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Abstract

Biofilms can increase pathogenic contamination of drinking water, cause biofilm-
related diseases, alter the sediment erosion rate, and degrade contaminants in
wastewater. Compared with mature biofilms, biofilms in the early-stage have been
shown to be more susceptible to antimicrobials and easier to remove. Mechanistic
understanding of physical factors controlling early-stage biofilm growth is critical to
predict and control biofilm development, yet such understanding is currently
incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale
surface roughness on the development of early-stage Pseudomonas putida biofilm
through a combination of microfluidic experiments, numerical simulations, and fluid
mechanics theories. We demonstrate that early-stage biofilm growth is suppressed
under high flow conditions and that the local velocity for early-stage P. putida
biofilms (growth time <14 h) to develop is about 50 pum/s, which is similar to
P. putida's swimming speed. We further illustrate that microscale surface roughness
promotes the growth of early-stage biofilms by increasing the area of the low-flow
region. Furthermore, we show that the critical average shear stress, above which
early-stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large
as the value for flat or smooth surfaces (0.3 Pa). The important control of flow
conditions and microscale surface roughness on early-stage biofilm development,
characterized in this study, will facilitate future predictions and managements of
early-stage P. putida biofilm development on the surfaces of drinking water

pipelines, bioreactors, and sediments in aquatic environments.
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1 | INTRODUCTION

Biofilms, consortiums of bacterial cells and extracellular polymeric
substances (EPS) attached to substrate surfaces (Donlan, 2001), are
ubiquitous in rivers (Cho et al., 2022; Drummond et al., 2015; Risse-
Buhl et al., 2017; Tlili et al., 2020), coastal areas (De Carvalho, 2018),
human organs (Schulze et al., 2021), and drinking water distribution
systems (DWDS) (Shen et al., 2016; Yan et al., 2022). Many biofilms
are harmful because they increase the presence of pathogenic
bacteria (September et al., 2007; Ximenes et al., 2017), clog medical
devices (Donlan, 2001; Drescher et al., 2013; Dressaire &
Sauret, 2017), and increase bacterial resistance to bactericides
(Ghannoum et al., 2020). Many other biofilms, such as those used
in moving-bed biofilm reactors (MBBRs) (Bassin et al., 2012), are
beneficial because they remove contaminants and excess nutrients
from wastewater (Zhu et al., 2010). Biofilms can form different
morphologies, including thin film structures (Coyte et al., 2017),
wrinkles (Geisel et al., 2022), ripples (Nguyen et al., 2005), and
streamers (Drescher et al., 2013; Parvinzadeh Gashti et al., 2015).
Fundamental understanding of biofilm morphology is critical to
predict and manipulate the function of biofilms (Recupido et al., 2020;
Trejo et al., 2013). In this study, we focus on the thickness of thin-film
biofilms grown on the microfluidic sidewalls, as biofilm thickness is a
key parameter controlling biofilm functionality including the occur-
rence of biofilm clogging and the efficiency of biofilm-based
wastewater treatment plans (Suarez et al., 2019; Torresi et al., 2016).
Another key parameter that controls biofilm functionality is the
critical condition above which biofilms cease to develop because it
informs strategies to prevent biofilm development (Nejadnik
et al., 2008; Thomen et al., 2017).

The formation of biofilms is a complex process that involves
many steps. Here, we follow some studies that assume that biofilm
development can be simplified as four stages (Abu Bakar et al., 2018;
Vasudevan, 2014): (1) the initial reversible attachment of planktonic
cells to surfaces; (2) the irreversible attachment of bacteria to the
surface through the formation of aggregates by producing EPS, (3)
the formation of mature multilayer biofilms; and (4) detachment of
biofilms and dispersion of cell aggregates and planktonic cells. Note
that biofilm development may involve more processes than the above
simplified four stages. For example, between first and second stages,
cells can be neither irreversibly attached nor embedded in the EPS
matrix (Bester et al., 2013). Biofilms in the first and second stages are
often referred to as early-stage biofilms (Armbruster & Parsek, 2018;
Fu et al., 2021). Compared with mature biofilms, early-stage biofilms
are more susceptible to antimicrobials and environmental changes
and thus easier to disrupt (Fu et al., 2021; Gu et al., 2019). Systematic
understanding of factors that control development of early-stage
biofilms is critical for biofilm management, yet such understanding is
currently lacking.

Many studies have investigated the molecular mechanisms and
genetic functions of biofilms (Davey & O'Toole, 2000; Hall &
Mah, 2017; Mielich Siss & Lopez, 2015), yet the impacts of physical
environment on biofilm development are less understood. Here, we

investigate two physical factors that control the development of
early-stage biofilms: hydrodynamic conditions and the roughness of
the substrate surface. Hydrodynamic conditions and surface rough-
ness have shown to play important roles in early-stage biofilm growth
(Cowle et al., 2020; Janjaroen et al., 2013; Krsmanovic et al., 2021;
Zhang et al., 2011; Zhang et al., 2022; Zheng et al., 2021), yet, their
impacts remain controversial. Under different hydrodynamic condi-
tions, shear force can alter the morphology and wetting properties of
biofilms (Recupido et al., 2020), change biofilm metabolic behaviors
(Liu & Tay, 2002), and control biofilm structures (Stoodley et al., 1998).
Some studies show that high flow velocity or shear favors biofilm
growth, increases biofilm thickness, and gives rise to a more elastic
and resistant biofilm (Liu et al., 2019; Paquet-Mercier et al., 2016;
Paramonova et al., 2009). In contrast, some other studies show that
high-flow conditions reduce the thickness of biofilms in bioreactors
(Lemos et al., 2015). A recent study further shows that bacterial cells
sense shear rate instead of shear stress (Sanfilippo et al., 2019).
Systematic investigation is needed to reveal the impacts of
hydrodynamic conditions on biofilm development.

In addition to hydrodynamic conditions, the roughness of
substrate surfaces plays a critical role in biofilm development
because surface roughness can interact with flow and bacterial
cells (Chinnaraj et al., 2021; Zheng et al., 2021). Currently, the
majority of studies on biofilm development focus on flat surfaces
(Drescher et al., 2013; Sanfilippo et al.,, 2019) and surface
roughness below 500 nm (Bollen et al., 1996; Hizal et al., 2016;
Yoda et al., 2014). Few studies have investigated the impacts of
microscale surface roughness on biofilm growth, even though
microscale surface roughness is ubiquitous in natural and artificial
environments, such as the surfaces of sand beds in rivers (Hryciw
et al., 2016; Miller et al., 2014), drinking water pipelines (Niquette
et al, 2000), and MBBRs (Mahto & Das, 2022; Morgan-
Sagastume, 2018). The goal of this study is to fill the above
research gaps and develop a mechanistic understanding of
the impacts of hydrodynamic conditions and microscale surface
roughness on the thickness of and the critical conditions to
develop early-stage Pseudomonas putida biofilms.

We choose P. putida as our model organism because P. putida
biofilms have been found on the surfaces of aquatic sediment
(Brettar et al., 1994), terrestrial soils (Molina et al., 2000), and
drinking water systems (Maes et al., 2020). P. putida has also been
used as an environmental friendly bacterium for bioremediation and
biodegradation (Pedersen et al., 1997; Samanta et al., 2002) due to its
capability to degrade a wide variety of contaminants including lignin
(Ravi et al., 2017; Xu et al., 2018), heavy metals (De et al., 2014;
Imron et al., 2019), phenols (EI-Naas et al., 2009) and naphthalene
(Hwang et al., 2010). In addition, recent studies show that P. putida
can kill bacterial competitors and protect tomato plants, suggesting
that it can be used for pest control and sustainable agriculture
(Purtschert-Montenegro et al., 2022). Due to the above applications,
we choose P. putida as our model organism to reveal fundamental
understanding of the physical factors that control the growth of

early-stage biofilms.
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In this study, we combined biofilm development experiments in
custom-designed microfluidic channels, COMSOL simulations, and
fluid mechanics theories to evaluate the impacts of hydrodynamic
conditions and surface roughness on the critical shear stress, above
which biofilms cease to form, and the thickness of early-stage P.
putida biofilms. First, we investigate the influences of flow velocity
and shear stress on biofilm thickness. Second, we quantify the
impacts of the size and shape of microscale surface roughness on
biofilm thickness. Third, we characterize the impacts of microscale

surface roughness on the critical shear stress.

2 | MATERIALS AND METHODS

2.1 | Bacterial strain and growth medium

We cultivated P. putida KT-2442 (a gift from Mohamed Donia's lab,
Princeton University) cells from frozen stocks in LB solution
overnight (around 18 h) in an incubator with 200 rpm shaking rate
at 30°C. Then, we transferred the cells in the growth phase to a
modified M9 solution which has fully characterized chemical
composition (Yang et al., 2021). The detailed information of bacterial
culture was provided in Supporting Information: Text S1.

2.2 | Microfluidic experiments to measurement
biofilm development

Microfluidic experiments were conducted to characterize biofilm
development on smooth and rough surfaces under varied shear
stress. Schematic diagram of the microfluidic platform is shown in
Figure 1a. The system consists of a microfluidic chip, a confocal laser
scanning microscope (CLSM) (Nikon C2 plus) and a syringe pump
(PHD Ultra, Harvard Apparatus). Soft lithography was used to
fabricate the microfluidic chip. The detailed information of soft
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lithograph was provided in Supporting Information: Text S2. The
microfluidic channel height h = 60 um, the channel width D = 400 um,
and the channel length L =5 mm. During the experiments, the chips
were placed on a stage top incubator (UNO-T-H, Okolab) with
controlled temperature (30°C), which is the optimum temperature for
P. putida to grow (Fonseca et al., 2011). A syringe pump (PHD Ultra,
Harvard Apparatus) was used to precisely control the injection rate of
the nutrient solution. Confocal microscopy was used to image the
biofilms in microfluidic channels with 0.31 um/pixel resolution. The
detailed information of confocal laser scanning microscopy was
provided in Supporting Information: Text S3.

Biofilm development experiments were conducted following
the steps below. First, we injected 500 puLP. putida solution
(overnight cultures diluted with glucose-free M9 solution) with
ODgoo=0.48+0.05 and a cell density of (1.7 +0.1) x 10% cells/mL
into the microfluidic channel manually with flow rate on the order of
mL/min. This bacterial concentration is similar to the values
reported in DWDS, which are on the order of 107 cells/mL (Rozej
et al., 2015). Then, the P. putida solution in the channel was left
undisturbed for 30 min to allow the cells attached to the surfaces.
The glucose-free M9 solution was used to ensure that the number
of cells attached to the microfluidic surfaces is the same for all
surfaces at the beginning of the biofilm development experiments.
Afterward, we injected abiotic M9 solution containing 1 wt. %
(weight/weight percent) glucose at seven flow rates, from 1 pL/min
to 125 pL/min (14, from 0.006 + 0.001 Pa to 0.84 £0.16 Pa), to the
channel using a syringe pump for 24 h. The range of shear stress
values here are consistent with the values reported in drinking
water distribution networks, which are in the range of
0.002-0.10 Pa (Gibson et al., 2020). As biofilms develop on the
channel boundaries, we recorded time-lapse images of biofilms
using a confocal microscope at 30-min intervals. To further
demonstrate the existence of EPS within biofilms, we stained the
EPS at the end of several selected experiments (Supporting
Information: Figure S1). For the majority of the experiments, the

PDMS

Control boundary

Glass
coverslip

Microfluidic
channel

FIGURE 1

/—\ Confocal
microscope

(a) Schematic diagram of the experimental setup. (b) Cross-sectional image of the microfluidic channel. Biofilms (gray color)
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accumulated at the control and test boundaries of the channel. § = 100 um denotes the height of the roughness elements at the test boundary.
The distance between the neighboring roughness elements for all cases is the same, that is, d = 100 um. Lg denotes the average biofilm thickness
in the horizontal plane (x-y plane) grow perpendicular to the sidewall of the channel. (x is the flow direction, y is the lateral direction, and z is the

vertical direction and the direction of gravity). The scale bar is 100 um.
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biofilms were imaged using white-field function of the confocal

microscope, and no dyes were used.

2.3 | The design of the microfluidic channels

To evaluate the impacts of surface roughness on biofilm develop-
ment, we designed microfluidic channels with flat/smooth bounda-
ries and rough boundaries with round and angular profile roughness
structures (Figure 1). The roughness elements were placed at the test
boundary of the microfluidics channel and the control boundary was
flat for comparison (Figure 1b). Specifically, we fabricated circular and
rectangular roughness structures with height 6 = 100 um (Figure 1b)
to simulate the round and angular micron-size sediments in natural
rivers (grain sizes on the order of 100 um) (Garwood et al., 2013;
Kadivar et al.,, 2021), microscale round and angular roughness
geometries (surface roughness around 150pum) in water pipes
(Hall, 2017; Herwig et al., 2008; Niguette et al., 2000) and microscale
surface roughness structures (average surface roughness >70 um)
used in bioreactor carriers (Bolton et al., 2006; Dong et al., 2015). The
central distance between neighboring roughness elements (round
and angular) was a constant, that is, d = 100 um.

2.4 | Image analysis

Confocal microscope images were saved on a workstation (HP-Z4-G4).
To calculate the biofilm thickness Lg in the horizontal plane (x-y plane in
Figure 1b) perpendicular to the sidewalls of the channel, we first
converted the confocal images to grayscale images and determined the
threshold of color difference between biofilm boundary and water in
Image-J. Then, we applied this threshold to determine the biofilm
boundaries by subtracting the biofilm images with the background
image (the first image of the time series experiments) using MATLAB.
Afterward, the pixel intensities of the biofilm region were summed up
and the average biofilm thickness Lg was determined by dividing the
total pixel intensities by the length of the field of view.

2.5 | Numerical simulation

We simulated the flow in the microfluidic channel in two dimensions
using computational fluid dynamics (CFD) finite-element simulation
software, COMSOL Multiphysics 5.5. The geometry of the micro-
fluidic channel was set the same as our experimental setup. The
Navier-Stokes equation was numerically solved for flow velocity
profiles inside the channel using no-slip boundary conditions on all
solid boundaries. The stationary simulation was conducted in the
fluid phase. Fully developed flow was assumed at the inflow and zero
pressure was used at the outflow. Shear rate and shear stress
distributions were calculated based on the velocity profiles in
COMSOL. Note that Sanfilippo et al. (2019) pointed out that bacteria
sense shear rate instead of shear stress. In our study, we used shear

stress because the viscosity of the fluid (which is water) is a constant
during the experiments. We defined the spatially-averaged shear
stress T, as the mathematical mean value of the shear stress over
the whole channel domain, which was calculated based on the shear
stress distribution. More physical parameters used in COMSOL
simulation are listed in Supporting Information: Table S1.

2.6 | Statistical analysis

The results of biofilm thickness are shown as mean + standard error.
The mean value of the biofilm thickness was calculated from the inlet,
outlet, and middle part of the microfluidic channel. At least one
biological replicate was conducted for all the roughness types. The
error bars indicate standard error of four measurements. Regression
analysis was conducted using MATLAB to predict the critical shear
stress under different roughness types and identify the confidence

level. More details are listed in Supporting Information: Table S2.

3 | RESULTS AND DISCUSSION

3.1 | Impacts of hydrodynamic conditions on
biofilm thickness

To reveal the impacts of hydrodynamic conditions on the development
of early-stage P. putida biofilms, we grew P. putida cells on the surfaces
of custom-built microfluidic channels and measured the thickness of
biofilms on the test boundary as a function of bacterial growth time
(Figure 2a). Specifically, we first seeded the microfluidic channel with
P. putida cells by injecting carbon-free bacterial solution with OD¢go =
0.48+0.05 into the microfluidic chamber with flat sidewalls for
30 min. Afterward, we switched to inject the cell-free nutrient solution
(M9 medium with 1 wt. % glucose) continuously to allow the cells to
grow and biofilms to develop. During the biofilm growth period, we
scanned the microfluidic channel using a confocal laser scanning
microscope (CLSM) and measured the average thickness of the
biofilms developed on the test boundary over time at seven flow
rates (shear stress T,,, from 0.006+0.001Pa to 0.84+0.16Pa)
(Supporting Information: Figure S3). Biofilms started to form on the
test boundaries after 6-8 h of nutrient injection. Here, we focus on the
early-stage biofilms with 14-h growth period, because compared with
mature biofilms, early-stage biofilms are more sensitive to antimicro-
bials and changes in the environment and thus are easier to disrupt and
control (Fu et al.,, 2021; Gu et al., 2019). For mature biofilm with a
longer growth period, experiments with longer growth time are
needed, which are beyond the scope of this work.

First, we demonstrated the impacts of shear stress on biofilm
thickness developed on the flat test boundary. At the low shear stress
range (0.005-0.03 Pa), we observed rapid increase in biofilm thickness
over the 14-h growth period of early-stage biofilms (Figure 2a). The
biofilm thickness increased exponentially from 8 to 14 h, indicating that
biofilm development is contributed by exponential increase of cell
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(a) The thickness Lg of Pseudomonas putida biofilms developed on the flat surface of a microfluidic channel (shown in b) as a

function of time. (b) Confocal microscopic image of biofilms (dark gray color) developed on the flat surface of the microfluidic channel at shear
stress T,,g = 0.005 Pa. The white dashed curve denotes the boundary of the biofilm accumulation region identified based on contrast of pixel
intensity using Image-J. (c) Flow velocity distribution in color superimposed on gray-scale confocal image shown in (b). The pink dot-dashed line
denotes the line with velocity equal to 50 um/s, which is the local velocity Ug for biofilm to develop. Images of flow velocity in color
superimposed on gray-scale confocal images of early-stage biofilms on rough surfaces with round and angular roughness elements at shear

stress T,yg = 0.007 Pa (d) and t.,5 =0.11 Pa (e). The scale bar is 25 um.

density during the growth phase (Drescher et al., 2013) (Supporting
Information: Figure S4). At middle shear stress range (0.08-0.13 Pa), the
biofilm thickness did not increase exponentially over time and was
smaller than the thickness of those grown under the low shear stress
range. At the high shear stress range (0.26-0.66 Pa), no biofilms were
observed at the test boundary, indicating that early-stage P. putida
biofilms ceased to develop when the shear stress is above 0.26 Pa. In
addition, we calculated the cell density on the test boundary and found
that the cell density also decreased with increasing shear stress
(Supporting Information: Text S4, Figure S5). The dependency of cell
density on shear stress is consistent with the dependency of biofilm
thickness on shear stress, further confirming that P. putida biofilms
ceased to develop when the shear stress is above a critical value. The
inhibition of early-stage biofilm development by high flow is likely
because bacterial cells can be swept away by flow and detach from
surfaces when the flow velocity or shear stress is higher than a critical
value (Paul et al., 2012).

Second, by comparing the CLSM images of biofilms with the flow
field simulation using COMSOL (Figure 2b,c), we found that

early-stage P. putida biofilms consistently accumulated at regions
with flow velocities less than 50 um/s (the pink lines in Figure 2c).
The boundaries of biofilms (indicated by the white dashed lines in
Figure 2b,c), coincide with the lines with local flow velocity equal to
50 um/s (pink dashed lines in Figure 2b,c), indicating that the local
velocity for the early-stage P. putida biofilms to develop is
approximately Ug=50um/s. In addition, we conducted the same
analysis for channels with varying roughness types at different shear
stresses (Figure 2d,e) and found that the biofilm boundaries coincide
with the contour of Ug regardless of shear stress and surface
roughness (Supporting Information: Figure S6). Furthermore, the local
velocity for biofilms to develop, 50 um/s, is similar to P. putida's
swimming speed, around 44 um/s (Ping et al., 2013). Accordingly, we
anticipate that biofilms cease to grow when the local fluid velocity
exceeds the bacterial swimming speed, because bacterial cells can
easily be swept away by flow and fail to attach to exiting biofilms
when the flow velocity is greater than their swimming speed. Note
that in the simulation, we assumed that biofilms do not affect the
flow in the channel, which should only be valid for early-stage
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highly-porous biofilms. Therefore, the observation that the boundary
of biofilms occurred at locations with velocity similar to bacterial
swimming speed may not be valid for more mature or denser biofilms
(e.g., P. putida biofilms with growth time much larger than 14 h).

3.2 | Impacts of microscale surface roughness on
biofilm thickness

Next, we evaluated the impacts of microscale surface roughness on
early-stage biofilm growth by comparing the development of biofilms
on surfaces of varying roughness in microfluidic channels (Supporting
Information: Figure S3). Specifically, we measured the time evolution
of the average thickness of biofilms developed on flat surface and
rough surfaces with round and angular roughness elements
(Figure 3a). The average biofilm thickness here was defined as the
effective thickness assuming a flat surface, which is equal to the area
of biofilm in 2D divided by the straight-line length of the boundary.
As shown in Figure 3a, at the same shear stress, the average
thickness of biofilms developed on rough surfaces at 14 h (Lg.144) is
consistently larger. The increase on average biofilm thickness with
rough surfaces is likely caused by the increase in the area of low
velocity and shear regions induced by the surface roughness
(Figure 3b,c). Above a flat surface, the streamline is parallel to the
surfaces (Figure 2c), such that the region with velocity smaller than
Ug, the local velocity for early-stage P. putida biofilms to develop, is a
thin rectangular region near the flat surface. In comparison, in
channels with rough surface, regions with velocities smaller than Ug
include the sheltered regions between the roughness elements,
which provide shelter for bacterial cells to form biofilms (Figure 3b).
In short, we demonstrated that microscale surface roughness
promotes early-stage biofilm development, that is, increases average
biofilm thickness by increasing the area of low-flow regions which
provide shelter for the bacteria to form biofilms. Furthermore, we
evaluated the impacts of different shapes of surface roughness on
biofilm development. For the same roughness height, the average
thickness of biofilms developed on surface with angular roughness
elements is consistently larger, by up to about two times (t,,5 = 0.33
+0.06 Pa case) than that for surface with round roughness
(Figure 3a), suggesting that surface with angular roughness can
further promote biofilm development compared with round shape.
Detailed discussion of the impacts of roughness shape on biofilm

development can be found in Supporting Information: Text S5.

3.3 | Impacts of surface roughness on the critical
condition to develop P. putida biofilms

Third, we characterized the impacts of microscale surface roughness
on the spatially-averaged critical shear stress t.;, above which early-
stage biofilms cease to develop. To start with, we used fluid
mechanics theories to calculate T ittheo fOr biofilms to develop on
a flat surface from Ug. For the biofilm development experiments in
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FIGURE 3 (a) The average thickness of early-stage Pseudomonas
putida biofilms developed on flat and rough surfaces with round and
angular elements at varying shear stress after 14 h growth period.
The symbols and error bars represent the mean value and standard
error of the biofilm thickness obtained from four replicate
measurements respectively. Simulated velocity (b) and shear stress
distribution (c) in color superimposed on gray-scale confocal images
of biofilms in microfluidic channels with round and angular roughness
elements (shear stress T,y = 0.007 Pa). The white dashed curve
denotes the boundary of the biofilm. The pink dot-dashed line
denotes the line with velocity equal to 50 um/s, which is the local
velocity for biofilm to develop Ug. The scale bar is 50 um.

the microfluidic channel with channel width D = 400 um at flow rate
Q (Figure 4a), the Reynolds number Re =pUD,/u is at the range of
0.1-11.3, thus the flow is laminar (p is the density of water, U is the
velocity at the inlet, D, =2Dh/(D+h) is the hydraulic diameter,
h =60 um is the channel height, u is the dynamic viscosity of water).
Here, we assume that the early-stage P. putida biofilms are highly
porous and as such do not affect the velocity distribution in the
channel. In addition, we assume a fully developed flow, so the
velocity profile follows the parabolic distribution of Hagen-Poiseuille
flow (Bejan, 2013; Sutera & Skalak, 1993):

_ 3Q[1-(2y/DY]

v 2A ’
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FIGURE 4 (a) Schematic diagram of the theoretical parabolic velocity distribution (black curve, Equation 1) in the microfluidic channel

with flat surfaces. Ug denotes the local velocity for biofilms to develop and Lg denotes the biofilm thickness. The green color represents the
region where bacterial biofilms accumulate. (b) The biofilm thickness Lg.14, measured from confocal images (after 14-h growth period) as a
function of the shear stress T, calculated from computational fluid dynamics (CFD) simulation. The red dashed line indicates the critical shear
stress Tcrit-exp = 0.3 Pa determined by experiment data, above which biofilms cease to develop on the flat surface. The solid green line
indicates the linear fit Lg.14n (um) =-12.6 logyo (Tayg (Pa)) - 7.1. The green dashed line represents the 90% confidence interval.

where A=0.024mm? is the cross-section area of the channel.

Assuming that early-stage biofilms only develop in regions with

velocity less than Ug (Figure 2c), the thickness of biofilms, Lg, on the

flat surface can be estimated by substituting Ug into Equation (1):
DD 2UgA

=521 3q

(2)

We assumed that no biofilm will develop on the flat surface
when the thickness of this low-velocity zone Lg is less than 1/10 of
the bacterial width, which is 0.1 um for P. putida (Davis et al., 2011).
Combining Lg=0.1 um and Equations (1) and (2), the critical shear
stress Teit-theo tO develop biofilms can be estimated as:

du 4pUg

Terit-theo = “W \-0/2 = m ©®

The above equation is the derived theoretical critical shear stress
Terit-theo TOr P. putida biofilms to develop on a flat surface. Note that
the nutrient solution we flow into the microfluidic cells is cell-free, so
the development of biofilms is due to the growth of cells, which is
different from Drescher et al. (2013) that assumes that the growth of
biofilm streamers was due to the attachment of cells to existing
streamers. From Equation (3), we predicted that the theoretical
critical shear stress for P. putida biofilms to develop on a flat surface
iS Terit-theo = 0.4 Pa. To test the validity of our critical shear stress
theory (Equation 3), we compared the predicted critical shear
stress Tgit-theo = 0.4 Pa with the critical stress estimated from our
measurements. Specifically, we plotted the measured average
thickness of biofilms developed on the flat surface at 14-h growth-
time, Lg.14p, versus the shear stress t,,, calculated from the CFD
simulation results (Figure 4b). Our results showed that Lg 14

decreased with increasing logio (tavg) and above a certain critical
shear stress, no biofilms were observed on the surface. The cell
density we measured also confirmed that the biofilm growth will be
inhibited above a certain critical shear stress (Supporting Information:
Figure S5). To estimate this critical shear stress, we fitted a linear line
(green line in Figure 4b) to the Lg14h Versus logyo (Tavg) data, from
which we identified that the x-intercept is 0.3 Pa. This x-intercept is
the critical shear stress Ttexp for biofilms to develop on a flat
surface. The agreement between Tqit-exp = 0.3 Pa based on measure-
ments and the Tgittheo = 0.4 Pa based on theoretical calculation
(Equation 3) confirms our hypothesis that the critical conditions to
develop biofilms is controlled by local flow velocity. Our measured
Torit-flat = 0.3 Pa is also consistent with some previous studies using
other microorganisms (e.g., Belohlav et al., 2020; Roosjen et al., 2005).
For example, the critical shear stress for microalgae Chlorella vulgaris
biofilms to develop on the flat surface of photobioreactor panel is
0.2 Pa (Belohlav et al., 2020) and the critical shear stress to prevent
adhesion for the yeast strains on smooth glass is 0.36 Pa (Roosjen
et al., 2005). Note that here we assume that early-stage biofilms are
highly porous and do not affect the flow field. This assumption may
not apply to more mature biofilms at later stages (e.g., with growth
time much longer than 14 h), which are denser and can alter the flow
field in the channel (Greener et al., 2016; Nguyen et al., 2005). For
these denser and mature biofilms, the impacts of biofilms on the flow
need to be considered (e.g., Brito & Melo, 1999; De Beer et al., 1996;
Greener et al., 2016; Nguyen et al., 2005).

Furthermore, we demonstrated the impacts of surface roughness
on T.it. We plotted the average biofilm thickness as a function of the
average shear stress (Figure 5) and identified t for each rough
surface. Compared with the flat surfaces for which the measured
Terit-flat = 0.3 Pa, the 1 for biofilms to develop on surfaces with
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round roughness is 0.8 Pa and on surfaces with angular roughness is
0.9 Pa. Therefore, the critical shear stress 1,i; for P. putida biofilms to
develop on surfaces with microscale roughness is about three times
as large as that for flat surface. Our results highlight the important
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FIGURE 5 Measured biofilm thickness after 14-h growth period
Lg-14h as a function of average shear stress 1,4 for flat surface
(green) and rough surfaces with round elements (blue) and angular
elements (red). The dashed vertical lines indicate the critical shear
stress for the flat surface T2t (green), surfaces with round
roughness Tit-round (blue), and angular roughness Teit-angular (red). The
three symbols filled with color represent the data (t,,=0.38 £ 0.
02 Pa) used for Figure 6. The insets show confocal images for
representative cases indicated by the black arrows. The scale bar on
the top left image is 25 um and all insets have the same scale bar.
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control of microscale surface roughness on early-stage P. putida
biofilm development and the critical shear stress required to inhibit
early-stage P. putida biofilm growth. We caution that 1.;; may be
different for different bacterial species, different growth time, and on
different substrate surfaces. For example, proteobacterium Geobacter
sulfurreducens can form 41 um-thick biofilms (after 7 days) when the
wall shear stress is 1 Pa (Jones & Buie, 2019). The critical shear stress
for Staphylococcus epidermidis biofilms to develop on silicone rubber
surface is 2.7Pa and on PEO-coated silicone rubber is 0.2 Pa
(Nejadnik et al, 2008). The critical shear stress for mature
Pseudomonas aeruginosa biofilms in flat microfluidic channels before
sloughing (after 50 h) is 1.4 Pa (Greener et al., 2022), the same order
of magnitude as the value for the early-stage P. putida biofilms
(0.3 Pa) in our study.

Given the critical shear stress 1. that prevent biofilm develop-
ment, the critical hydrodynamic force exerted on a single cell to
remove bacterial adhesion can be estimated as F =1, A., with
Ac = 3.14 pm? the area of one single P. putida cell exposed to the flow
(Davis et al., 2011). Therefore, the critical adhesion force for
P. putida cell to attach to a flat/smooth PBDMS surface is F = 0.3 Pa x
3.14um?=0.9 pN, and the critical adhesion force for a rough surface
is F=0.9 Pax 3.14 um? = 2.8 pN. Consistently, Nejadnik et al. (2008)
used a similar method and identified the critical forces to remove
S. epidermidis from PEO-coated and pristine silicone rubber is 0.1 and
2.1 pN, respectively, which are the same orders of magnitude as our
results. Other studies used atomic force microscopy (AFM) to directly
measure adhesion forces between the cells and surfaces (Hizal
et al., 2016; Xu et al., 2005), which is in the nN range. Such difference
is because AFM measures the forces perpendicular to the surface

FIGURE 6 Confocal images of biofilms on flat
and rough surfaces under a similar average shear
stress (Tavg = 0.38 £0.02 Pa). (a) On the flat
surface, no biofilm developed on the surfaces
because the average shear stress T, is larger
than the critical shear stress t.itfat = 0.3 Pa. On
surfaces with round roughness (b) and angular
roughness (c) at a similar shear stress, biofilms
were observed on surfaces. This is because for
rough surfaces the shear stress T, is smaller than
the critical shear stress Terit-rough = 0.85 £ 0.05 Pa.
The white dashed lines denote the boundaries of
biofilms based on contrast of pixel intensity using
Image-J. The scale bar on the left images is 25 um.
The scale bar of zoom-in images is 10 um.
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under static conditions, while the estimated critical hydrodynamic
force (F =1t Ac) is tangential to the surface under flow conditions
(Nejadnik et al., 2008).

At a similar shear stress, for example, T,,5=0.38+0.02 Pa, we
anticipated that no early-stage P. putida biofilms would develop on the
flat surface, because the T, is larger than Teyit-at = 0.3 Pa (Figure 6). In
contrast, we predicted that biofilms would develop on the rough
surfaces with both angular and round roughness elements, because
the 1,,,=0.38+0.02 Pa is smaller than Tctrougn =0.85+0.05Pa for
rough surface with round and angular roughness shapes. Our
predictions are confirmed by our microfluidic observations that
biofilms indeed developed on rough surfaces under a similar average
shear stress (T,,g =0.38 £0.02 Pa), as shown in Figure 6. The above
observations demonstrate that surface roughness does increase Tt
and as such it is more difficult to prevent early-stage biofilm growth on
surfaces with microscale roughness than smooth surfaces. Compared
with smooth surfaces, a larger shear stress is required to prevent
biofilm growth on rough surfaces, such as the rough surfaces of
angular sediment deposits in fluvial system (Nejadnik et al., 2008),
drinking water pipes (Fish et al., 2017), and MBBRs used in wastewater
treatment plants (Morgan-Sagastume, 2018).

4 | CONCLUSIONS

Our study highlights the important roles of hydrodynamic conditions
and microscale surface roughness in controlling the early-stage
development of P. putida biofilms and provides systematic and
quantitative characterization of these effects. First, we show that
early-stage P. putida biofilm growth is suppressed under high-flow
conditions. By combining experimental and simulation results, we
demonstrate that the local velocity for early-stage P. putida biofilms,
after 14-h growth time, to develop is 50 um/s, which is similar to P.
putida's swimming speed. Furthermore, we reveal the impacts of
microscale surface roughness on the early-stage biofilm growth. We
show that roughness elements create sheltered low-flow regions that
promote biofilm development. Compared with the surface with round
roughness elements, angular roughness elements provide larger area of
low-flow region, which further facilitate biofilm accumulation. Further-
more, we propose a theoretical model to predict the critical shear stress,
above which early-stage biofilms cease to develop on flat surfaces,
which is Tgit-fiat = 0.3 Pa for P. putida. The theory was validated with
experimental measurements. Finally, we demonstrate that the critical
shear stress for early-stage P. putida biofilms to develop on rough
surfaces with angular and round roughness is 0.9 and 0.8 Pa,
respectively, which are about three times as large as that for flat
surface (0.3 Pa). We expect that the experimental methods and
predictive equations developed in this study using a single-species

biofilm can apply to other multispecies biofilms in the future.
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