < ks A;. Note

that f(IT;) = Z i—10jand |IT;| = Z i1 A ;. Furthermore, we have f(IT;)|11;_1| —
fUL_D|IT;| = |17 |8 fUT)A;. Thus, the statement to be proved can be rewritten
as

2( 4, —AZS) 2( ’_is,-_ggaj)

i=1 j=1

Suppose s = 1, then both sides of this inequality are equal to zero.
Thus, we may assume s > 2. Rearranging terms, for the left hand side we have

i(a,-iA,-—miaJ ZSf:Z‘SJAi—‘M

i=1 j=1 j=1 i=1 j>i

and the second part of right hand side can be rewritten as

> 26 S IR 3) 0

K
zlf j]l>] l1]>l

after exchanging summation order and changing variable names. As §; < ks A; and
hence 3| > j=i8jAi =84 < Souod 2 -84 — Si%, we have the inequality
holds and thus, the proof is finished.

Recall from Theorem 7 that principal partitions {/7; }o<;<s can be found in polyno-
mial time. Thus, we have the following:

Theorem6 Let f : 2 — Rbea non trlwal normalized and monotone submodular
function. There exists a factor (2 — 1 1 EI) approximation algorithm to MLOP with

f () in polynomial time, where £y = maxecy FOED”
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Note that our analysis works for any linear extension to the partial order on subsets
induced by the principal partition. It is unclear how this analysis can be extended to
more structured linear extensions. We now discuss a special case of Theorem 13, when
[ is the rank function of a matroid M. Since in this case, £y = f(E), we get:

Corollary8 Let M = (E,r) be a matroid on ground set E with rank function r.

There exists a factor (2 — 11": (EEl) )-approximation algorithm to matroid MLOP on M

in polynomial time.

For graphic matroids, this improves upon the 2-factor approximation when graph
is connected and has a linear number of edges. For instance, for connected d-regular

graphs w1th vertex set V, the approximation factor is 2 — 5 +LXV| , which is asymptot-

ically 2 — 3.

8.3 Application to minimum latency set cover (MLSC)

Recall that in Sect. 7.1 we present a randomized factor (2 — %M)-approximation algo-
rithm for MLSC where ¢ is the size of largest hyperedge. For the special case of MLVC
the factor is 3 In this section we make the observation that MLSC is an instance of
monotone submodular MLOP, and use Theorem 13 to show that there exists a deter-
ministic factor (2 — A(%lv‘p) approximation algorithm for MLSC, where A is the
maximum degree of the hypergraph H = (V, E). Note that for £-uniform hyper-
graphs this bound is never better than the one obtained in Sect.7.1.

Recall that in MLSC, we are given a hypergraph H = (V, E) with the objective

min Z max 77 (v).

ﬂesv(m vee

In other words, we minimize over all permutations of the vertices, where the cost
of each hyperedge is the maximum label of all vertices in it. Throughout this section
we let n = | V| denote the number of vertices.

For a fixed w € Sy, its reverse permutation is defined as 7’ (v) = n+ 1 — 7 (v) for
all v € V. We now prove that the MLSC value with 7 is the same as the MLOP value
with 77" on a particular monotone submodular function, which shows that MLSC is an
instance of monotone submodular MLOP.

Proposition 6 For a fixed hypergraph H = (V, E), let f be the set function on 'V such

that forall S C 'V, f(S) =|{e € E : SNe # @}|. Then f is a monotone submodular
Sfunction satisfying () = 0. Furthermore, for all 1 € Sy we have

2%123( () = Z SWViz),
i=0

ecE

where ©' € Sy is given by t'(v) =n + 1 — 7 (v).
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Proof It is straightforward to verify that f is monotone and f () = 0. For submodu-
larity, for all S, T C V, observe that

F&+fT) = fSUT) = f(SNT)
=HfeeE:enS#0,enNT #Wh,enNSNT =0} >0.

Now forall 0 < k < nletTy = {e € E : v € e,n'(v) < k}. Then it is
straightforward to verify that for all 0 < k < n, f(Vk,s) = |Tk| and furthermore for
alle € E, |{k : e € T}}| = maxyee 7 (v). Therefore we have

Yomaxa) =Y |Til =) (Vi)
i=0 i=0

ecE

O

Using Theorem 13, we obtain the following approximation algorithm for MLSC
where the factor is based on maximum degree of the hypergraph. Note in this case
kf = A(H) = max.cg |e| is the maximum degree of hypergraph H.

Corollary 2 There is a deterministic factor (2 — A?%‘ﬁ,ll))-approximation algorithm
for MLSC, where A is the maximum degree of hypergraph H = (V, E).

For comparison, in Sect.7 we presented a randomized scheduling-based approxi-
mation algorithm for MLSC within factor 2 — ILH’ where £ = max,.cg |e| is the size
of largest hyperedge. The algorithm presented in this section is deterministic, but for
uniform hypergraphs this bound is never better than the randomized algorithm based
on scheduling.

9 Future directions

We conclude this work by presenting a list of open questions that stem from this work.

In Sects. 5 and 6 we investigated the hardness of restrictions of MLOP. In particular,
we showed that graphic matroid MLOP is NP-hard. In Sect. 6.4, we saw how matroid
MLOP can be viewed as an optimization problem over the bases of the matroid.
However, even when a basis is fixed, the corresponding ordering problem on the
ground set of elements can be non-trivial. In particular, in the context for graphic
matroid MLOP on a connected graph G, consider the following optimization problem,

min Z max{o(e) : e’ € C(T,e) — e},

€St e E(G\T
where T is a given (fixed) edge set of a spanning tree of G, and C (T, e¢) denotes the
fundamental circuit with respect to 7 and e. We saw implicitly in the reduction of
MLVC to graphic matroid MLOP (Theorem 8), that MLVC reduces to this problem
when T is the star graph (thus, this is NP-hard). We prove in Proposition 1, that if we
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allow the choice of the spanning tree T to vary over all spanning trees of G, then the
above problem is equivalent to graphic matroid MLOP. Thus, when T is fixed, this
problem can be viewed as a “fixed-basis” restriction of graphic matroid MLOP.
Open question 1. Given a graph G, a spanning tree 7 and integer k, consider the
problem of whether there exists a permutation o of E(7') such that

Z max{o(¢') : ¢ € C(T,e) — e} <k.
ecE(G)\E(T)

For what families of trees is this problem NP-hard?

This problem is known to be NP-hard only when 7T is a star graph, and remains
open for other simple families of trees, such as in the case where T is a path.

In Sect.7, we showed that MLSC can be (2 — ﬁ)-approximated using randomized
scheduling techniques. Furthermore, we showed for £-uniform regular hypergraphs,
MLSC can be (2 — ﬁ)-approximated using an LP relaxation. This question for
general £-uniform hypergraphs remains open.

Open question 2. Does solving the LP relaxation provide an approximation guarantee
for MLSC on £-uniform hypergraphs by a factor of 2 — 1%[ ?

In Sect. 7.2, we show that the MLVC, MSVC, and MLA are all equivalent problems
in decision form for regular graphs. Using techniques similar to Theorem 9, we can
show that the optimal value for all three problems are related by linear shifts. It is
known that MSVC on regular graphs can be 4/3-approximated (see [26]), but we have
not found a formal proof that this problem is NP-hard. Thus, the following question
remains open, to the best of our knowledge.

Open question 3. Are MLA, MLVC, and MSVC NP-hard for the family of simple
regular graphs?

In Sect. 8, we show that monotone submodular MLOP can be approximated within

1+¢€ . . . .
factor 2 — %Ihfl’ using principal partitions. A related open question is to develop

algorithms when the principal partitions are trivial, i.e., f(S)|E| > f(E)|S| for all
S C E. In this case, the principal partition-based algorithm studied by Fokkink et al.
[16] (and by us) will simply output an arbitrary solution.

Open question 4. Do there exist better polynomial time approximation algorithms for
monotone submodular MLOP in the case where the function f satisfies f () = 0 and
F(OIE| > f(E)|S|forall S € E?

In the scope of symmetric submodular MLOP, the current best known approxima-
tion factor for the special case MLA is polylogarithmic in the size of the graph, i.e.,
O (J/lognloglog n), given by Feige and Lee [21]; see also Charikar et al. [22]. For the
more general problem of symmetric submodular MLOP, there is currently no known
efficient approximation algorithm better than O (|E|).

Open question 5. Can symmetric submodular MLOP over a ground set E be approx-
imated to a factor better than O (|E|)?
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A Proofs for Sect. 8
A.1 Reduction to the case where f(S) > Oforall S # @

Here we formally prove the statement that in monotone submodular MLOP where
f (@) =0, all elements with weight zero must appear (in any order) in the beginning
of any optimal MLOP solution.

Lemma8 Let f : 2 — R be a monotone submodular function with f (%) = 0. Then
there exists a unique maximal set U satisfying f(U) = 0. Furthermore, any optimal
MLOP solution o € Sg on f must have U as prefix, i.e., E|y|.o = U.

Proof Let U be a maximal set with f(U) = 0 and let U’ be any subset of E such that
f(U") = 0.Weclaimthat U" € U which would show that U is the unique maximal set.
From submodularity we have f(UUU’) < f(U)+ f(U")—f(UNU") = —f(UNU").
From monotonicity, f(U NU’) > f(@) = 0, therefore f(U U U’) = 0. Since U is
maximal, we have U U U’ = U, which implies U’ C U.

For the sake of contradiction, let o € Sk be any optimal MLOP solution where
E\y|,c # U. Let the elements in E = {ey, ..., e,} be ordered such that o (e;) = j.
Leti < |U| be the smallest index such that ¢; ¢ U and let j be the smallest index
such that j > i and e¢; € U. Consider a new permutation ¢’ € Sg where we move ¢;
just before e¢; and keep everything else unchanged. That is,

o(e) ifo(e) < o(e),
, o(e;) ife=ej,
o'(e) = ) : .
o(e)+1 ifo(e) >o0(e;)ando(e) < o(ej),
o(e) ifo(e) > o(e)).
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We have Ey , = Ep o forallk < iandk > j. Foralli < k < j, we have that
Eyo = Ero —er +ej. As f({e;}) = 0, we have by submodularity, f(Ej ,) <
f(Exo—er)+f(ej}) = f(Ek—ex). Hence by monotonicity, f(Ex o) < f(Ek,o)
foranyi < k < j.Furthermore, we have f(E; ;) > Osincee; ¢ U.As f(E; ,/) =0,
this shows that changing o to o strictly decreases the MLOP value, contradicting the
optimality of o. Thus any optimal MLOP solution must contain U as a prefix. O

A.2 Proof for Lemma 6

Fix 1 < i < s, consider minycg f(X) — ;| X|. From the definition of principal
partitions, I7; is a minimizer of f(X) — A|X]| for all A € (A;, Aj4+1), and [T;_; is a
minimizer of f(X) — A|X|forall A € (Aj_1, Aj).

Thus for all X € E and sufficiently small ¢ > 0, f(IT;) — (A; + &)|IT;| <
FX) = (i +©)X| and f(IT}) — k|| < f(X) — A|X]| + €|IT;]. Letting ¢ — 0,
we have f(I1;) — Ai|IT;| < f(X) — | X|forall X C E.

Furthermore, for all X C E and sufficiently small ¢ > 0, f([1,—1) — (A; —
e)Ii—1] < f(X)— (i —e)|Xland f(IT;—1) — Al Ti—1| < f(X) =X | X]| +€|IT;—1].
Letting ¢ — 0, we have f(IT;—1) — A;|[I[Ti—1] < f(X) — x| X|forall X C E.

Combining these two statements we get f(I1;_1) — X |[[T;—1| = f(I1;) — A;|[1;].
Solving for A; we obtain the desired result. The proof that I7;_; and [1; are the unique
minimal and maximal minimizers of minxcg f(X — X;|X| can be found in [14].

A.3 Proof for Proposition 4
We first claim that for all S C E and all i, we have

fUl) — fUli—y)
S I _ S| — |IT;_1]).
f(8) = fUT ) + T (S| = T;—1)

If |S| = |[T;—1| then f(S) > f(I1;—) from the definition of principal partitions. If
|S| # |IT;—1], this follows from rearranging terms from Lemma 7.

Note Y oy f(Eke) =D i lelli\lﬂi_lH-l f(Ejs).ForeachE; ; C E,weapply
the bound above using the unique i where |IT;_1| < j < |II;]. Since f(I1;) >
f(IT;_1), this lower bound is strictly positive, and therefore the summation in the end

is also strictly positive.
The summation of f(E; ) forall |[IT;_1| < j < [I1;] is then given by

;| |17
FaL) — fUli-)
E E; o) >fUL_)(| ;| — |IT—]) + ———————=
F(Ejo) = f( 1)(| =1 1‘) AT Z

J=Ti—p|+1 J=Ti—p|+1

1
=fUTi—) (1T | — |[Ti-1]) + E(f(ﬂi) — fUT—D))(T;| — [Ty | + 1)

(j — i)

1
=§(f(17i)|17i| = fUTi—) iy + fUT) — f(Ti-1))

1
+ 5(f<17,-_1>|17,-| — fUT)ITi—1])
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The terms are grouped in this way so that the first part telescopes and second part does
not. It follows that

s |1T; |

Zf(Eko>—Z > f(Eje)

i=1 j=[IT_1|+1

>Z[ (FUINIT:| = fUT—DITi—1| + fUT) — f(Ti-y))

+ E(f(ni—l)|ni| - f(ni)|ni—l|)j|
1
= 5 (FUIDIT| = f o) ol + £ (Iy) = f (TTo))

1 s
=5 2 (FUI)Iiy] = [ (L)1)
i=1
1 I =
= SUEI+DS(E) = 5 ) (fUTI)IHia| = (LI 1),

i=l
A.4 Proof for Proposition 5

For indices i and j such that 1 < i < sand [I[T,_1|+1 < j §‘|Hi| we have
f(Ejo) < min(f(Timp) + k(= [Timi]), fUT)). Let @ = |HEZLE= ),
which is the integer multiple of « s before the upper bound becomes flat (f (/1;)).
Note that we always have 0 < a; < |I1;| — |IT;_1| by definition of « f.

Our first goal is to sum over terms between two adjacent principal partitions. We
will show that

|1T;|
Y f(Ejo) <fUT(IT| = |Ti1])
J=Ti—11+1 8)
(fUT) — fUT_1))* | fUT) — fUTi—)
— + .
2k 2

There are three cases:

1. First suppose a; = 0. We have f(I1;) — f(IT;—1) < ks and (8) holds as the bound
Y F(Eje) < fUT)(IT;| — |y ]) is true for all a;.

2. Suppose a; = |IT;| — |IT;_y|. Since |IT;| — |[Ti—| = a; = LWJ, we
have f([1;) — f(I1;—1) > ky(|[1;| — |11;—1|). By definition the of ks we have
fUL) — fUi—1) < «¢(T;| — |[1;—1]), and therefore f(I1;) — f(I1;—1) =
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Kk ¢ ([I1;| — |IT;—1|). Thus we have

|IT; | |IT; |
Y FEi< Y, (fULi) +kp( = Tia))
J=Ti—1|+1 J=Ti—1|+1
= fUTLi-)(IT;| — [IT;-1])
k(| — [T DT | — [TTi—1 ] + 1)
+ 2
= fUT) (T — [Ti—1]) — & £ (T | — [T ])?
k(| — i1 DT | — [TTi—1 ] + 1)

2
1| — |- 2 I1;| — |IT; -
=f(17i)(|17i|—|n-,1|)—'<f(| l 2I DA |2| i)
) — 17— ’ I1;) — IT;
= ) = g — LTI Y O FTn),
Ky 2

since in this case we have f(I1;) — f(I1;—1) = «(|11;| — |I1;—1]). Thus (8) also
holds when a; = |IT;| — |IT;_1].
3. Now suppose 0 < a; < |I1;| — |IT;—1|, we have:

|1T; | i1 |+ai |17
Yo fEi= Y. fEid+ Y. f(Ejo)
J=Ti—q|+1 J=Ti—1]+1 J=i—1|+ai+1
iy |+a; \1T;|
< Y (fUL)+xG=TaD)+ > fUT)
J=i—q1+1 =Ty |+ai+1

krai(a; + 1)

2 + fU) (| — || — a;)

krai(a; +1)

=a; f(IT;—1) +

= fUL) (| — [IT;—1]) + —ai(fI1) — f(1i-1)).

2
Let n; := w — a; be the decimal part of w Substituting
a; with %jj(n"” — n; with the above inequality we have
|17
Y f(Ejo) <FUT(IT| = |Ti-1])
J=Ti—y|+1
+K7j(f( i) f(ll)_m)(f( i) f(tl)_ni+1)
Kf Kf
(1) = fUi-1)
- (% =) (fUT) = f (i)

(fUT) — fUT;_1))?
2K

=fU) (| = [ITi—1]) —
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n SUTL) — fUdi-1) L

5 5 } — ;).

As 0 < n; < 1 and we have 17,'2 —n; <0. It follows,

|17;
> FEj0) FUT)IT| = i)
J=i—1|+1
(fUT) = fUTi-1))* | fUT) — fUTi-1)
2k f 2

Thus inequality (8) always holds.

For easier manipulation and telescoping later in the computation, we rewrite the
terms as f(IT;)(|11;| — |[1j—1]) = f(E)(UT;| — [[Ti—1]) — (f(E) — fUT))(|IT;| —
\Ti—1]) and (fUT) = fUTi—1)* = fUTD? = fUTi-1)* = 2fUTi—)(fUT) —
f(T;—1)). Now summing over i from 1 to s we have that (8) implies,

m s |IT;|
Y FEr) =Y > f(Ejo)
k=1 i=1 j=|IT_|+1

<Y FET] = Tia) = Y (FE) = fUT) (| — [T 1)

i=1 i=1

~ Z FUT)? = fWTi)? Z FUT_)(fUT) — fUIT; 1))

par 2K i=1 “
> fUT) — fUTi-y)
+> 5
i=1
f(E)  f(E)

= Y (fE) = fUAT) (| — [Ti-1])

= fB)El = ——+
“r i=1

2

n Z fUT ) (fUT;) — f(ni—l))‘

K
i=1 !
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