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ABSTRACT
Sustainability has become a critical focus area across the technology
industry, most notably in cloud data centers. In such shared-use
computing environments, there is a need to account for the power
consumption of individual users. Prior work on power prediction
of individual user jobs in shared environments has often focused
on workloads that stress a single resource, such as CPU or DRAM.
These works typically employ a speci�c machine learning (ML)
model to train and test on the target workload for high accuracy.
However, modern workloads in data centers can stress multiple
resources simultaneously, and cannot be assumed to always be
available for training. This paper empirically evaluates the perfor-
mance of various ML models under di�erent model settings and
training data assumptions for the per-job power prediction prob-
lem using a range of workloads. Our evaluation results provide key
insights into the e�cacy of di�erent ML models. For example, we
�nd that linear ML models su�er from poor prediction accuracy
(as much as 25% prediction error), especially for unseen workloads.
Conversely, non-linear models, speci�cally XGBoost and Random
Forest, provide reasonable accuracy (7–9% error). We also �nd that
data-normalization and the power-prediction model formulation
a�ect the accuracy of individual ML models in di�erent ways.

CCS CONCEPTS
•Hardware! Power and energy; Power estimation and opti-
mization; Enterprise level and data centers power issues.

KEYWORDS
Sustainability, per-job power prediction, ML models, co-executed
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1 INTRODUCTION
The exponential growth in digital data, coupled with increasing
computational demands (e.g., DNN training and crypto mining),
has raised signi�cant questions about the carbon footprint of data
centers [31]. Both data center providers and users often share a
common interest in regulating carbon usage [12, 25]. To regulate
carbon usage, an important �rst step is to track the power con-
sumption of each workload (or job, used interchangeably). This
per-job power-tracking enables informed decision-making, empow-
ering users to make design choices that align with sustainability
goals [15]. Further, in the near future, providers may consider pric-
ing models that partly charge users based on their attributed power
use (e.g., carbon tax), thus incentivizing sustainable practices.

Predicting the per-job power consumption is a di�cult problem
due to the often time-varying utilization of the various server re-
sources by a job at runtime. The problem is further exacerbated
by OS- and device-speci�c scheduling intricacies when resources
have to be shared between jobs. Machine Learning (ML) approaches,
such as regression models, are well suited to the power prediction
problem given their ability to infer complex relationships between
variables [25]. In particular, prior works have used a variety of
ML models and model settings for the power-prediction problem.
However, given the large variety of ML models and their settings,
a thorough evaluation is �rst necessary to assess the usefulness of
di�erent ML models for job-level power prediction.

Recent works on per-job power prediction have primarily focused
on estimating the power consumption based on CPU and mem-
ory utilization metrics [6, 13, 14]. As we discuss in Section 2, it is
not enough to account only for the power consumption of CPU
and memory subsystems. The classical works in power prediction
(e.g., Joulemeter [21], VMeter [17]) employ linear ML models to
predict power as a function of resource-utilization metrics. While
such models may work well for benchmarks designed to saturate
individual resources, we �nd that linear models have poor accuracy
when predicting per-job power for workloads that stress multiple
resources simultaneously, such as TensorFlow and MongoDB.

In this paper, we empirically evaluate the performance of sev-
eral, diverse ML models (both linear and non-linear) to predict
per-job power consumption, using several workloads and both
micro- and macro-benchmarks. We also evaluate the impact on
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prediction accuracy of several models and system settings, such
as data normalization, accounting for background processes, and
factoring in idle power. To investigate the impact of training data
and the deployment context, we evaluate the ML models under
di�erent settings, including testing on the training workloads and
testing on unseen workloads.

Our experimental results using 8 di�erent pairs of (co-executed)
test workloads under 7 di�erent ML models show that non-linear
models outperform linear models in terms of per-job prediction ac-
curacy (see Section 4). In particular, XGBoost and Random Forest
provided less than 10% error when predicting the per-job power
consumption of unseen workloads (comparing the sum of predicted
per-job power values with full-server power measurements). By
contrast, linear regression (LR) had much worse accuracy, with
errors as high as 40–50% for some pairs of co-located workloads.
Our experiments beyond two co-executed workloads show that
non-linear models can predict per-job power consumption with
⇠10% error when the training dataset corresponds to the test co-
execution scenario. However, training a model for each workload
class (CPU-, DRAM-, I/O-heavy) separately did not improve the
prediction accuracy signi�cantly (3–7% di�erence).

We also �nd that the ML model settings and prediction formu-
lation can have an impact on prediction accuracy. For example,
predicting for the residual power (after subtracting idle system
power) instead of total power, and including the intercept term in
supported ML models, can reduce prediction error by as much 10%.
We also found that data normalization techniques like standardiza-
tion or min-max scaling signi�cantly a�ect neural network models’
accuracy. Other models, such as decision trees, are less sensitive
to data scaling. Finally, we found that prediction accuracy is not
much a�ected when we take into account the resource utilization of
background processes, suggesting that ML models can capture such
activities through the resource usage of foreground workloads.
In summary, this paper makes the following contributions:
• Weempirically evaluate severalMLmodels, including aworkload-
speci�cmodel, for power prediction. This is in contrast to existing
works that often only consider a single model. Further, we report
on the impact of model formulation settings and data-processing
techniques on power prediction accuracy. We have made our
datasets and code available [27] for reproducibility.

• We consider the practical yet challenging problem of per-job
power prediction to allow users in shared environments to as-
sess their sustainability footprint. We considered up to four co-
executed workloads. Few prior works focus on this realistic case.

• Unlike prior works, we experiment with diverse workloads that
are not just CPU- or memory-bound but stress the entire system.
Further, we consider the realistic scenario where a test workload
has not been observed in training, unlike much of the prior work
that focuses only on cross-validation results.

2 BACKGROUND AND PRIORWORK
The problem of predicting the power consumption of individual jobs
in the presence of other co-executing jobs is challenging for at least
two reasons. First, the power consumption of a server when running
multiple jobs simultaneously is not simply the sum of the power
consumed when the jobs are run individually (see Appendix A for

empirical data). This is likely due to resource saturation, sharing,
and contention when multiple jobs co-execute.

The second challenge is that there is no accurate, ground truth
power value that is available for individual jobs. Prior research
has focused on predicting total server power [3, 32] by using re-
source usage metrics (e.g., CPU and memory utilization). While
these models are valuable for speci�c use cases, our goal is to model
the concurrent utilization of all system resources to predict per-job
power consumption.

Prior Work. Joulemeter [21] employs linear ML models to predict
per-VM power consumption using observable power states in the
hypervisor. Linear regression models have also been employed
in CloudMonitor [32] and VMeter [17] to predict VM-level power.
Likewise, linear regression has also been used to predict total server
power (Krishnan et al. [23]) and process-level power (Bertran et
al. [4]). However, we �nd that linear models are inadequate for
predicting the power consumption of co-executed jobs in shared
environment scenarios (see Section 4.2).

Several studies have employed a single, non-linear ML model
for power prediction. Xiao et al. [35] and BitWatts by Colmant et
al. [7] explore polynomial regression for predicting power in vir-
tual environments. Dhiman et al. [11] proposed the use of Gaussian
Mixture Models (GMM) for power prediction in virtualized envi-
ronments. Recent works by Fieni et al. [13, 14] leverage Lasso and
Ridge regression for power modeling. The authors also use sequen-
tial learning to calibrate their power models online by training
on currently executing workloads [14]. The authors also rely on
PowerAPI [18] (which in turn relies on Intel RAPL [9]) to track CPU
package and DRAM power consumption values as ground truth.
RAPL-reported values provide power consumption of CPU pack-
age (cores, caches, and any integrated GPU) and DRAM. Phung et
al. [30] leverage RAPL values as additional features for learning, but
focus on modeling the power use of only CPU-intensive workloads.

While RAPL power values can serve as ground truth for CPU
and/or DRAM power consumption, they are not accurate indicators
of full-server power (see Appendix B) as RAPL does not include
power consumed by disks, motherboard, network, or GPU(s).

Given the importance of power consumption tracking, there
have also been power modeling tools developed for consumer use.
Scaphandre [28] predicts per-process power consumption by track-
ing the ji�es and correlating it with RAPL power values when a
process is running. However, as noted by prior work [20], Scaphan-
dre’s focus is primarily on CPU-power consumption (hence the
reliance on RAPL). Kepler [6] is a tool developed by Red Hat that
predicts pod and node power consumption; however, Kepler is lim-
ited to only Kubernetes environments. Further, Kepler uses cgroups
and sysfs to get CPU and memory usage statistics, and thus only
focuses on the power of these two resources. Similar tools have also
been developed for user-facing purposes, but these tools are not
accurate enough for tracking the power of workloads that stress
multiple resources. For example, Apple provides an “Energy Im-
pact” metric with their Activity Monitor tool [2], but the estimates
reported are only relative values (with no units) that are based on
a job’s CPU usage [26].

There are other prior works that focused on speci�c scenarios or
workloads (see survey paper by Lin et al. [25]), such as approaches
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Table 1: Features used to train ML models.
Entity Features
CPU Cycles, Ref-cycles, Instructions
DRAM LLC-load-misses, LLC-loads, LLC-store-misses, LLC-

stores
Disk Bytes, Blocks (# of reads and writes)
RAPL Package power, RAM power

that estimate the power usage of HPC servers [19, 34] or predict the
power consumption of DNN training systems [1, 24, 31]. However,
they rely on the speci�cs of the workload or system, and are thus
not easily generalizable.

3 POWER MODELING
For all ML models we considered, the ground truth for server power,
%B4AE4A , was obtained via a power meter (see Section 4.1). In general,
the ML models estimate server power at time C , say %̂CB4AE4A , as a
function of some feature vector, ÆGC , as %̂CB4AE4A = 5 (ÆGC ). The hat
notation denotes predicted values (as opposed to ground truth
values). For ease of notation, we drop the C superscript by implicitly
considering the formulations as being speci�c to a given time.

3.1 Features
The ML models aim to predict power consumption as a function
of resource utilization and other metrics, referred to as features
(the ÆG). Rather than determining these features from scratch, we
built on existing studies to obtain features for our power-prediction
problem; note that we are not considering networked systems in
this paper, so we do not include network features, though they
could be easily added as needed.

Based on prior works [17, 21, 32], we arrived at the feature
list shown in Table 1. We believe this list is short yet representa-
tive enough to capture the important resource-utilization values.
While RAPL power values may not track full-server power, RAPL
power values may still serve as useful features, as we explore in
Section 4. For CPU and DRAM features, we used perf-stat to ob-
tain performance event counts, which are reported per TID (Thread
Identi�er). We used pstree to track all TIDs (including for child
threads) pertaining to a given workload to aggregate the features
from perf-stat per workload. We used blktrace to track per-process
disk reads and writes.

All performance event counts from perf-stat are sampled at
200ms intervals. A higher sample rate increased the power con-
sumption overhead of tracing by 5W. We aggregate performance
event counts for every 1s interval and align them with the full-
system power values obtained from the power meter every 1s. For
workload-speci�c resource utilization, we combine the performance
event counts for each workload separately. We obtain RAPL power
values from turbostat; RAPL power values are reported as an ag-
gregate for the CPU package and DRAM, and not per TID.

3.2 Power Prediction
We start with a simple setting where a single workload is running
on a server. In this case, the power prediction can be formulated as:

%̂B4AE4A = 5 ( ÆGF1) (1)

where ÆGF1 is the feature vector, say of size=, obtained for the (single)
workload. For example, for Linear Regression (LR) with intercept
term, Eq. (1) takes the form %̂B4AE4A = V0 +

Õ=
8=1 V8 · GF1.8 , where

the V terms denote the coe�cients of the LR model that are learned
during training and GF1.8 is the 8C⌘ feature of the ÆGF1 feature vector.
For LR (and other ML models that support the intercept term, V0),
one can also set up the ML model without intercept. We evaluate
both options in our experiments.

Since the server has some baseline idle power, say %83;4 , which
can be considered as a constant (for that server), another formula-
tion is to predict the residual power (or dynamic power), which is
%A4BB4AE4A = %B4AE4A � %83;4 . In this case, the prediction takes the form
%̂A4BB4AE4A = 5 ( ÆGF1), and so we predict full-server power as:

%̂B4AE4A = %83;4 + 5 ( ÆGF1) (2)

Another variant of Eq. (2) is to also subtract the feature values
obtained for an idle system, say ÆG83;4 (e.g., CPU cycles of an idle
system spent on background processes) to better correlate with
residual power as:

%̂B4AE4A = %83;4 + 5 ( ÆGF1 � ÆG83;4 ) (3)

Co-Executed Workloads. When we have two workloads (can be
extended beyond two) executing concurrently, as is the focus of
this paper, we can separately predict the power consumption of
each workload as %̂F8 = 5 ( ÆGF8 ), and predict full-server power as:

%̂B4AE4A = 5 ( ÆGF1) + 5 ( ÆGF2) (4)

For ML models that have an intercept term (e.g., Linear Regression
with V0 in 5 ()), we subtract the intercept once from Eq. (4) to avoid
double-counting the intercept. Note that we still use full-server
power (%B4AE4A ) as the dependent variable in the �nal prediction
formulation since we have ground truth for only full-server power
(and not for the power consumption of individual workloads).

For co-executed scenarios, we separately track the feature values
(e.g., CPU cycles) for each workload process and their children to
obtain ÆGF1 and ÆGF2. Feature values that do not belong to either of
the processes can be attributed to background or kernel processes,
denoted as ÆG16 . As such, another variant of Eq. (4) that we consider
is with 5 ( ÆG16) added to the right-hand side.

For the residual power formulation, we similarly have:

%̂B4AE4A = %83;4 + 5 ( ÆGF1) + 5 ( ÆGF2) (5)

with the possibility of 5 ( ÆG16) added to the right-hand side. We
also consider variants of the above formulations where ÆG83;4 is
subtracted from each feature vector on the right-hand side.

Power accounting. For the co-executed formulations, Eqs. (4) and (5),
and their variants, the power contribution of each workload can
be estimated as 5 ( ÆGF8 ), for 8 = 1, 2. If %83;4 (or the intercept term
or 5 ( ÆG16)) also must be accounted for, then we can charge each
workload with a fraction of %83;4 proportional to its estimated
power. For example, in Eq. (5), we estimate workload 1’s total power
contribution as:

5 ( ÆGF1) +
5 ( ÆGF1)

5 ( ÆGF1) + 5 ( ÆGF2)
· %83;4 (6)
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Table 2: Workloads employed in our experiments.
Resource Workload
CPU 7zip, Cypto++, CP2K, Gzip
DRAM Stream, MBW, Tinymembench, RAMSpeed SMP
Disk Unpack Linux, LevelDB, SQLite, FIO
System Stress-ng, Tensor�ow, Mobile Neural Network, Sys-

bench, Memcached, Filebench, MongoDB

Using the proportion of predicted power to account for %83;4 is
preferable to, say, using the proportion of a resource usage metric,
since predicted power is a function of all features.

4 EVALUATION
In this section we discuss the results and observations from the
evaluation of the power models on various workloads and model
formulations. In Section 4.1 we discuss our experimental setup,
the benchmarks used for evaluation, the ML models, their model
formulation settings, and the metrics used for evaluation. We con-
ducted experiments for multiple scenarios like predicting per-job
power when only a single workload is executed, or when two or
more workloads are co-executed. The evaluation results for ev-
ery scenario are discussed in Section 4.2. We also discuss 5-fold
cross-validation results and feature importance.

To make our results reproducible, we have made available our
datasets and code for power-prediction model evaluation [27].

4.1 Experimental Setup and Methodology
We conduct all our experiments on a server with two Intel Xeon E5
CPUs with Haswell architecture (has RAPL support). The server has
24 cores total and 256GB of memory. We disabled speedstep (DVFS),
hyperthreading, and turboboost (overclocking) to minimize power
consumption uncertainties due to dynamic system/OS behavior. To
obtain ground truth, we use an external wall power meter, WattsUp
Pro [33], attached to the server, which provides full-server power
readings once per second.

Workloads. For our evaluation, we employed workloads from stress-
ng [22], YCSB [8], and Phoronix Test Suite [29], as shown in Table 2.
The resource-speci�c workloads were primarily used for training
whereas the System workloads were used for testing; a similar
methodology was adopted by prior works that modeled the power
consumption of individual (not co-executed) workloads [7, 13, 16].
Training on microbenchmarks allows the ML models to learn the
impact of resource utilization on power consumption under con-
trolled stress-test conditions. Every workload ran for around 20
minutes either independently, or co-executed with other workloads.

ML Models. We used a variety of ML models to evaluate power
prediction: Linear Regression (LR), Decision Tree (DT), Random
Forest (RF), Support Vector Regressor (SVR), XGBoost, Lasso, and
Neural Network (NN). All ML model hyper-parameters were tuned
via Grid Search; see Appendix C for details.

Data Processing Techniques. For data processing, we experimented
with three popular techniques: (i) de-mean, whereby the mean of
the dataset is subtracted, (ii) standardization, which additionally
divides by the standard deviation of the data, and (iii) min-max
normalization, which scales data to the (0, 1) range. In general,

Figure 1: MAPE values for power modeling when a single
application is run on the server.

all techniques provided better results than no processing as raw
values for di�erent features have di�erent magnitudes. For example,
CPU cycles/second is usually in the billions, whereas for non-disk-
intensive workloads, the reads/second or writes/second during
workload execution is typically in the thousands.

Prediction Metrics. We used Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) as our error metrics; ground
truth was obtained from the power meter. MAE values showed the
same trend as MAPE, so we report MAPE values in our results.

4.2 Experimental Results
For evaluation, unless otherwise stated, we use the System work-
loads (as listed in Table 2) for testing the ML models, while using
the others for training.

4.2.1 Single Workload Execution. We start by evaluating the ML
models for the single workload scenario using the residual power
prediction formula with idle features removed (see Eq. (3)). Fig-
ure 1 illustrates the MAPE values obtained for predicting the server
power on the y-axis and the ML models on the x-axis. All the mod-
els perform well, with an average MAPE value of less than 17%
across all workloads. Support Vector Regression (SVR) outperforms
the others, with an average MAPE of 6.6%, followed by Random
Forest with an average MAPE of 9.6%. Even Linear Regression (LR)
provides satisfactory results, achieving an average MAPE of 12.7%.

For the power prediction in Figure 1, we experimented with
di�erent data-processing techniques. We found that the de-mean
approach provided the best results for all models, except NN. For
all models except NN, other approaches like standardization result
in a 1–2% increase in MAPE. With min-max normalization, MAPE
increased by 1–3%. For NN, min-max scaling worked the best, im-
proving the prediction accuracy signi�cantly (76%); standardization
only provided some improvement (11%) in prediction accuracy. The
reason for this is the NN model’s sensitivity to input scale and
reliance on gradient-based optimization methods [5]. Techniques
like min-max scaling ensure a consistent scale for all features, fa-
cilitating e�cient learning and stable convergence. Without this
consistent scaling, the NN model’s learning could be ine�cient due
to skewed gradients. Other models such as Decision trees, Random
Forest, and XGBoost, are less sensitive to data scaling because their
splitting criteria and/or ensemble nature focuses on the relative
ordering of feature values rather than their speci�c scales. These
models make decisions based on feature relationships, making them
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Figure 2: Prediction results when workloads are co-executed
and residual server power is predicted as the sumof predicted
residual power of each workload.

inherently robust to variations in feature scales. For subsequent
evaluations, we used de-mean for all models except NN, for which
we used min-max scaling.

Among the di�erent model variants considered, the residual
power prediction approach (Eq. (2)) o�ered better accuracy com-
pared to directly predicting full-server power (Eq. (1)). This im-
provement is seen particularly in the case of Linear Regression (LR)
and XGBoost, resulting in a 10% reduction in MAPE. Excluding idle
features ( ÆG83;4 ) from the prediction process did not a�ect prediction
accuracy. Furthermore, including the intercept term in supported
models led to a slight improvement in prediction accuracy. How-
ever, for LR, the improvement was substantial, reducing MAPE
by approximately 20%. Unless speci�ed otherwise, we considered
these variations in our subsequent results.

Predicting residual power, where we isolate the active system
usage by subtracting idle power, proved e�ective in improving ac-
curacy. This is because predicting residual power allows the model
to capture only the speci�c resource patterns associated with ac-
tive jobs, providing a better understanding of how power usage is
a�ected by resource utilization of jobs. At the same time, incorpo-
rating the intercept term in the models was crucial for considering
baseline power, representing the constant power consumption of
the server (which includes idle power) when no active jobs are
running. These two steps (predicting for residual power and including
the intercept term) are important for power prediction as they ensure
that the model does not unintentionally miss or attribute variations,
preventing bias in predictions.

Additionally, we conducted experiments without utilizing the
two RAPL power features. This resulted in a slight increase (1-2%)
in MAPE values across all ML models. RAPL power features cannot
be obtained on a per-thread or Thread ID (TID) basis. Therefore,
it is not possible to track the power contribution of individual
workloads using RAPL power features. Moreover, RAPL values
exhibit inconsistencies for certain server models, as reported by
Desrochers et al. [10]. Therefore, we opted not to incorporate RAPL
power features in the remainder of our evaluation.

4.2.2 Per-job Power Prediction for Co-Executed Workloads. We
now consider the challenging case where each co-executed work-
load’s power consumption is to be predicted. In particular, each co-
executed workload’s residual power consumption is �rst predicted,
and then the full-server power, obtained by adding the individual
workload power values and %83;4 (via Eq. (5)), is compared with

the full-server ground truth power use. We train our models on
feature vectors from random pairs of non-System workloads from
Table 2. We then test the models on 8 pairs of System workloads.
This ensures that test workloads are separate from training.

Figure 2 shows our results for di�erent pairs of co-executed
workloads. Here, the training data included only pairs of non-test
workloads from Table 2, representing the realistic case where test
workloads may not always be available for training. XGBoost per-
formed the best, with an average MAPE of 7.3%, followed by Ran-
dom Forest (8.9%), Decision Tree (12.3%), and SVR (14.9%). LR per-
formed poorly, with an average MAPE of 25%, highlighting the
linear model’s inability to account for resource contention when work-
loads are co-executed. We also explored the variation where the
predicted power consumed by other processes (5 ( ÆG16) term from
Section 3.2) was added to the predicted power of the workloads
to arrive at the full-server power prediction. However, this for-
mulation yielded slightly higher MAPE values, and was thus not
considered further.

We also conducted 5-fold cross-validation for our ML models by
training and testing on the dataset obtained by co-executing a pair
of workloads. In general, the prediction errors are lower than those
in Figure 2, since the test workloads comprise the same training
data. Based on average MAPE values, all models performed well,
with SVR (4.4%), RF (5.7%), NN (6.7%), Lasso (6.7%), DT (8.1%), and
XGBoost (9.7%) providing less than 10% error; even LR (6.9%) re-
sulted in low error under this cross-validation setting. This suggests
that the choice of ML model to employ also depends on the training
and test data overlap assumptions.

4.2.3 Background Processes as Third Workload. As mentioned ear-
lier, we explored another variation of our power model by consider-
ing all background processes as an additional workload co-executed
during the experiments. The idea behind this approach was that the
power model might be able to better segregate the power among
the active workloads if the background processes are grouped sep-
arately. The power prediction formulation hence becomes:

%̂B4AE4A = %83;4 + 5 ( ÆGF1) + 5 ( ÆGF2) + 5 ( ÆG16) (7)

However, the results were not impressive. XGBoost had the least
average MAPE of 20.9%, followed by RF (22.9%), NN (25.3%), and DT
(25.4%). We also tried another variation of this model without the
intercept term (V0), but that resulted in much worse results (⇠57%
average MAPE for RF, DT, and LR). We thus decided to not consider
this model variation for our evaluation.

4.2.4 Beyond Two Co-Executed Workloads. We next experimented
by testing on four co-executed workloads by also training on the
dataset obtained by co-executing four workloads. We ran 5 combi-
nations of four workload pairs and evaluated using “leave-one-out”
cross-validation (see Figure 3). For example, in Figure 3, when we
test on the Tensor�ow + MNN + Memcached + Filebench work-
load combination (blue legend), then the remaining 4 workload
combinations are used for training.

All the ML models performed well except LR and Lasso. XG-
Boost and Random Forest had the least average MAPE of ⇠10%.
LR performed much worse with ⇠24% average MAPE. This again
shows that linear models are not well suited for co-executed work-
loads’ power prediction. Overall, XGBoost and Random Forest are the

185



ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

Figure 3: Prediction results when four workloads are co-
executed and residual server power is predicted as the sum
of predicted residual power of each workload.

best performing models with 10% or lower average MAPE in most
scenarios, showing that non-linear models are e�ective for per-job
power prediction.

4.2.5 Workload Classification. The workloads being executed on
a server can be classi�ed by the resource(s) they stress. It may be
interesting to consider a modeling approach whereby we build a
powermodel for eachworkload class separately to gain accuracy. To
that end, we classi�ed workloads into 3 classes: CPU-heavy, DRAM-
heavy, and Disk-heavy. We trained a di�erent power model for each
class and tested it on a workload of the same class. We compared
this new approach of “workload classi�cation” with the original
“all workloads for training” approach (except the one being tested).
In this experiment, we trained and tested on a single workload
execution scenario. The benchmark workloads used are the micro-
benchmarks from Table 2. Figure 4 shows that the prediction error
of the power model trained for speci�c workload classes is typically
worse than the original approach (3–7% di�erence). This suggests
that a single model trained on multiple workload classes can improve
power prediction accuracy over workload-speci�c models.

4.2.6 Feature Selection and Importance. To evaluate our feature
set, we employed the mutual information method from scikit-
learn to estimate the signi�cance of each feature utilized in our
training, as outlined in Table 1. This method quanti�es the depen-
dence between two variables and is instrumental in assessing the
information gain associated with each feature relative to the target
variable. We found that DRAM and CPU features had higher impor-
tance scores (e.g., LLC-loads, LLC-stores for DRAM and ref-cycles,
cycles for CPU), while Disk features (e.g., bytes and blocks) had the
lowest scores. We repeated our power predictions by omitting the
Disk features, but this resulted in slightly higher MAPE values, sug-
gesting that our feature list is adequate. We also utilized XGBoost
and Random Forest algorithms to determine feature importance,
obtaining similar results.

4.2.7 Analyzing the Per-Job Power Predictions. Thus far we evalu-
ated our per-job power predictions (obtained via Eq. (6)) by compar-
ing the sum of per-job powers with full-server powermeter readings
because there is no ground truth for per-job power consumption in
the co-executed setting. Nonetheless, we can analyze the trend in
per-job power predictions. We �rst compared the per-job predic-
tions obtained from the co-executed setting with the ground truth
residual power when the workload is run in isolation. As expected,

Figure 4: Performance of power models when trained on
speci�c workload classes versus all workloads.

the former is lower than the latter, likely due to resource contention
and saturation. For example, the ground truth residual power of
Sysbench in isolation is about 63W. However, the predicted per-job
power of Sysbench when co-executed with Memcached and when
co-executed with Mobile Neural Network (MNN) is only about
46W and 50W, respectively. In both co-executions, the predicted
power of Memcached and MNN is also lower than their ground
truth isolated power.

We also compared the per-job power predictions when Ten-
sorFlow (TF) is co-executed with MongoDB and when TF is co-
executed with MNN. The predicted power for TF is 67W when
co-executed with MongoDB and 85Wwhen co-executed with MNN.
Since MongoDB is I/O intensive, we expect TF’s I/O to be slowed
downmuchmore when TF is co-executed withMongoDB compared
to when TF is co-executed with MNN; consequently, TF may have
fewer instructions to be run per second when co-executed with
MongoDB, lowering its power draw. The disk and CPU features
con�rm this claim, providing some validation of our predictions.

5 CONCLUSION AND FUTUREWORK
Per-job power tracking is an important �rst step for incentivizing
sustainable computing practices among consumers and providers
of cloud data centers. While there is ample literature on power-
prediction techniques, there is little prior work on comparing dif-
ferent power-prediction models, especially under di�erent workload
and model settings. Our evaluation results showed that non-linear
ML models, speci�cally XGBoost and Random Forest, provided
good prediction accuracy ( 10% MAPE). Even for SVR models,
we found that a non-linear kernel provided signi�cantly higher
prediction accuracy than a linear kernel (⇠92% lower MAPE). By
contrast, LR did not perform well (25% MAPE). As such, the choice
of ML model plays an important role in power prediction. The
choice of ML model also depends on the training and test data
assumptions. In cross-validation settings, almost all ML models
we experimented with performed quite well (less than 10% MAPE).
Interestingly, workload-speci�c power models did not provide good
accuracy; training across workload classes resulted in a non-trivial
6% accuracy gain.
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A APPENDIX: EMPIRICAL DATA SHOWING
THE POWER CONSUMPTION OF
CO-EXECUTEDWORKLOADS VERSUS THE
SUM OF POWER CONSUMPTION OF
INDIVIDUALWORKLOADS
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Figure 5: Residual power (after subtracting idle power) when
workloads are co-executed versus sum of residual powers
when workloads are run in isolation.

We conducted experiments using stress-ng micro-benchmarks [22]
to investigate the di�erence in power consumption of co-executed
and individual workloads. We observed a large di�erence (see Fig-
ure 5(a)) between the sum of residual power consumption of two
CPU-bound micro-benchmarks (ackermann and pi) when run in-
dividually and the residual power consumption when these two
micro-benchmarks are run together. Residual power is the server
power with idle power subtracted from it.
Figure 5(a) shows, in blue, the sum of residual power consumption
of two CPU-bound micro-benchmarks (ackermann and pi) when
run individually; in orange, we see the residual power consump-
tion when these two micro-benchmarks are run together. We see
a similar di�erence (see Figure 5(b)) even if we run a CPU-bound
micro-benchmark next to a memory-bound one. The large di�er-
ence between the two lines shows that the power consumption
pro�le of a job depends on other concurrent jobs as there may be
resource saturation and contention when jobs co-execute.
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Table 3: Illustration of our hyper-parameter tuning using Grid Search. Tuned values are highlighted in bold.

XGBoost SVR Decision Tree Random Forest Neural Network
learning_rate: [0.01,
0.03, 0.1, 0.5]
n_estimators: [100,
200, 300, 900]
max_depth: [3, 5, 6]
min_child_weight:
[1, 3, 5]
subsample: [0.6, 0.8,
1.0]
colsample_bytree:
[0.6, 0.8, 1.0]

C: [0.1, 1, 10, 100]
kernel: [linear, rbf,
poly]
gamma: [scale, auto,
0.01, 0.1, 1]
epsilon: [0.1, 0.2, 0.5,
1.0]

max_depth: [None, 5, 10, 15,
20]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [auto, sqrt,
log2]
max_leaf_nodes: [None, 10,
20, 30]
min_impurity_decrease:
[0.0, 0.1, 0.2]

n_estimators: [100, 200, 300,
500]
max_depth: [None, 5, 10, 20,
30]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [’auto’, ’sqrt’,
’log2’]
bootstrap: [True, False]
max_leaf_nodes: [None, 10,
20, 50]

activation: [ReLU, ELU,
tanh]
solver: [adam, sgd]
learning_rate_init: [0.001,
0.01, 0.1, 1]

B APPENDIX: EMPIRICAL DATA SHOWING
THE DIFFERENCE BETWEEN FULL-SERVER
MONITORED POWER AND RAPL POWER
VALUES

(a) Sysbench (b) Memcached

Figure 6: Power values reported by Intel RAPL [9] and the
full-server power meter when running (a) Sysbench, and (b)
Memcached.

While RAPL power values can serve as ground truth for CPU
and/or DRAM power consumption, they are not accurate indicators
of full-server power, as shown in Figure 6. We empirically show
this shortcoming with Sysbench and Memcached workloads. In
general, across workloads, we found that the sum of CPU package
and DRAM power values for RAPL is 30–50% lower than full-server
monitored power values. Further, within a workload execution, the
ratio of full-server to RAPL power values varies signi�cantly, by as
much as 1.1–1.7⇥ for the workloads we experimented with. This

is to be expected as RAPL does not include power consumed by,
for example, the disks, motherboard, network, or non-integrated
GPU(s).

C APPENDIX: HYPER-PARAMETER TUNING
All ML models we experimented with were �rst tuned via Grid
Search to identify the best hyper-parameter values. Table 3 shows
the hyper-parameter tuning details for �ve ML models (XGBoost,
SVR, DT, RF, and NN), along with the best values chosen. For XG-
Boost, parameters such as learning rate, number of estimators, and
maximum depth were adjusted to �nd a balance between model
complexity and accuracy. SVR tuning focused on the regularization
parameter C, kernel type, kernel coe�cient (gamma), and epsilon
(for epsilon-SVR model). For kernel type, our experiments showed
that the RBF (Radial Basis Function) kernel had the best prediction
accuracy. RF and DT had similar tuning to prevent over�tting while
maintaining model depth. For RF, we also considered the number
of estimators (300 in our case) for better accuracy. For NN, we used
the Multi-layer Perceptron regressor from scikit-learn with ReLU
activation and three hidden layers; the three hidden layers had size
of 512, 16, and 16 neurons. For LR, we experimented with and with-
out intercept. Including intercept, as mentioned earlier, gave better
results. We also tried Ridge regression as an alternative to LR and
Lasso, but its prediction accuracy was worse (5–6% higher MAPE
than LR and Lasso), so we do not include it in our evaluation. For
regularization, since Ridge regression did not work well, we had
the alpha hyper-parameter set to 0.1 for Lasso (L1 regularization).
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