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Abstract

Software-defined networking (SDN) and software-defined

flash (SDF) have been serving as the backbone ofmodern data

centers. They are managed separately to handle I/O requests.

At first glance, this is a reasonable design by following the

rack-scale hierarchical design principles. However, it suffers

from suboptimal end-to-end performance, due to the lack of

coordination between SDN and SDF.

In this paper, we co-design the SDN and SDF stack by re-

defining the functions of their control plane and data plane,

and splitting up them within a new architecture named Rack-

Blox. RackBlox decouples the storage management functions

of flash-based solid-state drives (SSDs), and allow the SDN

to track and manage the states of SSDs in a rack. Therefore,

we can enable the state sharing between SDN and SDF, and

facilitate global storage resource management. RackBlox has

three major components: (1) coordinated I/O scheduling, in

which it dynamically adjusts the I/O scheduling in the stor-

age stack with the measured and predicted network latency,

such that it can coordinate the effort of I/O scheduling across

the network and storage stack for achieving predictable end-

to-end performance; (2) coordinated garbage collection (GC),

in which it will coordinate the GC activities across the SSDs

in a rack to minimize their impact on incoming I/O requests;

(3) rack-scale wear leveling, in which it enables global wear

leveling among SSDs in a rack by periodically swapping

data, for achieving improved device lifetime for the entire

rack. We implement RackBlox using programmable SSDs

and switch. Our experiments demonstrate that RackBlox can
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1 Introduction

The software-defined infrastructure has become the new

standard for managing data centers, as it provides flexibil-

ity and agility for platform operators to customize hard-

ware resources for applications [15, 35, 65]. As the back-

bone technology, software-defined networking (SDN) al-

lows network operators to configure and manage network

resources through programmable switches [14, 33, 34, 48].

Since SDN has demonstrated its benefits, software-defined

storage (SDS) [65, 79, 90] has also been developed. A typical

example is software-defined flash (SDF) [28, 53, 65, 71].

Similar to SDN, SDF enables upper-level software to man-

age the low-level flash chips for improved performance and

resource utilization [28, 44, 65]. Since the cost of flash chips

has dramatically decreased while offering orders of magni-

tude better performance than conventional hard disk drives

(HDDs), they are becoming the mainstream choice in large-

scale data centers [25, 38, 43].

Both SDN and SDF have their own control plane and data

plane, and provide programmability for developers to define

and implement their policies for resource management and
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scheduling. However, SDN and SDF are managed separately

in modern data centers. At first glance, this is reasonable

by following the rack-scale hierarchical design principles.

However, it suffers from suboptimal end-to-end performance,

due to the lack of coordination between SDN and SDF.

Although both SDN and SDF can make the best effort to

achieve their quality of service, they do not share their states

and lack global information for storage management and

scheduling, making it challenging for applications to achieve

predictable end-to-end performance. Prior studies [6, 79]

have proposed various software techniques such as token

bucket and virtual cost for enforcing performance isolation

across the rack-scale storage stack. However, they treat the

underlying SSDs as black boxes, and cannot capture their

hardware events, such as garbage collection (GC) and I/O

scheduling in the storage stack. Thus, it is still hard to achieve

predictable performance across the entire rack.

In this paper, we propose a new software-defined architec-

ture, named RackBlox, to exploit the capabilities of SDN and

SDF in a coordinated fashion. As both SDN and SDF share

a similar architectureśthe control plane is responsible for

managing the programmable devices, and the data plane is

responsible for processing I/O requestsśwe can integrate and

co-design both SDN and SDF, and redefine their functions

to improve the efficiency of the entire rack-scale storage

system. RackBlox does not require new hardware changes,

as both SDN and SDF today have offered the flexibility to

redefine the functions of their data planes.

To develop RackBlox, we first decouple the functions of

the storage management (i.e., flash translation layer) of SDF,

and integrate appropriate functions such as garbage collec-

tion and wear leveling into the control plane of top-of-rack

(ToR) switches in the SDN. Such a new software-defined

architecture enables state sharing between SDN and SDF,

and facilitates the global storage resource management in

a rack. This is compatible with storage virtualization by en-

abling the state tracking of virtualized SSD instances in SDN.

Therefore, we can coordinate the efforts of I/O scheduling

across the entire rack. RackBlox tracks the elapsed time in

the programmable switches with In-band Network Teleme-

try (INT) [1], adapts the I/O scheduling in the data plane

of SDF, and predicts the response time from the storage de-

vices back to the client. Therefore, RackBlox can manage the

end-to-end latency and offer predictable performance.

RackBlox further enables coordinated GC among the rack

of SSDs to minimize the impact of GC on application perfor-

mance. RackBlox has the global information of the storage

states, which provides the convenience to coordinate GC

events among all the SSDs in a rack. Upon GC events, Rack-

Blox takes advantage of the data replicas in the same rack,

and enables the ToR switch to redirect I/O requests to the

other data replicas. Therefore, the expensive GC activities

can be alleviated from the critical path. RackBlox employs

different GC policies for different performance isolation guar-

antees of virtualized SSD instances.

RackBlox also enables rack-scale wear leveling to ensure

a uniform lifetime of SSDs in a rack. As the write traffic to

each SSD can be different, it will cause wear imbalance be-

tween SSDs. In addition, platform operators have to replace

unhealthy or failed SSDs with new SSDs, making the wear

imbalance even harder to manage. RackBlox develops a two-

level wear leveling mechanism. It balances wear within each

individual SSD in a storage server as well as across SSDs

in the rack. Instead of swapping SSDs frequently, RackBlox

periodically swaps the SSD that has incurred the maximum

wear with the SSD that has the minimum rate of wear.

We implement RackBlox with a programmable Tofino

switch and programmable SSDs (i.e., open-channel SSDs).

We evaluate RackBlox with network traces collected from

various data centers and a variety of data-intensive applica-

tions. Our experiments show that RackBlox reduces the tail

latency of end-to-end I/O requests by up to 5.8×, and can

achieve a uniform lifetime for a rack of SSDs without intro-

ducing much additional performance overhead. In summary,

we make the following contributions in this paper.

• We propose a new software-defined rack-scale storage

system by decoupling the storage management functions

of SDF, and co-designing them with SDN.

• We enable state sharing between SDN and SDF, and coor-

dinate the efforts of I/O request scheduling across the full

rack for achieving predictable end-to-end performance.

• We present a coordinated GC mechanism for a rack of

SSDs, it enables SDN to redirect I/O requests to data repli-

cas to minimize the GC impact on storage performance.

• We develop a rack-scale wear leveling mechanism for en-

suring the uniform lifetime of a rack of SSDs.

• We show the benefits of RackBlox by developing a real

system prototype with programmable switch and SSDs.

2 Background and Motivation

We first introduce the background of SDN and SDS, then the

motivation for software-defined network/storage co-design.

2.1 Software-Defined Networking

Modern data centers have seen a trend that software-defined

networking (SDN) has become the new standard for net-

work management, in which the programmable switch is

the backbone technology that allows platform operators to

define their own packet formats and functions for process-

ing network traffic without affecting the line-rate through-

put [34, 36]. SDN has been deployed in real data centers such

as Alibaba cloud [47, 66] and Google data centers [5].

SDN has a control plane and data plane. The control plane

is in charge of network management and protocol definition,

while the data plane is responsible for data transfer and run-

time statistics collection. The programmable switch usually

has reconfigurable hardware such as a programmable ASIC
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Figure 1. System overview of a rack-scale storage system.

that supports domain-specific languages like P4 [14]. It sup-

ports various network flow scheduling policies for flexible

traffic management and performance isolation [4, 27, 89]. As

shown in Figure 1, all the servers in the same rack are con-

nected by a Top-of-Rack (ToR) switch. These ToR switches

are connected with aggregation switches and core switches

in a hierarchical manner. In this paper, we focus on the ToR

switch, and co-design network and storage stack in a rack.

2.2 Software-Defined Storage

Recent studies have shown that making software aware of

the underlying storage devices can significantly improve the

storage performance and resource efficiency [28, 65, 84]. This

is known as software-defined storage (SDS), which enables

data centers to unlock the potential of storage devices by en-

abling the software to directly interact with storage devices

and control their internal operations. Software-defined flash

(SDF), which is built on SSDs, is a typical example of SDS,

and has seen deployment in industry data centers [18, 49].

In this paper, we focus on SDF, because flash-based SSDs

are becoming indispensable parts of modern computer sys-

tems. An SSD has three major components: a set of flash

memory packages, an SSD controller having an embedded

processor with device memory, and flash controllers. As

shown in Figure 2, each SSD has multiple channels and each

channel can receive and process I/O commands indepen-

dently. Each channel is shared by multiple flash memory

packages. Each package is made of multiple chips. Each chip

has multiple flash blocks. With SDF, an SSD can be virtual-

ized into multiple virtual SSD instances (vSSDs), and each

can be mapped to a set of SSDs, flash channels, or flash chips.

Due to the nature of flash memory, when a free page is

written, that page is no longer available for futurewrites until

that page is erased. However, erase operations can be per-

formed only at block granularity, which are time-consuming.

Thus, writes are issued to free pages erased in advance (i.e.,

out-of-place write) rather than waiting for the expensive

erase operation for every write. And garbage collection (GC)

will be performed later to erase the stale data on SSDs. Since

an SSD channel cannot issue new I/O requests during GC,

minimizing the negative impact of GC events is critical to

storage performance. In addition, as each flash block has lim-

ited endurance, it is important for the blocks to age uniformly

(i.e., wear leveling).
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Figure 2. System architecture of software-defined flash.

SSDs have the Flash Translation Layer (FTL) to manage

flash blocks and maintain the logical-to-physical address

mappings. Unlike conventional SSDs that implement the

FTL in the device firmware, SDF exposes the FTL to the

upper-level software, and enables the software to manage

the flash chips (see Figure 2).

2.3 Why Network-Storage Co-Design

In modern data centers, the SDN and SDF are managed sepa-

rately to handle I/O requests across the network and storage

stack, respectively. Such an architecture suffers from subop-

timal performance and misses the opportunities offered by

the software-defined rack for three major reasons.

First, as SDN and SDF are deployed as independent com-

ponents, achieving predictable end-to-end performance is

challenging, due to the lack of coordination between the two

components. SDN and SDF have redundant control plane

policies, such as I/O scheduling, which may contradict be-

tween the network and storage stack and break service-level

objectives (SLOs). And optimizing such policies without co-

ordination is suboptimal due to incomplete knowledge and

redundant effort. Ideally, as we forward I/O requests in SDN,

with the knowledge of the storage status (e.g., busy, idle,

or predicted performance), it can make smarter decisions

(e.g., early redirection to data replicas). Similarly, as SDF

schedules the received I/O requests, the measured network

latency of these I/O requests can help the SDF to adjust the

I/O scheduling to meet the SLO for end users.

Second, although prior studies such as IOFlow [79] and

VDC [6] proposed software-based methods like token bucket

rate limiting to enforce the performance isolation between

I/O flows, they cannot capture the underlying hardware

events such as GC and I/O scheduling in SSDs, due to the lack

of state sharing between SDN and SDF. And software-based

coordination incurs extra network round-trip delay and host

software overhead (see our evaluation in §4).

Third, it is feasible to co-design and coordinate the net-

work and storage stack today, as both programmable switches

and programmable SSDs have enabled developers to program

and configure the network and storage stack respectively.

In this work, we integrate the storage management of

SDF into SDN as shown in Figure 3, while preserving the

programmability and simplicity for the new infrastructure.
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3 RackBlox Design and Implementation

RackBlox provides a holistic approach that can achieve pre-

dictable end-to-end performance and improve storage man-

agement at scale. As we develop RackBlox based on modern

SDN and SDF, we have to overcome the following challenges.

3.1 Design Challenges of RackBlox

• It is unclear how the functions of storage management

should be decoupled and placed across SDN and SDF. The

control plane of SDF has many functions, including wear

leveling, GC, block allocation, and block management.

Placing all the storage functions into SDN will inevitably

increase the burden of SDN. Thus, we have to carefully

decide the partitioning and placement of SDF functions.

• The hardware resources of programmable devices are lim-

ited. Specifically, the on-chip memory (tens of MBs) and

compute resource are limited in programmable switches

and SSD controllers, due to the hardware cost and power

budget. Thus, we have to carefully define the data struc-

tures for the network/storage co-design.

• As we enable the coordinated storage management be-

tween SDN and SDF, we must preserve their programma-

bility, ease-of-use, and original advantages. Thus, RackBlox

should be compatible with hardware upgrades.

3.2 RackBlox Overview

We rethink the software-defined network and storage hier-

archy (see Figure 3), and propose a new software-defined

architecture, RackBlox. We first decouple the functions of

the storage management (i.e., flash translation layer) of SSDs,

and integrate the appropriate functions such as GC and wear-

leveling into the SDN (§3.3). Such a new architecture enables

state sharing between SDN and SDF. It utilizes the capability

of SDN to enable global storage resource management in a

rack. Thus, we can coordinate the efforts of I/O scheduling

across the entire rack. Henceforth, the SDN and SDF can

manage the end-to-end request delay, and provide precise

feedback to the I/O scheduler on the storage servers (§3.4).

The coordinated I/O scheduling mechanism improves the

end-to-end I/O performance and enables intelligent decision-

making in advance. To alleviate the performance interference

(a) Virtualized SSDs

...

CHCH CHCH CH

vSSD-1

vSSD-2

vSSD-3

Applications

Virtual SSD (vSSD)

Address Mapping (LBA    PBA)

Local Wear Leveling

(b) vSSD Organization

Flash Chips

Figure 4. The structure of virtualized SSDs. RackBlox sup-

ports both hardware-isolated and software-isolated vSSDs.

caused by the GC, RackBlox enables coordinated GC by ex-

ploiting the data replicas in a rack (§3.5). As the ToR switch

has the global states of the SSDs in a rack, it can redirect

I/O requests to the corresponding replica upon GC. Simi-

larly, RackBlox enables rack-scale wear leveling, as it has

the knowledge of the wear of SSDs in a rack (§3.6). It has a

two-level wear leveling mechanism: a local wear balancer

for ensuring the wear balance in each storage server, and a

global wear balancer that reduces the wear variance across

the entire rack. These wear balancers work at different levels

and cooperate to ensure rack-scale wear leveling.

RackBlox manages SSDs at rack-scale for three major rea-

sons. First, storage systems are commonly deployed at rack

scale, making this a natural granularity for storage manage-

ment [7, 23]. Second, rack-scale management is facilitated by

the programmable ToR-switch with the capability to observe

the rack’s network and I/O traffic. Third, existing rack-aware

replica placement schemes make it a natural choice for co-

ordinating the GC of SSDs across the rack. We now discuss

each proposed technique in RackBlox as follows.

3.3 Decoupling the Storage Management

When decoupling storage management, we need to consider

two factors: (1) whether integrating an SDF function into

SDN will benefit from the coordination or not; and (2) if yes,

the integration should consume minimum precious hard-

ware resources in the switch. We now discuss how RackBlox

decouples storage management between SDF and SDN to

maximize the benefits of co-design while retaining the origi-

nal flexibility and modularity of SDN and SDF.

Storage management in SDF. As the ToR switch has lim-

ited hardware resources, we keep the essential functions for

the vSSD management locally on storage servers (see Fig-

ure 3). They include SSD virtualization, device-level mapping,

and local wear leveling for SSDs in a server.

With SSD virtualization, a programmable SSD can be vir-

tualized into two types of vSSDs: hardware-isolated vSSDs,

and software-isolated vSSDs. A hardware-isolated vSSD in-

stance is mapped to a set of flash channels, as the channel-

level parallelism in SSDs provides the strongest performance

isolation (vSSD-1 in Figure 4). A software-isolated vSSD is

mapped to a set of flash chips, and it will share the flash chan-

nels with other software-isolated vSSDs, such as vSSD-2 and

vSSD-3 shown in Figure 4. It relies on the software-isolation
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vSSD_ID GC Status Replica vSSD_ID
vSSD1 1 vSSD12

... ... ...

vSSD_ID GC Status Server IP
vSSD1 1 10.0.0.16

... ... ...
vSSD12 0 10.0.0.20

(a) Replica Table

(b) Destination Table

Figure 5. RackBlox tables placed in the ToR switch.

techniques such as token bucket rate limiting to offer rela-

tively weaker performance isolation. RackBlox supports both

hardware-isolated and software-isolated vSSD instances to

support different cloud storage services.

For each vSSD, it has its own addressmapping table (device-

level mapping) and local wear leveling (i.e., the default wear

leveling) for flash block management, as shown in Figure 4b.

We keep these functions in the SDF stack, as they are more

convenient when handled by storage servers. As for other

FTL functions, such as bad block management and error

correction code (ECC) of an SSD, we leave them to the SSD

firmware, as the hardware engine in SSD controllers is more

efficient in managing them.

RackBlox enables data replication at vSSD granularity.

This is a natural design choice, as the vSSD abstraction has

been shown to simplify the storage management of flash

blocks, offer flexibility for mapping vSSD instances to under-

lying flash chips, and incur limited metadata overhead [28].

Storage management in ToR switch. To make the ToR

switch aware of the states of SSDs in a rack, we maintain

a vSSD-level mapping table in its data plane, as shown in

Figure 5. The states tracked in the vSSD-level mapping tables

provide the essential knowledge for the coordinated I/O

scheduling and coordinated GC.

Specifically, RackBlox maintains two tables in the ToR

switch as shown in Figure 5: 1) replica table, which tracks

the GC status (1 byte) of each vSSD and its replica vSSD

ID (4 bytes); 2) destination table, which mainly tracks the

corresponding server IP (4 bytes) of each vSSD, and the GC

status (1 byte) of the vSSD. As this mapping table is managed

at vSSD granularity, its storage cost is small, which can be

stored in the on-chip memory of the programmable switch.

Given that a rack usually has 64 servers or less, each server

has 16 SSDs, and each SSD can be virtualized into 128 vSSDs,

we will have up to 64K vSSDs in a rack1. The maximum

size of each table is 1.3MB. The total size of these tables for

RackBlox is much less than the available SRAM capacity

(tens of MBs) in modern programmable switches.

1A typical server in data centers today has 16 PCIe slots, it can host 16 SSDs.

Assume each SSD has 4TB, the minimum size of a vSSD is 32GB, therefore,

each SSD can host up to 128 vSSDs.

ETH IP TCP/UDP OP vSSD_ID LAT Payload

L2/L3 Routing RackBlox Header

Figure 6. The network packet format in RackBlox.

Table 1. Network protocols used in RackBlox.
Operation Name Description

create_vssd Register a newly created vSSD in the ToR switch.

del_vssd Remove a registered vSSD from the tables.

write Write issued by client.

read Read issued by client.

gc_op Packet to update GC for vSSD.

State communication between SDN and SDF. To facili-

tate the state communication between the ToR switch and

storage servers in the same rack, RackBlox leverages the

programmability of SDN, and has its own network packet

format based on regular network protocols, as shown in Fig-

ure 6. The packet has one 1-byte OP field to indicate different

operations as shown in Table 1, one 4-byte field to indicate

the target vSSD ID, and one 4-byte field (LAT ) for storing

the measured network latency for the packets transferred

through the data center network. The payload will be filled

with different values, according to the operation specified

in RackBlox header. We will discuss the purpose of each

operation throughout the paper.

The RackBlox header is part of the L4 payload. RackBlox

uses existing L2/L3 routing protocols to route packets. As

such, switches can forward RackBlox packets normally, and

RackBlox is compatible with flow/congestion control and

other network functionalities in the transport layer. We dif-

ferentiate RackBlox packets in the ToR switch through a

reserved TCP/UDP port.

To initialize RackBlox tables in the ToR switch, the storage

servers send a packet that contains the create_vssd operation

to the switch upon creating a new vSSD. The vSSD_ID field

will store the ID of the newly created vSSD, the payload

will include the 4-byte server IP, its replica vSSD ID, and

the server IP of the replica vSSD. The replica vSSD ID and

IP are allocated with the vSSDśfollowing the rack-aware

replica placement scheme in rack-scale storage systems. The

ToR switch will insert a new entry in the replica table and

destination table, with GC states initialized as 0 (idle). Upon

vSSD deletion, the storage server sends the del_vssd packet

to the ToR switch to remove the corresponding entries in

the RackBlox tables. As we serve I/O requests at runtime,

RackBlox tables will be updated depending on the events.

3.4 Coordinated I/O Scheduling

Although both SDN and SDF can make the best effort to

achieve their quality of service (QoS), the lack of state shar-

ing and coordination will cause suboptimal end-to-end per-

formance and wasted effort on I/O scheduling. For instance,

as SDN and SDF are independent, they do not share states

of I/O requests, therefore, SDN may forward I/O requests

to busy storage servers, although it is apparent that their
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end-to-end service-level objective is likely to be violated.

This will exacerbate network congestion and increase the

pressure of processing I/O requests on storage servers.

RackBlox enables the state sharing of I/O requests across

SDN and SDF, and develops a coordinated I/O scheduling

mechanism to improve end-to-end performance. It tracks the

elapsed time in the programmable switches, adapts the I/O

scheduling in the data plane of SDF to control the end-to-end

delay for the request, and predicts the time it would take to

transmit the response from the storage server to the client.

RackBlox tracks I/O requests across the entire stack: (1)

𝑁𝑒𝑡𝑡𝑖𝑚𝑒 : the elapsed time in the network stack since the

I/O request is issued until it reaches the storage server; (2)

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒 : the delayed time in the I/O queue of the stor-

age stack; (3) 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 : the time it takes to transfer the

response back to the client over the network. To manage

I/O scheduling in SDF, RackBlox uses 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑 = (𝑁𝑒𝑡𝑡𝑖𝑚𝑒

+ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒+ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ) as the scheduling priority. As

RackBlox issues I/O requests from the queue in the storage

stack, it selects the request with the maximum 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑
value. RackBlox differs from state-of-the-art storage I/O

scheduling schemes by considering the network latency to

make the best effort to reduce the end-to-end latency [17, 19].

In order to track 𝑁𝑒𝑡𝑡𝑖𝑚𝑒 with low overhead, we use the In-

band Network Telemetry (INT) available in programmable

switches [1]. It enables the network state collection in the

data plane without intervention from the control plane. Rack-

Blox uses INT to compute the sum of per-hop latency in the

switches, since the routing and queuing latencies dominate

the network latency [24, 29]. It embeds the measured net-

work latency in the network packet being transferred to the

storage server, following the network format in Figure 6. As

for 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒 , RackBlox tracks the queuing delay for each

I/O request in the queue of the storage stack.

To predict the time it will take to return the response to the

client (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ), we develop a predictor using a simple

yet effective sliding window algorithm. We track one sliding

window for each vSSD with the average network latency of

the 100 most recent incoming packets. We choose 100 pack-

ets because it is small enough to quickly detect changes in

the network (e.g., network congestion), but large enough to

smoothen outlier requests. We use incoming packets because

they can better capture the factors causing network delays.

We maintain separate windows for reads and writes as their

outgoing packet sizes are different [58, 69, 92].

Our experiments with a variety of network traces in data

centers [32, 59, 67] (see §3.7 for details) show that this ap-

proach effectively predicts the return latency. The predicted

latency is within 25𝜇s of the correct value 95% of the time

(across all distributions) and 86.6% of the time in the worst

case. The predictions are within 10% of the true latency in the

worst case. Mispredictions primarily occur at the begin/end

of congestion or with highly variables network patterns. We

show the benefit of the coordinated I/O scheduling in §4.
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Figure 7. Coordinated GC optimizations in RackBlox.

3.5 Coordinated Garbage Collection

The GC overhead of SSDs is significant, as it blocks incoming

I/O requests and seriously harms end-to-end latency [50, 64].

For instance, a 4KB read request in SSDs can be completed in

under 100 𝜇s, but it maywait for a fewmilliseconds due to the

GC. This is critical in data centers, where many applications

have strict performance requirements [13].

The fundamental issue is that the upper-level system soft-

ware fails to consider the underlying SSD behavior. Without

coordination at rack scale, it is hard to optimize GC across

replicas or redirect requests away from replicas executing

GC, even though SDF exposes the underlying storage behav-

ior. Since the ToR switch will forward each storage request

entering the rack, it has the states of the SSDs in the rack, it

is natural to coordinate GC across the SSDs with the switch.

Prior work has explored various techniques for coordinat-

ing GC between SSDs within servers [39ś41, 45, 75, 78, 88].

These studies managed SSDs either spatially by reserving

spare SSDs to serve requests or temporally by scheduling

GC to ensure predictable latency for read requests. However,

they did not enable GC coordination across servers at rack

scale. Industry has been developing rack-scale storage solu-

tions [16, 26, 68, 76], however, to the best of our knowledge,

they also lack GC coordination across data replicas.

As different levels of vSSD isolation (software vs. hard-

ware) have different challenges, we will begin with coordi-

nating GC for hardware-isolated vSSD instances and then

extend it to software-isolated vSSDs.

3.5.1 Coordinated GC for Hardware-Isolated vSSDs.

RackBlox coordinates GC between the replicas of each vSSD,

as shown in Figure 7. Since each hardware-isolated vSSD is

mapped to one or more flash channels that run GC indepen-

dently, GC in other vSSDs does not affect its performance.
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Thus, by coordinating GC per vSSD, we can achieve pre-

dictable performance. Coordinating GC at vSSD granularity

also aligns with the granularity of data replication. If we

keep at least one vSSD replica idle, we can ensure that one

data replica can be accessed with predictable performance.

For each vSSD, we achieve predictable performance for

storage requests by enabling request redirection (Figure 7a).

While requests are directed to idle replicas, other replicas of

the vSSD may still run GC. Thus, the switch delays GC for

one replica until another is ready to serve requests (Figure 7b).

Also, RackBlox enables background GC to utilize the idle

cycles of SSDs (Figure 7c).

We outline the packet processing workflow of SDN and

SDF in Algorithm 1 and Algorithm 2. We examine RackBlox

with two replicas in a single rack and one replica in another

following the common rack-scale storage systems [7ś9, 23,

56]. RackBlox can be extended to any number of replicas.

Request Redirection. Upon receiving a packet, RackBlox

queries the Replica Table (see §3.3) to get the gc_status and

replica for vssd_id. Writes are not redirected (Line 2-3 in

Algorithm 1), but issued to all replicas for reliability and

consistency [7, 22, 23, 56]. RackBlox supports different con-

sistency models, and our implementation uses Hermes [37]

to ensure strong consistency between replicas and correct-

ness when redirecting requests. We avoid long tail latencies

for writes by utilizing existing DRAM caches in data center

servers to absorb writes during GC [22, 45]. This follows

the durability semantics of existing systems that primarily

rely on replicas to ensure data durability [46, 63]. Writes are

considered complete when all replicas have a DRAM copy

and are flushed in the background (Line 2-4 in Algorithm 2).

For read requests, if the gc_status is set for the vssd_id,

we query the Destination Table to get the gc_status for the

replica vSSD (T1 in Figure 7a). If the vSSD is not executing

GC or if both the vSSD and its replica are executing GC, we

forward the packet as is. Otherwise, we redirect the request

to the replica using its destination IP in the Destination Table

(T2 in Figure 7a, Line 4-9 in Algorithm 1). I/O requests are

scheduled locally with coordinated I/O scheduling (Line 5-6

in Algorithm 2). By redirecting requests, requests are served

by replicas without suffering from the GC overhead.

While RackBlox maximizes the chance that at least one

replica is available, it is possible that both replicas are execut-

ing GC. The techniques that submit requests to another rack

in parallel can be applied to ensure high performance [20].

In this paper, we focus on the intra-rack I/O scheduling.

Delaying GC. Since all replicas receive the same writes,

replicas may execute GC at the same time [45]. Therefore,

naive request redirection cannot alleviate the GC overhead.

To overcome this issue, we leverage the shared states in the

switch and empower the switch to delay the GC of a replica.

While delaying GC can ensure that two replicas do not ex-

ecute their GC simultaneously, we cannot delay indefinitely.

GC is typically executed when the available free blocks fall

Algorithm 1: RackBlox workflow in SDN

Input: 𝑝𝑘𝑡 ← RackBlox packet

𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 ← GC status

𝑑𝑠𝑡 ← table mapping vssd_id to its destination IP

𝑟𝑒𝑝𝑙𝑖𝑐𝑎 ← replica for this vssd_id

1 Function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑝𝑎𝑐𝑘𝑒𝑡(𝑝𝑘𝑡, 𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎):

2 if 𝑝𝑘𝑡 .𝑜𝑝 =𝑤𝑟𝑖𝑡𝑒 then

3 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑(𝑝𝑘𝑡 )

4 if 𝑝𝑘𝑡 .𝑜𝑝 = 𝑟𝑒𝑎𝑑 then

5 if 𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑝𝑘𝑡 .𝑣𝑠𝑠𝑑_𝑖𝑑] = 1 then

6 if 𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑟𝑒𝑝𝑙𝑖𝑐𝑎] = 0 then

7 𝑝𝑘𝑡 .𝑑𝑠𝑡 ← 𝑑𝑠𝑡 [𝑟𝑒𝑝𝑙𝑖𝑐𝑎]

8 𝑝𝑘𝑡 .𝑣𝑠𝑠𝑑_𝑖𝑑 ← 𝑟𝑒𝑝𝑙𝑖𝑐𝑎

9 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑(𝑝𝑘𝑡 )

10 if 𝑝𝑘𝑡 .𝑜𝑝 = 𝑔𝑐_𝑜𝑝 then

11 𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑝𝑘𝑡 .𝑣𝑠𝑠𝑑_𝑖𝑑] ← 1

12 if 𝑝𝑘𝑡 .𝑔𝑐 = 𝑠𝑜 𝑓 𝑡 then
// requires recirculation

13 if 𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑟𝑒𝑝𝑙𝑖𝑐𝑎] = 1 then

14 𝑝𝑘𝑡 .𝑔𝑐 ← 𝑑𝑒𝑙𝑎𝑦

15 𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑝𝑘𝑡 .𝑣𝑠𝑠𝑑_𝑖𝑑] ← 0

16 else

17 𝑝𝑘𝑡 .𝑔𝑐 ← 𝑎𝑐𝑐𝑒𝑝𝑡

18 𝑑𝑠𝑡_𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑝𝑘𝑡 .𝑣𝑠𝑠𝑑_𝑖𝑑] ← 1

19 else if 𝑝𝑘𝑡 .𝑔𝑐 = 𝑓 𝑖𝑛𝑖𝑠ℎ then

20 𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑝𝑘𝑡 .𝑣𝑠𝑠𝑑_𝑖𝑑] ← 0

21 else

22 𝑑𝑠𝑡_𝑔𝑐_𝑠𝑡𝑎𝑡𝑢𝑠 [𝑝𝑘𝑡 .𝑣𝑠𝑠𝑑_𝑖𝑑] ← 1

23 𝑝𝑘𝑡 .𝑔𝑐 ← 𝑎𝑐𝑐𝑒𝑝𝑡

24 𝑝𝑘𝑡 .𝑑𝑠𝑡 ← 𝑝𝑘𝑡 .𝑠𝑟𝑐

25 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑(𝑝𝑘𝑡 )

below a fixed gc_threshold (e.g., 25%). This is a hard threshold

to free flash blocks for future use. To make room for delaying

GC, we configure a relaxed soft_threshold (35% by default).

Instead of having the SDF notify the switch when it must

do GC, it requests GC once its free block ratio falls below

the soft_threshold. The switch can use its shared GC state to

delay GC until the replica finishes GC.

Storage servers will periodically (every 30 seconds by

default) check the free block ratio for each vSSD (Line 9-

19 in Algorithm 2). If any GC condition triggers, the SDF

will send a gc_op packet (T1 in Figure 7b). If the free block

ratio falls below the gc_threshold, the gc field in the payload

is set to regular (value of 1) to indicate that the replica must

execute GC. GC requests with regular will not be denied as

the GC has been delayed as much as possible. If regular GC

requests are not acknowledged due to link or switch failure,

the vSSD will execute GC after retrying (3 retries by default).

If the free block ratio only falls below the soft_threshold, the

gc field in the payload is set to soft (value of 0).

The logic for accepting or delaying GC requests in the

switch is shown in Line 10-25 of Algorithm 1. The switch

begins with updating the GC status in the Replica Table to



SOSP ’23, October 23ś26, 2023, Koblenz, Germany B. Reidys, Y. Xue, D. Li, B. Sukhwani, W. Hwu, D. Chen, S. Asaad, and J. Huang

Algorithm 2: RackBlox workflow in SDF

Input: 𝑝𝑘𝑡 ← RackBlox packet

1 Function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑝𝑎𝑐𝑘𝑒𝑡(𝑝𝑘𝑡):

2 if 𝑝𝑘𝑡 .𝑜𝑝 =𝑤𝑟𝑖𝑡𝑒 then

3 if 𝑐𝑎𝑐ℎ𝑒 is full then

4 flush DRAM cache with write data

5 if 𝑝𝑘𝑡 .𝑜𝑝 = 𝑟𝑒𝑎𝑑 then

6 schedule local read with coordinated I/O

7 if 𝑝𝑘𝑡 .𝑜𝑝 = 𝑔𝑐_𝑜𝑝 and 𝑝𝑘𝑡 .𝑔𝑐 = 𝑎𝑐𝑐𝑒𝑝𝑡 then

8 begin GC

// Periodic GC Monitoring

Input: 𝑣𝑠𝑠𝑑 ← vSSD being checked for GC

𝑠𝑜 𝑓 𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← soft GC threshold

𝑔𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← regular GC threshold

𝑏𝑔_𝑝𝑟𝑒𝑑 ← idle prediction for background GC

9 Function 𝑡𝑟𝑖𝑔𝑔𝑒𝑟_𝑔𝑐(𝑣𝑠𝑠𝑑, 𝑏𝑔_𝑝𝑟𝑒𝑑):

10 𝑔𝑐_𝑡𝑦𝑝𝑒 ← 𝑛𝑜𝑛𝑒

11 if 𝑣𝑠𝑠𝑑.𝑓 𝑟𝑒𝑒_𝑏𝑙𝑜𝑐𝑘𝑠 < 𝑔𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

12 𝑔𝑐_𝑡𝑦𝑝𝑒 ← 𝑟𝑒𝑔𝑢𝑙𝑎𝑟

13 else if 𝑣𝑠𝑠𝑑.𝑓 𝑟𝑒𝑒_𝑏𝑙𝑜𝑐𝑘𝑠 < 𝑠𝑜 𝑓 𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

14 𝑔𝑐_𝑡𝑦𝑝𝑒 ← 𝑠𝑜 𝑓 𝑡

15 else if 𝑏𝑔_𝑝𝑟𝑒𝑑 = 𝑇𝑟𝑢𝑒 then

16 𝑔𝑐_𝑡𝑦𝑝𝑒 ← 𝑏𝑔

17 if 𝑔𝑐_𝑡𝑦𝑝𝑒 ≠ 𝑛𝑜𝑛𝑒 then

18 𝑝𝑘𝑡 ← new 𝑝𝑘𝑡

19 𝑝𝑘𝑡 .𝑑𝑠𝑡, 𝑝𝑘𝑡 .𝑜𝑝, 𝑝𝑘𝑡 .𝑔𝑐 ← 𝑠𝑤𝑖𝑡𝑐ℎ, 𝑔𝑐_𝑜𝑝, 𝑔𝑐_𝑡𝑦𝑝𝑒

1. If the request is regular, the switch also updates the GC

status in the Destination Table to 1, sets the gc field in the

payload to accept (value of 3), and sends the reply back to the

server. For soft requests, the switch will check the GC status

of the replica (T2 in Figure 7b). If the replica is executing GC,

the switch will delay (value of 4) the request (T3 in Figure 7b).

Otherwise, the switch will accept it. Both the Replica and

Destination Tables have a GC status that must be consistent.

The soft requests that must check the replica’s GC status in

the Destination Table cannot also update the GC status of

the vSSD due to the memory limitations of programmable

switches. Therefore, we recirculate the packet once to ensure

consistency. The SDF sends a final gc_op packet when the

vSSD has finished GC with the gc field set to finish (value of

5) in the payload. The switch uses this to clear the GC status

in both tables (Line 19-20 in Algorithm 1).

Background GC. Delaying GC enables the switch to re-

duce overlapping GC. RackBlox also opportunistically uti-

lizes idle cycles to free blocks. Background GC requests

are labeled as bg (value of 2) in the gc field of the payload.

Since background GC is performed during idle cycles, the

SDF executes it without approval from the ToR switch. To

facilitate background GC, RackBlox predicts the next idle

time for a given vSSD based on the last interval between

I/O requests [12, 55, 70, 85], as shown in T1 in Figure 7c:

𝑇
𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑖 = 𝛼 ∗ 𝑇 𝑟𝑒𝑎𝑙

𝑖−1 + (1 − 𝛼) ∗ 𝑇
𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑖−1 , where 𝑇

𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑖−1 is

the idle time of the last prediction, and 𝛼 is the exponential

smoothing parameter (𝛼 = 0.5 by default). Once 𝑇
𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑖 is

larger than a defined threshold (30 milliseconds by default),

the storage server will execute GC and update the GC status

in the switch (T2 and T3 in Figure 7c).

3.5.2 Coordinated GC for Software-Isolated vSSDs.

Unlike hardware-isolated vSSDs, software-isolated vSSDs

can share channels with other software-isolated vSSDs. As

they rely on software techniques to offer performance isola-

tion, software-isolated vSSDs provide relaxed isolation guar-

antees. Thus, request redirection may not guarantee pre-

dictable storage performance for those vSSDs. Even if one

replica is not executing GC, a collocated vSSD may execute

GC, resulting in significant interference.

RackBlox enables simplemanagement of software-isolated

vSSDs by grouping them into channel groups in the SDF.

Each channel group is a set of software-isolated vSSDs that

span the same set of channels and all vSSDs of the chan-

nel group will perform GC simultaneously. Intuitively, if

one vSSD must perform GC and each vSSD will be affected

anyway, then all vSSDs should perform GC to reduce GC fre-

quency. This simplifies coordination and reduces overhead.

The channel group is managed exclusively by the SDF

and is not exposed to the switch. Multiple software-isolated

vSSDs sharing the same channels may have diverse GC be-

havior. To ensure all vSSDs of the channel group can execute

GC together, we allow a vSSD that has exhausted its free

blocks to transparently borrow free blocks from collocated

vSSDs. Blocks are borrowed in groups (1GB by default) and

transferred between the free block lists of vSSDs. Thus, we

can delay GC until the channel group’s free block ratio falls

below the gc_threshold. The borrowed blocks will be erased

(for security) and returned to the original vSSD after the

GC. The coordinated GC will not worsen the write amplifi-

cation, as it makes the best effort to avoid unnecessary GC

operations. When sending gc_op packets to the switch, the

storage server generates a separate packet for each vSSD

in the channel group. Note that a delay response (i.e., the

corresponding replica vSSD is executing GC) from any vSSD

will delay the GC of the channel group.

3.6 Rack-Scale Wear Leveling

The limitation of the SSD lifetime has created complexity

for their use and management in practice [51, 52]. This is

especially true in large-scale data centers. First, as different

applications have different workload patterns, the write traf-

fic to each SSD can be different, causing wear imbalance

between SSDs in a rack. Second, platform operators have to

replace unhealthy or failed SSDs with new SSDs frequently,

making the wear management of SSDs across the entire rack

even harder. Third, modern cloud infrastructures mostly con-

sider the load balance rather than the wear balance across

SSDs. Therefore, the wear-leveling management of SSDs has

become a fundamental challenge in data centers today.
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Figure 8. Two-level rack-scale wear leveling in RackBlox.

Premature death or removal of an SSD not only increases

the operation cost, but causes an opportunity loss of other

hardware components, given that others like CPU, network,

and memory do not prematurely lose capability. Thus, it is

desirable to ensure SSDs in a rack are aging at the same rate.

To extend the lifetime of a rack of SSDs, we propose a two-

level wear leveling mechanism (see Figure 8). It consists of

two parts: a local (intra-server) wear balancer processes the

local wear balance between SSDs in a storage server, and a

global (inter-server) wear balancer reduces the wear variance

for SSDs in a rack. The wear balancers work at different level

and cooperate to ensure rack-scale wear leveling.

As for the local wear balancer, to obtain the uniform life-

time among SSDs in a storage server, we track the aver-

age erase count for an SSD2, and ensure the wear balance

for all the SSDs in a storage server. Let 𝜑𝑖 denote the wear

(average erase count of all the blocks to date) of the 𝑖𝑡ℎ

SSD. 𝜆 = 𝜑𝑚𝑎𝑥/𝜑𝑎𝑣𝑔 denotes the wear imbalance across SSDs,

which must not exceed 1 + 𝛾 , where 𝜑𝑚𝑎𝑥 = 𝑀𝑎𝑥 (𝜑1, ..., 𝜑𝑁 ),

𝜑𝑎𝑣𝑔 = 𝐴𝑣𝑔(𝜑1, ..., 𝜑𝑁 ), 𝑁 is the total number of SSDs, and

𝛾 represents the maximum permitted imbalance. Instead of

swapping SSDs frequently, RackBlox periodically swaps the

SSD that has incurred the maximum wear with the SSD

that has the minimum rate of wear, following the relaxed

wear leveling approach developed in [28]. Given 𝛾 = 0.1,

each server can have 16 SSDs, and each SSD can last five

years, RackBlox can achieve uniform lifetime for SSDs in a

storage server by swapping once per 12 days for the worst

case [28]. Assume each flash block can endure 30K writes,

this swapping consumes only 0.5% of its lifetime.

SSDs are swapped atomically by pausing operations for

the chosen blocks, reading them into memory, writing them

to their new locations, updating themapping tables, and serv-

ing the paused requests. As the swapping occurs infrequently,

it does not affect the tail latency. To further minimize its im-

pact on application performance, RackBlox assigns higher

priority to regular I/O requests during swapping.

Similarly, we can quantify the wear imbalance between

storage servers in a rack by using the wear (average erase

count of all the SSDs to date) of a server. However, different

from the swapping of SSDs in a single server, the swapping

cost between storage servers is more expensive, due to the

2For the programmable SSDs, we can track the erase count of each flash

block. Therefore, we can obtain the average erase count of a flash channel

as well as an SSD.

networking overhead. Therefore, we relax the swapping fre-

quency (8 weeks by default). This is less of a concern, as

modern storage infrastructures have employed the load bal-

ance (e.g., round-robin vSSD allocation) across servers. Since

RackBlox does not swap SSDs across servers frequently, we

do not implement the rack-scale wear leveling in the switch

to keep our design simple. Our experiments (see §4.6) show

that the relaxed wear leveling will ensure near-ideal wear

balance for datacenter workloads.

3.7 Implementation Details

Testbed. Our experiments are conducted on a testbed of

five servers connected to a 6.5Tbps Tofino switch [60]. Each

server is equipped with a 24-core Intel Xeon E5-2687W pro-

cessor running at 3.00GHz, 108GB DRAM, and 1TB pro-

grammable SSD. Each server has a Mellanox ConnectX-4

50Gb NIC connected to the programmable switch.

Network implementation. To implement the custom pack-

ets described in Figure 6, we use DPDK (v22.11.1) [30]. If the

packet type is gc_op, the payload contains a gc field (1 byte)

storing the necessary type of GC request. When the packet

is a create_vssd packet, we include the server IP, vSSD_ID,

and server IP of the replica in the payload.

We develop the switch data plane in P4 [14] and run it on

an Intel Tofino ASIC [31]. The control plane is implemented

in Python and interacts with the switch data plane through

Thrift APIs [10] using Intel’s P4 SDE 9.10.0. We implement

the tables as described in §3.3 using 1.3MB SRAM in the

switch. The GC states of the replica and destination table use

registers, such that they can be updated in the data plane,

consuming a total of 128KB of stateful memory.

Since we do not have access to a real data center, we

emulate datacenter network traffic in our cluster using traces

and released network traffic distributions [32, 59, 67]. The

traces include delays between VMs in cloud data centers.

To simulate the variations of network latency, we scale the

trace in [67] following the latency patterns and distributions

in [32, 59]. The latency is associated with each request and

stored in the LAT field when the packet is generated (see

Figure 6). When the request traverses the switch, we add the

per-hop latency as described in §3.4. The end-to-end latency

is computed by adding the time spent at the storage server

and the final LAT value in the return packet.

Storage implementation.We build the SDF (SSD virtual-

ization) stack on top of programmable SSDs. By default we

implement a greedy, threshold-based GC. We specify the GC

thresholds used in each experiment in §4. In our testbed, we

use one server as clients, and others to host vSSDs.

Emulation. Since we only have one type of programmable

SSD, we build an SSD emulator using Python to test RackBlox

against different SSD device performance (see §4.5.3). We

validate the emulator with our programmable SSD. For these

experiments, we use the same implementation, but issue

requests to the emulated SSDs.
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Table 2. Workloads used in our evaluation.
Workload Description Write%

YCSB [87] Cloud data serving queries. 0-100%

TPC-H [82] Business-oriented ad-hoc queries. 2.27%

Seats [57] Airline ticketing system queries. 10.34%

AuctionMark [83] Activity queries in an auction site. 53.76%

TPC-C [81] Online transaction queries. 59.95%

Twitter [54] Micro-blogging website queries. 97.86%

Others. Similar to modern storage systems [7, 23], RackBlox

leverages heartbeats to detect failures. On link failure, it

redirects requests to replicas in the rack. On server failure,

RackBlox replicates the replicas to other servers and updates

their switches. Upon data recovery, it updates stale data from

replica vSSDs before serving requests [37]. On switch failure,

RackBlox relies on replicas in another rack to serve requests.

The ToR switch is repopulated on switch recovery. RackBlox

focuses on storage management of a rack. As future work, we

wish to extend it to multiple racks by modifying Algorithm 1

to keep GC states consistent among switches.

4 Evaluation

Our evaluation shows that: (1) RackBlox reduces the tail

latency of I/O requests by up to 5.8× for data-center applica-

tions with network-storage coordination (ğ4.2 and ğ4.3); (2)

RackBlox works with various storage and network schedul-

ing policies (ğ4.5.1 and ğ4.5.2); (3) RackBlox benefits various

SSD devices and network latency distributions (ğ4.5.3); and

(4) RackBlox extends the lifetime of a rack of SSDs (ğ4.6).

4.1 Experimental Setup

To examine RackBlox’s performance under different work-

load patterns, we use YCSB with different read/write ra-

tios [87] and various workloads from BenchBase [21]. These

represent common data center applications sensitive to net-

work and storage performance (Table 2). All workloads run

on hardware-isolated vSSDs. The datasets range in 50-100GB,

so we allocate vSSD capacity accordingly (64-128GB). We

set soft_threshold to 35%, and set gc_threshold to 25%. Before

each experiment, we run a subset of the workloads to trig-

ger GC and consume 50% of the free blocks. RackBlox uses

Linux’s Kyber scheduler [42] by default, as it performs the

best across various settings (see ğ4.5.1). Kyber uses 750𝜇s

for reads and 3 millisecs for writes as target 95-th percentile

(P95) latencies. When enabling coordinated I/O, we use 1.75

millisecs and 4 millisecs to account for P95 network delay.

We use the default priority-based isolation in the switch.

To show the performance benefits of network-storage co-

design, we compare RackBlox with state-of-the-art software-

defined storage architecture designs at datacenter scale.

VDC: Virtual datacenter (VDC) [6] enables end-to-end

isolation between multiple tenants sharing the same physical

network and storage. It implements a logically centralized

controller that allocates resources to each tenant’s VDC as

well as each tenant’s I/O flows [79]. We run the controller
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Figure 9. RackBlox’s benefits for P99.9 end-to-end latency.

on a separate server updating flow demand and allocations.

VDC enforces end-to-end isolation for each flow with multi-

resource token bucket rate limiting.

RackBlox (Software): Although RackBlox is developed

with a programmable switch and SSDs, its core ideas can

be implemented in the software stack. To evaluate this, we

extend VDC by adding software-based coordinated I/O sched-

uling and GC. We make the VDC controller GC-aware by

tracking the GC state of vSSDs, and implementing the coor-

dinated GC (§3.5) in software. When the controller grants

the vSSD’s request to perform GC, it also returns the location

of a replica not performing GC. Therefore, storage servers

can redirect requests when the vSSD is performing GC.

4.2 End-to-End Performance Benefits

To evaluate the end-to-end performance of RackBlox, we

run YCSB benchmarks with the zipfian request distribution,

and vary the write ratio from 0% (read-only) to 100% (write-

only). With network-storage co-design, RackBlox improves

the 99.9-th percentile (P99.9) read latency by up to 4.4× (12.4

millisecs vs. 2.8 millisecs), the P99.9 write latency by up to

1.4× (4.3 millisecs vs. 3.0 millisecs), as shown in Figure 9. We

show the detailed results in Figure 16.

Although VDC ensures flow isolation across network and

storage stack in software, it performs worse than RackBlox

(Figure 9a), due to the lack of the coordination between the

network and storage stack. RackBlox (Software) enables GC

redirection in software, and reduces the overhead when re-

quests are blocked by GC. For read-heavy workloads, the

performance of RackBlox (Software) is similar to that of

RackBlox, as they both conduct the coordinated I/O sched-

uling. However, for write-heavy workloads, which cause

more intensive GC, RackBlox (Software) can improve VDC’s

performance by to 2.4× (12.4 millisecs vs. 5.2 millisecs). How-

ever, since RackBlox (Software) incurs additional network

overhead, it remains suboptimal. RackBlox outperforms VDC

and RackBlox (Software) by enabling coordinated I/O sched-

uling and coordinated GC in the network by 4.4× and 1.84×

(5.2 millisecs vs. 2.8 millisecs) respectively.
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Figure 10. RackBlox’s benefits for P99 end-to-end latency.
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Figure 11. Comparing RackBlox’s average end-to-end la-

tency against VDC and RackBlox (Software).

Writes are hardly affected by GC because of the write

cache in storage servers, as shown in Figure 9b. Thus, Rack-

Blox and RackBlox (Software) have similar performance,

as the coordinated I/O scheduling improves the 99.9th per-

centile write tail latency by up to 1.4×. We show RackBlox’s

benefit for the 99th percentile (P99) latency in Figure 10. The

read latency is improved by up to 2.1× (5.3 millisecs vs. 2.6

millisecs) and the write latency is improved by up to 1.3× (3.7

millisecs vs. 2.8 millisecs). This demonstrates that RackBlox

can achieve benefit at lower tails as well.

RackBlox does not negatively affect the average latency,

as shown in Figure 11. As we increase the write ratio in the

workloads, the average latency of reads/writes is gradually

increased, due to the read/write interference, and the write

latency is longer than read latency in the storage stack.

We show the average throughput of YCSB benchmarks in

Figure 12. RackBlox does not negatively affect throughput,

as RackBlox targets improved tail latency. Similar to the

average latency, higher write rates lead to lower IOPS since

writes have higher device latency.
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Figure 12. RackBlox’s impact on throughput.
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Figure 13. Comparing RackBlox’s P99.9 end-to-end latency

against VDC and RackBlox (Software) for various workloads.
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Figure 14. Throughput for various workloads.

4.3 End-to-End Performance of Various Workloads

We further evaluate RackBlox on various workloads (see

Table 2), following the setup described in ğ4.1. Figure 13a

shows that RackBlox improves the P99.9 read latency of

various workloads by up to 7.9× (23.8 millisecs vs. 3.0 mil-

lisecs), in comparison with VDC. For P99 read tail latency,

RackBlox achieves up to 2.9× improvement (8.1 millisecs vs.

2.8 millisecs). Compared to the YCSB experiments, we ob-

serve similar correlation between write ratio and read tail la-

tency improvement in various workloads. For read-intensive

workloads like TPC-H, RackBlox and RackBlox (Software)

improve mainly via coordinated I/O scheduling. For write-

intensive ones like Twitter, RackBlox improves performance

mainly by alleviating GC interference. AuctionMark has less

benefit than YCSB with 50% writes, although it has slightly

higher write ratio. This is because AuctionMark has a dif-

ferent I/O request pattern (e.g., a long sequence of writes

followed by a sequence of reads, rather than mixed reads

and writes in YCSB), it has fewer I/O requests affected by

the GC. RackBlox (Software) performs worse than RackBlox

due to the additional networking overhead for coordinated

GC. The end-to-end write tail latency, shown in Figure 13b,

demonstrates a similar trend and improvement to YCSB. For

throughput (see Figure 14) and average read/write latency,

we observe the similar trend as YCSB benchmarks (see §4.2).
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Figure 15. P99.9 latency breakdown. RB is RackBlox. Stor is

the storage latency and Total is the end-to-end latency.
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Figure 16. Cumulative distribution of read latency.

4.4 Performance Benefit Breakdown in RackBlox

To break down the performance improvements in RackBlox,

we evaluate RackBlox-Coord I/O, in which we enable co-

ordinated I/O scheduling between the network and storage

stack, but disable coordinated GC in RackBlox.

We show the comparison in Figure 15 with latency break-

downs. By coordinating I/O between network and storage,

RackBlox-Coord I/O reduces the P99.9 read latency by up to

1.1-1.23× (3.9 millisecs vs. 3.1 millisecs) and write latency

by 1.1-1.4× compared to VDC. With increased write ratios,

RackBlox-Coord I/O brings more benefits for the tail latency,

because the potential delay of a request in the storage queues

increases, as writes have higher device latency than reads.

Thus, prioritizing requests in the storage queue leads to more

obvious effects on the end-to-end latency and coordinated

I/O scheduling provides greater speedup.

However, for write-dominant workloads (e.g., more than

50%), the read tail latency improvement of coordinated I/O

scheduling diminishes no matter how we schedule as shown

in Figure 15a, because intensive writes incur high GC over-

head. With high write ratios, the coordinated I/O scheduling

brings more benefits to the tail latency of writes than that

of reads, since the write cache helps alleviate the GC over-

head. As we further increase the write ratio (i.e., above 50%),
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(b) P99.9 read latency for various workloads.

Figure 17. Comparing RackBlox’s P99.9 end-to-end latency

with different storage I/O schedulers.

the tail latency of both VDC and RackBlox-Coord I/O is in-

creased, due to the increased storage queue delay (see the

storage latency distribution in Figure 15b). Compared to

VDC, the normalized tail latency reduction of coordinated

I/O scheduling is almost the same as shown in Figure 15b.

The coordinated GC mechanism in RackBlox will further

improve the read tail latency (by up to 4.3×), as shown in

Figure 15a and Figure 16. Both RackBlox and RackBlox (Soft-

ware) implement coordinated GC, but RackBlox provides

more speedup with the programmable switch, as it alleviates

the unnecessary networking round-trip delays. The coordi-

nated GC does not benefit writes, as we need to issue writes

to all replicas for data consistency (as discussed in §3.5.1).

4.5 Sensitivity Analysis

We demonstrate that RackBlox retains the flexibility and

modularity of the original SDN/SDF design by evaluating

different scheduling policies and system configurations.
4.5.1 Varying storage I/O scheduling policies. We now

examine the benefit of the coordinated I/O scheduling under

different storage I/O scheduling policies. In particular, we

implement Linux’s storage schedulers for SDF: no-op (FIFO),

Deadline, and Kyber [42]. No-op is the default on NVMe

devices, while both Kyber and Deadline target predictable

latency. Deadline splits requests into read and write queues,

and prioritizes requests when they reach their respective

deadlines. Kyber also splits requests into read and write

queues, and throttles each queue to meet the latency targets.

To enable coordinated I/O scheduling, RackBlox reorders

requests in each queue using network latencies. We use 0.5

millisecs and 1.75 millisecs as deadlines for reads and writes

in Deadline and 1.5 millisecs and 2.75 millisecs in RackBlox

(Deadline). We use 0.75 millisecs and 3 millisecs for reads

and writes in Kyber and 1.75 millisecs and 4 millisecs for

RackBlox (Kyber). RackBlox (Deadline) and RackBlox (Kyber)

use increased parameter values, as RackBlox incorporates

the network latency in its coordinated I/O scheduling, based

on the distribution of network latencies in data centers [67].
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Figure 18. Comparing P99.9 read latency for RackBlox with

different network scheduling policies.
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Figure 19. End-to-end read latency distributions of RackBlox

on YCSB-A with varying SSDs and network latencies.

We show the results in Figure 17. As expected, coordi-

nated I/O scheduling always outperforms its baseline sched-

uler. RackBlox (FIFO) achieves the greatest speedup over

its baseline scheduler (1.5×). RackBlox (Kyber) and Rack-

Blox (Deadline) have fewer opportunities to reorder requests

when splitting reads and writes into separate queues, but still

benefit from coordination (1.24× and 1.36× respectively).

4.5.2 Varying network scheduling policies. We now

evaluate the performance of RackBlox under different net-

work scheduling policies in the switch. Besides the Token

Bucket rate limiting (TB) policy that ensures isolation be-

tween flows (similar to VDC), we examine the fair queuing

(FQ) and priority based network scheduling (Priority) poli-

cies. For FQ, we have four client servers competing for one

storage server with each receiving a fair share of the network

bandwidth. In Priority, we periodically create higher priority

traffic using [72], which delays lower-priority requests.

We show the results in Figure 18. Coordinated I/O sched-

uling can benefit all the underlying network schedulers. FQ

and Priority result in higher latency as requests are delayed

in the network. This provides increased opportunities for re-

ordering, which allows RackBlox to achieve up to 1.21× and

1.15× performance improvement on average, respectively.

4.5.3 Varying the Network/Storage Latency. The co-

ordinated I/O scheduling works by hiding higher network
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Figure 20. P99.9 read latency improvements of RackBlox

with different storage and network latencies.
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Figure 21. Read tail latency with different isolation.

latency with lower storage latency, or vice versa. Therefore,

if the network latency overwhelms storage latency or vice

versa, RackBlox helps less to improve the end-to-end latency.

We analyze the sensitivity of RackBlox by evaluating the

YCSB benchmarks with emulated devices of different laten-

cies (see §3.7). We evaluate three SSDs from fastest to slow-

est: Optane [3], Intel DC [2], and P-SSD (programmable

SSD) [53].We evaluate networkswith Fast [67],Medium [59],

and Slow [32] latencies (see §3.7). The resulting end-to-end

latencies of YCSB-A (50% reads) are shown in Figure 19.

Varying the SSD performance. For RackBlox, the marginal

benefit on end-to-end tail latency by upgrading SSD is low

when the SSD already outperforms the network. For example,

upgrading the SSD from Intel DC to Optane under Slow

network brings little benefit to the P99.9 latency. Thus, the

performance improvement of RackBlox over VDC is also low.

In contrast, the benefits of upgrading SSD are more obvious

when the network outperforms SSDs, which brings overall

performance benefit for RackBlox.

Varying the networking performance. Similar conclu-

sions are drawn as we vary network latencies. For example,

upgrading the network from Slow to Fast with the slowest P-

SSD hardly improves read tail latency in RackBlox, because

SSD latency dominates the end-to-end latency. In contrast,

by upgrading the network with the fastest Optane SSD, we

significantly improve the read tail latency in RackBlox.

Our findings are consistent across various YCSB bench-

marks, as shown in Figure 20. The fastest Optane SSDmatches

best (i.e., RackBlox achieves the most benefit) with Fast net-

work, the slower Intel DC SSD matches with Medium net-

work, and the slowest P-SSD matches with Slow network.

The reduced benefit for RackBlox under unmatched laten-

cies is a potential limitation, but this is less of a concern, as

modern data centers usually upgrade network and storage

hardware together for best resource efficiency (e.g., using

slow storage with fast RDMA network is impractical in the

real world). Therefore, pairing the storage stack with the

network stack fully unleashes the potential of RackBlox.
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Figure 22. Benefits of RackBlox on each server’s wear bal-

ance (different colors represent different SSDs in one server).
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Figure 23. Benefits of RackBlox on rack-scale wear balance

(the lower is better).

4.5.4 Software-Isolated vSSDs vs. Hardware-Isolated

vSSDs. To examine RackBlox for software-isolated vSSDs,

we run two software-isolated vSSDs on the same flash chan-

nels (SW-Isolated). These vSSDs are isolated using token

bucket rate limiting and both run YCSB with 50% writes. We

compare SW-Isolated with a hardware-isolated vSSD (HW-

Isolated) that has the full ownership of the flash channels.

RackBlox reduces the P99.9 latency by 1.47× in compar-

ison with VDC for SW-Isolated vSSDs and by 1.51× for

HW-Isolated vSSDs, as shown in Figure 21. With hardware-

isolated vSSDs, RackBlox brings marginally more benefit,

since the hardware-isolated vSSD minimizes the interfer-

ence from colocated workloads. Thus, RackBlox can improve

the performance for both software-isolated and hardware-

isolated vSSDs with the coordinated I/O scheduling and GC.

4.6 Benefits of Rack-Scale Wear Leveling

To evaluate the rack-scale wear leveling of RackBlox, we

simulate the effects of running real workloads. We configure

a rack with 32 servers, each server has 16 SSDs, and each SSD

hosts 4 vSSDs. Each vSSD runs one workload (see Table 2),

which may cause wear imbalance across different SSDs, since

the workloads have diverse erase frequency. Each SSD is

well balanced at the device level as it has its own device-

level wear leveling. Following the load balancing of modern

storage infrastructures, we assign the vSSDs across servers

using round robin [61]. We evaluate RackBlox’s hierarchical

wear leveling against modern storage infrastructure which

does not swap across SSDs and servers (No Swap) [51, 52].

Local wear balancer. Figure 22 demonstrates that Rack-

Blox’s local wear balancer effectively maintains wear balance

across different SSDs. While No Swap has significant wear

imbalance, RackBlox can ensure near-optimal wear balance

across the SSDs in each server with periodic swapping.

Global wear balancer. Local wear balancing suffers wear-

imbalance at rack scale. Figure 23 shows that RackBlox’s

global wear balancer effectively maintains rack-scale wear

balance, despite reduced swapping frequency (e.g., 8 weeks).

5 Related Work

Software-defined networking. Recent studies investigated

SDN systems, including networking abstraction, packet pro-

cessing and scheduling, QoS, SDN programming, perfor-

mance, and fault tolerance [11, 14, 73, 74, 77]. Programmable

schedulers and frameworks have been proposed to allow

developers to develop a variety of scheduling algorithms [77,

86]. With these efforts, the community has produced a set

of open-sourced frameworks such as OpenFlow [62], and

the programming language P4 [14], as well as the hardware

devices like Intel Tofino [80]. Recent work [33, 34, 48] also

demonstrates that SDN can benefit distributed storage sys-

tems. However, none studied the codesign of SDN and SDS.

RackBlox makes an initial effort in this, and shows the bene-

fits of the new software-defined rack-scale storage system.

Software-defined storage.Researchers proposed techniques

like SDF [44, 65, 84] and open-channel SSDs [53], so upper-

level system software can exploit the intrinsic properties of

flash memory. As the cost of flash-based SSDs approaches

that of HDDs and their performance has improved, SDF is

a compelling solution for storage management in data cen-

ters [28, 65]. However, no previous study focused on the

integration of SDN and SDF.

Network/storage co-scheduling. To improve the end-to-

end performance for data center applications, IOFlow [79]

and VDC [6] enforced policies for I/O requests in central-

ized servers or hypervisors. However, they treated the SDN

and SDF as black boxes without considering the underly-

ing hardware opportunities. Recently, researchers leveraged

programmable switches to fulfill system functions like data

caching [34], consistency protocols [33], and task sched-

uling [91], showing that it is feasible to integrate system

functions into programmable switches. We integrate storage

functions into SDN and show the benefits of this design.

6 Conclusion

We present RackBlox, a new rack-scale storage system by co-

designing the software-defined networking and storage stack.

RackBlox integrates essential storage functions into the pro-

grammable switch, and enables the state sharing between

the network and storage stack. With coordinated I/O sched-

uling, GC, and rack-scale wear leveling, RackBlox achieves

improved end-to-end storage performance, while ensuring

near-ideal lifetime for SSDs in a rack.
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