Verifying Rust Implementation of Page Tables in a
Software Enclave Hypervisor

Zhenyang Dai
daizy19@mails.tsinghua.edu.cn
Tsinghua University & Ant Group
China

Xupeng Li*
xupeng.li@columbia.edu
Columbia University
USA

Yuekai Jia
jyk19@mails.tsinghua.edu.cn
Tsinghua University & Ant Group
China

Shubham Sondhi
sondhi.shubham11@gmail.com
CertiK
USA

Shoumeng Yan*
shoumeng.ysm@antgroup.com
Ant Group
China

Shuang Liu Vilhelm Sjoberg*
Is123674@antgroup.com vilhelm.sjoberg@certik.com
Ant Group CertiK
China USA
Yu Chen Wenhao Wang
yuchen@tsinghua.edu.cn wangwenhao@iie.ac.cn
Tsinghua University Institute of Information Engineering,
China CAS
China
Sean Noble Anderson’ Laila Elbeheiry ™

sean.noble.anderson@protonmail.com
Portland State University

lelbehei@mpi-sws.org
Max Planck Institute for Software

USA Systems
Germany
Yu Zhang" Zhaozhong Ni
yu.zhang.yz862@yale.edu zhaozhong.ni@certik.com
Yale University CertiK
USA USA
Ronghui Gu Zhengyu He
ronghui.gu@columbia.edu zhengyu.he@antgroup.com
Columbia University Ant Group
USA China

Abstract

As trusted execution environments (TEE) have become the
corner stone for secure cloud computing, it is critical that
they are reliable and enforce proper isolation, of which a key
ingredient is spatial isolation. Many TEEs are implemented in
software such as hypervisors for flexibility, and in a memory-
safe language, namely Rust to alleviate potential memory
bugs. Still, even if memory bugs are absent from the TEE, it

“Corresponding author.
TWork done during an internship at CertiK.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0385-0/24/04...$15.00
https://doi.org/10.1145/3620665.3640398

may contain semantic errors such as mis-configurations in
its memory subsystem which breaks spatial isolation.

In this paper, we present the verification of the memory
subsystem of a software TEE in Rust, namely HyperEnclave.
We prove spatial isolation for the secure enclave though
correct configuration of page tables for an early prototype of
HyperEnclave. To formally model Rust code, we introduce a
lightweight formal semantics for the Mid-level intermediate
representation (MIR) of Rust. To make verification scalable
for such a complex system, we incorporate the MIR semantics
with a layered proof framework.

CCS Concepts: « Security and privacy — Virtualization
and security; Logic and verification; - Software and its
engineering — Formal methods.

Keywords: Formal verification, Rust, trusted execution en-
vironments, extended page tables

ACM Reference Format:

Zhenyang Dai, Shuang Liu, Vilhelm Sj6berg, Xupeng Li, Yu Chen,
Wenhao Wang, Yuekai Jia, Sean Noble Anderson, Laila Elbeheiry,
Shubham Sondhi, Yu Zhang, Zhaozhong Ni, Shoumeng Yan, Ronghui
Gu, and Zhengyu He. 2024. Verifying Rust Implementation of Page

Tables in a Software Enclave Hypervisor. In 29th ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (ASPLOS °24), April 27-May
1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3620665.3640398

1 Introduction

The Rust programming language. Rust is a program-
ming language providing memory safety guarantees at com-
pile time. The safety guarantees stem from its ownership
and lifetime compiler checks, instead of runtime garbage col-
lection. As a result, developers are starting to implement sys-

tems software in Rust, including operating systems (Redleaf [36],

Redox [11], Tock [30]), hypervisors (Google’s Chrome OS
Virtual Machine Monitor crosvm [5], Diosix [6], Cloud Hy-
pervisor [4]), and even the Linux kernel is adding support
for Rust [8].

However, while Rust does reduce memory related bugs [17,
48], memory safety alone does not guarantee functional cor-
rectness or security. For example, an unprivileged attacker
may try to bypass the memory isolation scheme of an oper-
ating system with carefully-crafted system call sequences.
These vulnerabilities are subtle, difficult to find, and critical
to system security. Beyond the capability of language guaran-
tees, functional correctness and security are often tackled by
formal verification [36]. Various tools have been developed
for Rust verification [15, 28, 34], but so far no industrially
deployed systems software written in Rust has undergone
verification.

Trusted Execution Environments. Much software nowa-
days runs in a cloud environment where infrastructure such
as operating systems is provided by the cloud vendor. This
infrastructure has a higher privilege than the software that
may contain sensitive data, and if compromised it presents a
threat to privacy and security. To tackle this problem, trusted
execution environments (TEEs) are used. They offer security
mechanisms such as remote attestation to ensure that the
right user software is loaded, and then run it in a separate
domain called the ‘Enclave’ isolated from the privileged yet
untrustworthy environment. Due to their critical role in en-
suring privacy and security, the correctness of TEEs is vital.
A bug in a TEE could result in arbitrary code execution [1]
or leak of private information [2].

Currently the most prominent examples of TEEs are In-
tel SGX [41], ARM TrustZone [14], AMD SEV [12], AWS
Nitro [13] and Arm CCA [32]. Except Nitro, they are all im-
plemented by hardware and firmware. However, hardware
and firmware solutions are difficult to evolve and audit. An
alternative is to implement TEEs as hypervisors and use sys-
tem virtualization to protect the application and its sensitive
information [24].

A key ingredient of the correctness and security of TEEs
is the correct construction of their paging subsystems. They

are directly responsible for spatial isolation, which means
the untrusted domains can neither peek into or overwrite
the private memory of enclaves. In hypervisor based TEEs,
spatial isolation is achieved by virtualizing memory mapping,
namely nested paging. Nested paging adds another layer
of address translation on top of those controlled by each
domain. The hypervisor i.e. the TEE is responsible for the
translation via a separate set of page tables called extended
page tables (EPTs). Even if malicious domains try to access
enclave memory, the hypervisor can ensure isolation by
carefully setting up its address translation so that any guest
physical address from untrusted domains is mapped outside
enclave memory. Therefore, the correctness and reliability
of the paging subsystem is vital.

Our work. In this paper, we aim to prove systems soft-
ware written in idiomatic Rust. Specifically, we prove the
correctness of the paging subsystem of an industrial hyper-
visor TEE, namely HyperEnclave [21, 24] developed by Ant
Group. HyperEnclave is a software TEE that uses EPTs to
ensure the spatial isolation of the enclave, and is written in
Rust to minimize the possibility of memory bugs. HyperEn-
clave is not merely an academic project, but is already used
in production for cloud services and has been released as an
open source project. We verify a version of HyperEnclave
from early 2022 which is not identical to the open source
release in July 2023. Still, even in 2022 HyperEnclave was
used in production.

Challenges and Solutions. Proving the correctness of
HyperEnclave, even only for the memory subsystem, is non-
trivial. It is a complicated project with 2130 lines of idiomatic
Rust code using sophisticated language constructs, and it
interacts with low-level hardware in various ways. It also
consists of multiple components: physical memory alloca-
tion, page table entry manipulation and address space man-
agement.

The first challenge is to choose a suitable tool for verify-
ing HyperEnclave, which is quite different from verifying
a library function, as our proofs must be able to compose.
Existing verification tools such as Prusti [15] or Verus [28]
are mainly concerned with handling the language soundly
instead of scaling proofs. We follow SeKVM [31, 42] and
formulate the proof of HyperEnclave in a layered fashion,
by dividing our proof into 15 layers that span from frame
allocation to address space isolation. This makes the proof
more scalable, because each proof layer only sees the speci-
fication of the layer below, not the implementing code. To
handle the variety of language constructs used, we create a
formalized semantics of Rust at the Mid-level IR (MIR) level
and model HyperEnclave with it. MIR is much simpler than
surface Rust while also maintaining memory safety.

Another challenge arises from the fact that HyperEnclave
is written in idiomatic Rust, instead of code specifically writ-
ten for verification. Many programming constructs such as

pointers require specific techniques to verify, and are of-
ten avoided by code specifically written for verification. For
example, CertiKOS uses array indices instead of pointers.
Ideally, we would like to rewrite as little code as possible
for HyperEnclave to make verification tractable, so we must
adapt our proof techniques to the constructs that are present
in the code.

In particular, MIR code uses pointers pervasively, espe-
cially self pointers (&self in Rust) and pointers to page table
entries. These pointers can be passed through functions in
multiple proof layers. This breaks encapsulation in the origi-
nal layered proof approach, where data is only visible to the
layer it belongs to. Other layers cannot directly see the data,
and must use the interface functions exported by the owner
layer. To ensure modularity while avoiding a total rewrite
into a pointer-free HyperEnclave, we model these pointers
as opaque handles that are only usable in the layer that
owns their data, guaranteeing that cross-layer pointers do
not break encapsulation by sharing memory. Moreover, we
leverage Rust’s memory safety guarantees to use an object-
view memory model without aliasing or pointers forged from
integers.

We offer the following contributions in our work:

o We design a modular framework MIRVerif which can
verify idiomatic Rust systems code based on a light-
weight semantics of MIR (Sec. 3).

e In particular, we devise ways to handle pointers while
preserving the encapsulation property of layered proofs
(Sec. 3.4).

e We verify the paging subsystem of a realistic, industri-
ally deployed software TEE. We prove functional cor-
rectness (Sec. 4) and information-flow security (Sec. 5)
of the most important code while remaining within a
practical budget (Sec. 6).

2 Background

TEEs provide an isolated area called the enclave for the pro-
cessing of sensitive code and data. The key features provided
by TEEs include remote attestation which reports the state
of the enclaves to a remote party in a trustworthy way, and
memory isolation which prevents unauthorized access to
the enclaves. In this paper, we focus on ensuring memory
isolation for HyperEnclave. Remote attestation is out of our
scope.

In this section, we present an overview of the HyperEn-
clave design focusing on the isolation mechanism, define our
threat model, and describe the code modifications we made
to HyperEnclave for verification.

2.1 Overview of HyperEnclave

As shown in Figure 1, HyperEnclave mainly consists of a
trusted software layer running in the host mode, referred

normal VM enclave VM enclave VM
Guest Mode
AppA | AppB | ...
Prim. OS
Prim. OS | Guest Enclave A Enclave B
PT
Prim. OS 'g‘lfésf‘ Encl. A EG”&'BS? Encl. B
EPT PT EPT PT EPT Host Mode
HyperEnclave/RustMonitor
Prim. OS| Encl. A Encl. B Encl. A Encl. B .
Mem MBuf MBuf | Trusted mem| Trusted mem Physical
Memory

Hardwaré RAM

Figure 1. HyperEnclave architecture. The shadowed red box
indicates dedicated secure memory. PT and EPT boxes stand
for page tables. MBuf stands for marshalling buffer.

to as the RustMonitor', which is responsible for enforcing
memory isolation. Similar to Intel SGX, user applications are
split into an untrusted part and a trusted part. HyperEnclave
creates a virtual machine called the normal VM to run the
untrusted OS, referred to as the primary OS, and the un-
trusted parts of applications called the Apps. It also manages
multiple VMs for the trusted parts of the applications—these
trusted parts are called Enclaves. Transitioning execution
between the trusted and untrusted parts of applications is
handled securely by RustMonitor. This architecture is differ-
ent from traditional hypervisors where each VM is usually
self-contained and runs separately from other VMs. Still,
the isolation requirements are the same: the enclaves and
the primary OS must be isolated and only through intended
channels may they communicate.

The enclave life cycle is managed through a set of primi-
tives from VMs to RustMonitor, implemented as emulation
of privileged SGX instructions such as ECREATE, EADD and
EINIT. To this end, a kernel module running in the primary
OS provides similar functionalities by invoking RustMon-
itor through hypercalls, and exposes the functionalities to
the applications by the ioctl() interfaces. By emulating the
privileged SGX instructions, RustMonitor is responsible for
the management of the enclave life cycle. Upon an enclave
state transition, either synchronous or asynchronous en-
clave entry and exit, RustMonitor switches the virtual CPU
(vCPU) mode by restoring the vCPU state, switching the
guest page table (GPT) and the extended page table (EPT),
and also flushing the corresponding TLB entries.

Memory Isolation. HyperEnclave enforces memory iso-
lation with the hardware support for memory virtualization,
specifically EPTs. During system boot, a portion of physi-
cal memory is reserved for HyperEnclave, which is used by
RustMonitor and used as the secure memory of the enclaves.

IRustMonitor is only part of HyperEnclave, but in this paper we treat them
as synonyms.

(Primary OS)

App A

| GPTape ! CPTend
EPT,&"PP / EPT,E"NC
A l,xﬁybele'ng'llave

Untrusted Memory Secure Memory

Figure 2. View of address translation. The hatched areas
denote the marshalling buffer.

The reserved secure memory is managed by RustMonitor
itself, while other memory which we call normal memory is
managed and used by the primary OS. We borrow the SGX
term and refer to the secure memory as Enclave Page Cache
(EPC) memory. Most importantly, HyperEnclave creates sep-
arate EPTs for each enclave and the normal VM hosting the
primary OS, and has itself rather than the untrusted OS man-
age these EPTs. To enforce isolation, HyperEnclave must
take care in correctly setting up these EPTs and protect them
from any malicious accesses.

Figure 2 shows the memory mappings of the applications
within the normal VM and the enclaves. An enclave can
only access its own protected memory and a marshalling
buffer (explained below) shared with the untrusted appli-
cation. The untrusted application and the primary OS are
not allowed to access the EPC memory i.e. physical memory
reserved for the enclaves or RustMonitor. For this purpose,
RustMonitor maintains a data structure (i.e., Enclave Page
Cache Map, EPCM) to store the EPC page states, and checks
the correctness for memory allocation.

As shown in Figure 1 and 2, all the EPTs of the normal VM
and the enclaves are managed by RustMonitor and cannot be
exploited by the attacker directly. Furthermore, to prevent
possible page table attacks [16, 46, 49] where the primary
OS manipulates the enclave’s page table, all enclaves’ GPTs
are managed by RustMonitor, while the GPTs of the primary
OS and the Apps are still managed by the untrusted primary
OS. With such design, the only memory region susceptible
to attacks is the one allowed by the EPT of the guest OS, no
matter how the untrusted OS modifies its own or its applica-
tions’ GPT. Spatial isolation is achieved by ensuring that the
aforementioned region is disjoint from accessible regions of

enclaves, except for intended communication channels con-
trolled and audited by RustMonitor i.e. marshalling buffers.

Marshalling Buffer. Unlike SGX, in HyperEnclave the
enclave is not allowed to access the entire address space of
the application. The address mappings of the application
are controlled by the untrusted OS. Allowing the enclave
to access the application’s address space would give the un-
trusted OS a chance to manipulate address mappings of the
enclave, known as “mapping attacks”. To support passing
data between the enclave and the application, a marshalling
buffer in the application’s address space is allocated from
normal memory, and is shared with the enclave. The map-
pings of the marshalling buffer are fixed during the entire
enclave life cycle. The marshalling buffer is the only channel
where any data exchange between the application and the
enclave is allowed.

2.2 Threat Model

The goal of HyperEnclave is to protect the code and data of
enclaves from the potentially malicious primary OS. We do
not consider the case where a buggy enclave voluntarily leaks
data through its marshalling buffer. We assume the primary
OS to be untrusted and possibly controlled by an adversary,
with the following capabilities: (1) arbitrary memory access
or malicious DMA to peek into or overwrite enclave memory;
and (2) initiating hypercall sequences to try to tamper with
the metadata within RustMonitor and subsequently trigger
a hidden bug in memory management.

In both HyperEnclave and our verification, the Rust com-
piler and its safety guarantees are trusted. We also trust the
verification tools, including Coq and the transpiler which
converts MIR to Coq representations. We consider the un-
derlying hardware as trusted. Similar to many other TEEs,
denial of service attacks and side channel attacks are out of
scope.

2.3 Retrofitting HyperEnclave to Verification

In HyperEnclave, some Rust language constructs are rarely
used yet require significant effort for verification, particularly
when working at the MIR level as we do. Therefore, we make
some changes to the HyperEnclave code, but we prioritize
keeping the modifications succinct. The changes we make
are as follows:

1. We move large loop bodies into separate helper func-
tions to make it easier to structure the Coq proofs (it
can be confusing to keep track of where you are in the
middle of the proof of a large function).

2. We replace closures with equivalent code in a few
places. In HyperEnclave higher-order functions are
only used to make the code slightly shorter, but in the
generated MIR code an anonymous function turns into
a separate named function and code to call it, so there
is no point in using it.

3. We change enums with integer values into plain integer
constants. When Rust code casts an enum value to an
integer it generates a discriminate MIR instruction.
By avoiding enums with specific values we can simply
get rid of such discriminate instructions.

4. We hardcode some constants about the memory layout.
The original code uses the Rust lazy_static crate
to make these configurable. But then any function
that uses a constant gets a block of code spliced in
to initialize the static variable lazily, which can take
a very simple function (which e.g. just does a single
subtraction of an offset from an address) and turn it
into a complicated block of code which is difficult to
verify.

The performance impact of these changes should be mini-
mal. At most we introduce one extra function call in some
loops (and the loop occurs inside a hypercall to initialize a
new enclave, so it is not called often).

3 The MIRVerif framework

The HyperEnclave memory isolation might fail for the two
reasons:

1. Design errors—the intended setup of the page tables
(which ranges are mappable, which pages can be aliased,
etc) might not correctly isolate the enclaves.

2. Programmer errors—even if the design is flawless, the
implementation of the hypervisor might contain errors
such that the design is not correctly realized.

This leads to a natural way to decompose verification tasks:
we give the program a high-level functional specification, in
which its relevant interfaces—in this case, hypercalls—are
described in terms of pure functions on system states, and we
prove the high-level specification satisfies security properties
and invariants. Then we separately prove that the actual code
correctly implements the specification, and consequently the
code satisfies security properties as well. The two parts are
discussed in detail in section 5 and 4.

In this section we discuss our framework for proving func-
tional correctness (conformance to a functional specification)
of Rust code as shown in Figure 3.

We take a pragmatic approach to verification: it is rarely
feasible and cost effective to verify a realistic piece of code
en masse. Rather, in the CCAL-style of verification, functions
are arranged in a dependency hierarchy, such that a correct-
ness proof of a function in a high layer may depend on the
correctness of a function in a lower layer. Every function ver-
ified reduces the attack surface of HyperEnclave. Ideally, we
would like to shrink the attack surface by verifying all func-
tions. We, however, take a more realistic approach, verifying
only safety-critical functions; thereby balancing the trade-off
between that additional security and available resources.

For functions that handle low-level architectural details
or come from dependencies such as third party crates or

S it ti
HyperEnclave ecurity properties
code in Rust Z

Abstract system model

Retrofitting

rustc --emit mir Code refinement proofs

HyperEnclave
code in MIR

7
._)HyperEnClaveJ (MIR

L code in Coq semantics

CCAL libraries

\ /4

Figure 3. MIRVerif architecture. Elements in the hatched
box are mechanized in Coq.

the standard library, we choose to declare them "trusted"
and assume their correctness, including them in the trusted
computing base. “Trusted” functions can later be pulled out
and verified as more resources become available, or if we
are led to believe that a particular function poses a higher
risk than previously thought. This way we can tune the
verification to the available resources.

In this paper, we declare low-level functions that go be-
yond the assumptions of our Rust semantics to be trusted.
We also choose to declare some other functions as trusted
in order to limit the scope of verification (see Sec. 4.2 for
details).

3.1 Formalizing the Rust Semantics

To be able to verify Rust code (at least for the fragment used
by HyperEnclave), we need a formal semantics for the Rust
language. Although other authors have treated subsets of
the language [3, 45], it is hard to integrate those works into
the CCAL framework, so we developed our own semantics
for MIR as a deep embedding in Coq.

The level of abstraction in MIR is comparable to the C
programming language: there are still high-level expressions
and statements, but the type system is much simpler than
the surface Rust type system. In MIR, the compiler has type-
checked the program and resolved all the trait functions,
so, unlike surface Rust, the operational semantics are deter-
mined by the terms of the program and we do not need to
model the type system. Similarly, the compiler has inserted
“drop” statements at the end of the lifetimes of variables,
defunctionalized lambda-expressions, and Rust “references”
have been turned into pointers.

MIR programs are formatted as control flow graphs, where
each labelled block consists of multiple statements followed
by one “terminator”. We define the program syntax as a

datatype in Coq (28 types of expressions and 11 statements/ter-
minators are supported), and then define a small-step oper-
ational semantics in the style of CompCert [29], a verified
compiler for C. We validated our semantics correctness by
careful inspection of the Rust documentation.

3.2 Leveraging Language Guarantees for Verification

The MIR semantics are not very different from the C seman-
tics used by the previous CCAL works, and we actually reuse
part of their supporting definitions like arithmetic. However,
the major difference is that Rust ensures memory safety and
is free of dangling pointers, so our semantics are designed
to exploit these properties to simplify verification.

Object-view Memory Model. In HyperEnclave, there are
only a few unsafe type-casts which expose the low-level
representation of data structures, all of which are within
trusted code that need no proof. And the ownership rules in
Rust enforce that pointers in safe code do not alias. There-
fore, we can use a high-level representation of memory. We
view the memory in a structured way, as collections of non-
overlapping objects, different from the flat-array-of-bytes (or
“blocks-of-flat-array-of-bytes”) view in C. The C approach
causes extra proof burden whenever a pointer is used be-
cause: (1) it needs to prove that each pointer points to a valid
memory region; (2) it needs to prove that the types of the
pointer and region match; and (3) in the case of aliasing, a
single update could alter multiple values.

We take an object-view of memory and handle struct-
s/enums as values rather than a block of contiguous memory,
as in the following formula. In this way access to objects is
made simpler, and is free from the above burden. A struc-
t/enum object is represented with an integer discriminator
and its list of fields, and our evaluation rules are concerned
with projecting out fields directly, rather than resorting to
complicated field offset logic.

Integer values
.. Other atomic values
(int, list value) Structs and Enums

value := int

Also, because we got rid of the flat-array view of memory,
we propose using paths rather than integer addresses to lo-
cate objects. A path simply consists of an identifier with a
list of integer indices, essentially the base object and a list of
projections. For example the expression foo.bar.1 will be
modeled as GlobalPath IDENT_foo [OFFSET_bar 1]. The
object-view of memory means that our proofs do not need
to reason about how objects are laid out in memory. Assign-
ment to memory creates a new (binary) relation, which we
axiomatize as only changing at the assigned location.

Note that our model is only valid if there is no aliasing
or cycles in memory, which is the case for Rust-allocated
memory in HyperEnclave.

Memory Safety Implies Pointer Validity. Our Coq se-
mantics for MIR does not model the Rust ownership type
system, but we implicitly assume that it is correct by mod-
eling the code as never freeing locally allocated objects in
memory. In the actual code, the Rust compiler will deallocate
a variable when the last reference to it goes out of scope,
e.g. at the end of a function body, but this is treated as a
no-op by us, similar to how one may specify the semantics
of a language with garbage-collection (we still model the
call to explicit “drop” functions). This means that functions
can return pointers to locally allocated data, and the proofs
never have to explicitly prove that a pointer is still valid.
The surface Rust type system ensures that no pointer is used
after an object is freed, so programs compute the same result
under our semantics and the semantics with deallocations.

Lifting Local Variables. Another novelty lies in the treat-
ment of local variables. Existing works (such as the Miri
interpreter [43]) treat all MIR variables as lvalues which are
allocated in memory. However, this adds an extra layer of
indirection to all uses of variables, which we would like to
avoid as much as possible to make proofs easier. Therefore,
our MIR translator makes a distinction between “local” and
“temporary” variables. Any variable that has its address taken
is a local, while other ones are temporary, similar to e.g. the
mem?2reg pass in LLVM [9] . In the semantics there are two
different operational rules: assignments to a local variable
are written into the memory, while the values of temporary
variables are kept in a “temporary environment” which only
exists during the execution of the function. The net effect is a
change in the point of execution where memory allocations
takes place. In our semantics, a function which uses tempo-
rary variables will not itself modify the memory, but will just
create values, which can be returned to a different function
and be part of a bigger complex value, etc. Eventually the
returned value will reach a function which assigns into a
global variable or takes the address of a variable, and at that
point, the value is written to memory — but until then, there
are no side effects.

Unlike the previous two ways, lifting temporary values
does not rely on guarantees ensured by the Rust language.
In future work one could prove the soundness of the trans-
formation, by proving that the program would eventually
compute the same value if all the variables were treated
as local. However, it is very helpful in practice by abstract-
ing away the details of the Rust memory. In particular, the
memory module of HyperEnclave has 77 Rust functions, but
only 12 of them involves local variables. The other ones can
be treated “functionally” as constructing and returning Rust
values.

3.3 Importing MIR into Coq: mirlightgen

In order to import the Rust code into Coq so we can reason
about it, we use a modified version of the standard Rust com-
piler rustc to pretty-print MIR into our Cog-based syntax.
In other words, we take advantage of the fact that rustc can
already print out the entire MIR representation of a program
in human-readable form, and make it instead print the MIR
representation out as an abstract syntax tree inside a Coq .v
file. We call the tool mirlightgen, as a pun on Compcert’s
clightgen tool which plays a similar role. The result is a
"big blob" of code. In order to verify it, we need to split it
up into per-function code files, and order them into layers
based on the call graph. This was done semi-manually with
the aid of some ad-hoc scripts.

This design gives us high confidence that we are verifying
the correct code, since we are verifying the same MIR code
that the Rust compiler is operating on.

3.4 Integrating Rust Semantics with Layered
Verification

MIRVerif is based on the the layered proof approach i.e. the
CCAL framework because of its ability to compose and its
modularity, and the previous successful uses of it in the
CertiKOS [22] and SeKVM [31] projects. Yet the previous
experience were in C and it has to be extended to handle
Rust.

Background of the CCAL framework. The original CCAL
framework is built on top of CompCert’s formal operational
semantics for C. It extended the C semantics to add a user-
defined abstract state of the system undergoing verification,
and views function executions as relations between abstract
states, i.e. changes to the system state. We similarly add an
abstract state to our MIR semantics. The abstract state encap-
sulates concrete memory to make the proof more modular,
avoiding reasoning about memory in higher level proofs. The
system will be divided into layers of functions depending on
the caller-callee order. The design of HyperEnclave ensures
that there are no functions from higher layers passed as call-
backs to lower layers. Each C function will be proven against
a specification in Coq, which is a functional specification
that defines its behavior in terms of effects on the abstract
state and the return value. These specifications usually have
a type signature similar to Args * AbsState -> Ret *
AbsState.

This approach makes use of data encapsulation in the pro-
gram to enhance proof modularity, by making each variable
in memory be “owned” by a particular layer. Functions inside
that layer are verified with respect to the concrete memory
semantics when they access the variable, but then the user
supplies a refinement proof that the function behavior is
equivalent to the specification in term of abstract state. Later,
callers in higher layers do not need to know anything about
the concrete memory representation.

3.4.1 Augmenting CCAL with Pointers. Existing suc-
cesses like CertiKOS and SeKVM were written with verifica-
tion in mind from the beginning. As such, they avoid certain
C idioms in order to make it easier to write proofs. Most
conspicuously, they avoid the use of pointers and nearly all
functions take integer arguments. For example, for thread
identifiers CertiKOS always uses an integer index rather than
a pointer to the thread control block; SeKVM accesses page
table entries only through a one-line wrapper function and
never actually dereferences the pointer.

By contrast, HyperEnclave is idiomatic Rust with a lot
of object-oriented code, and uses of pointers are pervasive.
Nearly every trait method comes with a self reference (com-
piled into a self pointer at MIR level), functions can take
struct arguments via a pointer, and page table entries are
accessed directly through pointers. A complete rewrite of
HyperEnclave into pointer-free style certainly contradicts
our goal, as the changes are expected to be minimal. This
presents a new research problem: how can we do modular
verification without leaking any details about the memory
representation in a layer, if functions are receiving or return-
ing pointers to that memory?

Our solution to this is to further extend the language
semantics with new types of pointers which enforce module
boundaries. The syntax of the language remains the same,
but we specify the semantics as if there are different types
of pointer values at runtime, and the semantics of a pointer
read/write depends on what kind of pointer it is. When we
write specifications for functions that take or return pointers,
the type of pointer we use in the specification is is determined
by how the pointer is used; there are three types as shown
in Figure 4.

® @)

Higher layer

return value

Higher layer .
!

argument

Lower layer Bottom layer .

3

Higher layer

return value

Lower (not bottom) layer .

Figure 4. Pointer classification. The red box f indicates a
function in that layer. The green circle p indicates a pointer
whose pointee belongs to that layer.

Pointers passed to lower layers (1). In this case, a pointer
is allocated by a function and passed as an argument to lower
layers. This is the easiest case: there is no modularity concern
because the caller is the owner of the object, so proofs about
the caller are allowed to know about concrete representation.
This is handled using normal pointers into concrete memory
(in our case the path addresses described in Section 3.2).
The specification of the function lower in the stack says
that it expects the pointer to point to some object, and the
correctness proof of the caller proves that it does.

Pointers from the bottom layer (2). However, sometimes
the object-based concrete memory model is inadequate. In
HyperEnclave one example is accessing the physical mem-
ory for the page tables. This is a security-critical feature and
relies on low-level manipulations of individual bits of ad-
dresses, so (similar to SeKVM) we want to carefully specify
a lowest layer where this memory area is represented as just
a plain array of 64-bit words, so we can prove the functions
did it right.

In SeKVM, that was done by rewriting the code to only
access the page table through two particular “load/store”
functions, and then providing (simple, trusted) specifications
of what those functions do. However, we do not wish to do
extensive rewrites of the HyperEnclave code, so the page
table code that we need to verify contain pointer reads and
writes that do not make sense in terms of the object-based
view of memory.

Our solution is to add what we call trusted pointers to
our language semantics. Instead of containing a memory
path, trusted pointer values contain getter/setter functions
that can access the abstract state, and the semantics of a
pointer write is to call the setter function and update the
state accordingly.

In particular, the abstract state type in our development
contains the array representing physical memory. The few
unsafe Rust functions that cast raw integers into pointers are
ascribed specifications that return trusted pointers (contain-
ing load/store specifications), and the rest of the code can be
verified in terms of those. We get the benefit of a load-store
abstraction layer without having to rewrite the code.

Pointers from the lower (but not the bottom) layer (3).
Another challenge is when pointers to objects allocated by
lower layers are returned to a higher layer. This occurs very
commonly in code using Rust traits, which are compiled
into “self” pointers. A layer will define a struct type which is
only allocated and should only be accessed through member
functions defined in the same layer.

If we tried to specify these functions using concrete point-
ers, we would burden the caller with the details of exactly
where these objects are stored in memory. Instead, we extend
the semantics with RData pointers, where the payload inside
the pointer value is just an identifier and a list of numerical

indices. Our MIR semantics do not provide any way to read-
/write through an RData pointer. Therefore, we can specify
the intended semantics of the layer without any way for the
clients to break encapsulation: the only thing that can be
done with the pointer is passing it back to the layer that
forged it.

Of course, it is not possible to verify the code of the meth-
ods with respect to this semantics, because the code does
load and store through pointers. Instead, the functions are
verified in the concrete Rust memory model, and then we
do a refinement proof showing a simulation from the RData
pointer specifications to the concrete memory semantics. In
this way, we hide the concrete memory representation inside
the layer, just like in the original CCAL approach.

4 Proving Functional Correctness

The preceding section outlines our lightweight MIR seman-
tics and handling for language specific features. To actually
prove HyperEnclave code, we need to use our semantics to
model the actual Rust code, and prove that it conforms to
our functional specification via refinement. The function
specifications describe the intended behavior of each Rust
function, and are the basis for higher level security proofs.
HyperEnclave is a quite large project accounting for over
5800 lines of code, and even only the memory subsystem is
over 1000 lines of code. To make our proofs more scalable,
we decompose the Rust code into layers of functions, such
that each layer depends only on functions in lower layers.
This approach enables functions to be proven in a modular
way [23]. The proofs of higher-layer functions use specifi-
cations of those of lower layers, which encapsulates all the
implementation details of the lower layer functions.

4.1 Functional Correctness Proofs for Page Tables

For the functional correctness proof, we verified the func-
tions in the memory module of HyperEnclave, specifically
those querying and updating the page tables. These functions
walk the page tables for a virtual address, look up intermedi-
ate entries, allocate new intermediate frames by need, and
ultimately retrieve or install a terminal entry. Entries are rep-
resented by plain 64-bit integers in the implementation, and
each consists of two parts: a physical address and its associ-
ated flags. To update entries, we need to read or write to a
specific physical address. As discussed in Sec. 3.4, we ascribe
specifications in the trusted (bottom) layer to functions from
these crates in terms of the abstract data. The abstract data
contains a big flat array of integers representing the physical
memory of the frame area, along with the specification for
writing a page table entry to update the array.

In principle, we could end up with a single specification
that views the page tables as a unstructured flat array of
frames. However, proving invariants using the flat frame
representation would be difficult, as walking a page table

involves repeatedly following pointers and updating it. The
flat representation does not rule out aliasing issues, which
would happen if two entries pointed to the same intermediate
page table or frame. With aliasing entries, installing a new
mapping could be a non-local change potentially changing
unrelated entries. Thus, we use two specifications for page
tables: a low spec which is a flat representation as described
previously, and a high spec which is a tree representation for
use by the higher layers.

To define the tree-shaped high spec, first we abstract the
64-bit page table entries into a parameterized record, like in
the code below.

Record PTE {content:Type} := mkPTE {
addr_content: option (int64 * content);
flags: list bool;
unused_inv : addr_content = None
-> (is_huge = false /\ is_present = false)

Entries do not store an indirect index to the next page
table, rather they contain the next page table directly (the
addr_content field). Such nesting constitutes a tree-shaped
view of page tables. If this is a terminal entry pointing to
a possibly huge physical frame, content will be unit type.
Otherwise, as page tables are just map from indices to entries,
content will simply be a ZMap. For example level three page
tables are defined as 13pt := ZMap.t (option (@PTE
(12pt + unit))); options indicate possible absent entries;
12pt are type of level two pages tables and the plus sign
indicates the (tagged) sum type.

To relate a low spec to a high spec, we use a refinement
relation R over two abstract states dy, dy, which are states in
tree and flat representation respectively. The relation R d; d;
holds if the page tables viewed as trees in d; agree in content
with those viewed as flat memory in d,. Defining R requires
another relation Ry p a, which relates the PTE record p to
the entry address a. If p is a terminal PTE, Ry simply says
addr and a should agree. Otherwise Ryt quantifies over page
table indices and says that entry at each index should be
recursively related (with R itself) to a plus some offset.
With R and Rprg, we can finally prove a simulation from the
flat representation to the tree representation, and that both
are the same. This assures us to use the tree representation
to simplify subsequent proofs.

Malformed Page Tables in the Wild. The code proofs,
and in particular the refinement proof, shows that the page
tables are correctly represented in physical memory. A sim-
pler alternative would be to just write a model of the entry
manipulation functions, perhaps operating directly on the
tree-view representation of page tables, and ignore the Rust
code and the flat-view completely. The question is: does our
additional effort improve confidence?

In fact, during the development of HyperEnclave we did
encounter a security bug related to this. In an earlier version,

the page tables of the enclaves were not constructed from
scratch; instead they were initialized by a “shallow copy”
of the page table of the primary OS. The copy selected the
relevant address ranges from the level-4 page table, but oth-
erwise copied the existing entries. This is not secure, because
HyperEnclave’s page tables would then contain pointers to
level-3 tables that are stored in physical memory controlled
by the guest. Indeed, such a program would be impossible to
prove in our setting, because we need to prove that the initial
(empty) page table satisfies the relation R. If it is copied from
arbitrary guest memory, there would be no way to prove
that all the entries are inside HyperEnclave’s frame area (the
flat representation).

4.2 The Trusted Layer

At the very bottom of our layers is the Trusted Layer. It con-
tains the specifications of functions that will not be verified,
including the Rust standard library, 3rd party crates, and
architecture-specific functions. More importantly, it also in-
cludes the primitives for interacting with the HyperEnclave
global state, such as primitives that update page table entries.
Rather than directly model the memory layout of the state,
we define them in terms of abstract operations on state that
are called from the specifications of trusted functions.

4.3 Code Proof

A benefit of CCAL is that is allows us to create ‘sublayers’
even when proving the code conforms to the specification. As
refinement is transitive, we can insert a ‘low spec’ between
the specification (now called the ‘high spec’) and the code.
This partitions the proof into two parts when we have an
intermediate spec, code proofs (from code to ‘low specs’)
and refinement proofs (from ‘low specs to ‘high specs’). For
HyperEnclave we used these intermediate specifications only
for the page tables, as we discussed in the previous section.
Still, in either case we have to prove the code conform to
some spec, be it ‘high‘ or ‘low".

As in previous works in CCAL [22, 31], we reason about
HyperEnclave code with our MIR operational semantics, and
we prove that for any two initially related states, the effects
as well as the return value of executing the HyperEnclave
function (with MIR semantics) and executing its specification
should agree.

Part of the reasoning is made automatic with custom Coq
Ltac’s [10], though we have to supply loop invariants manu-
ally.

4.4 Tuning Verification Coverage

As a practical matter, fully verifying the entire code base
including language dependencies of a production system like
HyperEnclave is a major challenge. It would be infeasible for
a product release, for instance, to be held up while waiting
for verification to finish. Instead, we rely on the separation
of layers to verify the system piecemeal, from top to bottom,

verifying as much of the code base as is feasible with our
resources. Every function we verify is one fewer function
in the trusted computing base, raising our confidence in
the correctness of the whole. In this way verification can
be amortized over time, with continuing work after release
filling in gaps in the proof.

Rust is particularly suited for this approach because un-
verified functions in Rust have a lower impact than those in
unsafe languages such as C. Undoubtedly, a proof with any
holes at all is less reliable than a complete proof, and this
is indeed a threat to our validity as we discuss in Sec. 6.1.
Still, in C, leaving any piece of a program unverified risks
undefined (memory) behavior due to the unrestricted use of
mutable pointers, which might change any part of the sys-
tem state in an unpredictable manner. By contrast, in Rust,
as long as a function is memory-safe, a bug might result in a
change in its return value or mutable parameters. Memory
safety here essentially limits the range of blast whenever
a bug is present in the unverified code, and ensures that
unrelated code cannot tamper with each others’ data.

5 Proving Security Properties for
HyperEnclave

As discussed HyperEnclave must provide proper spatial iso-
lation between enclaves and the untrusted primary OS, so
that private data are not leaked or tampered with. We prove
a number of invariants that hold during execution, then use
these invariants to prove that HyperEnclave satisfies a non-
interference property, one of an an important class of security
property from the formal security literature [40].

Intuitively, a simple symmetric form of noninterference
says that, if we divide the system into security principals,
which are VMs in our case, each with permission to observe
a subset of the system, no principal can deduce any informa-
tion about a part of the system that it lacks permission to
observe, or about actions taken by the other principals. This
directly prohibits the untrusted OS from being privy to sensi-
tive data, achieving confidentiality. A dual result is integrity,
which implies the untrusted OS cannot tamper with sensitive
data. If the untrusted OS were to overwrite private data that
enclave operates on, the enclave would receive information
about the OS, so the same non-interference theorem rules
out this also.

5.1 System Transitions

To formally verify the noninterference property, we need to
formally define an abstract model for how HyperEnclave op-
erates, in the form of a transition system. Most importantly,
this involves defining all possible steps that the primary OS
or enclave can take, either through local computation or by
making a hypercall into RustMonitor. In Coq, we define each
step as a function mapping the abstract system state to a
new one incorporating changes made by the step.

10

The local computation steps are considered nondetermin-
istic, as HyperEnclave does not care about the exact compu-
tation happening inside each VM as long as it does not cause
a VM exit. Instead we have two specifications, mem_load
and mem_store, which model what happens when the VM
accesses an arbitrary virtual address. The address is resolved
using the current installed page table of either the primary
OS or the enclaves. As part of these specifications we need
a function representing the page table walk that the CPU
performs; instead of manually writing this function in Coq
(which we could get wrong), we actually use a correspond-
ing page-walk function that is part of the memory module of
HyperEnclave, which we have a verified Coq specification
for. The load/store also has a special case for addresses in
the marshalling buffer range (See Sec. 5.4). If the page walk
succeeds, the physical memory and the current register set
is updated.

The hypercalls are more interesting, since they are trapped
into the RustMonitor. In the HyperEnclave implementation,
we have the following hypercalls: init and add_page, which
are called from the primary OS to create and initialize a new
enclave; enter and exit, which transfer control into and
out of a particular enclave. In our proofs we only model
the first two, by inspecting the safe part of the Rust code
and updating the abstract data accordingly. The other two
hypercalls (enter/enter) do not manipulate the page table
entries, and the point of them is mostly in the x86_64-specific
details of installing a new register set etc. Proving them
correct would be less informative about the memory isolation
guarantees.

5.2 Page Table Invariants

(1) Virtual memory Physical memory (2) Virtual memory Physical memory

Encl. A Encl. A
ELRANGE
) ELRANGE
virt addr EPC mem EPC mem
| I |
Encl. B Untrusted
€ phys addr mem phys addr
EURAE= virtaddr 7T
virtaddr (] I

Figure 5. Example cases where a wrong page table design
would lead to possible exploits. ELRANGE stands for the
accessible virtual address space of an enclave.

The most important yet subtle part of our security proof
is the invariants that the page table mappings must satisfy.
Figure 5 illustrates some of the cases we must worry about.
The first is a page alias, which happens when two differ-
ent enclaves interfere with each other by having permission

to access the same EPC page. More subtly, if a virtual ad-
dress which appears to not be part of the enclave is actually
mapped to a physical EPC address, an enclave may be fooled
into corrupt its own EPC page when it believes it is writing
normal memory.

Following the design of HyperEnclave, we formulate the
following invariants for page table mappings:

e ELRANGE (enclave linear range) memory isolation. Two
virtual addresses va; and va, that are in the ELRANGE
(i.e. addresses used for EPC pages) of two different en-
claves, must be mapped to different physical addresses,
if there exist such mappings at all.

e Marshalling buffer invariant. If two virtual addresses
va; and vay are translated to the same physical mem-
ory region by an page table and the page table of the
primary OS, then va; and va, are in the marshalling
buffer.

e EPCM invariant. All the page mappings in the page
tables of enclaves correspond to an entry in the Hyper-
Enclave’s EPCM list (i.e., if HyperEnclave was asked
to add a mapping, it did not forget to also record this
in the metadata). This rules out covert mappings.

o Enclave invariants. Each enclave satisfies the following
properties: a virtual address is mapped to a physical
page in the EPC if and only if the virtual address is in
the ELRANGE; the ELRANGE and the range of mar-
shalling buffer are disjoint; and there are no huge pages
in the page tables.

These invariants are stated in Coq in 106 lines of defini-
tions, and we prove that the hypercalls preserve them.

The memory isolation invariant protects the enclave (EPC)
pages from tampering. The page tables themselves are also
protected, because they are allocated in a disjoint range of
physical memory which is never in the range of a guest

mapping.

5.3 Proof of Noninterference

To ensure confidentiality and integrity of enclaves, we need
to ultimately prove noninterference. We use the invariants
to prove an information-flow noninterference theorem. In
other words, we prove that no matter what an enclave or
the primary OS does, it cannot affect other enclaves in any
way, except by explicit communication using the marshalling
buffer.

As is standard for noninterference, we formalize the se-
curity property by defining a observation function V (p, o)
for a principal p on the current state . This is the subset of
system state that an enclave/guest is allowed to see, e.g. the
contents of its own memory. Two states ;7 and o, are said
to be indistinguishable to a principal p if p’s observations
are identical, i.e. V(p, 01) = V(p, 02). The noninterference
theorem states that indistinguishability is preserved by the
state transitions, as formalized by the following lemma.

11

Theorem 5.1. Starting from two states o1 and o, that are
indistinguishable to a principal p, after the transition steps the
final states o and o are still indistinguishable to p.

The observation for a principal p includes: (1) the CPU’s
registers if p is the active (i.e. about to take the next transi-
tion) principal; (2) p’s saved register context, (3) mappings
in the page table owned by principal p, and (4) contents of
the memory pages that are not shared with other principals.
Even though the mapping of marshalling buffer is shared
among principals, it is considered observable to both the
enclaves and the host VM because the mapping is immutable
once an enclave has been initialized. The contents of pages in
the marshalling buffer are handled differently, as described
in section 5.4.

Intuitively, Theorem 5.1 says that there is nothing p can
do to learn any information that it is not supposed to have
access to. For example, suppose there is some other enclave
q which has some secret value in one of its EPC pages. Other
enclaves’ pages are not in the set of allowed observations,
so from p’s point of view, a state o7 where ¢’s secret is 41
and a state o, where the secret is 42 are indistinguishable.
If there were security flaw in HyperEnclave that violated
confidentiality, then p could run a program to somehow
learn the secret value and load it into a register. But running
such a program would take oy to a state o] where p’s register
contains 41, while it would take o3 to a state o, where the
register contains 42. p is allowed to observe its own registers,
so o] and o; would not be indistinguishable for p, and so the
theorem tells us that there is no such program.

Proof Structure. Following the approach used by SeKVM,
we decompose the overall noninterference theorem to sev-
eral step-wise security properties for each primitive.

Lemma 5.2. Starting from an inactive state o, if some other
principal makes a CPU-local move to inactive state o', then
V(o.p)=V(d'p).

This lemma ensures the integrity of the private data belong
to p because if other principals manage to modify p’s data,
the changes will be observed by p.

Lemma 5.3. Starting from any two active, indistinguishable
states oy and o}, if p makes CPU-local moves to state o, and
0,, then the states are still indistinguishable.

This lemma presumes p as a potential attacker and en-
sures the confidentiality of the private data belong to other
principals because p’s behavior cannot be affected by data
from other principals. If there is data leakage from some
other principal to p and p exploits the leakage, it will end up
in distinguishable states, thus violating the lemma. However,
this lemma relies on the condition that the starting states are
indistinguishable given that p is active. Thus, we introduce
the following lemma to guarantee that condition.

Lemma 5.4. Starting from any two inactive, indistinguish-
able states oy and o}, if some other principal makes CPU-local
moves to active states o, and o, then the states are still indis-
tinguishable.

With rely-guarantee reasoning, the above lemmas are suf-
ficient for the noninterference theorem: two runs of the
machines can be decomposed into local and non-local steps
in a suitable way. Similar to SeKVM, however, we leave this
argument informal and only prove the above lemmas in Coq.
In the end we have proven noninterference and it implies
that the registers, memory, as well as mappings of enclaves
are secure.

5.4 Sharing and Declassification with Data Oracles

Our model takes into account two important complicating
factors: concurrency and shared memory. Memory is shared
via the marshalling buffer, the pre-allocated memory area
used to pass arguments and return values between enclaves
and the normal VM. Since it is shared between security prin-
cipals, it is excluded from the view relations that inform our
noninterference property.

To model the fact that data in the marshalling buffer should
be considered declassified, we apply the same approach as
in SeKVM [31] and use a data oracle. Each execution is pa-
rameterized by an oracle (a stream of values) and we modify
the semantics for memory load and memory store to treat
the marshalling buffer separately. In particular, stores to the
marshalling buffer are in effect ignored, so they never for-
mally violate the noninterference theorem. Reads from the
marshalling buffer are taken from the oracle. Because the
theorem is proved for all possible oracles, including the one
which returns the same values that were written by other
guests, it still covers all possible code paths for the guests.

6 Evaluation

Proof Effort. Table 1 shows lines-of-code statistics. The
Memory and Enclave modules of HyperEnclave consist of
2130 lines of code. The Coq development comprises around
15,100 lines of proof (as counted by cogwc), plus around
4,500 lines of specification, the MIRVerif framework, and a
large amount of automatically generated Coq files for the
imported MIR code and layer scaffolding.

The entire verification effort took around 3 person-years,
of which 20% were spent on the verification framework, 30%
on invariant-preservation and noninterference theorems,
10% on the page table refinement, and 40% on code proofs.
(We wrote specifications interleaved with proofs, so we do
not show separate efforts for them.)

The noninterference proofs took 6600 lines of proof, which
seems comparable to other similar Coq projects.

For the code proofs using our new MIR semantics, we
verified the code of 49 functions from the HyperEnclave
Memory module (the full module is 77 functions and 1279

12

Component Lines Effort
HyperEnclave 5881 None
HyperEnclave undergone verification =~ 2130 None
MIRVerif framework 3778 0.6py
Page table refinement proofs 4394 0.3py
Code specifications/models 2445 } 12
Code proofs 4191 “PY
Top-level specifications/models 2015 } 0.9
Top-level proofs 6600 “Py

Table 1. Code and proof statistics. py stands for person-
years.

lines of Rust code), which are arranged in 15 layers. They
compile into 3358 lines of mirlight code as counted by coqwc
-s, while the proof script size (by cogwc -r) is 4191 lines, or
1.25 lines of proof per line of MIR.

For comparison, the SeKVM project used 4884 lines of
proof script to verify 2260 lines of C code (counted by cloc),
or 2.16 lines of proof per line of C. At the start of the project
we hoped that the fact that the MIR code is compiler gener-
ated and quite verbose would make it less costly to verify
than C, and as can be seen this is the case, but not enough to
outweigh the expansion factor from the Rust-to-MIR compi-
lation. It would be interesting to know how large the corre-
sponding code would be if rewritten as a C program, since
Rust can be quite concise (e.g. hiding a pattern match, if-,
and return-statement behind a single question mark ? at the
source level). Either way, the we see that this is practical
for small amounts of carefully selected Rust code, as in this
development, but not for large pieces of software. However,
the overall CCAL methodology is agnostic about how the
code proofs are done, so as the state-of-the-art of reasoning
about Rust code improves it can be scaled up.

6.1 Threats to Validity

As our verification is focused on the memory subsystem,
other unverified parts of HyperEnclave, such as handling of
hypercalls, are the main threat to validity. Our page tables
invariants would be debunked if unverified code somehow
managed to modify the tables. This is not possible in safe
Rust, because page tables are encapsulated in an owned
memory of the page tables structures, and the memory-safety
guarantees of Rust prohibit forging a mutable reference to
them. Still, unverified unsafe code could bypass Rust’s safety
rules and modify the page tables.

To mitigate this threat, we manually checked the 105 un-
safe blocks in HyperEnclave. The majority of them (74/105)
are used to indirectly call unsafe functions, which includes
constructing slices, manipulating state-save area and execut-
ing assembly. None of the blocks with raw pointer derefer-
ences (13/105) involve page table memory. While this study

does not prove them safe, combined with Rust’s memory-
safety it should increase our confidence that unverified code
is unlikely to alter page tables.

Our code proofs rely on the soundness (but not complete-
ness) of our lightweight MIR semantics. MIR is a relatively
simple language, and we believe that we have accurately
reflected the specification given in the documentation, but
if our formalization is unsound, our proofs could be invalid.
The proofs about manually written abstract models could be
invalidated if we made a mistake transcribing the code.

An error in mirlightgen, or the ad-hoc layering scripts,
could also cause HyperEnclave code to be mismodeled. Such
errors are less likely, because in our subsequent proofs we
verify the refinement between the code and our specification,
during which process we examine each generated line.

Finally we trust the rustc compiler and its memory safety
guarantees. The rustc compiler could go wrong to render
the final object code incorrect, but its correctness is beyond
our scope. Our proofs and security arguments are based on
memory-safety, and would be invalid if Rust does not actually
guarantee it. This is unlikely for a widely-used project like
Rust, and also developers are currently formally modelling
the type system of Rust [3].

7 Related Work

Verification of Separation Kernels. There have been
previous works on kernel verification [23, 26] and hypervisor
verification [36, 37, 44]. They have proven similar goals as
ours, but they differ from HyperEnclave because they target
general kernels or hypervisors rather than secure enclaves.

SeKVM [31, 42] verifies a reduced core of KVM, and ARM-
CCA [32] verifies firmware for managing ARM Realms. We
share similar techniques by also using the CCAL approach by
structuring proofs in a layered fashion. These two systems
are written in C avoiding pointers and do not incorporate
language-provided guarantees into the proof. Komodo [20]
is a verified TEE written in the Vale language that aims also
to achieve isolation. The Vale language is designed for veri-
fication, and it allows verified assembly code that provides
stronger guarantees. In contrast, verification of HyperEn-
clave has to deal with the intricacies of Rust and MIR.

Few system software written in Rust has been verified,
possible due to the quick evolution of the language. RedLeaf
[36] verifies an OS kernel in Rust automatically by use of
SMT. They also pinpoint the possibility of aiding verification
with language guarantees. RedLeaf is a small lab kernel com-
pared to HyperEnclave, and global properties like isolation
is not discussed.

Rust Verification. There are plenty of tools for formal
verification and they achieved great success, but many of
them do not target our language e.g. Frama-C [18] for C
and CakeML for ML [27]. There are also automated verifi-
cation tools targeting Rust, like Prusti [15], Verus [28] and

13

Creusot [19] for SMT-based deductive verification, cargo-
klee [34] for symbolic execution, or the Rust Model Checker
[7] for model checking. We instead used CCAL-style proofs
in an interactive proof assistant in order to be able to to
decompose proofs into layers, and to have a general specifi-
cation language to state complicated properties like nonin-
terference.

There are also works to formalize the semantics of Rust,
either as a practical verification tool or to investigate the
metatheory of the Rust language. RustHornBelt [35] mecha-
nizes the semantics in RustBelt [25] and is capable of veri-
fying unsafe code. Besides practical verification, work has
been done on the formalizing Rust. Patina [38] formalizes
Rust with regard to ownership and borrowing, yet the for-
mal semantics are not mechanized. KRust [45] presents an
executable semantics a realistic subset of Rust in the K frame-
work [39], but the only way to verify concrete programs is
by the built in K proof system, which is less flexible than Coq.
Oxide [47] formalizes the semantics of a large subset of Rust
at source language level, and with a semantics tested against
the Rust test suite. Many of these Rust semantics could be
augmented with CCAL-style abstract state and be used for
the code proofs, similar to our MIRlight semantics, so as
those projects mature they may increase the productivity of
future Rust system software verification.

The Spoq tool [33] automates part of the work of writ-
ing code-proofs for CCAL-style verification in C; similar
techniques might improve the productivity of Rust system
software verification too.

8 Conclusion

In this paper, we present MIRVerif, our verification frame-
work of idiomatic Rust code with pointers, and use it verify
the page table implementation of HyperEnclave. MIRVerif is
based on the CCAL framework and extended to Rust, and
we establish a lightweight formal semantics for MIR. During
the proof we develop ways to handle Rust complexities like
pointers, and we manage to rely on language-provided safety
to simplify our proofs. In the end we prove that HyperEn-
clave faithfully implements spatial isolation formulated by
our noninterference theorem.

9 Acknowledgements

We thank the anonymous reviewers, and our shepherd, Gus-
tavo F. Petri, for their helpful feedback. This research was
supported by Ant Group Research Intern Program, and the
National Natural Science Foundation of China (grant num-
bers U19A2060).

References

[1] Cve - cve-2021-33478. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-33478, 2021.

[2] Cve - cve-2021-33478. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-30338, 2021.

[3] A PLT redex model of MIR and its type system. https://github.com/

[4

—_
(=)
—

—
~
—

—_
(o)
—

[10
(11
[12
[13
(14

[15

(16

[17

[18

[19

[20

[23

[24

]

[

—

]
]
]
]

—_

—

—

[t

—

—

[t

=

nikomatsakis/a-mir-formality, 2022.

Cloud Hypervisor - Run Cloud Virtual Machines Securely and Effi-
ciently. https://www.cloudhypervisor.org/, 2022.

crosvm - the chrome OS virtual machine monitor. https://github.com/
google/crosvm, 2022.

Diosix hypervisor. https://diosix.org/, 2022.

Kani rust verifier. https://github.com/model-checking/kani, 2022.
Linus Torvalds: Rust For The Kernel Could Possibly Be Merged For
Linux 5.20. https://www.phoronix.com/scan.php?page=news_item&
px=Rust-For-Linux-5.20-Possible/, 2022.

Llvm: lib/transforms/utils/mem2reg.cpp source file. https://llvm.org/
doxygen/Mem2Reg_8cpp_source.html, 2022.

Ltac — coq 8.15.2 documentation. https://coq.inria.fr/refman/proof-
engine/ltac.html, 2022.

Redox - your next(gen) os - redox - your next(gen) os. https://www.
redox-os.org/, 2022.

AMD Secure Encrypted Virtualization (SEV) | AMD. https://www.amd.
com/en/developer/sev.html, 2023.

Nitro Enclaves. https://aws.amazon.com/ec2/nitro/nitro-enclaves/,
2023.

Thaynara Alves and D. Felton. Trustzone: Integrated hardware and
software security. 01 2004.

Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J. Sum-
mers. Leveraging rust types for modular specification and verification.
Proc. ACM Program. Lang., 3(OOPSLA), oct 2019.

Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank Piessens, and
Raoul Strackx. Telling your secrets without page faults: Stealthy page
table-based attacks on enclaved execution. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1041-1056, Vancouver, BC,
August 2017. USENIX Association.

Shao-Fu Chen and Yu-Sung Wu. Linux kernel module development
with rust. In 2022 IEEE Conference on Dependable and Secure Computing
(DSC), pages 1-2, 2022.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-c: A software analysis
perspective. In Proceedings of the 10th International Conference on
Software Engineering and Formal Methods, SEFM’12, page 233-247,
Berlin, Heidelberg, 2012. Springer-Verlag.

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot: a
foundry for the deductive verification of rust programs. In International
Conference on Formal Engineering Methods, pages 90-105. Springer,
2022.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP *17, page 287-305, New York, NY,
USA, 2017. Association for Computing Machinery.

Ant Group. Hyperenclave open source release. https://github.com/
HyperEnclave/hyperenclave, July 2023.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung
Kim, Vilhelm Sj6berg, and David Costanzo. CertiKOS: An extensible
architecture for building certified concurrent OS kernels. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(0SDI 16), pages 653-669, 2016.

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,
Jérémie Koenig, Vilhelm Sj6berg, Hao Chen, David Costanzo, and
Tahina Ramananandro. Certified concurrent abstraction layers. SIG-
PLAN Not., 53(4):646-661, jun 2018.

Yuekai Jia, Shuang Liu, Wenhao Wang, Yu Chen, Zhengde Zhai,
Shoumeng Yan, and Zhengyu He. HyperEnclave: An open and cross-
platform trusted execution environment. In 2022 USENIX Annual Tech-
nical Conference (USENLX ATC 22), Carlsbad, CA, July 2022. USENIX
Association.

14

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: Securing the foundations of the rust programming language.
Proc. ACM Program. Lang., 2(POPL), dec 2017.

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. Sel4: Formal verification of an operating-system kernel.
Commun. ACM, 53(6):107-115, jun 2010.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
CakeML: A verified implementation of ML. In Principles of Program-
ming Languages (POPL), pages 179-191. ACM Press, January 2014.
Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
Verus: Verifying rust programs using linear ghost types. Proceedings
of the ACM on Programming Languages, 7(O0OPSLA1):286-315, 2023.
Xavier Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107-115, 2009.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kb
computer safely and efficiently. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, page 234-251, New York,
NY, USA, 2017. Association for Computing Machinery.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui.
A secure and formally verified linux kvm hypervisor. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 1782-1799, 2021.
Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh,
Yousuf Sait, and Gareth Stockwell. Design and verification of the
arm confidential compute architecture. In 16th USENLX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages
465-484, Carlsbad, CA, July 2022. USENIX Association.

Xupeng Li, Xuheng Li, Wei Qiang, Ronghui Gu, and Jason Nieh.
Spoq: Scaling Machine-Checkable systems verification in coq. In 17th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23), pages 851-869, Boston, MA, July 2023. USENIX Association.
Marcus Lindner, Jorge Aparicius, and Per Lindgren. No panic! veri-
fication of rust programs by symbolic execution. In 2018 IEEE 16th
International Conference on Industrial Informatics (INDIN), pages 108
114. IEEE, 2018.

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek
Dreyer. Rusthornbelt: A semantic foundation for functional verifica-
tion of rust programs with unsafe code. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2022, page 841-856, New York, NY, USA,
2022. Association for Computing Machinery.

Vikram Narayanan, Marek S. Baranowski, Leonid Ryzhyk, Zvonimir
Rakamari¢, and Anton Burtsev. Redleaf: Towards an operating system
for safe and verified firmware. In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS ’19, page 37-44, New York, NY,
USA, 2019. Association for Computing Machinery.

Jan Nordholz. Design of a symbolically executable embedded hypervi-
sor. In Proceedings of the Fifteenth European Conference on Computer
Systems, EuroSys "20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

Eric C. Reed. Patina : A formalization of the rust programming lan-
guage. 2015.

Grigore Rosu. K: A semantic framework for programming languages
and formal analysis tools. In Dependable Software Systems Engineering,
2017.

John Rushby. Noninterference, transitivity, and channel-control security
policies. SRI International, Computer Science Laboratory Menlo Park,
1992.

Matthias Schunter. Intel software guard extensions: Introduction and
open research challenges. In Proceedings of the 2016 ACM Workshop
on Software PROtection, SPRO ’16, page 1, New York, NY, USA, 2016.

[42]

(45]

[46]

(47]

(48]

(49]

Association for Computing Machinery.

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and
Ronghui Gu. Formal verification of a multiprocessor hypervisor on
arm relaxed memory hardware. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21, page 866-881,
New York, NY, USA, 2021. Association for Computing Machinery.
Miri team. Miri. https://github.com/rust-lang/miri, 2021.

Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James
Newsome, and Anupam Datta. Design, implementation and verifi-
cation of an extensible and modular hypervisor framework. In IEEE
Symposium on Security and Privacy, 2013.

Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang. Krust:
A formal executable semantics of rust. In 2018 International Symposium
on Theoretical Aspects of Software Engineering (TASE), pages 44-51,
2018.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel haz-
ards in SGX. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2421-2434, 2017.
Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. Ox-
ide: The essence of rust. arXiv preprint arXiv:1903.00982, 2019.

Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R.
Lyu. Memory-safety challenge considered solved? an in-depth study
with all rust cves. ACM Trans. Softw. Eng. Methodol., 31(1), sep 2021.
Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.
In 2015 IEEE Symposium on Security and Privacy, pages 640-656. IEEE,
2015.

15

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of HyperEnclave
	2.2 Threat Model
	2.3 Retrofitting HyperEnclave to Verification

	3 The MIRVerif framework
	3.1 Formalizing the Rust Semantics
	3.2 Leveraging Language Guarantees for Verification
	3.3 Importing MIR into Coq: mirlightgen
	3.4 Integrating Rust Semantics with Layered Verification

	4 Proving Functional Correctness
	4.1 Functional Correctness Proofs for Page Tables
	4.2 The Trusted Layer
	4.3 Code Proof
	4.4 Tuning Verification Coverage

	5 Proving Security Properties for HyperEnclave
	5.1 System Transitions
	5.2 Page Table Invariants
	5.3 Proof of Noninterference
	5.4 Sharing and Declassification with Data Oracles

	6 Evaluation
	6.1 Threats to Validity

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

