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Abstract

Dictionary learning (DL), implemented via matrix factorization (MF), is commonly used in

computational biology to tackle ubiquitous clustering problems. The method is favored due

to its conceptual simplicity and relatively low computational complexity. However, DL algo-

rithms produce results that lack interpretability in terms of real biological data. Additionally,

they are not optimized for graph-structured data and hence often fail to handle them in a

scalable manner.

In order to address these limitations, we propose a novel DL algorithm called online con-

vex network dictionary learning (online cvxNDL). Unlike classical DL algorithms, online

cvxNDL is implemented via MF and designed to handle extremely large datasets by virtue of

its online nature. Importantly, it enables the interpretation of dictionary elements, which

serve as cluster representatives, through convex combinations of real measurements.

Moreover, the algorithm can be applied to data with a network structure by incorporating

specialized subnetwork sampling techniques.

To demonstrate the utility of our approach, we apply cvxNDL on 3D-genome RNAPII

ChIA-Drop data with the goal of identifying important long-range interaction patterns (long-

range dictionary elements). ChIA-Drop probes higher-order interactions, and produces data

in the form of hypergraphs whose nodes represent genomic fragments. The hyperedges

represent observed physical contacts. Our hypergraph model analysis has the objective of

creating an interpretable dictionary of long-range interaction patterns that accurately repre-

sent global chromatin physical contact maps. Through the use of dictionary information, one

can also associate the contact maps with RNA transcripts and infer cellular functions.

To accomplish the task at hand, we focus on RNAPII-enriched ChIA-Drop data from Dro-

sophila Melanogaster S2 cell lines. Our results offer two key insights. First, we demonstrate

that online cvxNDL retains the accuracy of classical DL (MF) methods while simultaneously

ensuring unique interpretability and scalability. Second, we identify distinct collections of

proximal and distal interaction patterns involving chromatin elements shared by related
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processes across different chromosomes, as well as patterns unique to specific chromo-

somes. To associate the dictionary elements with biological properties of the corresponding

chromatin regions, we employ Gene Ontology (GO) enrichment analysis and perform multi-

ple RNA coexpression studies.

Author summary

We introduce a novel method for dictionary learning termed online convex Network Dic-
tionary Learning (online cvxNDL). The method operates in an online manner and utilizes

representative subnetworks of a network dataset as dictionary elements. A key feature of

online cvxNDL is its ability to work with graph-structured data and generate dictionary

elements that represent convex combinations of real data points, thus ensuring

interpretability.

Online cvxNDL is used to investigate long-range chromatin interactions in S2 cell lines

of Drosophila Melanogaster obtained through RNAPII ChIA-Drop measurements repre-

sented as hypergraphs. The results show that dictionary elements can accurately and effi-

ciently reconstruct the original interactions present in the data, even when subjected to

convexity constraints. To shed light on the biological relevance of the identified dictionar-

ies, we perform Gene Ontology enrichment and RNA-seq coexpression analyses. These

studies uncover multiple long-range interaction patterns that are chromosome-specific.

Furthermore, the findings affirm the significance of convex dictionaries in representing

TADs cross-validated by imaging methods (such as 3-color FISH (fluorescence in situ

hybridization)).

Introduction

Dictionary learning (DL) is a widely used method in learning and computational biology for

approximating a matrix through sparse linear combinations of dictionary elements. DL has

been used in various applications such as clustering, denoising, data compression, and extract-

ing low-dimensional patterns [1–8]. For example, DL is used to cluster data points since dic-

tionary elements essentially represent centroids of clusters. DL can perform denoising by

combining only the highest-score dictionary elements to reconstruct the input; in this case, the

low-score dictionary elements reflect the distortion in the data due to noise. DL can also per-

form efficient data compression by storing only the dictionary elements and associated weights

needed for reconstruction. In addition, DL can be used to extract low-dimensional patterns

from complex high-dimensional inputs.

However, standard DL methods [9, 10] suffer from interpretability and scalability issues

and are primarily applied to unstructured data. To address interpretability issues for unstruc-

tured data, convex matrix factorization was introduced in [11]. Convex matrix factorization

requires that the dictionary elements be convex combinations of real data points, thereby

introducing a constraint that adds to the computational complexity of the method. At the

same time, to improve scalability, DL and convex DL algorithms can be adapted to online

settings [12, 13]. Network DL (NDL), introduced in [14], operates on graph-structured data

and samples subnetworks via Markov Chain Monte Carlo (MCMC) methods [14–16] to effi-

ciently and accurately identify a small number of subnetwork dictionary elements that best

explain subgraph-level interactions of the entire global network. These dictionary elements
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learned by the original NDL algorithm only provide ‘latent’ subgraph structures that are not

necessarily associated with specific subgraphs in the network. When applied to gene interac-

tion networks, such latent subnetworks cannot be associated with specific genomic regions

or viewed as physical interactions between genomic loci, making the method biologically

uninterpretable.

To address the shortcoming of online NDL, we propose online cvxNDL, a novel NDL

method that combines the MCMC sampling technique from [14] with convexity constraints

on the matrix representation of sampled subnetworks. These constraints are handled through

the concept of “dictionary element representatives,” which are essentially adjacency matrices

of real subnetworks of the input network. The representatives are used as building blocks of

actual dictionary elements. More precisely, dictionary elements are convex combinations of

small subsets of representatives. This allows us to map the dictionary element entries to actual

genomic regions and view them as real physical interactions. The online learning component

is handled via sequential updates of the best choice of representative elements, complementing

the approach proposed in [13] for unstructured data. This formulation ensures interpretability

of the results and allows for scaling to large datasets.

The utility of online cvxNDL is demonstrated by performing an extensive analysis of 3D

chromatin interaction data generated by the RNAPII ChIA-Drop [17] technique. Chromatin

3D structures play a crucial role in gene regulation [18, 19] and have traditionally been mea-

sured using “bulk” sequencing methods, such as Hi-C [20] and ChIA-PET [21, 22]. However,

due to the proximity ligation step, these methods can only capture pairwise contacts and fail to

extract potential multiway interactions that exist in the cell. Further, these methods operate on

a population of millions of molecules and therefore only provide information about popula-

tion averages. ChIA-Drop, by contrast, mitigates these issues by employing droplet-based bar-

code-linked sequencing to capture multiway chromatin interactions at the single-molecule

level, enabling the detection of short- and long-range interactions involving multiple genomic

loci. Note that, more specifically, RNAPII ChIA-Drop data elucidates interactions among reg-

ulatory elements such as enhancers and promoters, which warrants contrasting/combining it

with RNA-seq data.

The cvxNDL method is first tested on synthetic data, and, subsequently, on real-world

RNAPII ChIA-Drop data pertaining to chromosomes of Drosophila Melanogaster Schneider 2

(S2) phagocytic cell lines (Due to the limited number of complete ChIA-Drop datasets, we

only report findings for cell-lines also studied in [17]). For simplicity, we henceforth refer to

the latter as ChIA-Drop data (Our method is designed to handle multiway interactions gener-

ated by ChIA-Drop experiments and to generate dictionary elements that capture fundamental

chromatin interactions. However, it can also be directly applied to other conformation maps,

including Hi-C matrices, but without the hypergraph preprocessing steps). Our findings are

multi-fold.

First, we provide dictionary elements that can be used to represent chromatin interactions

in a succinct and highly accurate manner.

Second, we discover significant differences between the long-range interactions captured

by dictionary elements of different chromosomes. These differences can also be summarized

via the average distance between interacting genomic loci and the densities of interactions.

Third, we perform Gene Ontology (GO) enrichment analysis to gain insights into the col-

lective functionality of the genomic regions represented by the dictionary elements of different

chromosomes. As an example, for chromosomes 2L and 2R, our GO enrichment analysis

reveals significant enrichment in several important terms related to reproduction, oocyte dif-

ferentiation, and embryonic development. Likewise, chromosomes 3L and 3R are enriched in

key GO terms associated with blood circulation and response to heat and cold.
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Fourth, to further validate the utility of the dictionary elements, we perform an RNA-Seq

coexpression analysis using data from independent experiments conducted on Drosophila
Melanogaster S2 cell lines, available through the NCBI Sequence Read Archive [23]. We show

that genes associated with a given dictionary element exhibit high levels of coexpression, as val-

idated on TAD interactions T1-T4 and R1-R4 [17]. Notably, a small subset of our dictionary

elements is able to accurately represent these TAD regions and their multiway interactions,

confirming the capability of our method to effectively capture complex patterns of both short-

and long-range interactions. In addition, we map our dictionary elements onto interaction

networks, including the STRING protein-protein interaction network [24], as well as large

gene expression repositories like FlyMine. We observe closely coordinated coexpression

among the identified genes, further supporting the biological relevance of the identified dictio-

nary elements.

With its unique features, our new interpretable method for dictionary learning adds to the

growing literature on machine learning approaches that aim to elucidate properties of chroma-

tin interactions [25–28].

Results and discussion

We first provide an intuitive, high-level overview of the steps of the interpretable dictionary

learning method, as illustrated in Fig 1. The figure describes the most important global ideas

behind our novel online cvxNDL pipeline. A rigorous mathematical formulation of the prob-

lem and relevant analyses are delegated to the Methods Section, while detailed algorithmic

methods are available in Section B in S1 Text.

Chromatin interactions are commonly represented as contact maps. A contact map can be

viewed as a hypergraph, where nodes represent genomic loci and two or more such nodes are

connected through hyperedges to represent experimentally observed multiway chromatin

interactions. Since it is challenging to work with hypergraphs directly, the first step is to trans-

form a hypergraph into an ordinary network (graph), which we tacitly assume is connected.

For this purpose, we employ clique expansion [29, 30], as shown in Fig 1B. Clique expansion

converts a hyperedge into a clique (a fully connected network) and therefore preserves all

interactions encapsulated by the hyperedge. However, large hyperedges covering roughly 10 or

more nodes in the network can introduce distortion by creating new cliques that do not corre-

spond to any multiway interaction, as shown in Fig 1C [31]. The frequency of such large

hyperedges and the total number of hyperedges in chromatin interaction data is limited (i.e.,

the hypergraph is sparse, see Table A in S1 Text). This renders the distortion due to the hyper-

graph-to-network conversion process negligible.

To generate an online sample from the clique-expanded input network, we use a subnet-

work sampling procedure shown in Fig 1D. We consider a small template network consisting

of a fixed number of nodes and search for induced subnetworks in the input that contain the

template network topology. These induced subnetworks can be rigorously characterized via

homomorphisms and are discussed in detail in the Methods Section. An example of a homo-

morphism is shown in Fig 1D. Throughout our analysis, we will exclusively focus on path
homomorphisms because they are most suitable for the biological problem investigated. To

generate a sequence of online samples from the input network, we employ MCMC sampling.

Given a path sample at discrete time t, the next sample at time t + 1 is generated by selecting a

new node uniformly at random from the neighborhood of the sample at time t and calculating

its probability of acceptance β, explained in the Methods Section. If this new node is accepted,

we perform a directed random walk starting at the selected node, otherwise, we restart the ran-

dom walk from the first node of the sample at time t. Note that the input network is undirected
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while only the sampling method requires a directed walk as the order of the labeled nodes mat-

ters. (see Fig 1E).

MCMC sampling is used to generate a sequence of samples to initialize a dictionary with K
dictionary elements, where K is chosen based on the properties of the dataset. Each of the dic-

tionary elements is represented as a convex combination of a small (sparse) set of representa-
tives that are real biological observations. The convex hull of these representatives is termed

the representative region of the dictionary element. As a result, the vertices of the representative

regions comprise a collection of MCMC-generated real-world samples. Fig 2A shows the orga-

nization of a dictionary as a collection of dictionary elements, representatives, and representa-

tive regions.

After initialization, we perform iterative optimization of the DL objective function using

online samples, again generated via the MCMC method. More precisely, at each iteration, we

compute the distance between the new sample and every current estimate of dictionary

Fig 1. (a) Workflow of the dictionary learning method. Multiway (multiplexed) chromatin interactions represented as

hyperedges are clique expanded into standard networks and combined to create input networks for the algorithm.

MCMC subnetwork sampling is then used to generate samples for initialization and online updates during iterative

optimization of the objective function, resulting in convex dictionary elements. (b) Illustration of the clique expansion

process. Hyperedges are subsets of indexed nodes shaded with the same color. (c) Illustration of clique expansion

distortion. There is no hyperedge including nodes 3, 5, and 8 (colored red), and this 3-clique only exists due to shared

nodes/edges of “real” hyperedges. Such distortion is negligible when the number of large hyperedges is limited. (d)

Subnetwork sampling and the notion of a motif homomorphism. These correspond to subnetworks of the input

network induced by a fixed number of nodes that contain a template motif topology. The set of homomorphisms

HomðF;GÞ for a network G and the template network F are defined in the Methods Section (Eq 7). Also depicted are an

example homomorphism x 2 HomðF;GÞ and its induced adjacency matrix Ax for an input network G with 9 nodes.

The template F is a star network on 4 nodes. In the adjacency matrix, a black field indicates 1, while a white field

indicates 0. (e) Workflow of the MCMC sampling algorithm for path homomorphisms. Given a sample x t at time t,
obtained via a directed random walk from an initial state in the input network, x t½1�, we generate a sample x t þ 1 at

time t + 1 by choosing uniformly at random a node v from the neighborhood of x t ½1� (marked in green) and

calculating a probability of acceptance β. If node v is accepted, we initiate a new directed random walk from v,

otherwise, we restart a directed random walk from x t½1� to generate a new sample.

https://doi.org/10.1371/journal.pcbi.1012095.g001
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elements. Subsequently, we assign the sample to the representative region of the nearest dictio-

nary element, which leads to an increase in the size of the set of representatives associated with

the dictionary element. From this expanded set of representatives, we carefully select one rep-

resentative for removal, maximizing the improvement in the quality of our dictionary element

and the objective function. It is possible that the removed representative is the newly added

data sample assigned to the representative region. In this case, the dictionary element remains

unchanged. Otherwise, it is obtained as a convex combination of the updated set of representa-

tives. After observing sufficiently many online samples, the algorithm converges to an accurate

set of dictionary elements or the procedure terminates without convergence (in which case we

declare a failure and restart the learning process). In our experiments, we never terminated

with failure, but due to the lack of provable convergence guarantees for real-world datasets,

such scenarios cannot be precluded. The update procedure is shown in Fig 2B.

Fig 2. (a) Organization of a dictionary comprising K dictionary elements that are convex combinations of real

representative subnetworks. Each dictionary element itself is a sparse convex combination of a set of representatives

which are small subnetworks of the input real-world network. In the example, there are 6 options for the

representatives, and inclusion of a representative into a dictionary element is indicated by a colored entry in a

6-dimensional indicator column-vector. Each of the 6 representatives corresponds to a subnetwork of the input

network with a fixed number of nodes (3 for our example). The dictionary element is generated by a convex

combination of the corresponding adjacency matrices of its corresponding representative subnetworks. For the

example, the resulting dictionary elements are 9 × 9 matrices. (b) Illustration of the representative region update.

When an online data sample is observed, the distance of the sample to each of the current dictionary elements is

computed and the sample is assigned to the representative region of the nearest dictionary element. From this

expanded set of representatives, one representative is carefully selected for removal to improve the objective. The new

dictionary element is then obtained as an optimized convex combination of the updated set of representatives.

https://doi.org/10.1371/journal.pcbi.1012095.g002

PLOS COMPUTATIONAL BIOLOGY Online cvxNDL for inferring long-range chromatin interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012095 May 16, 2024 6 / 24

https://doi.org/10.1371/journal.pcbi.1012095.g002
https://doi.org/10.1371/journal.pcbi.1012095


We applied the method outlined above to RNAPII-enriched ChIA-Drop data from Dro-
sophila Melanogaster S2 cells, using a dm3 reference genome [17], to learn dictionaries of chro-

matin interactions. Fig 3 provides an illustration of the ChIA-Drop pipeline.

We preprocessed the RNAPII ChIA-Drop data to remove fragments mapped to the repeti-

tive regions in the genome and performed an MIA-Sig enrichment test with FDR 0.1 [32].

Only the hyperedges that passed this test were used in subsequent analysis. The highest inter-

action resolution of our method is dictated by the technology used to generate the data. Since

ChIA-Drop experiments involved genomic fragments of length� 630 bases [17], we binned

chromosomal genetic sequences into fragments of 500 bases each and used the midpoint of

each fragment for distance evaluations and dictionary element mappings onto chromatin

order. These bins of 500 consecutive bases form the nodes of the hypergraph for each chromo-

some, while the set of filtered multiway interactions form the hyperedges. The dataset hence

includes 45, 938, 42, 292, 49, 072, and 55, 795 nodes and 36, 140, 28, 387, 53, 006, 45, 530

hyperedges for chromosome chr2L, chr2R, chr3L and chr3R respectively. The distribution of

the hyperedge sizes is given in Table A in S1 Text. To create networks from hypergraphs, we

converted the multiway interactions into cliques. The clique-expanded input network has 113,

606, 85, 316, 161, 590, and 143, 370 edges respectively. Although the ChIA-Drop data com-

prises interactions from six chromosomes chr2L, chr2R, chr3L, chr3R, chr4 and chrX, since

chr4 and chrX are relatively short regions and most of the functional genes are located on

chr2L, chr2R, chr3L, and chr3R, we focus our experiments only on the latter.

In the analyses, we fix the number of dictionary elements to K = 25. Clearly, other genomic

datasets may benefit from a different choice of the parameter K, which has to be fine-tuned for

each different dataset. Also, as template subnetworks, we use paths, since paths are the simplest

and most common network motifs, especially in chromatin interaction data (most contact

measurements are proximal due to the linear chromosome order). We select paths of length 21

nodes (i.e., 21 × 500 bases). Once again, both the choice of the subnetwork (motif) and its

number of constituent nodes is data dependent. The detailed explanation below justifies our

parameter choices for the Drosophila dataset.

The typical range of long-range interactions in chromatin structures depends on the spe-

cies/reference genome. For Drosophila Melanogaster, TADs are 10, 000–100, 000 bases long,

while loops are usually (much) shorter than 10, 000 bases [17, 33]. This suggests using 10, 000

bases as an approximate lower bound for the length of long-range interactions. In addition,

within the network itself, the size of the genomic bins dictates what path lengths correspond to

long-range interactions. This influences the length of sampling motifs chosen for the MCMC

sampling step—the sampled paths should be long enough to capture long-range interactions.

Paths of length 21 nodes result in 21 × 500 = 10, 500 bases in the chromosome, which in turn

amounts to a length of approximately 10, 000 bases. Additionally, the choice for the path-

length also controls the trade-off between the number of representatives and their size. With a

choice of path-length as above, we have to draw 20, 000 MCMC samples to cover all the nodes

Fig 3. Generation of ChIA-Drop data. ChIA-Drop [17] adopts a droplet-based barcode-linked technique to reveal

multiway chromatin interactions at a single molecule level. Chromatin samples are crosslinked and fragmented

without a proximity ligation step. The samples are enriched for informative fragments through antibody pull-down.

https://doi.org/10.1371/journal.pcbi.1012095.g003
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(chromatin fragments) in the dataset. This is evidenced by Fig D in S1 Text which plots the

number of MCMC samples needed for given percentages of node coverage.

Similarly, the choice for K, the number of dictionary elements used, also depends on the

dataset. Promoters and enhancers only constitute a very small fraction of the entire length of

noncoding DNA. Studies indicate the existence of 10, 000 to 12, 000 such regions in the Dro-
sophila genome, with each region being 100–1000 bases in length [34, 35]. Working with the

upper range of values, we arrive at a total length upper bounded by 12, 000 × 1, 000 = 12, 000,

000 bases for the promoter/enhancer regions (one should compare this to the total length of

the genome, which equals 180, 000, 000 bases). With K = 25 for each of the 4 chromosomes,

the dictionary elements will cover approximately 4 × 25 × 10 × 10, 000 = 10, 000, 000 bases

which is close to the (loose) upper-bound estimate for the total length of the promoter/

enhancer regions.

As a final remark, performing a multidimensional grid search for hyperparameters may be

computationally prohibitive. Also, the procedure outlined above relies on solid biological side-

information.

MCMC sampling for initialization, as well as for subsequent online optimization steps, was

performed before running the online optimization process to improve the efficiency of our

implementation. We sampled 20, 000 subnetworks from each of the four chromosomes to

ensure sufficient coverage of the input network. From this pool of subnetworks, we randomly

selected 500 subnetworks to initialize our dictionaries, ensuring that each dictionary element

had at least 10 representatives (which suffice to get quality initializations for the dictionary ele-

ments themselves). Each online step involved sampling an additional subnetwork and we iter-

ated this procedure up to 1 million times, as needed for convergence (see Fig 1A).

At this point, it is crucial to observe that the dictionary elements learned by online cvxNDL

effectively capture long-range interactions because each dictionary element may include distal

genomic regions that are not adjacent in the genomic order. In other words, the diagonal

entries of our dictionary elements do not exclusively represent consecutive genomic regions as in

standard chromatin contact maps; instead, they may include both nonconsecutive (long-

range) and consecutive (short-range, adjacent) interactions. This point is explained in detail in

Fig 4. Another relevant remark is that without the convexity constraint, dictionary element

entries could not have been meaningfully mapped back (associated) to genomic regions and

viewed as real physical interactions between genomic loci.
The dictionary elements generated from the Drosophila ChIA-Drop data for chr2L, chr2R,

chr3L, and chr3R using the online cvxNDL method are shown in Fig 5. Each subplot corre-

sponds to one chromosome and has 25 dictionary elements ordered with respect to their

importance scores, capturing the relevance and frequency of use of the dictionary element, and

formally defined in the Methods Section. Each element is color-coded based on the genomic

locations covered by their representatives. Hence, dictionary elements represent combinations

of experimentally observed interaction patterns, uniquely capturing the significance of the

genomic locations involved in the corresponding interactions. We also report the density and

median distance between all consecutive pairs of interacting loci (connected nodes) of all dic-

tionary elements in Tables B and C in S1 Text.

Note that our algorithm is the first method for online learning of convex (interpretable)

network dictionaries. We can therefore only compare its representation accuracy to that of

nonnegative matrix factorization (NMF), convex matrix factorization (CMF), and online net-

work dictionary learning (online NDL). A comparison of the dictionaries formed through

online cvxNDL and the aforementioned methods for chr2L is provided in Fig 6.

Classical NMF does not allow the mapping of results back to real interacting genomic

regions. While the dictionary elements obtained via CMF are interpretable, they tend to mostly

PLOS COMPUTATIONAL BIOLOGY Online cvxNDL for inferring long-range chromatin interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012095 May 16, 2024 8 / 24

https://doi.org/10.1371/journal.pcbi.1012095


comprise widely spread genomic regions since they do not use the network information. The

dictionary elements generated by online cvxNDL have smaller yet relevant spreads that are

more likely to capture meaningful long-range interactions. In contrast to online cvxNDL, both

NMF and CMF are not scalable to large datasets, rendering them unsuitable for handling cur-

rent and future high-resolution datasets such as those generated by ChIA-Drop. Compared to

online NDL, online cvxNDL also has a more balanced distribution of importance scores. For

example, in Fig 6B, dict_0 has score 0.459, while the scores in Fig 6D are all� 0.085. Moreover,

akin to standard NMF, NDL fails to provide interpretable results since the dictionary elements

cannot be mapped back to real interacting genomic loci.

Note that our approach is inherently an NMF-based method adapted for networks to

ensure scalability, via its online nature, and interpretability, based on its convexity constraints.

Besides scalability and interpretability, all the limitations of general NMF methods carry over

to our method. For example, NMF approaches can be sensitive to initialization. Selection of

the number of elements (or the rank of NMF) requires domain knowledge as well as heuristic

search and testing. A wrong choice of the rank can lead to underfitting or overfitting the data.

Furthermore, NMF does not guarantee a unique solution.

Results for other chromosomes are reported in Section D in S1 Text. Recall that both online

cvxNDL and online NDL use a k-path as the template.

Reconstruction accuracy

Once a dictionary is constructed, one can use the network reconstruction algorithm from [15]

to recover a subnetwork or the whole network by locally approximating subnetworks via dic-

tionary elements. The accuracy of approximation in this case measures the “expressibility” of

the dictionary with respect to the network. All methods, excluding randomly generated dictio-

naries used for illustrative purposes only, can accurately reconstruct the input network. For a

Fig 4. A dictionary element, represented as a matrix, consists of both proximal and distal interacting genomic

regions. The elements on the diagonal are not necessarily indexed by adjacent (consecutive) genomic fragments, as

explained by the example in the second row. There, off-diagonal long-range interactions in the 9 × 9 matrix are

included in a 3 × 3 dictionary element whose diagonal elements are not in consecutive order.

https://doi.org/10.1371/journal.pcbi.1012095.g004
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Fig 5. Dictionary elements for Drosophila chromosomes 2L, 2R, 3L and 3R obtained using online cvxNDL. Each

subplot contains 25 dictionary elements for the corresponding chromosome and each block in the subplots

corresponds to one dictionary element. The elements are ordered by their importance score. Note that the “diagonals”

in the dictionary elements do not exclusively represent localized topologically associated domains (TADs) as in

standard chromatin contact maps; instead, they can also capture long-range interactions. This is due to the fact that the

indices of the dictionary element matrices represent genomic regions that may be far apart in the genome. In contrast,

standard contact maps have indices that correspond to continuously ordered genomic regions, so that the diagonals

truly represent TADs (see Fig 4). The color-code captures the actual locations of the genomic regions involved in the

representatives and their dictionary elements. The most interesting dictionary elements are those that contain both

dark blue, light blue/green, and red colors (since they involve long-range interactions). This is especially the case for

chr3L and chr3R.

https://doi.org/10.1371/journal.pcbi.1012095.g005
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Fig 6. Dictionary elements for Drosophila chromosome chr2L generated by (A) NMF, (B) online NDL, (C) CMF

and (D) online cvxNDL. NMF and CMF are learned off-line, using a total of 20, 000 samples. Note that these

algorithms do not scale and cannot work with larger number of samples such as those used in online cvxNDL. The

color-coding is performed in the same manner as for the accompanying online cvxNDL results. Columns of the

dictionary elements in the second row are color-coded based on the genome locations of the representatives. As

biologically meaningful locations can be determined only via convex methods, the top row corresponding to NMF and

online NDL results is black-and-white.

https://doi.org/10.1371/journal.pcbi.1012095.g006
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quantitative assessment, the average precision-recall score for all methods is plotted in Table 1.

As expected, random dictionaries have the lowest scores across all chromosomes, while all

other methods are of comparable quality. This means that interpretable methods, such as our

online cvxNDL, do not introduce representation distortions (CMF also learns interpretable

dictionaries; however, it is substantially more expensive computationally when compared to

our method but does not ensure that network topology is respected). A zoomed-in sample-

based reconstruction result for chr2L is shown in Fig H in S1 Text, while the reconstruction

results for the entire contact maps of chr2L, chr2R, chr3L, and chr3R are available in Figs I-L

in S1 Text. Additionally, for synthetic (Stochastic Block Model (SBM)) data, Fig 7 shows the

reconstructed adjacency matrices for various dictionary learning methods, further confirming

the validity of findings for the chromatin data. More detailed results for synthetic SBM data

are available in Section C in S1 Text.

Gene Ontology enrichment analysis

As each dictionary element is associated with a set of representatives that correspond to real

observed subnetworks, their nodes can be mapped back to actual genomic loci. This allows

one to create lists of genes covered by at least one node included in the representatives.

To gain insights into the functional annotations of the genes associated with the dictionary

elements, we conducted a Gene Ontology (GO) enrichment analysis using the annotation cate-

gory “Biological Process” from https://urldefense.com/v3/__http://geneontology.org__;!!

DZ3fjg!4VWHhuROFHcJ1bWTZ8pNxUn75T-K3BfsdTvxM1iU1hXmSGX84JcRsXyIZZS0k

5Iaub9yNiansT9FS12EO52_OaGhnYs$, with the reference list Drosophila Melanogaster. This

analysis was performed for each dictionary element. Our candidate set for enriched GO terms

was selected with a false discovery rate (FDR) threshold of< 0.05. Note that the background

genes used for comparison are all genes from all chromosomes (the default option). We also

utilized the hierarchical structure of GO terms [36], where terms are represented as nodes in a

directed acyclic graph, and their relationships are described via arcs in the digraph (i.e., each

“child” GO term is more specific than its “parent” term and where one child may have multiple

parents).

We further refined our results by running additional processing steps. For each GO term,

we identified all the paths between the term and the root node and then removed any interme-

diate parent GO term from the enriched GO terms set. By iteratively performing this filtering

process for each dictionary element, we created a list of the most specific GO terms associated

with each element. More details about the procedure are available in Section F in S1 Text.

We report the most frequently enriched GO terms for each chromosome, along with the

corresponding dictionary elements exhibiting enrichment for chr3R in Fig 8. The results for

other chromosomes are available in Tables D, E, and F in S1 Text. Notably, the most frequent

Table 1. Average Precision Recall for different DL methods, for all chromosomes as well as SBM synthetic datasets. Methods that return interpretable dictionaries are

indicated by the superscript i while methods that are scalable to large datasets are indicated by the superscript s. Online cvxNDL is both interpretable and scalable while

maintaining performance on par with other noninterpretable and nonscalable methods.

chr2L chr2R chr3L chr3R Synthetic (SBM)

Online cvxNDLi, s 0.9954 0.9986 0.9830 0.9876 0.9747

Online NDLs 0.9955 0.9986 0.9834 0.9880 0.9728

NMF 0.9952 0.9985 0.9829 0.9873 0.9774

CMFi 0.9951 0.9985 0.9824 0.9870 0.9731

Random Dict. 0.0007 0.2547 0.5276 0.0796 0.1922

https://doi.org/10.1371/journal.pcbi.1012095.t001
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GO terms are related to regulatory functions, reflecting the significance of RNA Polymerase II.

We also observe that dictionary elements for chr2L and chr2R are enriched in GO terms asso-

ciated with reproduction and embryonic development. Similarly, chr3L and 3R are enriched

in GO terms for blood circulation and responses to heat and cold.

We report the number of GO terms associated with each dictionary element, along with

their importance scores in Tables J-M in S1 Text. Dictionary elements with higher importance

scores tend to exhibit a larger number of enriched GO terms while dictionary elements with 0

enriched GO terms generally have small importance scores.

Using the entire genome as the reference is an accepted approach for GO analysis. How-

ever, it can introduce a bias due to differences in the chromosomal architectures of various

chromosomes. We therefore performed an additional GO analysis where the genes within the

pertinent chromosome, rather than the whole genome, are used as a reference. We imple-

mented a Bonferroni correction and set the FDR to 0.05 (note that the results depend on the

multiple-hypothesis testing correction method used). The total number of enriched GO terms

across all online cvxNDL dictionaries for each of the 4 chromosomes 2L, 2R, 3L, and 3R equals

36, 19, 21, and 54, respectively.

Fig 7. Original adjacency matrix and reconstructed adjacency matrices based on different DL methods, for an example Stochastic Block Model

(SBM), including randomly selected dictionary elements. Both the x and y axes in the figures index the nodes of the synthetic network generated by the

stochastic block model (SBM). The nodes are reorganized to highlight the underlying community structure. For a more quantitative analytical accuracy

comparisons, see Table 1.

https://doi.org/10.1371/journal.pcbi.1012095.g007
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RNA-Seq coexpression analysis

The ChIA-Drop dataset [17] used in our analysis was accompanied by a single noisy RNA-Seq

replicate. To address this issue, we retrieved 20 collections of RNA-Seq data corresponding to

untreated S2 cell lines of Drosophila Melanogaster from the Digital Expression Explorer

(DEE2) repository. DEE2 provides uniformly processed RNA-Seq data sourced from the pub-

licly available NCBI Sequence Read Archive (SRA) [23]. The list of sample IDs is available in

Table N in S1 Text.

To ensure consistent normalization across all samples, we used the trimmed mean of M val-

ues (TMM) method [37], available through the edgeR package [38]. This is of crucial impor-

tance when jointly analyzing samples from multiple sources. We selected the most relevant

genes by filtering the list of covered genes and retaining only those with more than 95% over-

lap with the gene promoter regions, as defined in the Ensembl genome browser. Subsequently,

for each dictionary element, we collected all genes covered by it and then calculated the pair-

wise Pearson correlation coefficient of expressions of pairs of genes in the set. To visualize the

underlying coexpression clusters within the genes, we performed hierarchical clustering, the

results of which are shown in Section G in S1 Text and discussed next.

Additionally, we conducted control experiments by constructing dictionary elements

through random sampling of genes from the list of all genes on each of the chromosomes. For

these randomly constructed dictionaries, we carried out a coexpression analysis as described

above. We observed that the mean of coexpressions of all pairs of genes in a randomly con-

structed dictionary element is significantly lower compared to the mean of the online cvxNDL

dictionary elements. Specifically, for dictionary elements generated using online cvxNDL, the

mean coexpression values for all pairs of genes covered by the 25 dictionary elements, and for

each of the four chromosomes, 2L, 2R, 3L, and 3R, were found to be 0.419, 0.383, 0.411, and

0.407, respectively. The corresponding values for randomly constructed dictionaries were

Fig 8. The 5 most enriched GO terms for genes covered by dictionary elements from chr3R. Column ‘#’ indicates

the number of dictionary elements that show enrichment for the given GO term. Also reported are up to 3 dictionary

elements with the largest importance score in the dictionary, along with the “density” ρ of interactions in the

dictionary element (defined in the Methods section) and median distance dmed of all adjacent pairs of nodes in its

representatives.

https://doi.org/10.1371/journal.pcbi.1012095.g008
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found to be 0.333, 0.329, 0.323, and 0.337, respectively. To determine if these differences are

statistically significant, we employed the two-sample Kolmogorov-Smirnov test [39], compar-

ing the empirical cumulative distribution functions (ECDFs) of pairwise coexpression values

of the learned and randomly constructed dictionaries. The null hypothesis used was “the two

sets of dictionary elements are drawn from the same underlying distribution.” The null

hypotheses for all four chromosomes were rejected, with p-values equal to 3.6 × 10−9,

8.5 × 10−6, 3.6 × 10−9, and 2.5 × 10−7 for chr2L, chr2R, chr3L, and chr3R, respectively (see

Fig 9). This indicates that the learned dictionary elements indeed capture meaningful biologi-

cal patterns of chromatin interactions.

To further evaluate our results, we also examined the well-documented R1-R4 and T1-T4

TAD interactions on chr2L, reported in [17]. The results of the coexpression analysis for these

genomic regions are reported in Fig 10. The mean pairwise correlation between genes belong-

ing to the R1-R4 genomic regions equals 0.422, which is comparable to the mean value 0.419

of the results obtained via online cvxNDL. We also calculated the intersection of the set of

genes within the R1-R4 genomic regions and the set of genes covered by online cvxNDL dic-

tionary elements identified for chr2L. We observed that the top 5 online cvxNDL dictionary

elements cover 38 out of 85 genes in the R1-R4 genomic regions. This is to be contrasted with

the results for random dictionary elements, which cover only 7 genes. Table 2 describes these

and related findings in more detail.

We also mapped genes covered by our dictionary elements onto nodes of the STRING pro-

tein-protein interaction network [24]. These mappings allow us to determine the confidence

of pairwise gene interactions. These, and related results based on FlyMine [40] data, a large

gene expression repository for Drosophila Melanogaster, are available in Section G in S1 Text.

The rationale behind the STRING analysis is that gene fragments that are in physical con-

tact are likely to be involved in the same pathway. This hypothesis, as well as the hypothesis we

Fig 9. Empirical cumulative distribution functions (ECDF) of mean pairwise coexpressions of genes covered by

random and online cvxNDL dictionary elements ((a) for chr2L, (b) for chr2R, (c) for chr3L and (d) for chr3R).

The results are based on the two-sample Kolmogorov-Smirnov test, and the null hypothesis described in the main text.

https://doi.org/10.1371/journal.pcbi.1012095.g009
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Fig 10. Pairwise coexpression of genes covered by (a) the R1-R4 genomic regions, (b) the T1-T4 genomic regions, (c) an online cvxNDL dictionary

element, and (d) a randomly constructed dictionary element. We calculated the mean and standard deviation of absolute pairwise coexpression values,

and the mean and standard deviation of coexpression values specifically for all positively correlated gene pairs. The mean coexpression values within TADs

and dictionary elements are similar to each other and generally higher than those of randomly constructed dictionary elements. The x and y axis index

genes that belong to the respective TAD regions or a specific dictionary element. Note that the plot (b) is of coarser resolution due to the small number of

genes covered when compared to the cases (a), (c), (d).

https://doi.org/10.1371/journal.pcbi.1012095.g010
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used for RNA-Seq based validation that genes in high-frequency contact regions are co-

expressed is, still being investigated. While there is evidence to suggest that the formation of

loops causes coexpression of its gene constituents, the dynamic nature of chromatin folding

and the potential rewiring of chromatin contacts before transcription may make the relation-

ship more complex [18]. This is especially the case when some promoters act as enhancers dur-

ing transcription of proteins [41].

We provide further comparisons of CMF and online cvxNDL methods, the only two inter-

pretable methods, below. To ensure a fair comparison, we select the top 10 samples with the

largest convex weights that correspond to each of the CMF dictionary elements.

The total number of enriched GO terms across all online cvxNDL dictionaries for each of

the 4 chromosomes 2L, 2R, 3L, and 3R is 36, 19, 21, and 54, while the numbers for CMF are

17, 7, 2, and 26, respectively. Furthermore, although fine-grained GO term comparison is not

possible for the two sets (since there are many specializations of the same higher-level term),

we still see that important higher-level GO terms—such as protein folding, response to stimuli,

and metabolic and developmental processes—are shared by the two lists.

The mean pairwise co-expressions of genes covered by all 25 online cvxNDL and CMF dic-

tionary elements for each of the four chromosomes analyzed (and their standard deviation)

are shown in Table 3. Also, both CMF and online cvxNDL dictionaries significantly outper-

form random dictionary elements. Similarly, the mean confidence values of interactions

retrieved from the filtered STRING PPI network are reported in Table O in S1 Text. The

RNA-Seq and PPI network analysis indicates that the interpretable dictionaries from online

cvxNDL and CMF both perform similarly, while only online cvxNDL can scale to larger

datasets.

We also reconstructed the R1-R4 genomic regions identified in [17] using CMF dictionary

elements. We observe that the top 5 dictionary elements, with the 5-highest importance scores,

capture 15 of the 85 genes present in the R1-R4 genomic regions. This is to be compared to the

38 genes covered by the top 5 online cvxNDL dictionary elements and the 7 genes covered by

Table 2. Intersection between the set of genes within the R1-R4 genomic regions and the sets of genes covered by online cvxNDL dictionary elements for chr2L. We

determined the sizes of the intersections of the set of genes covered by each dictionary element and the genes in the R1-R4 genomic region and arranged them in decreas-

ing order. The top 5 dictionary elements in this order cumulatively contain 38 out of the 85 genes within the R1-R4 genomic regions. This is in sharp contrast with ran-

domly generated dictionary elements, where the top 5 elements with maximum intersection cover only 7 genes.

Online cvxNDL Random

Dictionary element id Intersection Cumulative Dictionary element id Intersection Cumulative

1 1 15 15 20 3 3

2 11 12 24 0 1 4

3 12 12 30 1 1 5

4 7 11 35 21 1 6

5 21 10 38 17 1 7

https://doi.org/10.1371/journal.pcbi.1012095.t002

Table 3. The mean pairwise co-expressions of genes (and their standard deviations) covered by all 25 online

cvxNDL and CMF dictionary elements for each of the four chromosomes.

Chromosome Online cvxNDL CMF

chr2L 0.419 (0.022) 0.407 (0.025)

chr2R 0.383 (0.020) 0.386 (0.017)

chr3L 0.411 (0.025) 0.413 (0.031)

chr3R 0.407 (0.024) 0.404 (0.026)

https://doi.org/10.1371/journal.pcbi.1012095.t003
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the top 5 random dictionary elements. All 25 CMF dictionary elements together cover 45

genes, and this number is comparable to that of 54 genes covered by all 25 online cvxNDL dic-

tionary elements. It is also significantly larger than the 11 genes covered by 25 random dictio-

nary elements.

Methods

Notation

Sets of consecutive integers are denoted by [l] = {1, . . ., l}. The symbolN is reserved for the nat-

ural numbers. Capital letters are reserved for matrices (bold font) and random variables (RVs)

(regular font). Vectors are denoted by lower-case underlined letters. For a matrix of dimension

d × n over the reals, A 2 Rd�n
, A[i, :] is used to denote the ith row and A[i, :] the ith column of

A. The entry in row i, column j is denoted by A[i, j]. Similarly, x ½l� is used to denote the lth

coordinate of a deterministic vector x 2 Rd. Furthermore, we use the standard notation for

the ℓ1 and Frobenius norm of matrices, kAk1 = ∑i,j |A[i,j]| and kAk2

F ¼
P

i;j A½i; j�
2
,

respectively.

A network G ¼ ð½n�;AÞ is an ordered pair of sets, the node set [n], and the set of edges rep-

resented by their adjacency matrix A. Our underlying assumption is that the network is con-

nected, which means that every node can be reached from every other node. Also, A[i, j] =

A[ j, i] 2 {0, 1}, indicating the presence or absence of an undirected edge between nodes i, j. In

addition, Col(A) stands for the set of columns of A, while cvx(A) stands for the convex hull of

Col(A).

Online DL

We first formulate the online DL problem. Assume that N input data samples are generated by

a random process and organized in matrices ðXtÞt2N 2 R
d�N

indexed by time t. For N = 1, Xt

reduces to a column vector that encodes a d-dimensional signal. Given an online, sequentially

observed data stream ðXtÞt2N, the goal is to find a sequence of dictionary matrices

ðDtÞt2N;Dt 2 R
d�K

, and codes ðΛtÞt2N;Λt 2 R
K�N

, such that when t!1 almost surely we

have

kXt �DtΛtk
2

F ! min
D;Λ

EXkX�DΛk2

F: ð1Þ

The expected loss in Eq 1 can be minimized by iteratively updating Λt and Dt every time a new

data sample Xt is observed. The approximation error of D for a single data sample X is chosen

as

lðX;DÞ ¼ min
Λ2RK�N

kX�DΛk2

F þ lkΛk1
: ð2Þ

The second term represents a sparsity-enforcing regularizer. Furthermore, the empirical ft and

surrogate loss f̂ t for D are defined as

ftðDÞ ¼ ð1� wtÞft�1ðDÞ þ wtlðXt;DÞ; t � 1; ð3Þ

f̂ tðDÞ ¼ ð1� wtÞf̂ t�1ðDÞ þ wtðkXt �DΛk2

F þ lkΛk1
Þ; ð4Þ

where the weight wt determines the sensitivity of the algorithm to the newly observed data.

The online DL algorithm first updates the code matrix Λt by solving Eq (2) with l(Xt, Dt−1),
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then updates the dictionary matrix Dt by minimizing (4) via

Dt ¼ arg min
D2Rd�r

ðTrðDAtD
TÞ � 2TrðDBtÞÞ; ð5Þ

where At ¼ ð1� wtÞAt�1 þ wtΛtΛ
T
t and Bt ¼ ð1� wtÞBt�1 þ wtΛtX

T
t are the aggregated his-

tory of the input data and their codes, respectively. For simplicity, we set wt ¼
1

t.

To add convexity constraints, we introduce for each dictionary element a representative set
(region) X̂ðiÞt 2 Rd�Ni ; i 2 ½K�; where Ni is the size of the representative set for dictionary ele-

ment Dt[:, i], and N ¼
PK

i¼1
Ni. The representative set for a dictionary element is a small sub-

collection of real data samples observed up to time t that best explain the dictionary element

they are assigned to. The set of representatives is updated after observing a sample, the inclu-

sion of which provides a better estimate of the dictionary element compared to the previous

set. Since the representative set is bounded in size, if a new sample is included, an already exist-

ing sample has to be removed (see Fig 2B). Formally, the optimization objective is of the form

min
D2cvxðX̂Þ;X̂

f̂ tðDÞ ¼ min
D2cvxðX̂Þ;X̂

1�
1

t

� �

f̂ t�1ðDÞ þ
1

t
kXt �DΛtk

2

F þ lkΛtk1

� �
: ð6Þ

MCMC sampling of subnetworks (sample generation)

For NDL, it is natural to let the columns of Xt be vectorized adjacency matrices of N subnet-

works. Hence one needs to efficiently sample meaningful subnetworks from a (large) network.

In image DL problems, samples can be generated directly from the image using adjacent rows

and columns. However, such a sampling technique cannot be applied to arbitrary network

data. Selecting nodes along with their one-hop neighbors at random may produce subnet-

works of vastly different sizes and the results do not capture meaningful long-range interac-

tions. It is also difficult to trim such subnetworks to uniform sizes. Furthermore, sampling a

fixed number of nodes uniformly at random from sparse networks produces disconnected

subnetworks with high probability and is not an acceptable approach either.

To address these problems, we consider “subnetwork sampling” introduced in [14, 15]

where we fix a template network F = ([k], AF) of k nodes and seek subnetworks induced by k
nodes in the input network G, with the constraint that the subnetwork contains (but does not

necessarily equals) the template F topology. Given an input network G ¼ ð½n�;AÞ and a tem-

plate network F = ([k], AF), we define a set of homomorphisms as a vector of the form

HomðF;GÞ ¼ x : ½k� ! ½n�

�
�
�
�
�

Y

1�i;j�k

A½x ½i�; x ½ j��AF ½i;j� ¼ 1

( )

; ð7Þ

where we by default assume that 00 = 1. For each homomorphism x 2 HomðF;GÞ, denote its

induced adjacency matrix by Ax , where Ax ½a; b� ¼ A½x ½a�; x ½b��, 1� a, b� k. The adjacency

matrix Ax represents one sample from the input network G. An example homomorphism is

shown in Fig 1D, where the input network G contains n = 9 nodes and the template network F
is a star network that contains k = 4 nodes. One proper homomorphism in this case is x ½a� ¼
9; x ½b� ¼ 6; x ½c� ¼ 4; x ½d� ¼ 7, which gives rise to an adjacency matrix Ax as depicted. A

homomorphism can be sampled using the rejection sampling algorithm presented in Section

B, Algorithm A in S1 Text. Our choice of template network, as already mentioned, is a k-path,

i.e., a path joining k nodes. Paths are a simple and natural choice for networks with long aver-

age path lengths, such as chromatin interaction networks. It is also the same choice of template
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used in standard NDL. As a final remark, we note that a k-path homomorphism leads to a sam-

ple of dimension d = k2, as we will flatten its k × k adjacency matrix into a single vector.

Although rejection sampling can be used repeatedly to generate several homomorphisms, it

is highly inefficient. To efficiently generate a sequence of sample adjacency matrices Axt
from

G, the MCMC sampling algorithm is used instead, while rejection sampling is only used to ini-

tialize the MCMC algorithm.

Next, for a homomorphism x t, let N ½x t½1�� (N for short) denote the set of neighbors of

x t½1�: We first choose a node v 2 N from the neighborhood of x t½1� uniformly at random, i.e.

with probability PðvÞ ¼ 1

jN j : We also calculate the probability of acceptance β for the selected

node v. For a k−path template used in our approach, the value of β is given by

b ¼ min
P

c2½n�A
k�1½v; c�

P
c2½n�Ak�1½x t½1�; c�

P
c2½n� A½x t½1�; c�
P

c2½n� A½v; c�
; 1

( )

; ð8Þ

following the guidelines from [14, 15].

Next, we draw a value u 2 [0, 1] uniformly at random. If u< β, we accept xðtþ1Þ½1� ¼ v, oth-

erwise we reject v and reset x ðtþ1Þ½1� ¼ x t½1�. We then perform a directed random walk from

x tþ1½1� of length equal to k − 1 to obtain x ðtþ1Þ½2�; . . . ; x ðtþ1Þ½k�. An illustration of the sampling

procedure is shown in Fig 1E, while the detailed algorithm is presented in Section B, Algo-

rithm B in S1 Text.

Online convex NDL (online cvxNDL)

We start by initializing the dictionary D0 and representative sets fX̂ðiÞ0 g; i 2 ½K�; for each dic-

tionary element. The algorithm for initialization is presented in Section B, Algorithm C in S1

Text. After initialization, we perform iterative optimization to generate Dt and fX̂ðiÞt g; i 2 ½K�;
to reduce the loss at round t. At each iteration, we use MCMC sampling to obtain a k-node

random subnetwork as sample Xt, and then update the codes Λt based on the dictionary Dt−1

by solving the optimization problem in Eq (2). Then we assign the current sample to a repre-

sentative set of the closest dictionary element, say Dt−1[:, j], and jointly update its representa-

tive set X̂ðjÞt and all dictionaries Dt as shown in Fig 2B. The iterative update algorithm for

online cvxNDL is presented in Section B, Algorithm D in S1 Text.

The output of the algorithm is a dictionary matrix DT 2 R
k2�K , where each column is a flat-

tened vector of a dictionary element of size k × k, and the representative sets fX̂ðiÞT g; i 2 ½K�; for

each dictionary element. Each representative set X̂ðiÞT 2 Rk2�Ni contains Ni history-sampled

subnetworks from the input network as its columns which are called the representatives of the

dictionary element. The convex hull of all representatives of a dictionary element forms the

representative region of the dictionary element. We can easily convert both the dictionary ele-

ments and representatives back to k × k adjacency matrices. Due to the added convexity con-

straint, each dictionary element DT[:, j] at the final step T has the interpretable form:

DT½:; j� ¼
X

i2½Nj �

wj;iX̂
ðjÞ
T ½:; i�; s:t:

X

i2½Nj�

wj;i ¼ 1;wj;i � 0; i 2 ½Nj�; j 2 ½K�: ð9Þ

The weight wj,i, i 2 [Nj], is the convex coefficient of the ith representative of dictionary element

DT[:, j]. Dictionary elements learned from the data stream can be used to reconstruct the input

network by multiplying it with the dictionary element weights from Eq (2). The jth index of the

weight vector corresponds to the contribution of dictionary element DT−1[:, j] to the recon-

struction. Similarly to what was done in [15], we can also define the importance score for each
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dictionary element as

gðiÞ ¼
At½i; i�

2

P
j2½K�At½j; j�

2
: ð10Þ

We use the importance scores, as described in the previous sections, to determine the most fre-

quently used interactions in the dictionary construction, as well as the most typical and impor-

tant long-range interactions.

To conclude, we point out that the density ρ of interactions in a dictionary element is

defined as

r ¼
1

k2

Xk

i;j¼1

DT½i; j�:

Supporting information

S1 Text. Supplement PDF. Supplemental material, including figures and tables, is available in

the Supplement file. The online cvxNDL code and test datasets are available at: https://

urldefense.com/v3/__https://github.com/rana95vishal/chromatin_DL/__;!!DZ3fjg!

4VWHhuROFHcJ1bWTZ8pNxUn75T-K3BfsdTvxM1iU1hXmSGX84JcRsX

yIZZS0k5Iaub9yNiansT9FS12EO52_XsbpA_s$. A tool that enables readers with color-blind-

ness to view the images using a more appropriate color palette is described at the end of the

Supplement.
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