Check for
Updates

Empirical Evaluation of ML Models for Per-Job Power Prediction

Debajyoti Halder Manas Acharya Aniket Malsane
Stony Brook University Stony Brook University Stony Brook University
Stony Brook, New York, USA Stony Brook, New York, USA Stony Brook, New York, USA
dhalder@cs.stonybrook.edu macharya@cs.stonybrook.edu amalsane@cs.stonybrook.edu

Anshul Gandhi Erez Zadok
Stony Brook University Stony Brook University
Stony Brook, New York, USA Stony Brook, New York, USA
anshul@cs.stonybrook.edu ezk@cs.stonybrook.edu

ABSTRACT Performance Engineering (ICPE °24 Companion), May 7-11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

Sustainability has become a critical focus area across the technology
3629527.3651418

industry, most notably in cloud data centers. In such shared-use
computing environments, there is a need to account for the power
consumption of individual users. Prior work on power prediction

1 INTRODUCTION

of individual user jobs in shared environments has often focused The exponential growth in digital data, coupled with increasing
on workloads that stress a single resource, such as CPU or DRAM. computational demands (e.g., DNN training and crypto mining),
These works typically employ a specific machine learning (ML) has raised significant questions about the carbon footprint of data
model to train and test on the target workload for high accuracy. centers [31]. Both data center providers and users often share a
However, modern workloads in data centers can stress multiple common interest in regulating carbon usage [12, 25]. To regulate
resources simultaneously, and cannot be assumed to always be carbon usage, an important first step is to track the power con-
available for training. This paper empirically evaluates the perfor- sumption of each workload (or job, used interchangeably). This
mance of various ML models under different model settings and per-job power-tracking enables informed decision-making, empow-
training data assumptions for the per-job power prediction prob- ering users to make design choices that align with sustainability
lem using a range of workloads. Our evaluation results provide key goals [15]. Further, in the near future, providers may consider pric-
insights into the efficacy of different ML models. For example, we ing models that partly charge users based on their attributed power
find that linear ML models suffer from poor prediction accuracy use (e.g., carbon tax), thus incentivizing sustainable practices.
(as much as 25% prediction error), especially for unseen workloads. Predicting the per-job power consumption is a difficult problem
Conversely, non-linear models, specifically XGBoost and Random due to the often time-varying utilization of the various server re-
Forest, provide reasonable accuracy (7-9% error). We also find that sources by a job at runtime. The problem is further exacerbated
data-normalization and the power-prediction model formulation by OS- and device-specific scheduling intricacies when resources
affect the accuracy of individual ML models in different ways. have to be shared between jobs. Machine Learning (ML) approaches,
such as regression models, are well suited to the power prediction
CCS CONCEPTS problem given their ability to infer complex relationships between

variables [25]. In particular, prior works have used a variety of
ML models and model settings for the power-prediction problem.
However, given the large variety of ML models and their settings,
KEYWORDS a thorough evaluation is first necessary to assess the usefulness of
different ML models for job-level power prediction.

Recent works on per-job power prediction have primarily focused

« Hardware — Power and energy; Power estimation and opti-
mization; Enterprise level and data centers power issues.

Sustainability, per-job power prediction, ML models, co-executed

workloads. on estimating the power consumption based on CPU and mem-
ACM Reference Format: ory utilization metrics [6, 13, 14]. As we discuss in Section 2, it is
Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, and Erez not enough to account only for the power consumption of CPU
Zadok. 2024. Empirical Evaluation of ML Models for Per-Job Power Pre- and memory subsystems. The classical works in power prediction

diction . In Companion of the 15th ACM/SPEC International Conference on (e.g., Joulemeter [21], VMeter [17]) employ linear ML models to

predict power as a function of resource-utilization metrics. While
Permission to make digital or hard copies of all or part of this work for personal or .
. .)) e such models may work well for benchmarks designed to saturate
classroom use is granted without fee provided that copies are not made or distributed T)
for profit or commercial advantage and that copies bear this notice and the full citation individual resources, we find that linear models have poor accuracy
on the first page. Copyrights for components of this work owned by others than the when predicting per-j ob power for workloads that stress multiple

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or imul | has T Fl dM DB
republish, to post on servers or to redistribute to lists, requires prior specific permission resources simultaneously, such as TensorFlow an ongobb.

and/or a fee. Request permissions from permissions@acm.org. In this paper, we empirically evaluate the performance of sev-
ICPE °24 Companion, May 7-11, 2024, London, United Kingdom eral, diverse ML models (both linear and non-linear) to predict
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. iob ti . 1 Kload d both
ACM ISBN 979.8-4007-0445-1/24/05. .. $15.00 per-job power consumption, using several workloads and bo

https://doi.org/10.1145/3629527.3651418 micro- and macro-benchmarks. We also evaluate the impact on

181

https://doi.org/10.1145/3629527.3651418
https://doi.org/10.1145/3629527.3651418
https://doi.org/10.1145/3629527.3651418
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629527.3651418&domain=pdf&date_stamp=2024-05-07

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

prediction accuracy of several models and system settings, such
as data normalization, accounting for background processes, and
factoring in idle power. To investigate the impact of training data
and the deployment context, we evaluate the ML models under
different settings, including testing on the training workloads and
testing on unseen workloads.

Our experimental results using 8 different pairs of (co-executed)
test workloads under 7 different ML models show that non-linear
models outperform linear models in terms of per-job prediction ac-
curacy (see Section 4). In particular, XGBoost and Random Forest
provided less than 10% error when predicting the per-job power
consumption of unseen workloads (comparing the sum of predicted
per-job power values with full-server power measurements). By
contrast, linear regression (LR) had much worse accuracy, with
errors as high as 40-50% for some pairs of co-located workloads.
Our experiments beyond two co-executed workloads show that
non-linear models can predict per-job power consumption with
~10% error when the training dataset corresponds to the test co-
execution scenario. However, training a model for each workload
class (CPU-, DRAM-, I/O-heavy) separately did not improve the
prediction accuracy significantly (3-7% difference).

We also find that the ML model settings and prediction formu-
lation can have an impact on prediction accuracy. For example,
predicting for the residual power (after subtracting idle system
power) instead of total power, and including the intercept term in
supported ML models, can reduce prediction error by as much 10%.
We also found that data normalization techniques like standardiza-
tion or min-max scaling significantly affect neural network models’
accuracy. Other models, such as decision trees, are less sensitive
to data scaling. Finally, we found that prediction accuracy is not
much affected when we take into account the resource utilization of
background processes, suggesting that ML models can capture such
activities through the resource usage of foreground workloads.

In summary, this paper makes the following contributions:

o We empirically evaluate several ML models, including a workload-
specific model, for power prediction. This is in contrast to existing
works that often only consider a single model. Further, we report
on the impact of model formulation settings and data-processing
techniques on power prediction accuracy. We have made our
datasets and code available [27] for reproducibility.

e We consider the practical yet challenging problem of per-job
power prediction to allow users in shared environments to as-
sess their sustainability footprint. We considered up to four co-
executed workloads. Few prior works focus on this realistic case.

e Unlike prior works, we experiment with diverse workloads that
are not just CPU- or memory-bound but stress the entire system.
Further, we consider the realistic scenario where a test workload
has not been observed in training, unlike much of the prior work
that focuses only on cross-validation results.

2 BACKGROUND AND PRIOR WORK

The problem of predicting the power consumption of individual jobs
in the presence of other co-executing jobs is challenging for at least
two reasons. First, the power consumption of a server when running
multiple jobs simultaneously is not simply the sum of the power
consumed when the jobs are run individually (see Appendix A for

182

Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

empirical data). This is likely due to resource saturation, sharing,
and contention when multiple jobs co-execute.

The second challenge is that there is no accurate, ground truth
power value that is available for individual jobs. Prior research
has focused on predicting total server power [3, 32] by using re-
source usage metrics (e.g., CPU and memory utilization). While
these models are valuable for specific use cases, our goal is to model
the concurrent utilization of all system resources to predict per-job
power consumption.

Prior Work. Joulemeter [21] employs linear ML models to predict
per-VM power consumption using observable power states in the
hypervisor. Linear regression models have also been employed
in CloudMonitor [32] and VMeter [17] to predict VM-level power.
Likewise, linear regression has also been used to predict total server
power (Krishnan et al. [23]) and process-level power (Bertran et
al. [4]). However, we find that linear models are inadequate for
predicting the power consumption of co-executed jobs in shared
environment scenarios (see Section 4.2).

Several studies have employed a single, non-linear ML model
for power prediction. Xiao et al. [35] and BitWatts by Colmant et
al. [7] explore polynomial regression for predicting power in vir-
tual environments. Dhiman et al. [11] proposed the use of Gaussian
Mixture Models (GMM) for power prediction in virtualized envi-
ronments. Recent works by Fieni et al. [13, 14] leverage Lasso and
Ridge regression for power modeling. The authors also use sequen-
tial learning to calibrate their power models online by training
on currently executing workloads [14]. The authors also rely on
PowerAPI [18] (which in turn relies on Intel RAPL [9]) to track CPU
package and DRAM power consumption values as ground truth.
RAPL-reported values provide power consumption of CPU pack-
age (cores, caches, and any integrated GPU) and DRAM. Phung et
al. [30] leverage RAPL values as additional features for learning, but
focus on modeling the power use of only CPU-intensive workloads.

While RAPL power values can serve as ground truth for CPU
and/or DRAM power consumption, they are not accurate indicators
of full-server power (see Appendix B) as RAPL does not include
power consumed by disks, motherboard, network, or GPU(s).

Given the importance of power consumption tracking, there
have also been power modeling tools developed for consumer use.
Scaphandre [28] predicts per-process power consumption by track-
ing the jiffies and correlating it with RAPL power values when a
process is running. However, as noted by prior work [20], Scaphan-
dre’s focus is primarily on CPU-power consumption (hence the
reliance on RAPL). Kepler [6] is a tool developed by Red Hat that
predicts pod and node power consumption; however, Kepler is lim-
ited to only Kubernetes environments. Further, Kepler uses cgroups
and sysfs to get CPU and memory usage statistics, and thus only
focuses on the power of these two resources. Similar tools have also
been developed for user-facing purposes, but these tools are not
accurate enough for tracking the power of workloads that stress
multiple resources. For example, Apple provides an “Energy Im-
pact” metric with their Activity Monitor tool [2], but the estimates
reported are only relative values (with no units) that are based on
a job’s CPU usage [26].

There are other prior works that focused on specific scenarios or
workloads (see survey paper by Lin et al. [25]), such as approaches

Empirical Evaluation of ML Models for Per-Job Power Prediction

Table 1: Features used to train ML models.

Entity | Features

CPU Cycles, Ref-cycles, Instructions

DRAM | LLC-load-misses, LLC-loads, LLC-store-misses, LLC-
stores

Disk Bytes, Blocks (# of reads and writes)

RAPL | Package power, RAM power

that estimate the power usage of HPC servers [19, 34] or predict the
power consumption of DNN training systems [1, 24, 31]. However,
they rely on the specifics of the workload or system, and are thus
not easily generalizable.

3 POWER MODELING

For all ML models we considered, the ground truth for server power,
Pserver, Was obtained via a power meter (see Section 4.1). In general,

the ML models estimate server power at time #, say Pl,,,op
function of some feature vector, X!, as P!,,,., = f(¥!). The hat
notation denotes predicted values (as opposed to ground truth
values). For ease of notation, we drop the ¢ superscript by implicitly

considering the formulations as being specific to a given time.

as a

3.1 Features

The ML models aim to predict power consumption as a function
of resource utilization and other metrics, referred to as features
(the X). Rather than determining these features from scratch, we
built on existing studies to obtain features for our power-prediction
problem; note that we are not considering networked systems in
this paper, so we do not include network features, though they
could be easily added as needed.

Based on prior works [17, 21, 32], we arrived at the feature
list shown in Table 1. We believe this list is short yet representa-
tive enough to capture the important resource-utilization values.
While RAPL power values may not track full-server power, RAPL
power values may still serve as useful features, as we explore in
Section 4. For CPU and DRAM features, we used perf-stat to ob-
tain performance event counts, which are reported per TID (Thread
Identifier). We used pstree to track all TIDs (including for child
threads) pertaining to a given workload to aggregate the features
from perf-stat per workload. We used blktrace to track per-process
disk reads and writes.

All performance event counts from perf-stat are sampled at
200ms intervals. A higher sample rate increased the power con-
sumption overhead of tracing by 5W. We aggregate performance
event counts for every 1s interval and align them with the full-
system power values obtained from the power meter every 1s. For
workload-specific resource utilization, we combine the performance
event counts for each workload separately. We obtain RAPL power
values from turbostat; RAPL power values are reported as an ag-
gregate for the CPU package and DRAM, and not per TID.

3.2 Power Prediction

We start with a simple setting where a single workload is running
on a server. In this case, the power prediction can be formulated as:

ﬁserver = f(x;I) (1)

183

ICPE ’24 Companion, May 7-11, 2024, London, United Kingdom

where xy1 is the feature vector, say of size n, obtained for the (single)
workload. For example, for Linear Regression (LR) with intercept
term, Eq. (1) takes the form Pserver = Po + Z;’:l Bi - xw1.i, where
the S terms denote the coefficients of the LR model that are learned
during training and x,y1 ; is the i’ h feature of the x3,; feature vector.
For LR (and other ML models that support the intercept term, fy),
one can also set up the ML model without intercept. We evaluate
both options in our experiments.

Since the server has some baseline idle power, say P; g, which
can be considered as a constant (for that server), another formula-
tion is to predict the residual power (or dynamic power), which is

PIeS or = Pserver — Pigle- In this case, the prediction takes the form

PLes or = f(xw1), and so we predict full-server power as:

@

Another variant of Eq. (2) is to also subtract the feature values
obtained for an idle system, say x;g;. (e.g., CPU cycles of an idle
system spent on background processes) to better correlate with
residual power as:

Pserver = Pigre + f(x;vl)

®)

Co-Executed Workloads. When we have two workloads (can be
extended beyond two) executing concurrently, as is the focus of
this paper, we can separately predict the power consumption of

Pserver = Pigie + f(xw1 — Xidie)

each workload as P,y; = f(xwi), and predict full-server power as:
pserver = f(x;vl) +f(x;vZ) (4)

For ML models that have an intercept term (e.g., Linear Regression
with fy in f()), we subtract the intercept once from Eq. (4) to avoid
double-counting the intercept. Note that we still use full-server
power (Pserper) as the dependent variable in the final prediction
formulation since we have ground truth for only full-server power
(and not for the power consumption of individual workloads).

For co-executed scenarios, we separately track the feature values
(e.g., CPU cycles) for each workload process and their children to
obtain xy,; and xyy;. Feature values that do not belong to either of
the processes can be attributed to background or kernel processes,
denoted as x},’g. As such, another variant of Eq. (4) that we consider
is with f(xp,) added to the right-hand side.

For the residual power formulation, we similarly have:

pserver = Pigle +f(x;vl) +f(x:vz) (5)

with the possibility of f (ng) added to the right-hand side. We
also consider variants of the above formulations where x;g; is
subtracted from each feature vector on the right-hand side.

Power accounting. For the co-executed formulations, Egs. (4) and (5),
and their variants, the power contribution of each workload can
be estimated as f(xy;), for i = 1,2. If P4 (or the intercept term
or f (x},’g)) also must be accounted for, then we can charge each
workload with a fraction of P;4;, proportional to its estimated
power. For example, in Eq. (5), we estimate workload 1’s total power
contribution as:

NE)

Flewn) + Toon) + froa) “Pigle

(6)

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Table 2: Workloads employed in our experiments.

Resource | Workload

CPU 7zip, Cypto++, CP2K, Gzip

DRAM Stream, MBW, Tinymembench, RAMSpeed SMP

Disk Unpack Linux, LevelDB, SQLite, FIO

System Stress-ng, Tensorflow, Mobile Neural Network, Sys-
bench, Memcached, Filebench, MongoDB

Using the proportion of predicted power to account for P;yy, is
preferable to, say, using the proportion of a resource usage metric,
since predicted power is a function of all features.

4 EVALUATION

In this section we discuss the results and observations from the
evaluation of the power models on various workloads and model
formulations. In Section 4.1 we discuss our experimental setup,
the benchmarks used for evaluation, the ML models, their model
formulation settings, and the metrics used for evaluation. We con-
ducted experiments for multiple scenarios like predicting per-job
power when only a single workload is executed, or when two or
more workloads are co-executed. The evaluation results for ev-
ery scenario are discussed in Section 4.2. We also discuss 5-fold
cross-validation results and feature importance.

To make our results reproducible, we have made available our
datasets and code for power-prediction model evaluation [27].

4.1 Experimental Setup and Methodology

We conduct all our experiments on a server with two Intel Xeon E5
CPUs with Haswell architecture (has RAPL support). The server has
24 cores total and 256GB of memory. We disabled speedstep (DVFS),
hyperthreading, and turboboost (overclocking) to minimize power
consumption uncertainties due to dynamic system/OS behavior. To
obtain ground truth, we use an external wall power meter, WattsUp
Pro [33], attached to the server, which provides full-server power
readings once per second.

Workloads. For our evaluation, we employed workloads from stress-
ng [22], YCSB [8], and Phoronix Test Suite [29], as shown in Table 2.
The resource-specific workloads were primarily used for training
whereas the System workloads were used for testing; a similar
methodology was adopted by prior works that modeled the power
consumption of individual (not co-executed) workloads [7, 13, 16].
Training on microbenchmarks allows the ML models to learn the
impact of resource utilization on power consumption under con-
trolled stress-test conditions. Every workload ran for around 20
minutes either independently, or co-executed with other workloads.

ML Models. We used a variety of ML models to evaluate power
prediction: Linear Regression (LR), Decision Tree (DT), Random
Forest (RF), Support Vector Regressor (SVR), XGBoost, Lasso, and
Neural Network (NN). All ML model hyper-parameters were tuned
via Grid Search; see Appendix C for details.

Data Processing Techniques. For data processing, we experimented
with three popular techniques: (i) de-mean, whereby the mean of
the dataset is subtracted, (ii) standardization, which additionally
divides by the standard deviation of the data, and (iii) min-max
normalization, which scales data to the (0,1) range. In general,

184

Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

50
I MongoDB
Tensorflow
40 B Sysbench
B Memcached
330 s Mobile Neural Net
Su: I I B Filebench
a
gzo I i I
10 ‘ 1 J "N J

Lasso SVR Dec Tree Rnd Frst

Power Model

Neural Net XGBoost Linear Reg

Figure 1: MAPE values for power modeling when a single
application is run on the server.

all techniques provided better results than no processing as raw
values for different features have different magnitudes. For example,
CPU cycles/second is usually in the billions, whereas for non-disk-
intensive workloads, the reads/second or writes/second during
workload execution is typically in the thousands.

Prediction Metrics. We used Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) as our error metrics; ground
truth was obtained from the power meter. MAE values showed the
same trend as MAPE, so we report MAPE values in our results.

4.2 Experimental Results

For evaluation, unless otherwise stated, we use the System work-
loads (as listed in Table 2) for testing the ML models, while using
the others for training.

4.2.1 Single Workload Execution. We start by evaluating the ML
models for the single workload scenario using the residual power
prediction formula with idle features removed (see Eq. (3)). Fig-
ure 1 illustrates the MAPE values obtained for predicting the server
power on the y-axis and the ML models on the x-axis. All the mod-
els perform well, with an average MAPE value of less than 17%
across all workloads. Support Vector Regression (SVR) outperforms
the others, with an average MAPE of 6.6%, followed by Random
Forest with an average MAPE of 9.6%. Even Linear Regression (LR)
provides satisfactory results, achieving an average MAPE of 12.7%.

For the power prediction in Figure 1, we experimented with
different data-processing techniques. We found that the de-mean
approach provided the best results for all models, except NN. For
all models except NN, other approaches like standardization result
in a 1-2% increase in MAPE. With min-max normalization, MAPE
increased by 1-3%. For NN, min-max scaling worked the best, im-
proving the prediction accuracy significantly (76%); standardization
only provided some improvement (11%) in prediction accuracy. The
reason for this is the NN model’s sensitivity to input scale and
reliance on gradient-based optimization methods [5]. Techniques
like min-max scaling ensure a consistent scale for all features, fa-
cilitating efficient learning and stable convergence. Without this
consistent scaling, the NN model’s learning could be inefficient due
to skewed gradients. Other models such as Decision trees, Random
Forest, and XGBoost, are less sensitive to data scaling because their
splitting criteria and/or ensemble nature focuses on the relative
ordering of feature values rather than their specific scales. These
models make decisions based on feature relationships, making them

Empirical Evaluation of ML Models for Per-Job Power Prediction

> 50
Tensorflow + MobileNN
Sysbench + Memcached
40 Tensorflow + MongoDB

MobileNN + Filebench
Sysbench + MobileNN
MongoDB + Filebench
Tensorflow + Filebench
Tensorflow + Memcached

1T
Lasso SVR Dec Tree Rnd Frst
Power Model

30

MAPE (%)

20

I
l
T
U Ll 1

Neural Net XGBoost Linear Reg

Figure 2: Prediction results when workloads are co-executed
and residual server power is predicted as the sum of predicted
residual power of each workload.

inherently robust to variations in feature scales. For subsequent
evaluations, we used de-mean for all models except NN, for which
we used min-max scaling.

Among the different model variants considered, the residual
power prediction approach (Eq. (2)) offered better accuracy com-
pared to directly predicting full-server power (Eq. (1)). This im-
provement is seen particularly in the case of Linear Regression (LR)
and XGBoost, resulting in a 10% reduction in MAPE. Excluding idle
features (x;7;.) from the prediction process did not affect prediction
accuracy. Furthermore, including the intercept term in supported
models led to a slight improvement in prediction accuracy. How-
ever, for LR, the improvement was substantial, reducing MAPE
by approximately 20%. Unless specified otherwise, we considered
these variations in our subsequent results.

Predicting residual power, where we isolate the active system
usage by subtracting idle power, proved effective in improving ac-
curacy. This is because predicting residual power allows the model
to capture only the specific resource patterns associated with ac-
tive jobs, providing a better understanding of how power usage is
affected by resource utilization of jobs. At the same time, incorpo-
rating the intercept term in the models was crucial for considering
baseline power, representing the constant power consumption of
the server (which includes idle power) when no active jobs are
running. These two steps (predicting for residual power and including
the intercept term) are important for power prediction as they ensure
that the model does not unintentionally miss or attribute variations,
preventing bias in predictions.

Additionally, we conducted experiments without utilizing the
two RAPL power features. This resulted in a slight increase (1-2%)
in MAPE values across all ML models. RAPL power features cannot
be obtained on a per-thread or Thread ID (TID) basis. Therefore,
it is not possible to track the power contribution of individual
workloads using RAPL power features. Moreover, RAPL values
exhibit inconsistencies for certain server models, as reported by
Desrochers et al. [10]. Therefore, we opted not to incorporate RAPL
power features in the remainder of our evaluation.

4.2.2 Per-job Power Prediction for Co-Executed Workloads. We
now consider the challenging case where each co-executed work-
load’s power consumption is to be predicted. In particular, each co-
executed workload’s residual power consumption is first predicted,
and then the full-server power, obtained by adding the individual
workload power values and P;g;, (via Eq. (5)), is compared with

185

ICPE ’24 Companion, May 7-11, 2024, London, United Kingdom

the full-server ground truth power use. We train our models on
feature vectors from random pairs of non-System workloads from
Table 2. We then test the models on 8 pairs of System workloads.
This ensures that test workloads are separate from training.

Figure 2 shows our results for different pairs of co-executed
workloads. Here, the training data included only pairs of non-test
workloads from Table 2, representing the realistic case where test
workloads may not always be available for training. XGBoost per-
formed the best, with an average MAPE of 7.3%, followed by Ran-
dom Forest (8.9%), Decision Tree (12.3%), and SVR (14.9%). LR per-
formed poorly, with an average MAPE of 25%, highlighting the
linear model’s inability to account for resource contention when work-
loads are co-executed. We also explored the variation where the
predicted power consumed by other processes (f (x,) term from
Section 3.2) was added to the predicted power of the workloads
to arrive at the full-server power prediction. However, this for-
mulation yielded slightly higher MAPE values, and was thus not
considered further.

We also conducted 5-fold cross-validation for our ML models by
training and testing on the dataset obtained by co-executing a pair
of workloads. In general, the prediction errors are lower than those
in Figure 2, since the test workloads comprise the same training
data. Based on average MAPE values, all models performed well,
with SVR (4.4%), RF (5.7%), NN (6.7%), Lasso (6.7%), DT (8.1%), and
XGBoost (9.7%) providing less than 10% error; even LR (6.9%) re-
sulted in low error under this cross-validation setting. This suggests
that the choice of ML model to employ also depends on the training
and test data overlap assumptions.

4.2.3 Background Processes as Third Workload. As mentioned ear-
lier, we explored another variation of our power model by consider-
ing all background processes as an additional workload co-executed
during the experiments. The idea behind this approach was that the
power model might be able to better segregate the power among
the active workloads if the background processes are grouped sep-
arately. The power prediction formulation hence becomes:

Pserver = Pigle + f(xw1) + f(xw2) +f(x;g) ™)

However, the results were not impressive. XGBoost had the least

average MAPE of 20.9%, followed by RF (22.9%), NN (25.3%), and DT

(25.4%). We also tried another variation of this model without the

intercept term (f), but that resulted in much worse results (~57%

average MAPE for RF, DT, and LR). We thus decided to not consider
this model variation for our evaluation.

4.24 Beyond Two Co-Executed Workloads. We next experimented
by testing on four co-executed workloads by also training on the
dataset obtained by co-executing four workloads. We ran 5 combi-
nations of four workload pairs and evaluated using “leave-one-out”
cross-validation (see Figure 3). For example, in Figure 3, when we
test on the Tensorflow + MNN + Memcached + Filebench work-
load combination (blue legend), then the remaining 4 workload
combinations are used for training.

All the ML models performed well except LR and Lasso. XG-
Boost and Random Forest had the least average MAPE of ~10%.
LR performed much worse with ~24% average MAPE. This again
shows that linear models are not well suited for co-executed work-
loads’ power prediction. Overall, XGBoost and Random Forest are the

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

> 50
mmm Tensorflow + MNN + Filebench + Memcached
B Tensorflow + MNN + Stress + Filebench
40 B MNN + Stress + Sysbench + Memcached
B Tensorflow + MNN + Sysbench + Filebench
s 30 - B MNN + Filebench + Sysbench + Memcached
R
2 1 1 W | |
<
10 I

SVR Dec Tree Rnd Frst

Lasso
Power Model

Neural Net XGBoost Linear Reg

Figure 3: Prediction results when four workloads are co-
executed and residual server power is predicted as the sum
of predicted residual power of each workload.

best performing models with 10% or lower average MAPE in most
scenarios, showing that non-linear models are effective for per-job
power prediction.

4.2.5 Workload Classification. The workloads being executed on
a server can be classified by the resource(s) they stress. It may be
interesting to consider a modeling approach whereby we build a
power model for each workload class separately to gain accuracy. To
that end, we classified workloads into 3 classes: CPU-heavy, DRAM-
heavy, and Disk-heavy. We trained a different power model for each
class and tested it on a workload of the same class. We compared
this new approach of “workload classification” with the original
“all workloads for training” approach (except the one being tested).
In this experiment, we trained and tested on a single workload
execution scenario. The benchmark workloads used are the micro-
benchmarks from Table 2. Figure 4 shows that the prediction error
of the power model trained for specific workload classes is typically
worse than the original approach (3-7% difference). This suggests
that a single model trained on multiple workload classes can improve
power prediction accuracy over workload-specific models.

4.2.6 Feature Selection and Importance. To evaluate our feature
set, we employed the mutual information method from scikit-
learn to estimate the significance of each feature utilized in our
training, as outlined in Table 1. This method quantifies the depen-
dence between two variables and is instrumental in assessing the
information gain associated with each feature relative to the target
variable. We found that DRAM and CPU features had higher impor-
tance scores (e.g., LLC-loads, LLC-stores for DRAM and ref-cycles,
cycles for CPU), while Disk features (e.g., bytes and blocks) had the
lowest scores. We repeated our power predictions by omitting the
Disk features, but this resulted in slightly higher MAPE values, sug-
gesting that our feature list is adequate. We also utilized XGBoost
and Random Forest algorithms to determine feature importance,
obtaining similar results.

4.2.7 Analyzing the Per-Job Power Predictions. Thus far we evalu-
ated our per-job power predictions (obtained via Eq. (6)) by compar-
ing the sum of per-job powers with full-server power meter readings
because there is no ground truth for per-job power consumption in
the co-executed setting. Nonetheless, we can analyze the trend in
per-job power predictions. We first compared the per-job predic-
tions obtained from the co-executed setting with the ground truth
residual power when the workload is run in isolation. As expected,

186

Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

> 25
mmm Workload classification
W All workloads

N
o

Neural Net XGBoost Linear Reg

MAPE (%)
-
v

=
o

R

Rnd Frst

L

SVR

v

Dec Tree

Lasso
Power Model

Figure 4: Performance of power models when trained on
specific workload classes versus all workloads.

the former is lower than the latter, likely due to resource contention
and saturation. For example, the ground truth residual power of
Sysbench in isolation is about 63W. However, the predicted per-job
power of Sysbench when co-executed with Memcached and when
co-executed with Mobile Neural Network (MNN) is only about
46W and 50W, respectively. In both co-executions, the predicted
power of Memcached and MNN is also lower than their ground
truth isolated power.

We also compared the per-job power predictions when Ten-
sorFlow (TF) is co-executed with MongoDB and when TF is co-
executed with MNN. The predicted power for TF is 67W when
co-executed with MongoDB and 85W when co-executed with MNN.
Since MongoDB is I/O intensive, we expect TF’s I/O to be slowed
down much more when TF is co-executed with MongoDB compared
to when TF is co-executed with MNN; consequently, TF may have
fewer instructions to be run per second when co-executed with
MongoDB, lowering its power draw. The disk and CPU features
confirm this claim, providing some validation of our predictions.

5 CONCLUSION AND FUTURE WORK

Per-job power tracking is an important first step for incentivizing
sustainable computing practices among consumers and providers
of cloud data centers. While there is ample literature on power-
prediction techniques, there is little prior work on comparing dif-
ferent power-prediction models, especially under different workload
and model settings. Our evaluation results showed that non-linear
ML models, specifically XGBoost and Random Forest, provided
good prediction accuracy (< 10% MAPE). Even for SVR models,
we found that a non-linear kernel provided significantly higher
prediction accuracy than a linear kernel (~92% lower MAPE). By
contrast, LR did not perform well (25% MAPE). As such, the choice
of ML model plays an important role in power prediction. The
choice of ML model also depends on the training and test data
assumptions. In cross-validation settings, almost all ML models
we experimented with performed quite well (less than 10% MAPE).
Interestingly, workload-specific power models did not provide good
accuracy; training across workload classes resulted in a non-trivial
6% accuracy gain.

ACKNOWLEDGMENTS

This work was supported in part by Dell-EMC, NetApp, Tintri,
Facebook, and IBM support; and NSF awards CNS-1750109, CNS-
1900706, CNS-2106263, CNS-2106434, CNS-2214980, and CCF-2324859.

Empirical Evaluation of ML Models for Per-Job Power Prediction

REFERENCES

[1] AnTHONY, L., KANDING, B., AND SELVAN, R. Carbontracker: Tracking and pre-
dicting the carbon footprint of training deep learning models. In ICML Workshop
on Challenges in Deploying and monitoring Machine Learning Systems (2020).
APPLE. View energy consumption in Activity Monitor on Mac. https://support.
apple.com/en-gb/guide/activity-monitor/actmntr43697/mac.

BARROSO, L. A., AND HOLZLE, U. The Case for Energy-Proportional Computing.
IEEE Computer 40, 12 (2007), 33-37.

BERTRAN, R., BECERRA, Y., CARRERA, D., BELTRAN, V., GONZALEZ, M., MARTORELL,
X., TORRES, J., AND AYGUADE, E. Accurate energy accounting for shared virtual-
ized environments using pmc-based power modeling techniques. In 2010 11th
IEEE/ACM International Conference on Grid Computing (2010), pp. 1-8.

BHANJA, S., AND Das, A. Impact of data normalization on deep neural network
for time series forecasting. ArXiv (2018).

Croup NATIVE COMPUTING FOUNDATION. Kubernetes Efficient Power Level
Exporter (Kepler). https://sustainable-computing.io, 2022.

CoLMANT, M., Kurricz, M., FELBER, P., HUERTAS, L., Rouvoy, R., AND SOBE, A.
Process-level power estimation in vm-based systems. In Proceedings of the Tenth
European Conference on Computer Systems (New York, NY, USA, 2015), EuroSys
’15, Association for Computing Machinery.

CoOPER, BRIAN. Yahoo! Cloud Serving Benchmark.
brianfrankcooper/YCSB, 2021.

Davip, H., GorBaTov, E., HANEBUTTE, U. R,, KHANNA, R, AND LE, C. RAPL:
memory power estimation and capping. In Proceedings of the 2010 ACM/IEEE
International Symposium on Low Power Electronics and Design (ISPLED) (2010),
pp- 189-194.

DESROCHERS, S., PARADIS, C., AND WEAVER, V. M. A Validation of DRAM RAPL
Power Measurements. In Proceedings of the Second International Symposium on
Memory Systems (Alexandria, VA, USA, 2016), pp. 455-470.

DHIMAN, G., MiHIC, K., AND RosING, T. A system for online power prediction in
virtualized environments using gaussian mixture models. In Design Automation
Conference (2010), pp. 807-812.

DurT, A., RACHURL, S. P., LoBO, A., SHAIK, N., GANDHI, A., AND L1, Z. Evaluating
the energy impact of device parameters for dnn inference on edge. In Proceedings
of the 14th International Green and Sustainable Computing Conference (IGSC’23)
(Toronto, Canada, 2023).

FiENT, G., Rouvoy, R., AND SEINTURIER, L. SmartWatts: Self-Calibrating Software-
Defined Power Meter for Containers. In Proceedings of the 20th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing (2020), pp. 479-488.
FIENI, G., Rouvoy, R., AND SEITURIER, L. Self Watts: On-the-fly Selection of
Performance Events to Optimize Software-defined Power Meters. In Proceedings
of the 21st International Symposium on Cluster, Cloud and Internet Computing
(2021), pp. 324-333.

GaNDHI, A., GHOSE, K., GopaLaN, K., HussaIN, S., LEg, D., L1u, D., L1u, Z., Mc-
DANIEL, P., MU, S., AND ZADOK, E. Metrics for sustainability in data centers.
In Proceedings of the 1st Workshop on Sustainable Computer Systems Design and
Implementation (HotCarbon’22) (San Diego, CA, USA, July 2022), USENIX.

Guo, N,, Gur, W,, CHEN, W,, T1aN, X., Qiu, W., TIAN, Z., AND ZHANG, X. Using
improved support vector regression to predict the transmitted energy consump-
tion data by distributed wireless sensor network. EURASIP Journal on Wireless
Communications and Networking 2020, 1 (2020), 120.

HusAIN BoHRA, A. E., AND CHAUDHARY, V. VMeter: Power modelling for virtual-
ized clouds. In Proceedings of the 2010 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW) (2010), pp. 1-8.
INRIA, UNIVERSITY OF LILLE. PowerAPL https://powerapi.org, 2023.

Jarus, M., OLEKSIAK, A., PIONTEK, T., AND WEGLARZ,]. Runtime power usage
estimation of HPC servers for various classes of real-life applications. Future
Generation Computer Systems 36 (2014), 299-310.

[20] Jay, M., OSTAPENCO, V., LEFEVRE, L., TRYSTRAM, D., ORGERIE, A.-C., AND FICHEL,
B. An experimental comparison of software-based power meters: focus on CPU
and GPU. In Proceedings of the 23rd IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (Bangalore, India, 2023), pp. 1-13.

KANsAL, A., ZHAO, F., L1, J., KOTHARI, N., AND BHATTACHARYA, A. A. Virtual ma-
chine power metering and provisioning. In Proceedings of the 1st ACM Symposium
on Cloud Computing (Indianapolis, IN, USA, 2010), SoCC ’10, pp. 39-50.

KiNG, CoLIN. stress-ng. https://manpages.ubuntu.com/manpages/xenial/man1/
stress-ng.1.html, 2023.

KRISHNAN, B., AMUR, H., GAVRILOVSKA, A., AND SCHWAN, K. Vm power metering:
Feasibility and challenges. SIGMETRICS Perform. Eval. Rev. 38, 3 (jan 2011), 56-60.
LACOSTE, A., LuccIoNI, A., ScHMIDT, V., AND DANDRES, T. Quantifying the carbon
emissions of machine learning. arXiv preprint arXiv:1910.09700 (2019).

LN, W, SHr, F., Wu, W,, L1, K., Wu, G., AND MOHAMMED, A.-A. A taxonomy and
survey of power models and power modeling for cloud servers. ACM Comput.
Surv. 53,5 (2020).

NETHERCOTE, NIcHOLAS. What does the OS X Activity Monitor’s “Energy Impact”
actually measure? https://blog.mozilla.org/nnethercote/2015/08/26/what-does-

(2]
(3]
(4]

https://github.com/

[12]

[13]

[14]

[15]

[16]

[17]

[18
[19]

[21]

[22]
[23]
[24]

[25]

[26

187

ICPE ’24 Companion, May 7-11, 2024, London, United Kingdom

the-os-x-activity-monitors-energy-impact-actually-measure/.

PACE LaB, STONY BRoOK UNIVERSITY. Replication Package. https://github.com/
PACELab/sassy-metrics-data-code, 2023.

PETIT, B. Scaphandre. https://github.com/hubblo-org/scaphandre.

PHORONIX MEDIA. Phoronix Test Suite. https://www.phoronix-test-suite.com/,
2023.

PHUNG, J., LEE, Y. C., AND ZOMAYA, A. Y. Modeling System-Level Power Con-
sumption Profiles Using RAPL. In 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA) (2018), pp. 1-4.

ScHMIDT, V., GoyaL, K., JosHr, A., FELD, B., CONELL, L., LAskARIs, N., BLANK, D.,
WILSON, J., FRIEDLER, S., AND Lucciont, S. CodeCarbon: Estimate and Track
Carbon Emissions from Machine Learning Computing. https://mlco2.github.io/
codecarbon/motivation.html, 2021.

SmrTH, J. W., KHAJEH-HOSSEINT, A., WARD, J. S., AND SOMMERVILLE, . Cloudmon-
itor: Profiling power usage. In Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing (2012), pp. 947-948.

WarTsUp. WattsUp? Pro. https://arcb.csc.ncsu.edu/~mueller/cluster/arc/wattsup/
metertools-1.0.0/docs/meters/wattsup/manual.pdf.

WiTKOWSKI, M., OLEKSIAK, A., PIONTEK, T., AND WUNDEFINEDGLARZ, J. Practical
Power Consumption Estimation for Real Life HPC Applications. Future Generation
Computer Systems 29, 1 (2013), 208-217.

X1ao, P., Hu, Z., L1u, D, YAN, G., AND Qu, X. Virtual machine power measuring
technique with bounded error in cloud environments. Journal of Network and
Computer Applications 36, 2 (2013), 818-828.

[27

(28]

&~
20,

[30

[31

[32

@
&

[34

(35]

A APPENDIX: EMPIRICAL DATA SHOWING
THE POWER CONSUMPTION OF
CO-EXECUTED WORKLOADS VERSUS THE
SUM OF POWER CONSUMPTION OF
INDIVIDUAL WORKLOADS

W
200 2007
g z 150
o w® 2UA
= 2
n; 100 § 1004
o
a —— Powerackermann + Powery; & 504 — Powerackermann + Powermen
Powerackermann-tpi Powerackermann-+mem
0 0
0 200 400 0 200 400

Time (seconds) Time (seconds)

(a) CPU load with CPU load (b) CPU load with MEM load

Figure 5: Residual power (after subtracting idle power) when
workloads are co-executed versus sum of residual powers
when workloads are run in isolation.

We conducted experiments using stress-ng micro-benchmarks [22]
to investigate the difference in power consumption of co-executed
and individual workloads. We observed a large difference (see Fig-
ure 5(a)) between the sum of residual power consumption of two
CPU-bound micro-benchmarks (ackermann and pi) when run in-
dividually and the residual power consumption when these two
micro-benchmarks are run together. Residual power is the server
power with idle power subtracted from it.

Figure 5(a) shows, in blue, the sum of residual power consumption
of two CPU-bound micro-benchmarks (ackermann and pi) when
run individually; in orange, we see the residual power consump-
tion when these two micro-benchmarks are run together. We see
a similar difference (see Figure 5(b)) even if we run a CPU-bound
micro-benchmark next to a memory-bound one. The large differ-
ence between the two lines shows that the power consumption
profile of a job depends on other concurrent jobs as there may be
resource saturation and contention when jobs co-execute.

https://support.apple.com/en-gb/guide/activity-monitor/actmntr43697/mac
https://support.apple.com/en-gb/guide/activity-monitor/actmntr43697/mac
https://sustainable-computing.io
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://powerapi.org
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://blog.mozilla.org/nnethercote/2015/08/26/what-does-the-os-x-activity-monitors-energy-impact-actually-measure/
https://blog.mozilla.org/nnethercote/2015/08/26/what-does-the-os-x-activity-monitors-energy-impact-actually-measure/
https://github.com/PACELab/sassy-metrics-data-code
https://github.com/PACELab/sassy-metrics-data-code
https://github.com/hubblo-org/scaphandre
https://www.phoronix-test-suite.com/
https://mlco2.github.io/codecarbon/motivation.html
https://mlco2.github.io/codecarbon/motivation.html
https://arcb.csc.ncsu.edu/~mueller/cluster/arc/wattsup/metertools-1.0.0/docs/meters/wattsup/manual.pdf
https://arcb.csc.ncsu.edu/~mueller/cluster/arc/wattsup/metertools-1.0.0/docs/meters/wattsup/manual.pdf

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

Table 3: Illustration of our hyper-parameter tuning using Grid Search. Tuned values are highlighted in bold.

Random Forest

Neural Network

n_estimators: [100, 200, 300,
500]

max_depth: [None, 5, 10, 20,
30]

min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [‘auto’, ’sqrt’,
"log2’]

bootstrap: [True, False]

activation: [ReLU, ELU,
tanh]

solver: [adam, sgd]
learning_rate_init: [0.001,
0.01, 0.1, 1]

XGBoost SVR Decision Tree
learning_rate: [0.01, | C:[0.1, 1, 10, 100] max_depth: [None, 5, 10, 15,
0.03, 0.1, 0.5] kernel: [linear, rbf, | 20]

n_estimators: [100, | poly] min_samples_split: [2, 5, 10]
200, 300, 900] gamma: [scale, auto, | min_samples_leaf: [1, 2, 4]
max_depth: [3,5, 6] | 0.01,0.1, 1] max_features: [auto, sqrt,
min_child_weight: epsilon: [0.1, 0.2, 0.5, | log2]

[1,3,5] 1.0] max_leaf nodes: [None, 10,
subsample: [0.6, 0.8, 20, 30]

1.0] min_impurity_decrease:
colsample_bytree: [0.0, 0.1, 0.2]

[0.6, 0.8, 1.0]

max_leaf nodes: [None, 10,
20, 50]

B APPENDIX: EMPIRICAL DATA SHOWING
THE DIFFERENCE BETWEEN FULL-SERVER
MONITORED POWER AND RAPL POWER
VALUES

Power (Watts)
Power (Watts)
o}
3

| —— Monitored
RAPL Pkg i
50 RAPL RAM

—— RAPL Pkg+RAM

| —— Monitored
L RAPL Pkg
RAPL RAM

—— RAPL Pkg-+RAM

0 50 100 150 200

Time (seconds)

250 300

o

50 100 150 200
Time (seconds)

(b) Memcached

250 300

(a) Sysbench

Figure 6: Power values reported by Intel RAPL [9] and the
full-server power meter when running (a) Sysbench, and (b)
Memcached.

While RAPL power values can serve as ground truth for CPU
and/or DRAM power consumption, they are not accurate indicators
of full-server power, as shown in Figure 6. We empirically show
this shortcoming with Sysbench and Memcached workloads. In
general, across workloads, we found that the sum of CPU package
and DRAM power values for RAPL is 30-50% lower than full-server
monitored power values. Further, within a workload execution, the
ratio of full-server to RAPL power values varies significantly, by as
much as 1.1-1.7X for the workloads we experimented with. This

188

is to be expected as RAPL does not include power consumed by,
for example, the disks, motherboard, network, or non-integrated
GPU(s).

C APPENDIX: HYPER-PARAMETER TUNING

All ML models we experimented with were first tuned via Grid
Search to identify the best hyper-parameter values. Table 3 shows
the hyper-parameter tuning details for five ML models (XGBoost,
SVR, DT, RF, and NN), along with the best values chosen. For XG-
Boost, parameters such as learning rate, number of estimators, and
maximum depth were adjusted to find a balance between model
complexity and accuracy. SVR tuning focused on the regularization
parameter C, kernel type, kernel coefficient (gamma), and epsilon

(for epsilon-SVR model). For kernel type, our experiments showed
that the RBF (Radial Basis Function) kernel had the best prediction

accuracy. RF and DT had similar tuning to prevent overfitting while
maintaining model depth. For RF, we also considered the number
of estimators (300 in our case) for better accuracy. For NN, we used
the Multi-layer Perceptron regressor from scikit-learn with ReLU
activation and three hidden layers; the three hidden layers had size
of 512, 16, and 16 neurons. For LR, we experimented with and with-
out intercept. Including intercept, as mentioned earlier, gave better
results. We also tried Ridge regression as an alternative to LR and
Lasso, but its prediction accuracy was worse (5-6% higher MAPE
than LR and Lasso), so we do not include it in our evaluation. For
regularization, since Ridge regression did not work well, we had
the alpha hyper-parameter set to 0.1 for Lasso (L1 regularization).

	Abstract
	1 Introduction
	2 Background and Prior Work
	3 Power Modeling
	3.1 Features
	3.2 Power Prediction

	4 Evaluation
	4.1 Experimental Setup and Methodology
	4.2 Experimental Results

	5 Conclusion and Future Work
	References
	A Appendix: Empirical data showing the power consumption of co-executed workloads versus the sum of power consumption of individual workloads
	B Appendix: Empirical data showing the difference between full-server monitored power and RAPL power values
	C Appendix: Hyper-parameter tuning

