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Abstract—Federated Learning (FL) has been acclaimed for
enhancing machine learning privacy, but it also faces criticism
for its high communication overhead due to the need for a
large number of interactions between participants and the server.
The conventional approach of randomly selecting clients for FL
participation can reduce communication costs, but it often slows
down the convergence of the global model and lowering its
overall quality. Although various advanced methods have been
proposed for client selection, focusing on the selection of the most
informative local models, these solutions frequently assume clean
training data. They often overlook the impact of noisy-labeled
and imbalanced local data among clients, which can significantly
hinder training efficiency.

To address these challenges, we present MINDFL, a client
selection mechanism that prioritizes quality and fairness con-
siderations. MINDFL tackles the problem of utility divergence
among local models caused by noisy-labeled and imbalanced data.
It also ensures fairness in the selection process. In particular, we
introduce a novel metric called Quality-of-Model (QoM), which
assesses the contribution of local models to the aggregated global
model. MINDFL selects clients with high QoM, representing
the most informative model updates, in each FL round to
maximize learning efficiency. Further, to enhance participant
diversity while maintaining clients’ model quality, we utilize a
sortition-inspired selection method to choose clients with high
QoM randomly. Our comprehensive experimental evaluations
demonstrate the effectiveness of MINDFL in improving learning
speed and reducing communication overhead.

Index Terms—Federated learning, Quality-of-Model, Client
Selection, Imbalanced and Noisy data

I. INTRODUCTION

Federated learning is an emerging ML framework that
coordinates distributed intelligent clients, such as mobile and
IoT devices, to collaboratively train an ML model without
collecting their local data. Such privacy preservation property
renders FL increasingly popular for a broad spectrum of ML-
based applications, such as next-word prediction [1], human
activity monitoring [2], and credit risk controlled by WeBank
[3]. The FL framework consists of a central parameter server
(PS) and a set of FL clients. Within each FL training iteration,
PS first broadcasts a global model to FL clients. Clients will
then train the global model with their local data for several
iterations before providing updates. Then the PS aggregates FL
clients’ feedback with an aggregation algorithm, e.g., FedAvg

[4], and updates the global model. This training process,
performed jointly by the PS and FL clients, is repeated for
multiple rounds until the global model converges.

However, the repeated communication processes between
the PS and clients introduce a significant overhead for the
FL system, especially when the client number is large, e.g.,
in an IoT scenario with hundreds/thousands of clients. Con-
sidering the large client number and model dimensionality,
communication overhead becomes a bottleneck in FL. Recent
FL systems proposed two different directions to deal with
the limitation: 1) model compression, including parameter
quantization [5], knowledge distillation [6], and model pruning
[7]. 2) per-iteration participation reduction that selects a small
fraction of clients to participate in each training iteration. This
paper focuses on the second direction–client selection–as it
is less researched. Note that the two types of methodology
are orthogonal and can be applied simultaneously to boost
communication efficiency.

Client selection mechanisms, while effectively reducing
communication overhead, can negatively impact learning effi-
ciency due to reduced client participation. The most widely-
used client selection is random client selection which has
achieved great success on high-quality and independently
and identically distributed (IID) datasets [4]. However, in
scenarios with imperfect data, characterized by noise and non-
IID patterns, there is still room for improvement in client
selection to enhance learning efficiency. Zhang et al. [8]
utilized weight divergence to recognize the non-IID degrees of
clients and select the clients with a lower degree of non-IID
data more frequently. Wang et al. [9] designed a reinforcement-
learning-based client selection scheme to counter the bias in
data. Several works [8], [10], [11] proposed various metrics
to estimate data quality and select models with higher data
quality. However, these approaches commonly assume that
clients’ local data are clean.

The devices utilized in modern IoT networks, such as signal
sensors, are deployed in diverse environments with varying ca-
pabilities for data collection [12], [13]. Consequently, the local
data available on different devices exhibit imbalances in terms
of data distribution and quantity [14], [15]. Additionally, the



data collected by these local devices are susceptible to noise
stemming from factors like software bugs, hardware faults, and
environmental influences [16], [17], as well as potential errors
introduced during manual data labeling. To provide clarity,
it is important to define the terms used: imbalanced data
refers to the disparity in the quantity of training data among
clients, while noisy-labeled data describes a scenario where
the assigned labels contain errors, deviating from the true
classes.

The primary objective of this research paper is to enhance
the efficiency of federated learning when faced with commu-
nication constraints in the presence of noisy-labeled and im-
balanced data. To address the aforementioned data challenges,
we propose a novel metric called Quality-of-Model (QoM) that
quantifies the contribution of local models to the aggregated
global model. By maintaining a low client selection rate to
accommodate the communication bottleneck, our approach,
referred to as MINDFL, selects the most informative model
updates (i.e., models with high QoM values) in each iteration.
In our client selection method, PS first collects the local losses
of the clients. Subsequently, the PS evaluates the QoM for
each client based on the received model losses. The PS selects
a subset of clients with higher QoM values, considering the
communication constraint. Moreover, to ensure client repre-
sentation, we introduce randomness into the selection scheme.
Specifically, the received models are clustered into groups
based on quality, distinguishing between low-quality and high-
quality groups. Random selection is then performed within the
high-quality group. This selection method draws inspiration
from the sortition method employed in governance [18], which
leverages random representative sampling for the selection of
public officials or jurors. This approach effectively mitigates
the risk of exclusively selecting top-ranked clients, preventing
overfitting to a small subset of clients within the federated
learning system.

We implemented the selection mechanism in a general FL
system. Our contributions can be summarized as follows:

• We proposed MINDFL, a client selection scheme in
FL systems, to deal with noisy and imbalanced data
with a communication capability constraint. We proposed
a novel QoM metric to measure the most informative
clients based on their loss value.

• We proposed a scheme to broaden the representation
of clients and avoid selection biases over clients. The
scheme employs a clustering model to divide all clients
into two groups — the high QoM group and the low QoM
group. A random selection is conducted on the high QoM
group, which maintains learning efficiency and broadens
client representation simultaneously.

• Comprehensive results demonstrate the effectiveness of
MINDFL in improving learning speed and decreasing
communication overhead. The high learning speed also
provides by-product benefits of energy efficiency.
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Fig. 1: Overview of client selection problem in federated
learning with various client local models. To earn the best
quality global model, selecting the most informative clients
needs to be considered in depth.

II. BACKGROUND AND MOTIVATION

A. Client Selection in FL systems

In the FL framework, the computation is mainly conducted
on the client side. Clients train the model locally and parallelly
and submit the model updates to PS periodically [19]. Client
selection mechanisms are promising solutions to address the
issues. In client selection mechanisms, PS chooses a fraction
of the FL clients in each FL training round to reduce the com-
munication overhead. The model update submissions introduce
significant communication overhead to the participants. When
the data at different clients are identically distributed and
with the same quality, a random selection is demonstrated to
achieve optimal performance. However, clients’ local datasets
are usually imbalanced since clients are notorious deployed in
heterogeneous environments. And manual data labeling also
introduces noise to data labels. As a result, the accuracy of the
global FL model can be affected by clients with biased/noisy
data. Therefore, a more advanced client selection that can
thwart the effects of biased/noisy data is needed.

B. Challenges

Data Imbalance. In real-world FL systems, the local clients
(e.g., mobile and IoT devices) usually exhibit heterogeneous
data because of different functionality and usage environment.
The heterogeneity brings some unprecedented challenges to
the whole FL system. One of the typical challenges is im-
balanced data, known as local data size variety. Some clients
generate a large number of data while others may only collect
a small amount of data. Another challenge is non-iid data [8],
[20], where the data distributions (represented by data class)
are different among clients. In this work, we focus on data
imbalance and set non-iid data as a potential future work.

Data Noise. Local data is usually generated in independent
contexts and tightly coupled with particular surrounding envi-
ronments so that its quality cannot be guaranteed. On the one
hand, the collected features may suffer from noises because of



software bugs, hardware faults, or environmental impacts. On
the other hand, data labeling can also introduce noise. A noisy
label usually results in a larger bad impact on a learning system
since it can direct the model in a direction that significantly
deviates from the optimal direction. A noisy label for a data
point is a label that is different from the true class. In this
paper, we focus on noisy-labeled data.

We assume PS has limited client state information (e.g.,
data quality, data amount) because of the privacy settings in FL
systems. A Random client selection method may inadvertently
involve the local updates trained by low-quality raw data (e.g.,
noisy data, which may jeopardize the global model quality.
The goal of this paper is to design a client selection mechanism
without knowing the explicit data information on clients.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a federated learning system with N local
clients and a central parameter server. We use {N} to denote
{1, 2, . . . , N} for simplicity. We use Ci|i∈{N} to represent a
client and Di to represent the corresponding local data. The
size of the local data is denoted by |Di|. Every data sample
consists of a feature vector xj and corresponding label yj .

In each iteration, k from the total N clients will be selected
for learning. We denote the selected set of clients as S . The
local model weights of Ci are wi in the parameter space W,
wi ∈W ⫅ Rd, d is the model dimensionality. The entropy-
based loss value for the local model is L(wi,Di). The total
loss function F(θ) for the global model θ ∈W is calculated
using the loss of the k selected clients and can be expressed
as:

F(θ) =
∑N

i=1 1(Ci ∈ S)
∑

ξ∈Di
L(wi, ξ)∑N

i=1 1(Ci ∈ S)|Di|
(1)

where 1(Ci ∈ S) is an indicator function, and it equals 1 when
Ci is a member of set S (i.e., the condition is true), |Di|
denotes cardinality of Di(i.e., the number of elements in the
set), and L(wi, ξ) is Ci’s loss value for sample ξ. The goal of
the FL system is to jointly minimize the loss F(θ).

We assume all clients follow the FL protocol honestly and
are dedicated to providing their accurate information to PS
with the aim of training an accurate global model. The local
data bias is from environments and unintentional mistakes in
labeling. Manipulations on feature vectors, data labels, model
parameters, and any other information are out of the research
scope of this paper.

B. Problem Formulation

This paper aims to improve the model accuracy of an FL
system under imbalanced and noisy data with a constrained
communication capability. We use k to denote the number
of clients the FL system can support in each iteration and T
to denote the number of total FL iterations. The objective of
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Fig. 2: MINDFL Design: Utilizing QoM metrics to measure
local model contributions and mitigate selection biases in
federated learning

this work is to minimize the loss value (i.e., maximize model
accuracy) by selecting the most informative clients in each
iteration. The objective function is depicted below:

min
Sk,k∈{T∗}

F(θT∗)

s.t. |Si| ≤ k, ∀i = 1, 2, ..., T,

T ∗ ≤ T

(2)

where Si denotes the set of selected clients in the i-th iteration,
|Si| denotes cardinality of Si(i.e., the number of elements in
the set) and θT is the global model at iteration T . We use T ∗ to
denote the number of iterations when the FL system achieves
minimal loss. The goal aligns with the goal of general FL
systems, which is to minimize the loss function. There are
two conditions–the first condition implies that the number of
clients selected in one iteration can not exceeds k. The second
condition indicates that the total number of learning iterations
can not exceed the maximal T .

IV. DETAILED DESIGN OF MINDFL

We proposed MINDFL to improve the model accuracy of an
FL system under imbalanced and noisy data with a constrained
communication capability. The core of our FL algorithm is a
client ranking and selection algorithm. We propose a metric
to support the ranking algorithm, Quality of Model (QoM).
Though multiple methods have been proposed to evaluate
model quality using the model update/gradient [21], [22],
we need to measure model quality without seeing the model
update/gradient because of communication overhead concern.
In this section, we will first introduce the building block, QoM,
and then describe the FL process in detail with a focus on
client selection.



A. Quality of Model

We design a metric, QoM, to capture client data utility
and the local model’s contribution towards the global model.
Motivate by [23] that approximates the statistical utility by
local loss, we also incorporate the local loss value into
the design of QoM. Generally, a loss value measures the
estimation error between model predictions and the ground
truth. Since a gradient is calculated by taking the derivative of
the loss concerning the current local parameters, a larger loss
results in a larger gradient and, thus, a larger model update
step [24], [25]. Therefore, [23] regards a client with a more
significant loss as a more informative one.

In contrast to their design, we propose that a larger loss
may indicate noisy and imbalanced data. Theoretical analysis
[24], [25] has demonstrated that noisy data can increase loss
value significantly. The loss value of a client can be impacted
by both the model utility itself and corresponding validation
data. To prevent the influence of the diverse validation data on
clients, PS distributes small validation data Dval to all clients
at the beginning of the federated learning training process.
And the loss of all clients is evaluated on the same validation
dataset.

Based on this, we further demonstrate that the noisy and
imbalanced data usually result in a significantly large loss
which is larger than the loss of a normal informative local
model. Based on this observation, we use the loss value to
indicate the model quality. And the QoM of client Ci is
designed as:

Qi =
1∑

ξ∈Dval
L(wi, ξ)

(3)

where |Dval| denotes cardinality of Dval(i.e., the number of
elements in the set). The QoM is a float number and its range
is related to the learning task difficulty (see Fig. 3).

B. Federated Learning with Client Selection

Although we can use QoM to differentiate models with
high utility, persistent use of high-QoM models may result in
biased client participation. To address this problem, inspired
by the philosophy of sortition [18], [26], we proposed to
incorporate randomness into our QoM-based client selection
to balance model quality and client diversity/fairness. This
section provides an overview of the entire learning process,
emphasizing the proposed client selection mechanism

PS collects the QoM values from all clients and proceeds
to classify them into two clusters based on their QoM values.
The preferred cluster comprises clients with the top 50 percent
(configurable) of QoM values. The subsequent section outlines
the detailed process of federated learning.

As shown in Fig. 2, when the system starts up, PS initializes
the global model and works by iterations as follows:

1) PS broadcasts the global model parameter θ together
with a small validation dataset Dval to all the N clients.

2) Client Ci|i∈{N} initializes the local model with θ. Client
Ci|i∈{N} continue to train the local model using local
dataset Di.

3) After local training is completed, all clients upload their
entropy-based loss value L(wi,Dval) to PS for model
quality ranking.

4) PS utilizes L(wi,Dval) to evaluate the QoM Qi of each
client Ci, and cluster the QoM scores into two clusters:
Sh denoting the cluster with higher QoM scores and Sl
denoting the cluster with lower QoM scores. A random
selection is then performed over cluster Sh, and the set
of selected clients S is represented by:

S =

{
Sh if k ≥ |Sh|
RandomSample(Sh, k) otherwise

(4)

where RandomSample(Sh, k) represents randomly se-
lecting k members from the set Sh. This selection
method is motivated by sortition in governance. Sorti-
tion, also known as selection by lottery, is originally
proposed to select public officials or jurors using a ran-
dom representative sample [26]. The random selection
effectively mitigates the risk of selecting only top k
clients, thus avoiding FL systems overfitting to such a
small portion of clients.

5) PS sends a notification to the selected clients and re-
quests their local model updates δ = (wi − θ)|Ci∈S .
PS then aggregates the received models and updates the
global model by θ ← θ+ α

|S|
∑

Ci∈S δi where α denotes
the learning rate.

The FL system repeats the steps until the global model con-
verges or exceeds a predefined iteration number T . PS outputs
the final global model at the end of the learning process. Model
consumers can customize the final global model to their task
by continually training with their local data.

V. SYSTEM EVALUATIONS

We simulate an FL system with imbalanced and noisy local
data to evaluate the effectiveness of MINDFL in improving
model accuracy. The system is implemented using the PyTorch
framework. We ran all the experiments on a server equipped
with an Intel Core i9-11900K CPU 3.50GHz×16, a GeForce
RTX 3080 GPU, and Ubuntu 20.04.5 LTS.

A. Experimental Settings

The experimental evaluation of MINDFL is performed on
two benchmark datasets, namely, the MNIST dataset [27] and
the N-Baiot dataset [28]. MNIST is a collection of 70,000
grayscale images of handwritten digits from 0 to 9, with
dimensions of 28x28 pixels. It is divided into a training set
of 60,000 samples and a testing set of 10,000 samples. N-
BaIoT is a comprehensive collection of network traffic data
of IoT devices. It is designed to evaluate intrusion detection
systems (IDS) in IoT networks. It contains a diverse range



TABLE I: N-BaIoT Dataset

Index Devices Make and Model Device Type
1 Danmini Doorbell
2 Ennio Doorbell
3 Ecobee Thermostat
4 Phillips B120N/10 Baby monitor
5 Provision PT-737E Security camera
6 Provision PT-838 Security camera
7 SimpleHome XCS7-1002-WHT Security camera
8 SimpleHome XCS7-1003-WHT Security camera
9 Samsung SNH 1011 N Webcam

of network traffic samples, including the benign class and ten
malicious classes: five classes from the Mirai attack family and
the other five from the BASHLITE attack family. The whole
dataset contains 6,506,674 malicious records and 556,932
benign records, and each record contains 115 attributes. They
are generated by nine commercial IoT devices as listed in
Table. I.

The neural network used for MNIST dataset is the Resnet18
[29]. For N-BaIoT, we devise a fully connected neural network
comprising one input layer, three hidden layers, and an output
layer. The model accepts inputs with 115 features and makes
predictions for the 11 possible output classes. The three hidden
layers are with 64, 32, and 16 nodes, respectively. To introduce
non-linearity into the network, the ReLU (Rectified Linear
Unit) activation function is applied after each hidden layer.

In the FL system, we set the default client number as 50.
Each client trains its local model using an Adam optimizer
with a learning rate of α = 0.0001 and a batch size of b = 100,
with a local epoch of e = 1. The number of clients selected
for uploading models in each FL iteration is k = 5.

B. Evaluation Metric and Baselines

To evaluate MINDFL, we employ global model test accu-
racy throughout the FL training iterations as the major metric.
We set the maximal iteration number as T . We compared
MINDFL with three baseline selection methods, including the
well-known random selection method [4] and two state-of-
the-art schemes in [23], namely Oort1 and Oort2. We briefly
summarized the three client selection methods as follows.

• Random selection methods randomly select k clients out
of N in each FL iteration.

• Oort1 [23] defines a utility function for each client as:
U(i) = |Di|

√
1

|Di|
∑

ξ∈Di
L(ξ)2. In Oort1, a client with

a larger utility value will be selected for the upcoming
iteration.

• Oort2 is an advanced version built upon Oort1. It incor-
porates a fairness component into the selection to increase
the likelihood of selecting clients that have not been
previously selected.

C. Evaluation Results

The proposed client selection mechanism aims to improve
accuracy under imbalanced and noisy data and minimize the
accuracy loss under clean and balanced data. With this goal,

our evaluation includes two parts: results under noisy and
imbalanced data and results under clean and balanced data.

1) Noisy and Imbalanced Data: In order to assess the
effectiveness of MINDFL in improving model accuracy under
noisy and imbalanced data, we simulate the data distributions
over clients. We provide two different levels of imbalance
(denoted by IMB1 and IMB2). When we simulate noisy
data, we assume that a small portion of a client’s data can
be with incorrect labels. For the small portion of data, we
randomly generate a label for a data record different from
the original/true class. And the ratio of incorrect labels for
different clients can vary. we assume the ratio of incorrect
labels among clients follows a Gaussian distribution N (µ, σ)
where µ denotes the mean grey value and σ denotes its
standard deviation. Two levels of label noise (denoted by N1
and N2) are considered. The detailed settings are introduced
below.

• IMB1: In this setting, 10% of the clients possess 90% of
the data, while the remaining 90% of clients hold 10%
of the data.

• IMB2: This setting allocates 80% of the data to 20%
of the clients, and the other 80% of clients possess only
20% of the data.

• N1: We consider a Gaussian noise N (µ = 0.1, σ = 0.1),
indicating the average ratio of incorrect label among
clients are 10%.

• N2: We consider a Gaussian noise N (µ = 0.2, σ = 0.1),
indicating the average ratio of incorrect label among
clients are 20%.

2) The Power of QoM in Differentiating Noisy and Im-
balanced Data : Before evaluating the performance of the
MINDFL system, we first illustrate the power of the proposed
QoM metric in differentiating models trained by noisy and
scarce data from models trained by clean and sufficient data.
As discussed in Sec. V-C1, there will be four types of clients:
noisy and scarce data (denoted by D1), noisy and sufficient
data (denoted by D2), clean and scarce data (denoted by D3),
and clean and sufficient data (denoted by D4). In Fig. 3a and
Fig. 3b, we use red dots to represent and clean and sufficient
data D4, blue dots to represent noisy and scarce data D1, and
yellow dots to denote D2 and D3. The results demonstrates
the effectiveness of QoM in differentiating bad data from good
data. And this observation further confirms the QoM-based
client selection is suitable for FL systems with noisy and
imbalanced data.

3) Advances of Sortition-based Selection: To demonstrate
the effectiveness of the proposed sortition-based selection, we
compare MINDFL with a selection mechanism that selects the
clients with top-k QoMs (denoted as top-k). All other settings
are the same in the comparison. As shown in Fig. 3c, we
can see MINDFL achieves higher accuracy at the end of the
training though its accuracy grows slower at the first few FL
rounds. The results demonstrate that MINDFL incorporating
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Fig. 3: (a) QoM of clients throughout the learning process on the MNIST dataset. (b) QoM of clients on the N-BaIoT dataset.
(c) Model Accuracy on the MNIST dataset.
the sortition mechanism generalizes better than the top-k
method because it can utilize more diverse data.

4) Effectiveness of MINDFL in Noisy and Imbalanced
Data: We present the test accuracy of the proposed FL system
on the MNIST dataset and the N-BaIoT dataset in Figure.5.
The first four sub-figures (a)(b)(c)(d) show the results on the
MNIST dataset with different combinations of imbalance level
and noise level. The figures show that the proposed method
achieves higher accuracy than other baselines. Additionally,
our method’s model convergence speed is higher than other
methods. It is worth mentioning that random selection has
higher robustness against noisy and imbalanced data than other
priority-based methods, such as oort1 and oort2. The random
selection method achieves a little lower accuracy than the
proposed method but with a much lower convergence speed.

To further verify the practicality of our method, we ex-
periment MINDFL with the N-BaIoT dataset. For the BaIoT
dataset, we classify the ten types of attacks listed in Table.I.
As shown in Figure.5 (e) and (f), our method achieved higher
accuracy than other baselines. Similarly, when we increase the
noise level to N2 in Figure.5(g) and (h), the experimental re-
sults show the same trend. And our proposed method achieves
the highest accuracy. We find that for the N-BaIoT dataset,
although we could not achieve the fastest convergence, the
accuracy of our model gradually improved with the increase of
the FL rounds through training. The random selection method
could reach convergence faster, but the final accuracy remains
lower than MINDFL. The possible reason is that the model has
been directed to a local optimum because of the low-quality
data. Similarly, both Oort1 and Oort2 achieve a lower accuracy
than our proposed method, indicating that the two methods are
not effective when facing noisy and imbalanced data.

In Table II, we further present the highest accuracy achieved
by MINDFL and baseline methods (‘rand’, ‘oort1’, ‘oort2’)
in various data distribution settings. From the table, we can
see our method consistently outperforms other baselines by
achieving the highest accuracy across the two datasets.

The convergence speed of FL is an important metric since
it is related to both the computation and communication

TABLE II: Test accuracy

Dataset MNIST
Setting IMB1+N1 IMB2+N1 IMB1+N2 IMB2+N2
rand 94.13 94.76 92.67 94.41
MINDFL 96.52 96.38 94.65 96.23
oort1 46.18 78.02 50.13 68.56
oort2 51.41 76.59 46.99 68.40
Dataset N-BaIoT
rand 73.93 78.99 74.93 74.81
MINDFL 79.27 80.98 81.99 76.51
oort1 75.21 73.71 70.35 70.68
oort2 73.57 75.47 70.68 69.58

overheads of FL systems. A higher convergence speed implies
saving more computation and communication resources among
clients and PS. We demonstrate the convergence performance
of MINDFL across FL rounds in Figure.6. Our proposed
method achieves the highest convergence speed on the MNIST
dataset. In the more complex Ba-IoT dataset, while our model
achieves relatively high accuracy quickly, its convergence
speed is relatively slow due to the gradual improvement of
accuracy in subsequent training.

Additionally, we evaluate the MINDFL under a limited
training iteration budget considering the fact that wireless
devices often have limited computing power and battery life
[30], [31]. We vary the total learning round T from 4 to 10 and
show the results in Table III. Table III highlights that MINDFL
outperforms the other methods in terms of test accuracy for
iteration budget setting to T = 4, 6, 8, 10. The orange row in
the table represents our algorithm, and the results are based
on the IMB1+N1 setting of the two datasets. Results under
other experimental settings are similar, and we do not include
these results because of space limitations. The observations
demonstrate that MINDFL is suitable for FL systems with a
limited learning iteration budget.

5) Performance of MINDFL Under Clean and Balanced
Data: We further evaluated the performance of MINDFL
using a clean and balanced dataset. In this scenario, the entire
dataset is evenly divided into 50 clients and no label noise
is included. As shown in Fig. 7, MINDFL has a similar
learning curve with the baselines in terms of test accuracy and
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Fig. 4: Round-to-Accuracy performance of MINDFL with Random Selection, Oort1, and Oort2 in N1 and N2 noise settings
and IMB1, IMB2 imbalance settings on MNIST dataset.
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Fig. 5: Round-to-Accuracy performance of MINDFL, Random Selection, Oort1, and Oort2 in N1 and N2 noise settings and
IMB1, IMB2 imbalance settings on N-BaIoT dataset.
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Fig. 6: Empirical convergence performance of MINDFL, Random Selection, Oort1, and Oort2, in N1 and N2 noise settings and
IMB1, IMB2 imbalance settings.

TABLE III: Test Accuracy under Limited FL Round

Setting Method T=4 T=6 T=8 T=10

MNIST
IMB1+N1

rand 33.75% 50.52% 73.90% 85.93%
MINDFL 87.41% 90.55% 93.57% 95.41%

oort1 0.69% 1.29% 5.38% 10.15%
oort2 0.02% 0.08% 1.62% 5.12%

N-BaIoT
IMB1+N1

rand 56.35% 67.80% 70.55% 71.51%
MINDFL 71.14% 71.13% 71.25% 72.03%

oort1 32.53% 30.80% 42.40% 48.82%
oort2 30.80% 31.09% 39.71% 45.00%

convergence speed on the MNIST dataset. For the N-BaIoT
dataset, MINDFL achieves a little lower accuracy compared to
random selection, Oort1, and Oort2. This is because MINDFL
favors model updates with smaller loss values, and this design
slows down the learning process under ideal data conditions.
In contrast, random selection allows for broader participation
among clients, while Oort’s method targets clients with a
higher model utility.

6) Summary: There is always a trade-off between filtering
bad models and broadening good model participation. The
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Fig. 7: Round-to-Accuracy Performance of MINDFL with
Random Selection, Oort1, and Oort2 in balanced and noise-
free distribution on MNIST and N-BaIoT datasets.

proposed MINDFL is effective in filtering models with noisy
and imbalanced data and inevitably filters out some good
models when all models are trained by clean and balanced
data. In summary, the proposed client selection mechanism
in MINDFL is effective in improving model accuracy under
imbalanced and noisy data by only sacrificing a small accuracy
under clean and balanced data.



D. Discussions

We empirically demonstrated the convergence of the pro-
posed approach, and the theoretical analysis on convergence
could be an extension for future work.

VI. CONCLUSION

The client selection problem in federated learning has
received significant attention in wireless networks consid-
ering the communication bandwidth limitation. We propose
MINDFL to prioritize clients with the most valuable data for
aggregation. We use a Quality-of-Model metric to evaluate the
contribution of each client to the global model. Additionally,
we group clients into two clusters and use random selection
over the cluster with higher QoM to balance the selection
diversity and model quality. Our comprehensive experimental
evaluations demonstrate that MINDFL achieves the highest
model test accuracy in the presence of noise and imbalanced
data. Overall, MINDFL mitigates the problems posed by data
imbalance and noise, making it a promising solution for
improving the performance of federated learning in practice.
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