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Abstract

Software-defined networking (SDN) and software-defined
flash (SDF) have been serving as the backbone of modern data
centers. They are managed separately to handle I/O requests.
At first glance, this is a reasonable design by following the
rack-scale hierarchical design principles. However, it suffers
from suboptimal end-to-end performance, due to the lack of
coordination between SDN and SDF.

In this paper, we co-design the SDN and SDF stack by re-
defining the functions of their control plane and data plane,
and splitting up them within a new architecture named Rack-
Blox. RackBlox decouples the storage management functions
of flash-based solid-state drives (SSDs), and allow the SDN
to track and manage the states of SSDs in a rack. Therefore,
we can enable the state sharing between SDN and SDF, and
facilitate global storage resource management. RackBlox has
three major components: (1) coordinated I/O scheduling, in
which it dynamically adjusts the I/O scheduling in the stor-
age stack with the measured and predicted network latency,
such that it can coordinate the effort of I/O scheduling across
the network and storage stack for achieving predictable end-
to-end performance; (2) coordinated garbage collection (GC),
in which it will coordinate the GC activities across the SSDs
in a rack to minimize their impact on incoming I/O requests;
(3) rack-scale wear leveling, in which it enables global wear
leveling among SSDs in a rack by periodically swapping
data, for achieving improved device lifetime for the entire
rack. We implement RackBlox using programmable SSDs
and switch. Our experiments demonstrate that RackBlox can
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1 Introduction

The software-defined infrastructure has become the new
standard for managing data centers, as it provides flexibil-
ity and agility for platform operators to customize hard-
ware resources for applications [15, 35, 65]. As the back-
bone technology, software-defined networking (SDN) al-
lows network operators to configure and manage network
resources through programmable switches [14, 33, 34, 48].
Since SDN has demonstrated its benefits, software-defined
storage (SDS) [65, 79, 90] has also been developed. A typical
example is software-defined flash (SDF) [28, 53, 65, 71].

Similar to SDN, SDF enables upper-level software to man-
age the low-level flash chips for improved performance and
resource utilization [28, 44, 65]. Since the cost of flash chips
has dramatically decreased while offering orders of magni-
tude better performance than conventional hard disk drives
(HDDs), they are becoming the mainstream choice in large-
scale data centers [25, 38, 43].

Both SDN and SDF have their own control plane and data
plane, and provide programmability for developers to define
and implement their policies for resource management and
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scheduling. However, SDN and SDF are managed separately
in modern data centers. At first glance, this is reasonable
by following the rack-scale hierarchical design principles.
However, it suffers from suboptimal end-to-end performance,
due to the lack of coordination between SDN and SDF.

Although both SDN and SDF can make the best effort to
achieve their quality of service, they do not share their states
and lack global information for storage management and
scheduling, making it challenging for applications to achieve
predictable end-to-end performance. Prior studies [6, 79]
have proposed various software techniques such as token
bucket and virtual cost for enforcing performance isolation
across the rack-scale storage stack. However, they treat the
underlying SSDs as black boxes, and cannot capture their
hardware events, such as garbage collection (GC) and I/O
scheduling in the storage stack. Thus, it is still hard to achieve
predictable performance across the entire rack.

In this paper, we propose a new software-defined architec-
ture, named RackBlox, to exploit the capabilities of SDN and
SDF in a coordinated fashion. As both SDN and SDF share
a similar architecture—the control plane is responsible for
managing the programmable devices, and the data plane is
responsible for processing I/O requests—we can integrate and
co-design both SDN and SDF, and redefine their functions
to improve the efficiency of the entire rack-scale storage
system. RackBlox does not require new hardware changes,
as both SDN and SDF today have offered the flexibility to
redefine the functions of their data planes.

To develop RackBlox, we first decouple the functions of
the storage management (i.e., flash translation layer) of SDF,
and integrate appropriate functions such as garbage collec-
tion and wear leveling into the control plane of top-of-rack
(ToR) switches in the SDN. Such a new software-defined
architecture enables state sharing between SDN and SDF,
and facilitates the global storage resource management in
a rack. This is compatible with storage virtualization by en-
abling the state tracking of virtualized SSD instances in SDN.
Therefore, we can coordinate the efforts of I/O scheduling
across the entire rack. RackBlox tracks the elapsed time in
the programmable switches with In-band Network Teleme-
try (INT) [1], adapts the I/O scheduling in the data plane
of SDF, and predicts the response time from the storage de-
vices back to the client. Therefore, RackBlox can manage the
end-to-end latency and offer predictable performance.

RackBlox further enables coordinated GC among the rack
of SSDs to minimize the impact of GC on application perfor-
mance. RackBlox has the global information of the storage
states, which provides the convenience to coordinate GC
events among all the SSDs in a rack. Upon GC events, Rack-
Blox takes advantage of the data replicas in the same rack,
and enables the ToR switch to redirect I/O requests to the
other data replicas. Therefore, the expensive GC activities
can be alleviated from the critical path. RackBlox employs
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different GC policies for different performance isolation guar-
antees of virtualized SSD instances.

RackBlox also enables rack-scale wear leveling to ensure
a uniform lifetime of SSDs in a rack. As the write traffic to
each SSD can be different, it will cause wear imbalance be-
tween SSDs. In addition, platform operators have to replace
unhealthy or failed SSDs with new SSDs, making the wear
imbalance even harder to manage. RackBlox develops a two-
level wear leveling mechanism. It balances wear within each
individual SSD in a storage server as well as across SSDs
in the rack. Instead of swapping SSDs frequently, RackBlox
periodically swaps the SSD that has incurred the maximum
wear with the SSD that has the minimum rate of wear.

We implement RackBlox with a programmable Tofino
switch and programmable SSDs (i.e., open-channel SSDs).
We evaluate RackBlox with network traces collected from
various data centers and a variety of data-intensive applica-
tions. Our experiments show that RackBlox reduces the tail
latency of end-to-end I/O requests by up to 5.8%, and can
achieve a uniform lifetime for a rack of SSDs without intro-
ducing much additional performance overhead. In summary,
we make the following contributions in this paper.

e We propose a new software-defined rack-scale storage
system by decoupling the storage management functions
of SDF, and co-designing them with SDN.

e We enable state sharing between SDN and SDF, and coor-
dinate the efforts of I/O request scheduling across the full
rack for achieving predictable end-to-end performance.

e We present a coordinated GC mechanism for a rack of
SSDs, it enables SDN to redirect I/O requests to data repli-
cas to minimize the GC impact on storage performance.

o We develop a rack-scale wear leveling mechanism for en-
suring the uniform lifetime of a rack of SSDs.

e We show the benefits of RackBlox by developing a real
system prototype with programmable switch and SSDs.

2 Background and Motivation

We first introduce the background of SDN and SDS, then the
motivation for software-defined network/storage co-design.

2.1 Software-Defined Networking

Modern data centers have seen a trend that software-defined
networking (SDN) has become the new standard for net-
work management, in which the programmable switch is
the backbone technology that allows platform operators to
define their own packet formats and functions for process-
ing network traffic without affecting the line-rate through-
put [34, 36]. SDN has been deployed in real data centers such
as Alibaba cloud [47, 66] and Google data centers [5].

SDN has a control plane and data plane. The control plane
is in charge of network management and protocol definition,
while the data plane is responsible for data transfer and run-
time statistics collection. The programmable switch usually
has reconfigurable hardware such as a programmable ASIC
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Figure 1. System overview of a rack-scale storage system.

that supports domain-specific languages like P4 [14]. It sup-
ports various network flow scheduling policies for flexible
traffic management and performance isolation [4, 27, 89]. As
shown in Figure 1, all the servers in the same rack are con-
nected by a Top-of-Rack (ToR) switch. These ToR switches
are connected with aggregation switches and core switches
in a hierarchical manner. In this paper, we focus on the ToR
switch, and co-design network and storage stack in a rack.

2.2 Software-Defined Storage

Recent studies have shown that making software aware of
the underlying storage devices can significantly improve the
storage performance and resource efficiency [28, 65, 84]. This
is known as software-defined storage (SDS), which enables
data centers to unlock the potential of storage devices by en-
abling the software to directly interact with storage devices
and control their internal operations. Software-defined flash
(SDF), which is built on SSDs, is a typical example of SDS,
and has seen deployment in industry data centers [18, 49].

In this paper, we focus on SDF, because flash-based SSDs
are becoming indispensable parts of modern computer sys-
tems. An SSD has three major components: a set of flash
memory packages, an SSD controller having an embedded
processor with device memory, and flash controllers. As
shown in Figure 2, each SSD has multiple channels and each
channel can receive and process I/O commands indepen-
dently. Each channel is shared by multiple flash memory
packages. Each package is made of multiple chips. Each chip
has multiple flash blocks. With SDF, an SSD can be virtual-
ized into multiple virtual SSD instances (vSSDs), and each
can be mapped to a set of SSDs, flash channels, or flash chips.

Due to the nature of flash memory, when a free page is
written, that page is no longer available for future writes until
that page is erased. However, erase operations can be per-
formed only at block granularity, which are time-consuming.
Thus, writes are issued to free pages erased in advance (i.e.,
out-of-place write) rather than waiting for the expensive
erase operation for every write. And garbage collection (GC)
will be performed later to erase the stale data on SSDs. Since
an SSD channel cannot issue new I/O requests during GC,
minimizing the negative impact of GC events is critical to
storage performance. In addition, as each flash block has lim-
ited endurance, it is important for the blocks to age uniformly
(i.e., wear leveling).
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Figure 2. System architecture of software-defined flash.

SSDs have the Flash Translation Layer (FTL) to manage
flash blocks and maintain the logical-to-physical address
mappings. Unlike conventional SSDs that implement the
FTL in the device firmware, SDF exposes the FTL to the
upper-level software, and enables the software to manage
the flash chips (see Figure 2).

2.3 Why Network-Storage Co-Design

In modern data centers, the SDN and SDF are managed sepa-
rately to handle I/O requests across the network and storage
stack, respectively. Such an architecture suffers from subop-
timal performance and misses the opportunities offered by
the software-defined rack for three major reasons.

First, as SDN and SDF are deployed as independent com-
ponents, achieving predictable end-to-end performance is
challenging, due to the lack of coordination between the two
components. SDN and SDF have redundant control plane
policies, such as I/O scheduling, which may contradict be-
tween the network and storage stack and break service-level
objectives (SLOs). And optimizing such policies without co-
ordination is suboptimal due to incomplete knowledge and
redundant effort. Ideally, as we forward I/O requests in SDN,
with the knowledge of the storage status (e.g., busy, idle,
or predicted performance), it can make smarter decisions
(e.g., early redirection to data replicas). Similarly, as SDF
schedules the received I/O requests, the measured network
latency of these I/O requests can help the SDF to adjust the
I/O scheduling to meet the SLO for end users.

Second, although prior studies such as IOFlow [79] and
VDC [6] proposed software-based methods like token bucket
rate limiting to enforce the performance isolation between
I/O flows, they cannot capture the underlying hardware
events such as GC and I/O scheduling in SSDs, due to the lack
of state sharing between SDN and SDF. And software-based
coordination incurs extra network round-trip delay and host
software overhead (see our evaluation in §4).

Third, it is feasible to co-design and coordinate the net-
work and storage stack today, as both programmable switches
and programmable SSDs have enabled developers to program
and configure the network and storage stack respectively.

In this work, we integrate the storage management of
SDF into SDN as shown in Figure 3, while preserving the
programmability and simplicity for the new infrastructure.
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Figure 3. System overview of RackBlox.

3 RackBlox Design and Implementation

RackBlox provides a holistic approach that can achieve pre-
dictable end-to-end performance and improve storage man-
agement at scale. As we develop RackBlox based on modern
SDN and SDF, we have to overcome the following challenges.

3.1 Design Challenges of RackBlox

e It is unclear how the functions of storage management
should be decoupled and placed across SDN and SDF. The
control plane of SDF has many functions, including wear
leveling, GC, block allocation, and block management.
Placing all the storage functions into SDN will inevitably
increase the burden of SDN. Thus, we have to carefully
decide the partitioning and placement of SDF functions.

e The hardware resources of programmable devices are lim-
ited. Specifically, the on-chip memory (tens of MBs) and
compute resource are limited in programmable switches
and SSD controllers, due to the hardware cost and power
budget. Thus, we have to carefully define the data struc-
tures for the network/storage co-design.

e As we enable the coordinated storage management be-
tween SDN and SDF, we must preserve their programma-
bility, ease-of-use, and original advantages. Thus, RackBlox
should be compatible with hardware upgrades.

3.2 RackBlox Overview

We rethink the software-defined network and storage hier-
archy (see Figure 3), and propose a new software-defined
architecture, RackBlox. We first decouple the functions of
the storage management (i.e., flash translation layer) of SSDs,
and integrate the appropriate functions such as GC and wear-
leveling into the SDN (§3.3). Such a new architecture enables
state sharing between SDN and SDF. It utilizes the capability
of SDN to enable global storage resource management in a
rack. Thus, we can coordinate the efforts of I/O scheduling
across the entire rack. Henceforth, the SDN and SDF can
manage the end-to-end request delay, and provide precise
feedback to the I/O scheduler on the storage servers (§3.4).
The coordinated I/O scheduling mechanism improves the
end-to-end I/O performance and enables intelligent decision-
making in advance. To alleviate the performance interference
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Figure 4. The structure of virtualized SSDs. RackBlox sup-
ports both hardware-isolated and software-isolated vSSDs.
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caused by the GC, RackBlox enables coordinated GC by ex-
ploiting the data replicas in a rack (§3.5). As the ToR switch
has the global states of the SSDs in a rack, it can redirect
I/O requests to the corresponding replica upon GC. Simi-
larly, RackBlox enables rack-scale wear leveling, as it has
the knowledge of the wear of SSDs in a rack (§3.6). It has a
two-level wear leveling mechanism: a local wear balancer
for ensuring the wear balance in each storage server, and a
global wear balancer that reduces the wear variance across
the entire rack. These wear balancers work at different levels
and cooperate to ensure rack-scale wear leveling.

RackBlox manages SSDs at rack-scale for three major rea-
sons. First, storage systems are commonly deployed at rack
scale, making this a natural granularity for storage manage-
ment [7, 23]. Second, rack-scale management is facilitated by
the programmable ToR-switch with the capability to observe
the rack’s network and I/O traffic. Third, existing rack-aware
replica placement schemes make it a natural choice for co-
ordinating the GC of SSDs across the rack. We now discuss
each proposed technique in RackBlox as follows.

3.3 Decoupling the Storage Management

When decoupling storage management, we need to consider
two factors: (1) whether integrating an SDF function into
SDN will benefit from the coordination or not; and (2) if yes,
the integration should consume minimum precious hard-
ware resources in the switch. We now discuss how RackBlox
decouples storage management between SDF and SDN to
maximize the benefits of co-design while retaining the origi-
nal flexibility and modularity of SDN and SDF.

Storage management in SDF. As the ToR switch has lim-
ited hardware resources, we keep the essential functions for
the vSSD management locally on storage servers (see Fig-
ure 3). They include SSD virtualization, device-level mapping,
and local wear leveling for SSDs in a server.

With SSD virtualization, a programmable SSD can be vir-
tualized into two types of vSSDs: hardware-isolated vSSDs,
and software-isolated vSSDs. A hardware-isolated vSSD in-
stance is mapped to a set of flash channels, as the channel-
level parallelism in SSDs provides the strongest performance
isolation (vSSD-1 in Figure 4). A software-isolated vSSD is
mapped to a set of flash chips, and it will share the flash chan-
nels with other software-isolated vSSDs, such as vSSD-2 and
vSSD-3 shown in Figure 4. It relies on the software-isolation
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(a) Replica Table
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vSSD_ID | GC Status Server IP
vSSD1 1 10.0.0.16
vSSD12 0 10.0.0.20

Figure 5. RackBlox tables placed in the ToR switch.

techniques such as token bucket rate limiting to offer rela-
tively weaker performance isolation. RackBlox supports both
hardware-isolated and software-isolated vSSD instances to
support different cloud storage services.

For each vSSD, it has its own address mapping table (device-
level mapping) and local wear leveling (i.e., the default wear
leveling) for flash block management, as shown in Figure 4b.
We keep these functions in the SDF stack, as they are more
convenient when handled by storage servers. As for other
FTL functions, such as bad block management and error
correction code (ECC) of an SSD, we leave them to the SSD
firmware, as the hardware engine in SSD controllers is more
efficient in managing them.

RackBlox enables data replication at vSSD granularity.
This is a natural design choice, as the vSSD abstraction has
been shown to simplify the storage management of flash
blocks, offer flexibility for mapping vSSD instances to under-
lying flash chips, and incur limited metadata overhead [28].
Storage management in ToR switch. To make the ToR
switch aware of the states of SSDs in a rack, we maintain
a vSSD-level mapping table in its data plane, as shown in
Figure 5. The states tracked in the vSSD-level mapping tables
provide the essential knowledge for the coordinated I/O
scheduling and coordinated GC.

Specifically, RackBlox maintains two tables in the ToR
switch as shown in Figure 5: 1) replica table, which tracks
the GC status (1 byte) of each vSSD and its replica vSSD
ID (4 bytes); 2) destination table, which mainly tracks the
corresponding server IP (4 bytes) of each vSSD, and the GC
status (1 byte) of the vSSD. As this mapping table is managed
at vSSD granularity, its storage cost is small, which can be
stored in the on-chip memory of the programmable switch.
Given that a rack usually has 64 servers or less, each server
has 16 SSDs, and each SSD can be virtualized into 128 vSSDs,
we will have up to 64K vSSDs in a rack!. The maximum
size of each table is 1.3MB. The total size of these tables for
RackBlox is much less than the available SRAM capacity
(tens of MBs) in modern programmable switches.

1A typical server in data centers today has 16 PCle slots, it can host 16 SSDs.
Assume each SSD has 4TB, the minimum size of a vSSD is 32GB, therefore,
each SSD can host up to 128 vSSDs.
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Figure 6. The network packet format in RackBlox.

Table 1. Network protocols used in RackBlox.

Operation Name
create_vssd | Register a newly created vSSD in the ToR switch.
del_vssd | Remove a registered vSSD from the tables.
write | Write issued by client.
read | Read issued by client.
gc_op | Packet to update GC for vSSD.

Description

State communication between SDN and SDF. To facili-
tate the state communication between the ToR switch and
storage servers in the same rack, RackBlox leverages the
programmability of SDN, and has its own network packet
format based on regular network protocols, as shown in Fig-
ure 6. The packet has one 1-byte OP field to indicate different
operations as shown in Table 1, one 4-byte field to indicate
the target vSSD ID, and one 4-byte field (LAT) for storing
the measured network latency for the packets transferred
through the data center network. The payload will be filled
with different values, according to the operation specified
in RackBlox header. We will discuss the purpose of each
operation throughout the paper.

The RackBlox header is part of the L4 payload. RackBlox
uses existing L2/L3 routing protocols to route packets. As
such, switches can forward RackBlox packets normally, and
RackBlox is compatible with flow/congestion control and
other network functionalities in the transport layer. We dif-
ferentiate RackBlox packets in the ToR switch through a
reserved TCP/UDP port.

To initialize RackBlox tables in the ToR switch, the storage
servers send a packet that contains the create_vssd operation
to the switch upon creating a new vSSD. The vSSD_ID field
will store the ID of the newly created vSSD, the payload
will include the 4-byte server IP, its replica vSSD ID, and
the server IP of the replica vSSD. The replica vSSD ID and
IP are allocated with the vSSD—following the rack-aware
replica placement scheme in rack-scale storage systems. The
ToR switch will insert a new entry in the replica table and
destination table, with GC states initialized as 0 (idle). Upon
vSSD deletion, the storage server sends the del_vssd packet
to the ToR switch to remove the corresponding entries in
the RackBlox tables. As we serve I/O requests at runtime,
RackBlox tables will be updated depending on the events.

3.4 Coordinated I/O Scheduling

Although both SDN and SDF can make the best effort to
achieve their quality of service (QoS), the lack of state shar-
ing and coordination will cause suboptimal end-to-end per-
formance and wasted effort on I/O scheduling. For instance,
as SDN and SDF are independent, they do not share states
of I/O requests, therefore, SDN may forward I/O requests
to busy storage servers, although it is apparent that their
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end-to-end service-level objective is likely to be violated.
This will exacerbate network congestion and increase the
pressure of processing I/O requests on storage servers.

RackBlox enables the state sharing of I/O requests across
SDN and SDF, and develops a coordinated I/O scheduling
mechanism to improve end-to-end performance. It tracks the
elapsed time in the programmable switches, adapts the I/O
scheduling in the data plane of SDF to control the end-to-end
delay for the request, and predicts the time it would take to
transmit the response from the storage server to the client.

RackBlox tracks I/O requests across the entire stack: (1)
Netyime: the elapsed time in the network stack since the
I/O request is issued until it reaches the storage server; (2)
Storage;ime: the delayed time in the I/O queue of the stor-
age stack; (3) Predict;ime: the time it takes to transfer the
response back to the client over the network. To manage
I/O scheduling in SDF, RackBlox uses Prioscpeq = (Netyime
+ Storage;ime+ Predict;ime) as the scheduling priority. As
RackBlox issues I/O requests from the queue in the storage
stack, it selects the request with the maximum Prioscheq
value. RackBlox differs from state-of-the-art storage I/O
scheduling schemes by considering the network latency to
make the best effort to reduce the end-to-end latency [17, 19].

In order to track Net;jme with low overhead, we use the In-
band Network Telemetry (INT) available in programmable
switches [1]. It enables the network state collection in the
data plane without intervention from the control plane. Rack-
Blox uses INT to compute the sum of per-hop latency in the
switches, since the routing and queuing latencies dominate
the network latency [24, 29]. It embeds the measured net-
work latency in the network packet being transferred to the
storage server, following the network format in Figure 6. As
for Storage;ime, RackBlox tracks the queuing delay for each
I/O request in the queue of the storage stack.

To predict the time it will take to return the response to the
client (Predict;im.), we develop a predictor using a simple
yet effective sliding window algorithm. We track one sliding
window for each vSSD with the average network latency of
the 100 most recent incoming packets. We choose 100 pack-
ets because it is small enough to quickly detect changes in
the network (e.g., network congestion), but large enough to
smoothen outlier requests. We use incoming packets because
they can better capture the factors causing network delays.
We maintain separate windows for reads and writes as their
outgoing packet sizes are different [58, 69, 92].

Our experiments with a variety of network traces in data
centers [32, 59, 67] (see §3.7 for details) show that this ap-
proach effectively predicts the return latency. The predicted
latency is within 25ps of the correct value 95% of the time
(across all distributions) and 86.6% of the time in the worst
case. The predictions are within 10% of the true latency in the
worst case. Mispredictions primarily occur at the begin/end
of congestion or with highly variables network patterns. We
show the benefit of the coordinated I/O scheduling in §4.
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Figure 7. Coordinated GC optimizations in RackBlox.

3.5 Coordinated Garbage Collection

The GC overhead of SSDs is significant, as it blocks incoming
I/O requests and seriously harms end-to-end latency [50, 64].
For instance, a 4KB read request in SSDs can be completed in
under 100 ps, but it may wait for a few milliseconds due to the
GC. This is critical in data centers, where many applications
have strict performance requirements [13].

The fundamental issue is that the upper-level system soft-
ware fails to consider the underlying SSD behavior. Without
coordination at rack scale, it is hard to optimize GC across
replicas or redirect requests away from replicas executing
GC, even though SDF exposes the underlying storage behav-
ior. Since the ToR switch will forward each storage request
entering the rack, it has the states of the SSDs in the rack, it
is natural to coordinate GC across the SSDs with the switch.

Prior work has explored various techniques for coordinat-
ing GC between SSDs within servers [39-41, 45, 75, 78, 88].
These studies managed SSDs either spatially by reserving
spare SSDs to serve requests or temporally by scheduling
GC to ensure predictable latency for read requests. However,
they did not enable GC coordination across servers at rack
scale. Industry has been developing rack-scale storage solu-
tions [16, 26, 68, 76], however, to the best of our knowledge,
they also lack GC coordination across data replicas.

As different levels of vSSD isolation (software vs. hard-
ware) have different challenges, we will begin with coordi-
nating GC for hardware-isolated vSSD instances and then
extend it to software-isolated vSSDs.

3.5.1 Coordinated GC for Hardware-Isolated vSSDs.
RackBlox coordinates GC between the replicas of each vSSD,
as shown in Figure 7. Since each hardware-isolated vSSD is
mapped to one or more flash channels that run GC indepen-
dently, GC in other vSSDs does not affect its performance.
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Thus, by coordinating GC per vSSD, we can achieve pre-
dictable performance. Coordinating GC at vSSD granularity
also aligns with the granularity of data replication. If we
keep at least one vSSD replica idle, we can ensure that one
data replica can be accessed with predictable performance.

For each vSSD, we achieve predictable performance for
storage requests by enabling request redirection (Figure 7a).
While requests are directed to idle replicas, other replicas of
the vSSD may still run GC. Thus, the switch delays GC for
one replica until another is ready to serve requests (Figure 7b).
Also, RackBlox enables background GC to utilize the idle
cycles of SSDs (Figure 7c).

We outline the packet processing workflow of SDN and
SDF in Algorithm 1 and Algorithm 2. We examine RackBlox
with two replicas in a single rack and one replica in another
following the common rack-scale storage systems [7-9, 23,
56]. RackBlox can be extended to any number of replicas.
Request Redirection. Upon receiving a packet, RackBlox
queries the Replica Table (see §3.3) to get the gc_status and
replica for vssd_id. Writes are not redirected (Line 2-3 in
Algorithm 1), but issued to all replicas for reliability and
consistency [7, 22, 23, 56]. RackBlox supports different con-
sistency models, and our implementation uses Hermes [37]
to ensure strong consistency between replicas and correct-
ness when redirecting requests. We avoid long tail latencies
for writes by utilizing existing DRAM caches in data center
servers to absorb writes during GC [22, 45]. This follows
the durability semantics of existing systems that primarily
rely on replicas to ensure data durability [46, 63]. Writes are
considered complete when all replicas have a DRAM copy
and are flushed in the background (Line 2-4 in Algorithm 2).

For read requests, if the gc_status is set for the vssd_id,
we query the Destination Table to get the gc_status for the
replica vSSD (T1 in Figure 7a). If the vSSD is not executing
GC or if both the vSSD and its replica are executing GC, we
forward the packet as is. Otherwise, we redirect the request
to the replica using its destination IP in the Destination Table
(T2 in Figure 7a, Line 4-9 in Algorithm 1). I/O requests are
scheduled locally with coordinated I/O scheduling (Line 5-6
in Algorithm 2). By redirecting requests, requests are served
by replicas without suffering from the GC overhead.

While RackBlox maximizes the chance that at least one
replica is available, it is possible that both replicas are execut-
ing GC. The techniques that submit requests to another rack
in parallel can be applied to ensure high performance [20].
In this paper, we focus on the intra-rack I/O scheduling.
Delaying GC. Since all replicas receive the same writes,
replicas may execute GC at the same time [45]. Therefore,
naive request redirection cannot alleviate the GC overhead.
To overcome this issue, we leverage the shared states in the
switch and empower the switch to delay the GC of a replica.

While delaying GC can ensure that two replicas do not ex-
ecute their GC simultaneously, we cannot delay indefinitely.
GC is typically executed when the available free blocks fall
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Algorithm 1: RAckBLOX WORKFLOW IN SDN

Input: pkt < RackBlox packet
gc_status «— GC status
dst « table mapping vssd_id to its destination IP
replica « replica for this vssd_id
1 Function process_packet (pkt, gc_status, replica):

2 if pkt.op = write then

3 ‘ forward(pkt)

4 if pkt.op = read then

5 if gc_status[pkt.vssd_id] = 1then
6 if gc_status[replica] = 0 then
7 pkt.dst « dst[replica]

8 pkt.vssd_id « replica

9 forward(pkt)
10 if pkt.op = gc_op then

1 ge_status[pkt.ussd_id] « 1

12 if pkt.gc = soft then

// requires recirculation

13 if gc_status[replica] =1 then
14 pkt.gc «— delay

15 gc_status|pkt.vssd_id] < 0
16 else

17 pkt.ge « accept

18 dst_gc_status[pkt.vssd_id] « 1
19 else if pkt.gc = finish then

20 ‘ gc_status|pkt.vssd_id] <« 0
21 else

22 dst_gc_status[pkt.vssd_id] « 1
23 pkt.gc < accept
24 pkt.dst <« pkt.src
25 forward(pkt)

below a fixed gc_threshold (e.g., 25%). This is a hard threshold
to free flash blocks for future use. To make room for delaying
GC, we configure a relaxed soft_threshold (35% by default).
Instead of having the SDF notify the switch when it must
do GC, it requests GC once its free block ratio falls below
the soft_threshold. The switch can use its shared GC state to
delay GC until the replica finishes GC.

Storage servers will periodically (every 30 seconds by
default) check the free block ratio for each vSSD (Line 9-
19 in Algorithm 2). If any GC condition triggers, the SDF
will send a gc_op packet (T1 in Figure 7b). If the free block
ratio falls below the gc_threshold, the gc field in the payload
is set to regular (value of 1) to indicate that the replica must
execute GC. GC requests with regular will not be denied as
the GC has been delayed as much as possible. If regular GC
requests are not acknowledged due to link or switch failure,
the vSSD will execute GC after retrying (3 retries by default).
If the free block ratio only falls below the soft_threshold, the
ge field in the payload is set to soft (value of 0).

The logic for accepting or delaying GC requests in the
switch is shown in Line 10-25 of Algorithm 1. The switch
begins with updating the GC status in the Replica Table to
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Algorithm 2: RAckBLOX WORKFLOW IN SDF

Input: pkt < RackBlox packet
1 Function process_packet (pkt):
if pkt.op = write then
if cache is full then
‘ flush DRAM cache with write data
if pkt.op = read then
‘ schedule local read with coordinated I/O

A U1 oa w N

N

if pkt.op = gc_op and pkt.gc = accept then
8 ‘ begin GC
// Periodic GC Monitoring
Input: vssd < vSSD being checked for GC
soft_threshold « soft GC threshold
gc_threshold < regular GC threshold
bg_pred « idle prediction for background GC
9 Function trigger_gc(vssd, bg_pred):

10 gc_type < none

1 if vssd.free_blocks < gc_threshold then

12 ‘ gec_type «— regular

13 else if vssd.free_blocks <soft_threshold then

14 ‘ ge_type «— soft

15 else if bg_pred = True then

16 ‘ ge_type «— bg

17 if gc_type # none then

18 pkt <« new pkt

19 pkt.dst, pkt.op, pkt.gc — switch, gc_op, gc_type

1. If the request is regular, the switch also updates the GC
status in the Destination Table to 1, sets the gc field in the
payload to accept (value of 3), and sends the reply back to the
server. For soft requests, the switch will check the GC status
of the replica (T2 in Figure 7b). If the replica is executing GC,
the switch will delay (value of 4) the request (T3 in Figure 7b).
Otherwise, the switch will accept it. Both the Replica and
Destination Tables have a GC status that must be consistent.
The soft requests that must check the replica’s GC status in
the Destination Table cannot also update the GC status of
the vSSD due to the memory limitations of programmable
switches. Therefore, we recirculate the packet once to ensure
consistency. The SDF sends a final gc_op packet when the
vSSD has finished GC with the gc field set to finish (value of
5) in the payload. The switch uses this to clear the GC status
in both tables (Line 19-20 in Algorithm 1).

Background GC. Delaying GC enables the switch to re-
duce overlapping GC. RackBlox also opportunistically uti-
lizes idle cycles to free blocks. Background GC requests
are labeled as bg (value of 2) in the gc field of the payload.
Since background GC is performed during idle cycles, the
SDF executes it without approval from the ToR switch. To
facilitate background GC, RackBlox predicts the next idle
time for a given vSSD based on the last interval between
I/O requests [12, 55, 70, 85], as shown in T1 in Figure 7c:

dict dict dict .
Tipre = 0(>x<Tl.r_el“l+(1—0()>1<Tl.’ir1E ! where Tprf s

i—

the idle time of the last prediction, and « is the exponential
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smoothing parameter (@ = 0.5 by default). Once Tip redict i
larger than a defined threshold (30 milliseconds by default),
the storage server will execute GC and update the GC status

in the switch (T2 and T3 in Figure 7c).

3.5.2 Coordinated GC for Software-Isolated vSSDs.
Unlike hardware-isolated vSSDs, software-isolated vSSDs
can share channels with other software-isolated vSSDs. As
they rely on software techniques to offer performance isola-
tion, software-isolated vSSDs provide relaxed isolation guar-
antees. Thus, request redirection may not guarantee pre-
dictable storage performance for those vSSDs. Even if one
replica is not executing GC, a collocated vSSD may execute
GC, resulting in significant interference.

RackBlox enables simple management of software-isolated
vSSDs by grouping them into channel groups in the SDF.
Each channel group is a set of software-isolated vSSDs that
span the same set of channels and all vSSDs of the chan-
nel group will perform GC simultaneously. Intuitively, if
one vSSD must perform GC and each vSSD will be affected
anyway, then all vSSDs should perform GC to reduce GC fre-
quency. This simplifies coordination and reduces overhead.

The channel group is managed exclusively by the SDF
and is not exposed to the switch. Multiple software-isolated
vSSDs sharing the same channels may have diverse GC be-
havior. To ensure all vSSDs of the channel group can execute
GC together, we allow a vSSD that has exhausted its free
blocks to transparently borrow free blocks from collocated
vSSDs. Blocks are borrowed in groups (1GB by default) and
transferred between the free block lists of vSSDs. Thus, we
can delay GC until the channel group’s free block ratio falls
below the gc_threshold. The borrowed blocks will be erased
(for security) and returned to the original vSSD after the
GC. The coordinated GC will not worsen the write amplifi-
cation, as it makes the best effort to avoid unnecessary GC
operations. When sending gc_op packets to the switch, the
storage server generates a separate packet for each vSSD
in the channel group. Note that a delay response (i.e., the
corresponding replica vSSD is executing GC) from any vSSD
will delay the GC of the channel group.

3.6 Rack-Scale Wear Leveling

The limitation of the SSD lifetime has created complexity
for their use and management in practice [51, 52]. This is
especially true in large-scale data centers. First, as different
applications have different workload patterns, the write traf-
fic to each SSD can be different, causing wear imbalance
between SSDs in a rack. Second, platform operators have to
replace unhealthy or failed SSDs with new SSDs frequently,
making the wear management of SSDs across the entire rack
even harder. Third, modern cloud infrastructures mostly con-
sider the load balance rather than the wear balance across
SSDs. Therefore, the wear-leveling management of SSDs has
become a fundamental challenge in data centers today.



RackBlox: A Software-Defined Rack-Scale Storage System with Network-Storage Co-Design

| Global (inter-server) wear balancer

Local (intra-server) Local (intra-server) Local (intra-server)
wear balancer wear balancer wear balancer

8568 60-8

Figure 8. Two-level rack-scale wear leveling in RackBlox.

Premature death or removal of an SSD not only increases
the operation cost, but causes an opportunity loss of other
hardware components, given that others like CPU, network,
and memory do not prematurely lose capability. Thus, it is
desirable to ensure SSDs in a rack are aging at the same rate.

To extend the lifetime of a rack of SSDs, we propose a two-
level wear leveling mechanism (see Figure 8). It consists of
two parts: a local (intra-server) wear balancer processes the
local wear balance between SSDs in a storage server, and a
global (inter-server) wear balancer reduces the wear variance
for SSDs in a rack. The wear balancers work at different level
and cooperate to ensure rack-scale wear leveling.

As for the local wear balancer, to obtain the uniform life-
time among SSDs in a storage server, we track the aver-
age erase count for an SSD?, and ensure the wear balance
for all the SSDs in a storage server. Let ¢; denote the wear
(average erase count of all the blocks to date) of the i*"
SSD. A = @max/Pauvg denotes the wear imbalance across SSDs,
which must not exceed 1 + y, where ¢@pax = Max(¢y, ..., oN),
Pavg = Avg(@1, ..., on), N is the total number of SSDs, and
y represents the maximum permitted imbalance. Instead of
swapping SSDs frequently, RackBlox periodically swaps the
SSD that has incurred the maximum wear with the SSD
that has the minimum rate of wear, following the relaxed
wear leveling approach developed in [28]. Given y = 0.1,
each server can have 16 SSDs, and each SSD can last five
years, RackBlox can achieve uniform lifetime for SSDs in a
storage server by swapping once per 12 days for the worst
case [28]. Assume each flash block can endure 30K writes,
this swapping consumes only 0.5% of its lifetime.

SSDs are swapped atomically by pausing operations for
the chosen blocks, reading them into memory, writing them
to their new locations, updating the mapping tables, and serv-
ing the paused requests. As the swapping occurs infrequently,
it does not affect the tail latency. To further minimize its im-
pact on application performance, RackBlox assigns higher
priority to regular I/O requests during swapping.

Similarly, we can quantify the wear imbalance between
storage servers in a rack by using the wear (average erase
count of all the SSDs to date) of a server. However, different
from the swapping of SSDs in a single server, the swapping
cost between storage servers is more expensive, due to the

2For the programmable SSDs, we can track the erase count of each flash
block. Therefore, we can obtain the average erase count of a flash channel
as well as an SSD.
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networking overhead. Therefore, we relax the swapping fre-
quency (8 weeks by default). This is less of a concern, as
modern storage infrastructures have employed the load bal-
ance (e.g., round-robin vSSD allocation) across servers. Since
RackBlox does not swap SSDs across servers frequently, we
do not implement the rack-scale wear leveling in the switch
to keep our design simple. Our experiments (see §4.6) show
that the relaxed wear leveling will ensure near-ideal wear
balance for datacenter workloads.

3.7 Implementation Details

Testbed. Our experiments are conducted on a testbed of
five servers connected to a 6.5Tbps Tofino switch [60]. Each
server is equipped with a 24-core Intel Xeon E5-2687W pro-
cessor running at 3.00GHz, 108GB DRAM, and 1TB pro-
grammable SSD. Each server has a Mellanox ConnectX-4
50Gb NIC connected to the programmable switch.
Network implementation. To implement the custom pack-
ets described in Figure 6, we use DPDK (v22.11.1) [30]. If the
packet type is gc_op, the payload contains a gc field (1 byte)
storing the necessary type of GC request. When the packet
is a create_vssd packet, we include the server IP, vSSD_ID,
and server IP of the replica in the payload.

We develop the switch data plane in P4 [14] and run it on
an Intel Tofino ASIC [31]. The control plane is implemented
in Python and interacts with the switch data plane through
Thrift APIs [10] using Intel’s P4 SDE 9.10.0. We implement
the tables as described in §3.3 using 1.3MB SRAM in the
switch. The GC states of the replica and destination table use
registers, such that they can be updated in the data plane,
consuming a total of 128KB of stateful memory.

Since we do not have access to a real data center, we
emulate datacenter network traffic in our cluster using traces
and released network traffic distributions [32, 59, 67]. The
traces include delays between VMs in cloud data centers.
To simulate the variations of network latency, we scale the
trace in [67] following the latency patterns and distributions
in [32, 59]. The latency is associated with each request and
stored in the LAT field when the packet is generated (see
Figure 6). When the request traverses the switch, we add the
per-hop latency as described in §3.4. The end-to-end latency
is computed by adding the time spent at the storage server
and the final LAT value in the return packet.

Storage implementation. We build the SDF (SSD virtual-
ization) stack on top of programmable SSDs. By default we
implement a greedy, threshold-based GC. We specify the GC
thresholds used in each experiment in §4. In our testbed, we
use one server as clients, and others to host vSSDs.
Emulation. Since we only have one type of programmable
SSD, we build an SSD emulator using Python to test RackBlox
against different SSD device performance (see §4.5.3). We
validate the emulator with our programmable SSD. For these
experiments, we use the same implementation, but issue
requests to the emulated SSDs.
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Table 2. Workloads used in our evaluation.

Workload Description Write%
YCSB [87] Cloud data serving queries. 0-100%
TPC-H [82] Business-oriented ad-hoc queries. | 2.27%
Seats [57] Airline ticketing system queries. 10.34%
AuctionMark [83] | Activity queries in an auction site. | 53.76%
TPC-C [81] Online transaction queries. 59.95%
Twitter [54] Micro-blogging website queries. 97.86%

Others. Similar to modern storage systems [7, 23], RackBlox
leverages heartbeats to detect failures. On link failure, it
redirects requests to replicas in the rack. On server failure,
RackBlox replicates the replicas to other servers and updates
their switches. Upon data recovery, it updates stale data from
replica vSSDs before serving requests [37]. On switch failure,
RackBlox relies on replicas in another rack to serve requests.
The ToR switch is repopulated on switch recovery. RackBlox
focuses on storage management of a rack. As future work, we
wish to extend it to multiple racks by modifying Algorithm 1
to keep GC states consistent among switches.

4 FEvaluation

Our evaluation shows that: (1) RackBlox reduces the tail
latency of I/O requests by up to 5.8 for data-center applica-
tions with network-storage coordination (§4.2 and §4.3); (2)
RackBlox works with various storage and network schedul-
ing policies (§4.5.1 and §4.5.2); (3) RackBlox benefits various
SSD devices and network latency distributions (§4.5.3); and
(4) RackBlox extends the lifetime of a rack of SSDs (§4.6).

4.1 Experimental Setup

To examine RackBlox’s performance under different work-
load patterns, we use YCSB with different read/write ra-
tios [87] and various workloads from BenchBase [21]. These
represent common data center applications sensitive to net-
work and storage performance (Table 2). All workloads run
on hardware-isolated vSSDs. The datasets range in 50-100GB,
so we allocate vSSD capacity accordingly (64-128GB). We
set soft_threshold to 35%, and set gc_threshold to 25%. Before
each experiment, we run a subset of the workloads to trig-
ger GC and consume 50% of the free blocks. RackBlox uses
Linux’s Kyber scheduler [42] by default, as it performs the
best across various settings (see §4.5.1). Kyber uses 750us
for reads and 3 millisecs for writes as target 95-th percentile
(P95) latencies. When enabling coordinated I/O, we use 1.75
millisecs and 4 millisecs to account for P95 network delay.
We use the default priority-based isolation in the switch.
To show the performance benefits of network-storage co-
design, we compare RackBlox with state-of-the-art software-
defined storage architecture designs at datacenter scale.
VDC: Virtual datacenter (VDC) [6] enables end-to-end
isolation between multiple tenants sharing the same physical
network and storage. It implements a logically centralized
controller that allocates resources to each tenant’s VDC as
well as each tenant’s I/O flows [79]. We run the controller
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Figure 9. RackBlox’s benefits for P99.9 end-to-end latency.

on a separate server updating flow demand and allocations.
VDC enforces end-to-end isolation for each flow with multi-
resource token bucket rate limiting.

RackBlox (Software): Although RackBlox is developed
with a programmable switch and SSDs, its core ideas can
be implemented in the software stack. To evaluate this, we
extend VDC by adding software-based coordinated I/O sched-
uling and GC. We make the VDC controller GC-aware by
tracking the GC state of vSSDs, and implementing the coor-
dinated GC (§3.5) in software. When the controller grants
the vSSD’s request to perform GC, it also returns the location
of a replica not performing GC. Therefore, storage servers
can redirect requests when the vSSD is performing GC.

4.2 End-to-End Performance Benefits

To evaluate the end-to-end performance of RackBlox, we
run YCSB benchmarks with the zipfian request distribution,
and vary the write ratio from 0% (read-only) to 100% (write-
only). With network-storage co-design, RackBlox improves
the 99.9-th percentile (P99.9) read latency by up to 4.4x (12.4
millisecs vs. 2.8 millisecs), the P99.9 write latency by up to
1.4X (4.3 millisecs vs. 3.0 millisecs), as shown in Figure 9. We
show the detailed results in Figure 16.

Although VDC ensures flow isolation across network and
storage stack in software, it performs worse than RackBlox
(Figure 9a), due to the lack of the coordination between the
network and storage stack. RackBlox (Software) enables GC
redirection in software, and reduces the overhead when re-
quests are blocked by GC. For read-heavy workloads, the
performance of RackBlox (Software) is similar to that of
RackBlox, as they both conduct the coordinated I/O sched-
uling. However, for write-heavy workloads, which cause
more intensive GC, RackBlox (Software) can improve VDC’s
performance by to 2.4X (12.4 millisecs vs. 5.2 millisecs). How-
ever, since RackBlox (Software) incurs additional network
overhead, it remains suboptimal. RackBlox outperforms VDC
and RackBlox (Software) by enabling coordinated I/O sched-
uling and coordinated GC in the network by 4.4x and 1.84x
(5.2 millisecs vs. 2.8 millisecs) respectively.
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Figure 11. Comparing RackBlox’s average end-to-end la-
tency against VDC and RackBlox (Software).

Writes are hardly affected by GC because of the write
cache in storage servers, as shown in Figure 9b. Thus, Rack-
Blox and RackBlox (Software) have similar performance,
as the coordinated I/O scheduling improves the 99.9th per-
centile write tail latency by up to 1.4X. We show RackBlox’s
benefit for the 99th percentile (P99) latency in Figure 10. The
read latency is improved by up to 2.1x (5.3 millisecs vs. 2.6
millisecs) and the write latency is improved by up to 1.3x (3.7
millisecs vs. 2.8 millisecs). This demonstrates that RackBlox
can achieve benefit at lower tails as well.

RackBlox does not negatively affect the average latency,
as shown in Figure 11. As we increase the write ratio in the
workloads, the average latency of reads/writes is gradually
increased, due to the read/write interference, and the write
latency is longer than read latency in the storage stack.

We show the average throughput of YCSB benchmarks in
Figure 12. RackBlox does not negatively affect throughput,
as RackBlox targets improved tail latency. Similar to the
average latency, higher write rates lead to lower IOPS since
writes have higher device latency.

SOSP °23, October 23-26, 2023, Koblenz, Germany

200 N
160 .

1
120 i
)

Throughput (KIOPS)

100/0 95/5 80/20 50/50 20/80 5/95 0/100
Read/Write Mix (%)

Figure 12. RackBlox’s impact on throughput.
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Figure 13. Comparing RackBlox’s P99.9 end-to-end latency
against VDC and RackBlox (Software) for various workloads.
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Figure 14. Throughput for various workloads.
4.3 End-to-End Performance of Various Workloads

We further evaluate RackBlox on various workloads (see
Table 2), following the setup described in §4.1. Figure 13a
shows that RackBlox improves the P99.9 read latency of
various workloads by up to 7.9x (23.8 millisecs vs. 3.0 mil-
lisecs), in comparison with VDC. For P99 read tail latency,
RackBlox achieves up to 2.9x improvement (8.1 millisecs vs.
2.8 millisecs). Compared to the YCSB experiments, we ob-
serve similar correlation between write ratio and read tail la-
tency improvement in various workloads. For read-intensive
workloads like TPC-H, RackBlox and RackBlox (Software)
improve mainly via coordinated I/O scheduling. For write-
intensive ones like Twitter, RackBlox improves performance
mainly by alleviating GC interference. AuctionMark has less
benefit than YCSB with 50% writes, although it has slightly
higher write ratio. This is because AuctionMark has a dif-
ferent I/O request pattern (e.g., a long sequence of writes
followed by a sequence of reads, rather than mixed reads
and writes in YCSB), it has fewer I/O requests affected by
the GC. RackBlox (Software) performs worse than RackBlox
due to the additional networking overhead for coordinated
GC. The end-to-end write tail latency, shown in Figure 13b,
demonstrates a similar trend and improvement to YCSB. For
throughput (see Figure 14) and average read/write latency,
we observe the similar trend as YCSB benchmarks (see §4.2).
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Figure 16. Cumulative distribution of read latency.

4.4 Performance Benefit Breakdown in RackBlox

To break down the performance improvements in RackBlox,
we evaluate RackBlox-Coord I/0, in which we enable co-
ordinated I/O scheduling between the network and storage
stack, but disable coordinated GC in RackBlox.

We show the comparison in Figure 15 with latency break-
downs. By coordinating I/O between network and storage,
RackBlox-Coord I/O reduces the P99.9 read latency by up to
1.1-1.23% (3.9 millisecs vs. 3.1 millisecs) and write latency
by 1.1-1.4x compared to VDC. With increased write ratios,
RackBlox-Coord I/O brings more benefits for the tail latency,
because the potential delay of a request in the storage queues
increases, as writes have higher device latency than reads.
Thus, prioritizing requests in the storage queue leads to more
obvious effects on the end-to-end latency and coordinated
I/O scheduling provides greater speedup.

However, for write-dominant workloads (e.g., more than
50%), the read tail latency improvement of coordinated I/O
scheduling diminishes no matter how we schedule as shown
in Figure 15a, because intensive writes incur high GC over-
head. With high write ratios, the coordinated I/O scheduling
brings more benefits to the tail latency of writes than that
of reads, since the write cache helps alleviate the GC over-
head. As we further increase the write ratio (i.e., above 50%),
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Figure 17. Comparing RackBlox’s P99.9 end-to-end latency
with different storage I/O schedulers.

the tail latency of both VDC and RackBlox-Coord I/O is in-
creased, due to the increased storage queue delay (see the
storage latency distribution in Figure 15b). Compared to
VDC, the normalized tail latency reduction of coordinated
I/0 scheduling is almost the same as shown in Figure 15b.
The coordinated GC mechanism in RackBlox will further
improve the read tail latency (by up to 4.3%), as shown in
Figure 15a and Figure 16. Both RackBlox and RackBlox (Soft-
ware) implement coordinated GC, but RackBlox provides
more speedup with the programmable switch, as it alleviates
the unnecessary networking round-trip delays. The coordi-
nated GC does not benefit writes, as we need to issue writes
to all replicas for data consistency (as discussed in §3.5.1).

4.5 Sensitivity Analysis

We demonstrate that RackBlox retains the flexibility and
modularity of the original SDN/SDF design by evaluating
different scheduling policies and system configurations.

4.5.1 Varying storage I/O scheduling policies. We now
examine the benefit of the coordinated I/O scheduling under
different storage I/O scheduling policies. In particular, we
implement Linux’s storage schedulers for SDF: no-op (FIFO),
Deadline, and Kyber [42]. No-op is the default on NVMe
devices, while both Kyber and Deadline target predictable
latency. Deadline splits requests into read and write queues,
and prioritizes requests when they reach their respective
deadlines. Kyber also splits requests into read and write
queues, and throttles each queue to meet the latency targets.
To enable coordinated I/O scheduling, RackBlox reorders
requests in each queue using network latencies. We use 0.5
millisecs and 1.75 millisecs as deadlines for reads and writes
in Deadline and 1.5 millisecs and 2.75 millisecs in RackBlox
(Deadline). We use 0.75 millisecs and 3 millisecs for reads
and writes in Kyber and 1.75 millisecs and 4 millisecs for
RackBlox (Kyber). RackBlox (Deadline) and RackBlox (Kyber)
use increased parameter values, as RackBlox incorporates
the network latency in its coordinated I/O scheduling, based
on the distribution of network latencies in data centers [67].
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Figure 18. Comparing P99.9 read latency for RackBlox with
different network scheduling policies.
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Figure 19. End-to-end read latency distributions of RackBlox

on YCSB-A with varying SSDs and network latencies.

We show the results in Figure 17. As expected, coordi-
nated I/O scheduling always outperforms its baseline sched-
uler. RackBlox (FIFO) achieves the greatest speedup over
its baseline scheduler (1.5X). RackBlox (Kyber) and Rack-
Blox (Deadline) have fewer opportunities to reorder requests
when splitting reads and writes into separate queues, but still
benefit from coordination (1.24x and 1.36X respectively).

4.5.2 Varying network scheduling policies. We now
evaluate the performance of RackBlox under different net-
work scheduling policies in the switch. Besides the Token
Bucket rate limiting (TB) policy that ensures isolation be-
tween flows (similar to VDC), we examine the fair queuing
(FQ) and priority based network scheduling (Priority) poli-
cies. For FQ, we have four client servers competing for one
storage server with each receiving a fair share of the network
bandwidth. In Priority, we periodically create higher priority
traffic using [72], which delays lower-priority requests.

We show the results in Figure 18. Coordinated I/O sched-
uling can benefit all the underlying network schedulers. FQ
and Priority result in higher latency as requests are delayed
in the network. This provides increased opportunities for re-
ordering, which allows RackBlox to achieve up to 1.21X and
1.15% performance improvement on average, respectively.

4.5.3 Varying the Network/Storage Latency. The co-
ordinated I/O scheduling works by hiding higher network

SOSP °23, October 23-26, 2023, Koblenz, Germany

Speedup vs. VDC

Figure 20. P99.9 read latency improvements of RackBlox
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Figure 21. Read tail latency with different isolation.

latency with lower storage latency, or vice versa. Therefore,
if the network latency overwhelms storage latency or vice
versa, RackBlox helps less to improve the end-to-end latency.

We analyze the sensitivity of RackBlox by evaluating the

YCSB benchmarks with emulated devices of different laten-
cies (see §3.7). We evaluate three SSDs from fastest to slow-
est: Optane [3], Intel DC [2], and P-SSD (programmable
SSD) [53]. We evaluate networks with Fast [67], Medium [59],
and Slow [32] latencies (see §3.7). The resulting end-to-end
latencies of YCSB-A (50% reads) are shown in Figure 19.
Varying the SSD performance. For RackBlox, the marginal
benefit on end-to-end tail latency by upgrading SSD is low
when the SSD already outperforms the network. For example,
upgrading the SSD from Intel DC to Optane under Slow
network brings little benefit to the P99.9 latency. Thus, the
performance improvement of RackBlox over VDC is also low.
In contrast, the benefits of upgrading SSD are more obvious
when the network outperforms SSDs, which brings overall
performance benefit for RackBlox.
Varying the networking performance. Similar conclu-
sions are drawn as we vary network latencies. For example,
upgrading the network from Slow to Fast with the slowest P-
SSD hardly improves read tail latency in RackBlox, because
SSD latency dominates the end-to-end latency. In contrast,
by upgrading the network with the fastest Optane SSD, we
significantly improve the read tail latency in RackBlox.

Our findings are consistent across various YCSB bench-
marks, as shown in Figure 20. The fastest Optane SSD matches
best (i.e., RackBlox achieves the most benefit) with Fast net-
work, the slower Intel DC SSD matches with Medium net-
work, and the slowest P-SSD matches with Slow network.
The reduced benefit for RackBlox under unmatched laten-
cies is a potential limitation, but this is less of a concern, as
modern data centers usually upgrade network and storage
hardware together for best resource efficiency (e.g., using
slow storage with fast RDMA network is impractical in the
real world). Therefore, pairing the storage stack with the
network stack fully unleashes the potential of RackBlox.
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4.5.4 Software-Isolated vSSDs vs. Hardware-Isolated
vSSDs. To examine RackBlox for software-isolated vSSDs,
we run two software-isolated vSSDs on the same flash chan-
nels (SW-Isolated). These vSSDs are isolated using token
bucket rate limiting and both run YCSB with 50% writes. We
compare SW-Isolated with a hardware-isolated vSSD (HW-
Isolated) that has the full ownership of the flash channels.
RackBlox reduces the P99.9 latency by 1.47X in compar-
ison with VDC for SW-Isolated vSSDs and by 1.51x for
HW-Isolated vSSDs, as shown in Figure 21. With hardware-
isolated vSSDs, RackBlox brings marginally more benefit,
since the hardware-isolated vSSD minimizes the interfer-
ence from colocated workloads. Thus, RackBlox can improve
the performance for both software-isolated and hardware-
isolated vSSDs with the coordinated I/O scheduling and GC.

4.6 Benefits of Rack-Scale Wear Leveling

To evaluate the rack-scale wear leveling of RackBlox, we
simulate the effects of running real workloads. We configure
arack with 32 servers, each server has 16 SSDs, and each SSD
hosts 4 vSSDs. Each vSSD runs one workload (see Table 2),
which may cause wear imbalance across different SSDs, since
the workloads have diverse erase frequency. Each SSD is
well balanced at the device level as it has its own device-
level wear leveling. Following the load balancing of modern
storage infrastructures, we assign the vSSDs across servers
using round robin [61]. We evaluate RackBlox’s hierarchical
wear leveling against modern storage infrastructure which
does not swap across SSDs and servers (No Swap) [51, 52].
Local wear balancer. Figure 22 demonstrates that Rack-
Blox’s local wear balancer effectively maintains wear balance
across different SSDs. While No Swap has significant wear
imbalance, RackBlox can ensure near-optimal wear balance
across the SSDs in each server with periodic swapping.
Global wear balancer. Local wear balancing suffers wear-
imbalance at rack scale. Figure 23 shows that RackBlox’s
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global wear balancer effectively maintains rack-scale wear
balance, despite reduced swapping frequency (e.g., 8 weeks).

5 Related Work

Software-defined networking. Recent studies investigated
SDN systems, including networking abstraction, packet pro-
cessing and scheduling, QoS, SDN programming, perfor-
mance, and fault tolerance [11, 14, 73, 74, 77]. Programmable
schedulers and frameworks have been proposed to allow
developers to develop a variety of scheduling algorithms [77,
86]. With these efforts, the community has produced a set
of open-sourced frameworks such as OpenFlow [62], and
the programming language P4 [14], as well as the hardware
devices like Intel Tofino [80]. Recent work [33, 34, 48] also
demonstrates that SDN can benefit distributed storage sys-
tems. However, none studied the codesign of SDN and SDS.
RackBlox makes an initial effort in this, and shows the bene-
fits of the new software-defined rack-scale storage system.
Software-defined storage. Researchers proposed techniques
like SDF [44, 65, 84] and open-channel SSDs [53], so upper-
level system software can exploit the intrinsic properties of
flash memory. As the cost of flash-based SSDs approaches
that of HDDs and their performance has improved, SDF is
a compelling solution for storage management in data cen-
ters [28, 65]. However, no previous study focused on the
integration of SDN and SDF.

Network/storage co-scheduling. To improve the end-to-
end performance for data center applications, IOFlow [79]
and VDC [6] enforced policies for I/O requests in central-
ized servers or hypervisors. However, they treated the SDN
and SDF as black boxes without considering the underly-
ing hardware opportunities. Recently, researchers leveraged
programmable switches to fulfill system functions like data
caching [34], consistency protocols [33], and task sched-
uling [91], showing that it is feasible to integrate system
functions into programmable switches. We integrate storage
functions into SDN and show the benefits of this design.

6 Conclusion

We present RackBlox, a new rack-scale storage system by co-
designing the software-defined networking and storage stack.
RackBlox integrates essential storage functions into the pro-
grammable switch, and enables the state sharing between
the network and storage stack. With coordinated I/O sched-
uling, GC, and rack-scale wear leveling, RackBlox achieves
improved end-to-end storage performance, while ensuring
near-ideal lifetime for SSDs in a rack.
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