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Abstract

Constructing molecular classifiers that enable cells to recognize linear and non-linear input patterns
would expand the biocomputational capabilities of engineered cells, thereby unlocking their potential
in diagnostics and therapeutic applications. While several biomolecular classifier schemes have been
designed, the effect of biological constraints such as resource limitation and competitive binding on
the function of those classifiers has been left unexplored. Here, we first demonstrate the design
of a sigma factor-based perceptron as a molecular classifier working on the principles of molecular
sequestration between the sigma factor and its anti-sigma molecule. We then investigate how the
output of the biomolecular perceptron, i.e., its response pattern or decision boundary, is affected by
the competitive binding of sigma factors to a pool of shared and limited resources of core RNA poly-
merase. Finally, we reveal the influence of sharing limited resources on multi-layer perceptron neural
networks and outline design principles that enable the construction of non-linear classifiers using
sigma-based biomolecular neural networks in the presence of competitive resource-sharing effects.

Keywords: synthetic biology, biomolecular neural networks, molecular sequestration, competitive
binding, molecular resource sharing.
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1 Introduction

Cellular biocomputation is prevalent in nature with examples including activation of genetic circuits
during cell proliferation, decision-making in immune response, and a myriad of phosphorylation-based
signaling pathways for determining correct response to exogenous signals [1, 2, 3]. The foundation
of such computational processes is often laid on molecular interactions such as protein dimerization
or ligand-receptor binding. Thus, the inputs of the computational modules in biological systems are
typically the concentration of certain monomeric molecules or ligands and, similarly, the outputs are the
concentration of specific dimeric or multimeric molecules.

Drawing inspiration from natural systems, synthetic biologists have been striving to engineer biocom-
putational schemes in top-down as well as bottom-up synthetic biological systems. While the majority
of biocomputational designs rely on utilizing genetic circuits to engineer basic logic gates and simple
computational tasks [4, 5, 6], a few studies have demonstrated engineering protein-based circuits that
utilize proteolytic or phosphorylation reactions to generate an output [7, 8, 9]. Although such biocompu-
tational modules enable simple tasks such as biosensing of chemical species and basic computation, they
typically generate digital (0 or 1 or "on or off") responses. Furthermore, encoding more sophisticated
processing using logic gates demands intricate architectures with many logic gates and computational
layers, rendering them convoluted for practical applications for complex tasks.

Therefore, constructing simple signal processing units inside living systems that can perform intricate
computational tasks such as classification and decision-making are of great interest (Fig. 1A, left).
Implementing molecular classifiers in living cells would enable the creation of ultra-sensitive biosensors,
programming accurate cellular responses through molecular circuits, and enhanced discrimination of
inputs through combinatorial sensing [10]. For example, a simple linear classifier (Fig. 1A, middle) equips
a cell with a signal processing system that ideally allows output generation only in certain input regimes
(where x1 and x2 approach 1 in the example). Further, combining different molecular classifiers results
in more complex, non-linear computation, thus expanding the capabilities of cellular biocomputation.

Binary classification using a linear decision boundary was demonstrated in the field of artificial intelli-
gence (AI) in 1958 [11]. A simple computational unit called ’perceptron’ performs binary classification by
computing the linear combination of weighted inputs and passing the summed weighted inputs through
an activation function. The most popular activation function in modern perceptrons is a thresholding
function called Rectified Linear Unit known as ReLU, in which the output is larger than zero when
the input crosses a threshold (Fig. 1B). The collective processing of inputs by many layers of multiple
perceptrons, known as deep neural networks or artificial neural networks (ANNs), can result in the reca-
pitulation of any continuous function [12], thus making ANNs capable of performing complicated tasks
such as non-linear classification and accurate prediction [13, 14, 15, 16].

The simple architecture of a perceptron has motivated many efforts towards the creation of a biologi-
cal perceptron as the signal processing unit for linear classification. The construction of a single biological
perceptron can also pave the way for implementing non-linear input classification in living cells by utilizing
multiple perceptrons, thus creating biomolecular neural networks (BNNs) (Fig. 1D). A biological percep-
tron must demonstrate the principal characteristics of an ANN (or computer-based) perceptron, i.e., the
biological perceptron must include controllable molecular elements that determine the perceptron’s input
weights and activation function.

However, as opposed to ANN perceptrons, biological perceptrons face challenges in linear classification
due to biological constraints such as limited resources, competitive binding, and non-specific binding
between molecules. Resource constraints in biological systems have been shown to significantly impact
the function of biocomputational modules based on molecular interactions. Competitive binding of only
a few promiscuous ligands to various receptors has been demonstrated to accommodate a wide range
of signaling activities in multicellular organisms [17]. Similarly, it was recently shown that competitive
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Figure 1: Designing a Biomolecular Neural Network (BNN) utilizing a sigma-based perceptron and multi-
layer neural networks with shared limited resources for molecular classification: A: A molecular classifier
as a signal processing unit in living cells enables more sophisticated biocomputation. The resource constraints in
biological systems, however, may perturb the designed decision boundary. B: The abstract representation of a
perceptron, the building block of deep neural networks. C: The representation of the biological perceptron design
in a sigma-based system using sequestration of a sigma factor and its corresponding anti-sigma protein. The
inputs of the perceptron are concentrations of the sigma and anti-sigma. D: Abstract depiction of multi-layer
neural networks made of multiple perceptrons in each layer.E: Schematic design of a multi-layer perceptron in a
sigma-based system that poses two major limitations: sharing limited resources and competitive binding. These
complexities influence the decision boundary of the multi-layer neural network.
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protein dimerization allows small protein monomer networks to encode an extensive range of homo- or
hetero-dimeric outputs through precise adjustments in the concentration of network monomers [18]. In
addition, competing transcription factors that bind to the same RNA polymerase may affect the output
of engineered genetic circuits in bacteria. [19, 20].These resource constraints can cause perturbations to
the biological perceptron function, thus influencing its decision boundary (Fig. 1A, right). Subsequently,
BNNs made from the biological perceptron with an altered output will also generate decision boundaries
that may not closely follow their ideal design.

A few biological perceptrons have been demonstrated by using inducible gene expression networks
[21, 22, 23, 24], enzymatic processing of different metabolites[25], principles of DNA strand-displacement
[26, 27, 28, 29], and DNA-processing enzymes [30]. Relying on the sequestration of two interacting
proteins, a biomolecular classifier with tunable positive and negative weights was designed computation-
ally [31] and tested experimentally to achieve non-linear classification in mammalian cells [24]. Similarly,
a phosphorylation-based neural network with positive and negative weights that perform non-linear clas-
sification (i.e., recapitulating XNOR and XOR) was designed by Cuba Samaniego et al. [32] Recently, a
protein-based neural network that achieves linear classification was implemented by exploiting coiled-coil
dimerization of engineered peptides [33]. Although these studies utilize different approaches to create a
biological perceptron, they all rely on competitive interactions between input-processing molecules with
a shared pool of limited resources. However, the effects of such resource constrains on the function of
these perceptrons have remained unexplored.

Here, we develop a mathematical model to simulate a biological perceptron based on sigma factors,
transcription factors that bacteria naturally use to control gene expression. Leveraging competitive
dimerization between a sigma and either its corresponding anti-sigma molecule or RNA polymerase, we
demonstrate the design of a simple perceptron with a non-linear activation function capable of realizing
positive and negative weights (Fig. 1C). We then impose two physiological requirements on our model
to account for both competition between the input sigma factor and other present sigma factors as well
as the limited available resources (i.e., core RNA polymerase). We show that resource sharing reveals its
effect on the function of the perceptron by suppressing the output while introducing a slight perturbation
to the linear decision boundary. Lastly, since engineering non-linear decision boundaries require multi-
layer perceptron networks (as depicted in Fig. 1D), we explore designing sequestration-reliant multi-layer
sigma-based perceptron networks in the presence of perturbations caused by sharing limited resources
(Fig. 1E). We demonstrate that resource sharing leads to deviations from ideal design that affect the
output of the multi-layer perceptron network. However, despite the non-ideal function of perceptrons
due to resource sharing and limited resources, we outline simple design principles for encoding non-linear
response patterns such that they closely resemble their ideal design. Our analyses of biological perceptron
and BNN function in the presence of resource constraints can also be utilized to model molecular classifiers
in silico for more precise prediction or design of outputs of these biocomputational systems.

Since sharing limited resources is not exclusive to the sigma-based neural networks, our findings can
be extended to other biocomputational input-processing systems used in living cells. Taking Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR) gene editing as an example, the sequestration
of a single guide RNA (sgRNA) strand by its complementary RNA, or anti-guide RNA, is analogous to
the interaction of a sigma factor with its anti-sigma protein. If the sgRNA is engineered to drive a
CRISPR reaction, the Cas protein will consequently be the limited resource that all sgRNAs will compete
to bind to. Similarly, a limited pool of proteolytic substrates that are catalyzed by a protease-based neural
network [34, 35] will follow the functional principles outlined in this work. Therefore, the principles of
input classification under the effects of sharing limited resources outlined in this paper can be extended
and used for designing other molecular classifiers.
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2 Results

Throughout the manuscript, we indicate chemical species with capital letters (e.g., X) and their concen-
tration with the corresponding lowercase letters (e.g., x). Table 1 summarizes all parameters used in the
manuscript for mathematical analyses and computational simulations.

2.1 Design of a rectified linear activation unit (ReLU) based on sigma factor-anti
sigma factor interaction in the presence of shared limited resources

Molecular sequestration is the stoichiometric binding between two species that results in the formation
of a dimeric complex. An example of molecular sequestration is the interaction between sigma factors
and their corresponding anti-sigma proteins that leads to the formation of a complex that is unable to
promote gene expression (Fig. 1B). Such interaction can be modeled assuming the sigma factor S1 and
anti-sigma factor A1 are produced from species X1 and X2 at rate constants w1 and w2, respectively.
Additionally, the produced proteins S1 and A1 degrade at rate δ and the sequestration occurs with rate
constant γ1 (as shown in Fig. 2A). We summarize the list of chemical reactions as follows:

X1
w1−−⇀ X1 + S1 X2

w2−−⇀ X2 +A1 Production,

S1
δ−−⇀ ∅ A1

δ−−⇀ ∅ Decay,

S1 +A1
γ1−−⇀ ∅ Sequestration.

Depending on the sequestration rate (γ1), the output of the system, s̄1, which stands for the steady-
state amount of S1, follows the input (w1x1) in different patterns (Fig. 2B). To evaluate two regimes
of output at the steady state, we define a dimensionless positive parameter ξ = δ2

w1x1γ1
. In the slow

sequestration regime, when the affinity of S1 binding to A1 is small (ξ ≫ 1), the amount of s̄1 has a
non-linear relationship with the input x1 (Fig. 2B). However, in the fast sequestration regime (when
the binding affinity of S1 and A1 is large) when 0 < ξ ≪ 1, modeling the interaction between S1 and
A1 (see section 1.1 in SI for mathematical derivation) leads to a thresholding function[31] (a function
that generates positive outputs only when the input is larger than a threshold) corresponding to a linear
relationship shown in equation (1).

lim
ξ→0

s̄1 =
1

δ
max(0, w1x1 − w2x2) (1)

The assumption of fast sequestration of a sigma factor by its corresponding anti-sigma molecule is
valid as previous studies on various anti-sigma molecules have found their rapid effect on transcriptional
activity of their target sigma factors [36, 37, 38]. In addition, molecular controllers based on fast sigma-
anti-sigma interaction have been constructed and tested [39, 40, 41], thereby providing evidence for fast
sequestration assumption.

In equation (1), x1 and x2 represent the concentration of input species that generate S1 and A1 with
production rates of w1 and w2, respectively. At steady-state and a fast sequestration regime, equation
(1) converges asymptotically to a ReLU function. Therefore, we named the relationship between s̄1
with the inputs x1 and x2 the Asymptotic ReLU (AReLU) function (Fig. 2C). Thus, the sequestration
relationship between S1 and A1 resembles a simple perceptron with an AReLU activation function and
weights of w1 and −w2 for inputs x1 and x2, respectively. The linear relationship regime between
s̄1 and x1 indicates that the steady-state available amount of S1 is simply the difference between the
total steady-state amounts of S1 and A1, similar to other sequestration-based calculators demonstrated
previously [42]. In other words, the outcome of the sequestration chemical reaction simply calculates the
subtraction of total S1 and A1 and does not produce any product if S1 is lower than A1. However, in
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slow sequestration, the amount of s̄1 depends on the input x1 through a non-linear relationship similar
to an activation function known as soft ReLU function [43] (Fig. 2C).

In natural systems, sigma factors either bind to their corresponding anti-sigma or the RNA polymerase
(RNApol) core. In the latter case, the RNApol-sigma factor complex binds to a specific sigma promoter
in the DNA sequence and drives the expression of the downstream genes. When free S1 is present, it
binds to the RNApol to initiate transcription. Therefore, when designing sigma-based neural networks,
since the amount of RNApol-sigma factor complex directly influences protein expression, the interaction
between S1 and the RNApol core should be considered. Assuming that the sigma factor S1 binds to a
limited amount of available RNApol core C, with total concentration denoted as ctot, at rate γ2, the total
amount of RNA pol-sigma factor complex, denoted as C1, can be calculated by solving the system of
ordinary differential equations (ODEs) representing the following chemical reactions which are illustrated
in Fig. 2D:

X1
w1−−⇀ X1 + S1 X2

w2−−⇀ X2 +A1 Production,

S1
δ−−⇀ ∅ A1

δ−−⇀ ∅ Decay,

S1 +A1
γ1−−⇀ ∅ Sequestration,

S1 + C
γ2−−⇀ C1 Complex formation.

To analyze the input-output relationship of the chemical reactions that consider limited resources,
we introduce a dimensionless variable r = γ2

γ1
referred to as competitive binding ratio that represents

the ratio of sigma factor-RNApol affinity to the sequestration rate. Solving the ODEs representing the
above reactions (see section 1.2 in SI for derivation) reveals that the relationship between steady-state C1

denoted as c1 (and consequently its normalized value denoted as c̄1
n = c1/c

tot) and x1 depends on the
competitive binding ratio. When r ≫ 1 (slow competitive binding regime) the input-output relationship
deviates from the ideal behavior (thresholding function) observed in Fig. 2B. However, when r ≪ 1
(fast competitive binding regime), c̄1 follows the thresholding function (Fig. 2E). Hence, when input
x1 is lower than the threshold, there is no response, but when input is higher than the threshold, the
response is non-zero and ultimately saturates at 1 (ctot).

Equation (2) describes the input-output function in the fast competitive binding regime (r ≪ 1).

lim
r,ξ→0

c̄1 = max

[
0,min

[
ctot,

x1w1 − x2w2

δ

]]
(2)

Further, equation (2) is closely similar to AReLU, equation (1), with the difference of having a limit on
the output (ctot) which is introduced due to the limited resources. Thus, the effect of limited resources,
in this case, total RNApol core, causes the deviation of c̄1 from a linear trend when x1 and x2 vary.
Nevertheless, in the fast competitive binding regime even with a limited RNApol core, the activation
function still performs as a subtraction calculator although it is saturated at ctot (Fig. 2F). Equation (2)
characterizes this non-linear relationship of c̄1 with inputs x1 and x2. We call this activation function
asymptotic saturated ReLU (referred to as ASReLU hereafter).

Despite the ASReLU maintaining its function as a subtractor when the resources are limited, it is
rarely the case for substrates to interact with their binding partners without other competing factors.
For example, various sigma factors may compete with each other to bind to the available RNApol
core molecules. Thus, when this competition is considered, the function of ASReLU may change. A
simplified model consisting of two competing sigma factors (S1, S2) and their corresponding anti-sigma
factors can be utilized to predict the function of ASReLU in the presence of competing sigma factors
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Figure 2: Molecular sequestration of a sigma factor (S1) and its anti-sigma (A1) recapitulates variants
of ReLU activation function. A: Schematic representation of chemical reactions depicting molecular seques-
tration of S1 factor and A1. The inputs are concentrations of species X1 and X2 that generate S1 and A1 ,
respectively. The output is steady-state concentration of S1 shown as s̄1. B: The effect of sequestration rate (γ1)
on input-output relationship of the sequestration reaction. C: The relationship between s̄1 and the inputs x1 and
x2 resembles a soft ReLU function. D: Schematic representation of chemical reactions depicting molecular seques-
tration of S1 and A1 as well as complex formation of S1 with a limited amount of core RNA polymerase (C). The
inputs are concentrations of species X1 and X2 that generate S1 and A1, respectively. The output is steady-state
normalized concentration of S1-C dimer (C1) shown as c̄1

ctot . E: The ratio of RNApol-S1 complex formation rate
to sequestration rate (referred to as competitive binding ratio r) influences the input-output relationship in the
sequestration system. Lower r allows construction of a thresholding function. F: In fast sequestration regime and
slow complex formation (r → 0 referred to as fast competitive binding regime), the output of the sequestration
reactions in the presence of limited resources resembles an asymptotic saturated ReLU (ASReLU). G: Schematic
representation of chemical reactions depicting molecular sequestration of S1 and A1 as well as complex formation
of S1 with a limited amount of core RNA polymerase (C) in the presence of a competing sigma factor (S2). The
inputs are concentrations of species X1 and X2 that generate S1 and A1, respectively. The output is steady-state
normalized concentration of S1-C dimer (C1) shown as c̄1

ctot . H: The effect of concentration of species α that
generates the competing sigma factor S2 on the activation function of sequestration reaction. The addition of
competitive binding reduces the amount of total C available, thus lowering the saturation level of the ASReLU
function. I: The effect of concentration of species (β) that generates A2 that sequesters the competing S2 on
the activation function of sequestration reaction. Higher sequestration of S2 results in a higher concentration of
available C, thus increasing the saturation level of the ASReLU function.7
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(Fig. 2G). For simplicity, here we assume that the competing sigma factors have identical affinities for
their corresponding anti-sigma proteins as well as C. The effect of different kinetics will be investigated
in the next section. The following chemical reactions represent the model:

X1
w1−−⇀ X1 + S1 X2

w2−−⇀ X2 +A1 Production,

∅ α−−⇀ S2 ∅ β−−⇀ A2 Production of competitive species,

S1
δ−−⇀ ∅ A1

δ−−⇀ ∅ Decay,

S2
δ−−⇀ ∅ A2

δ−−⇀ ∅ Decay of competitive species,

S1 +A1
γ1−−⇀ ∅ S2 +A2

γ1−−⇀ ∅ Sequestration,

S1 + C
γ2−−⇀ C1 S2 + C

γ2−−⇀ C2 Competitive complex formation.

Solving at steady state, the set of ODEs modeling above equations yields equation (3) (for mathe-
matical derivation, see SI section 1.3), which describes an expression of c̄1 as a function of inputs (x1
and x2) and ctot. Although it is challenging to find a closed-form expression of c̄1 at the steady state,
we can find an expression of c̄1 as a function of the inputs x1, x2, and c̄2 (unknown). This expression
is useful to understand the effect of coupling between the two competing sigma factors on their binding
to the RNApol. Equation (3) shows that the available RNApol is depleted by the other sigma factor
reflected in the term ctot − c̄2. Additionally, the amount of depletion of available resources will depend
on the production rates of both the competing sigma factor and its anti-sigma protein. Yet, in the
fast sequestration regime (ξ → 0), and fast competitive binding (r → 0), the system converges to an
ASReLU function with a lower saturation magnitude captured by ctot − c̄2.

lim
r,ξ→0

c̄1 = max

[
0,min

[
ctot − c̄2,

x1w1 − x2w2

δ

]]
(3)

Since c̄2 only influences the ASReLU saturation level, the performance of the ASReLU function in
calculating the difference between S1 and A1 as a thresholding function is sustained under the effect of a
competing sigma factor (Fig. 2H). However, the limit of output c̄1 (the saturation level) further decreases
as the amount of competing sigma factor s2 increases which corresponds with higher α (Fig. 2H). This
trend reverses back to the non-competing ASReLU (equation (2)) when the amount of anti-sigma factor
A2 increases with higher β since less S2 is available to compete with S1 (Fig. 2I).

Overall, molecular sequestration in a sigma factor-dependent translation system models variations
of the ReLU function. In ideal conditions where the RNApol core is unlimited, this dependency is
perfectly linear and reflects the difference between S1 and A1, enabling an AReLU function in a fast
sequestration regime. However, in the presence of limited as well as shared resources, the trend between
the sigma factor-RNApol complex and the differential value of S1 and A1 deviates from a linear trend
and this deviation becomes more intense as the total amount of free S2 increases. This relationship in
fast sequestration and competitive binding regimes is captured by the ASReLU function. However, since
ASReLU still represents the difference of S1 and A1, we reasoned that the activation function can be used
to create a perceptron, thus paving the way for constructing multi-layer neural networks for generating
non-linear outputs.

2.2 Design and analysis of a sigma-based perceptron with ASReLU activation func-
tion and sharing limited resources

After confirming the output of the sigma-based perceptron with an ASReLU activation function, we
seek to determine whether this system demonstrates typical characteristics of a single node in a neural
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network in the presence of a competing node. We test various input ranges of the perceptron and its
competing counterparts to investigate the perceptron’s linear decision boundary as well as weight-tuning
for manipulating its decision boundary. Thus, we model the binding of a sigma factor (S1) to RNApol in
the presence of its anti-sigma (A1) as well as a competing sigma-anti-sigma pair (S2 and A2) and look
at the steady-state total amount of RNApol bound to S1 (denoted as c̄1) as the output of the node in
response to a wide range of inputs (Figs. 3A and B).

First, we investigate the output of the single node in isolation (without competing factors) to under-
stand the effect of binding kinetics between S1 and A1 (γ1) as well as S1 and C (γ2) on the perceptron’s
decision boundary. Our findings show that the competitive binding ratio plays a critical role in determin-
ing the response pattern, also known as the decision boundary, of the perceptron. Equation (4) below
provides insight on how r and total resources ctot affect the decision boundary (see SI section 1.2 for
derivation):

c̄1 =
w1x1
δ

−
(

c1
c1 + r(ctot − c̄1)

)
w2x2
δ

− (
δ

γ2
)

c̄1
ctot − c̄1

(4)

The last term in the equation (4) simply introduces a bias to the decision boundary which only
influences the response amplitude while leaving the response pattern, dictated by weights w1 and w2,
intact. Additionally, the coefficient of x2 depends on both variables w2 and c1

c1+r(ctot−c1)
. Therefore, the

competitive binding ratio, depending on its magnitude, can change the slope of the decision boundary.
When r → 0 (Fig. 3C, right), the coefficient of w2x2

δ in equation (4) converges to 1. Hence, in this
regime, the pattern of decision boundary remains linear across the input ranges although its bias changes
depending on the inputs. However, as r becomes greater, the effect of limited resources on the decision
boundary strengthens (Fig. 3C, left). In such a condition, the decision boundary still remains linear, but
since c1 is a function of x1 and x2, the slope of the decision boundary varies across the range of the
inputs as an inverse function of ctot − c1. Intuitively, when r → 0, the sequestration rate γ1 is higher
than γ2. Thus, the available amount of S1 becomes equal to x1w1 − x2w2 which corresponds to excess
amount of S1 after binding to A1. In this case, regardless of the binding rate between S1 and the RNApol
C, the output will be a simple linear function of excess S1. On the other hand, when the sequestration
rate γ1 is slower than the binding rate between S1 and C (γ2), the dynamics of binding between S1 and
A1 in conjunction with binding of S1 and C dictates non-linearity on the output of the sequestration and
complex formation reactions (seen in Fig. 2F). The decision boundary of the perceptron, consequently,
consists of linear decision boundaries with slopes that change as the inputs vary. Nevertheless, as long
as r ≪ 1, the perceptron still functions similarly to the ideal condition (when r → 0) and generates
a decision boundary which resembles the ideal linear condition and can be used for the construction of
more complicated architectures.

Next, we seek to investigate how the total amount of RNApol, C, affects the perceptron function.
Since C does not play a role in the dynamics of the ASReLU function, its variation reveals itself as a
simple increase or decrease in perceptron response amplitude (Fig. 3D). This effect occurs because the
normalized output of the ASReLU, c̄n1 , is completely independent of C and varies only by x1 and x2 (see
equation (23) in the SI). Therefore, a single perceptron node in the absence of any competing sigma
factors and in the presence of limited resources still acts as a linear classifier. However, the dynamic
effects of anti-sigma-sigma binding on the system effectively change the weights of the perceptron decision
boundary. Such changes, however, are minimal when r ≪ 1.

So far, we have focused on the decision boundary of the biological perceptron made by a sigma factor
and its corresponding anti-sigma protein. Next, we consider whether the presence of another sigma factor
(S2) and its anti-sigma protein (A2) changes the pattern of the perceptron decision boundary. Equation
(5) provides an expression for the output of the perceptron as a function of inputs, c1, and c2. (See SI
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section 1.3 for derivation.)

c̄1 =
w1x1
δ

−
(

c1
c1 + r(ctot − c̄1 − c̄2)

)
w2x2
δ

− (
δ

γ2
)

c̄1
ctot − c̄1 − c̄2

(5)

Equation (5) can be interpreted as an alternative form of equation (4) if ctot in equation (4) is
replaced with ctot − c̄2. In other words, since the presence of a competing perceptron shrinks the
amount of available resources, it amplifies the bias introduced to the perceptron output (by lowering the
magnitude of the denominator in the last term in equation (5)) and strengthens the input-dependent
slope variation in decision boundary of the main perceptron (by increasing the coefficient of w2x2

δ in
equation (5)). Note that c1 in equation (5) is a function of inputs x1 and x2. Therefore, the magnitude
of introduced bias and change in the slope of the decision boundary will be varied in different input
regimes. However, if r ≪ 1, the effect of competition and resource sharing on tuning decision boundary
becomes negligible as the coefficient of w2x2

δ in equation (5) converges to 1.
Our simulations for a perceptron in a fast competitive binding regime over a range of different input

concentrations verify our mathematical analysis by demonstrating that in the presence of another sigma
factor (produced by input α2) competing to bind to the RNApol, the perceptron response is suppressed
due to the bias introduced by the competing perceptron which lowers the amount of available RNApol
(Fig. 3E). The response pattern, on the other hand, remains mainly intact due to the low competitive
binding ratio.

We also investigate how anti-sigma A2 (produced by input β2) influences the response of the percep-
tron in a resource-sharing system. Binding of A2 to S2 disables S2 from binding to RNApol, thereby
increasing the total amount of RNApol available for S1 to bind. Therefore, we expect that the intro-
duction of A2 to the system suppresses the bias effect of S2 on the perceptron response pattern (last
term in equation (5)). Indeed, our simulations show that an increase in production of A2 increases the
perceptron output (Fig. 3F), thus confirming our hypothesis.

Our mathematical analysis of the perceptron output in the presence of a competing perceptron leads
to an expression for c̄1 that is dependent on inputs and c̄2 (equation (48) in the SI), indicating that
kinetics of binding between S2 and A2 would reveal its effect on perceptron output by simply varying its
response amplitude while leaving its response pattern intact as long as the perceptron functions in the
fast competitive binding regime (see SI section 1.3 for mathematical derivation. See Figs. S2 and S3
for simulations over a wide range of different S2 and A2 concentrations and different kinetics of S2-A2

binding, respectively.).
Lastly, as weight tuning is a fundamental characteristic of nodes in neural networks that defines their

individual decision boundaries, we determine the feasibility of tuning the weights applied to our biological
perceptron in the presence or absence of resource sharing. We first analyze an individual node with a
limited amount of C and observe the change in the output pattern as w1 increased (Fig. 3G). Similar
to perceptrons used in neural networks, adjusting the weight applied to the input results in a discernible
change in the slope of the response pattern which is in agreement with our mathematical analysis (see
1.3 in SI). Aligned with our expectation, introducing a second node S2 that imposes resources sharing
on the system preserves the weight-tuning characteristic of the perceptron and only affects its response
amplitude by lowering the saturation limit (Fig. 3H). Taken together, our simulations elucidate the
amplitude-modulation effect of a competing sigma factor on the perceptron output in the fast competitive
binding regime and also demonstrate the weight-tuning ability of perceptron with or without resource
sharing. Therefore, we concluded that by operating in a fast competitive binding regime, sequestration-
based perceptrons can demonstrate linear decision boundaries despite sharing limited resources which in
turn allows the construction of multi-layer perceptron networks.
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Figure 3: Biomolecular network with all or none response demonstrate characteristics of a perceptron.
A: Chemical reactions representing a single perceptron in the presence of a competing node. See table 1 for the
value of input weights. B: The equivalent representation of the chemical reactions in the context of artificial neural
networks. C: Linear decision boundary of a single node in the absence of competition. Lower r demonstrates linear
decision boundary while higher r generates linear decision boundaries with weights that vary as a function of input.
D: Linear decision boundary of a single node with different amounts of total C in the absence of competition. A
higher concentration of C allows a higher range of responses and lack of saturation observed with lower ctot. E:
Linear decision boundary of a perceptron in the presence of a competing node. α2 represents the concentration
of species that produces competing S2. A higher amount of S2 reduces the available concentration of C, thus
suppressing the response of the decision boundary while leaving its pattern intact. F: The effect of concentration
of A2 (controlled by β2) which sequesters competing S2 on the linear decision boundary of a perceptron in the
presence of limited resources and a competing node. Higher sequestration yields a higher available concentration
of C, thus increasing the amplitude of perceptron response. G: Linear decision boundary of a single node in
the absence of a competing factor can be tuned by adjusting the weight of the input even when r = 0.1. H:
Tuning the linear decision boundary of the perceptron in the presence of a competing node can still be realized
by changing the input weight. The amplitude of the response, however, is suppressed due to the lower availability
of C.
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2.3 Biomolecular neural networks generate non-linear classifiers in the presence of
shared resources

While a single sigma-based perceptron generates a tunable decision boundary even with sharing limited
resources (Fig. 3), most biologically relevant biocomputation processes such as competitive ligand binding
and protein dimerization generate sophisticated non-linear responses that rely on the protein-protein
interactions and the concentration of competing dimerizing proteins or ligands [18, 17]. Therefore, we
aim to utilize the sigma-based perceptron as a basic building block of more intricate networks made of
multiple perceptrons that are capable of generating non-linear outputs.

First, we investigate a two-node network where each node receives two inputs with unique weights
(Fig. 4A). This simple network allows us to study the effect of sharing limited resources on the output
of nodes in the same layer (see SI section 2.1 for mathematical representation of the network). In
the absence of resource sharing, each node’s output is a linear combination of its inputs (Fig. 3C).
Therefore, with given weights denoted in Fig. 4A, linear patterns for outputs of nodes 1 and 2 are
observed (Fig. 4B). However, when the binding competition between sigma factors is taken into account,
the effect of limited resources and competition on the network output is elucidated as the attenuation
of outputs for each node in certain input regimes (Fig. 4C) resulting in a non-linear response pattern.
Notably, the response of each node is maximally affected where the competing node is consuming most
of the resources. For instance, in isolation, the output of node 2 (c2) has its highest expression level
when [x1, x2] → 1 (Fig. 4B, bottom). Consequently, the response pattern of c1 is highly diminished in
that region (Fig. 4C) due to the effect of resource sharing with node 2. In a similar fashion, the output
pattern of c2 demonstrates its highest attenuation where C1 is expressed the most in isolation (x1 → 1),
thus leaving a smaller amount of available RNApol (C) for production of C2. Hence, the concerted effect
of resource sharing in a wide range of inputs imposes non-linearity in the output of nodes in the same
layer due to the emergence of a dominant perceptron that consumes most of the resources. This effect
can also be deduced from equation (5) knowing that both c1 and c2 are functions of inputs. Therefore,
in certain input regimes where either c1 or c2 are strongly expressed, the effects of competitive resource
sharing detailed in the previous section become strengthened.

Interestingly, the network output is influenced differently in fast and slow competitive binding regimes.
In a fast competitive binding regime, c̄1 and c̄2 are linear functions of x1 and x2. Therefore, the outputs
c1 and c2 display sharper deviations when both are dependent on inputs (Fig. 4D) due to the stronger
effect of the bias term in equation (5) imposed by sharp reduction of resources (see Fig. S4 for isolated
perceptron responses in fast competitive binding regime.). Overall, we conclude that resource sharing can
significantly induce non-linearity to the network output pattern and the highest impact of competitive
resource sharing reveals itself where the response of isolated nodes overlap with each other, corresponding
to input regimes with maximum resource sharing.

Knowing that overlapping responses can cause non-linearity in the network outputs, we next consider
whether we can still implement non-linear networks with decision boundaries that are distorted minimally
due to resource sharing. We reason that if the outputs of the same layer do not overlap with each other,
the overall output of the network will follow the design principles dictated by the input weights and will
not have undesired non-linearity. To test this hypothesis, we look at a simple network made of three
nodes that reconstitutes a dual region classifier (band-stop filter) represented in Fig. 4E (see SI section
2.2 for mathematical representation of the network and Fig. S5 for the ideal response of this network
in the absence of sharing limited resources). In order to avoid non-linearity induced by resource sharing,
we design the network such that the node outputs have minimal overlap with each other (Fig. 4F, left
and middle panels). We expect that the lack of overlap between node outputs would prevent unwanted
non-linearity in the network output (c3). Aligned with our expectation, our simulations demonstrate
the network response consisting of two separate linear regions despite resource sharing (Fig. 4F, right).
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Figure 4: Caption in the next page.
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Figure 4: Biomolecular neural networks enable implementation of linear and non-linear classifiers: A:
Schematic representation of a single-layer neural network that generates a linear classifier. Both perceptrons share
the limited resources C. See table 1 for the value of input weights. B: Linear decision boundary of perceptron
1 (top) and 2 (bottom) in the absence of competitive binding. C: Decision boundary of perceptrons 1 (top)
and 2 (bottom) when perceptrons compete to bind to the limited resources C. The competitive binding ratio r
is 0.1. D: Decision boundary of perceptrons 1 (top) and 2 (bottom) when perceptrons compete to bind to the
limited resources C. The competitive binding ratio r is 0.01. Competitive binding introduces non-linearity to
the classifier by reducing the output amplitude in input regimes in which both perceptrons require resources. E:
Schematic representation of the architecture of the dual region classifier multi-layer neural network with shared
resources. + and − signs indicate the weights of inputs and whether they promote the expression of sigma or
anti-sigma proteins. See table 1 for the value of input weights. F: Output maps of the perceptrons in the first
layer (left and middle for c1 and c2, respectively) each representing a linear classifier with minimal interference.
Right panel depicts network output (c3) which comprises the dual region classifier with ctot = 0.2. G: Output
maps of the perceptrons in the first layer (left and middle) and network output (right) which comprises the dual
region classifier with ctot = 0.6. The pattern of the classifier is invariant to ctot while its amplitude varies with
ctot. H: Schematic representation of the multi-layer neural network with a non-linear classifier output. + and −
signs indicate the weights of inputs and whether they promote the expression of sigma or anti-sigma proteins. See
table 1 for the value of input weights. I: The output of perceptrons in the first layer of the network. Perceptrons
1 (left), 2 (middle), and 3 (right) each recapitulate a linear classifier with zero to little interference in their linear
decision boundaries. J: The output of the network depicted in H (c4) is a non-linear classifier. The classifier
boundary can be tuned by adjusting the biases of nodes in the first layer. Shown are examples of different decision
boundaries by changing the bias of perceptron 1 to 0.2 (left), 0.3 (middle), and 0.4 (right).

We also confirmed that an increase in the amount of available resources (C) decreases the effect of
competition for resources and does not alter the decision boundary of first layer nodes (Fig. 4G, left and
middle) as well as overall network (Fig. 4G, right). Therefore, we conclude that linear responses can be
engineered in a network, despite the presence of resource sharing, by tuning input weights such that the
outputs of the same layer do not overlap.

Finally, we seek to create a biomolecular neural network that generates a non-linear classifier. Such
non-linear outputs are key features of many biological processes and drivers of cell decision-making [44,
45, 46]. We design a simple network with specific input weights based on the interaction of multiple sigma
factors and their corresponding anti-sigma molecules that generates a non-linear classifier resembling a
band-pass filter (Fig. 4H, see SI section 2.3 for ODEs describing the network). As in the previous
design, we want the outputs of the first layer to have minimal overlap with each other to avoid non-
linearity induced by resource sharing. Our simulations depict that the first layer outputs, c1, c2, and c3
have minimal overlap with each other given the particular weights and biases (Fig. 4I). Consequently,
our simulations demonstrate that network output (c4) creates the non-linear classifier (Fig. 4J) that
is aligned with our ideal design expectations (Fig. S6). Consistent with our findings in the previous
section, changing the ctot does not change the non-linear pattern of the decision boundary but tunes its
amplitude (Fig. S7).

We also look at the effect of input bias on the first layer of the output (Fig. 4J). Indeed, in
accordance with the ideal design (Fig. S6), increasing the bias of node 1 amplifies its output (c1) which
subsequently further sequesters the amount of available S4, thus suppressing the network response in its
corresponding input regime ([x1, x2] → 0) without significant deviation from design expectations (Fig.
S6). Therefore, we showed that even in the presence of resource sharing, we can develop non-linear
biological neural networks to realize dual region and non-linear classifiers. We also demonstrated that
we can modulate the network response by tuning the model parameters that are independent of limited
resources.
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Table 1: List of parameters used in computational simulations. The value of parameters indicated with * are
described in their corresponding figures.

Parameter Symbol Unit Value Figure
Perceptron input species [x1, x2] µM [0 → 1] 2,3,4

Competing perceptron input species [α, β] µM [0, 0.5, 1] 2
Sigma factor s1,s2 µM variable 2,3,4

Anti-sigma factor a1,a2 µM variable 2,3,4
Core RNA polymerase (RNApol) c µM [0 → 1] 2,3,4

Sigma i-RNApol complex ci µM variable 2,3,4
Sigma-anti-sigma sequestration rate γ1 µM−1h−1 * 2

Sigma-RNApol complex formation rate γ2 µM−1h−1 10 2
Competitive binding ratio r - * 2,3,4

Degradation rate δ µM−1h−1 1 2,3,4
Node 1 input weights [w1, w2] h−1 [1, 1] 3
Node 2 input weights [α2, β2] h−1 [0, 0] or [0.5, 0.5] 3
Node 1 input weights [w1

0, w
1
1, w

2
1] h−1 [1, 1, 1] 4A

Node 2 input weights [−w2
0,−w1

2, w
2
2] h−1 [0.5, 1, 1] 4A

Node 1 input weights [−w1
0, w

1
1, w

2
1] h−1 [1.2, 1, 1] 4E

Node 2 input weights [w2
0,−w1

2,−w2
2] h−1 [0.7, 1, 1] 4E

Node 3 input weights [−w3
0, w

3
1, w

3
2] h−1 [0.15, 4, 4] 4E

Node 1 input weights [w1
0,−w1

1,−w2
1] h−1 [0.4, 0.5, 0.5] 4H

Node 2 input weights [−w2
0, w

1
2,−w2

2] h−1 [0.8, 1.5, 0.5] 4H
Node 3 input weights [−w3

0,−w3
1, w

3
2] h−1 [0.8, 0.5, 1.5] 4H

Node 4 input weights [w4
0,−w4

1,−w4
2,−w4

3] h−1 [0.3, 1, 1, 1] 4H

3 Discussion

Biological signal processing units that reconstitute molecular linear and non-linear classifiers are powerful
tools that enable cellular decision-making, precise cell programming, highly discriminatory input process-
ing, and ultra-sensitive molecular biosensors for applications such CAR T-cell engineering or in vitro
diagnostics. A biological perceptron ideally allows linear classification while a combination of biological
perceptrons can create biomolecular neural networks that compute non-linear classification.

Among different approaches that are used to construct biochemical neural networks and classifiers,
sequestration-based networks are of significant interest because of their simplicity and compatibility
with in vivo systems [31, 24]. However, the effect of physiological constraints such as a limitation on
resources, as well as competitive binding between elements of molecular classifier networks and specifically
sequestration-based networks on the classification function have remained unexplored.

We mathematically modeled sequestration-based biochemical neural networks and investigated how
sharing limited resources, a ubiquitous feature of physiological systems, influences the function of the
neural network decision boundary. We chose a network of sigma transcription factors, their corresponding
anti-sigma proteins, and core RNA polymerase as our model system. Our modelings demonstrated that
a single perceptron, the basic building block of neural networks, with a ReLU-like activation function is
recapitulated by modeling the interaction of one sigma factor with its anti-sigma molecule. We further
showed that modifying the model to include a limited amount of core RNApol in the system changes the
activation function of the sigma-based perceptron to an asymptotic saturated ReLU. Drawing inspiration
from natural systems where multiple sigma factors compete to bind to a limited pool of RNApol, we
altered the model to include another sigma factor and found that the decision boundary of the sigma-
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based perceptron remains the same although its output is suppressed.
While conditions of biochemical in vitro reactions are primarily controlled, in living organisms, endoge-

nous factors can cause perturbations and deviations from the ideal design. For instance, in bacteria,
although a certain sigma factor might be designed to control gene expression, multiple other sigma
factors compete with the engineered sigma factor to bind to a limited amount of RNApol. To include
competitive binding to shared resources, we increased the number of perceptrons, controlled by the same
inputs, to two. We found that in specific input regimes where the outputs of the perceptrons interfere
with each other, one dominant perceptron emerges and consumes most of the resources whereas the
decision boundary of the non-dominant perceptron significantly deviates from its ideal design.

Given that engineering any kind of non-linear response by neural networks requires multi-layer percep-
trons, we investigated conditions where despite resource sharing, non-linear decision boundaries could be
designed. Knowing that interference of outputs of perceptrons in the same layer raises deviations of the
linear decision boundary, we engineered particular multi-layer perceptrons in which non-linear decision
boundaries were successfully demonstrated. We showed that despite sharing limited resources, dual region
and non-linear classifiers resembling band-stop and band-pass filters can be implemented in sigma-based
neural networks using different architectures of 2-layer neural networks with minimal deviation from ideal
design.

An advantage of sigma-based sequestration-based neural networks over DNA-based neural networks
is that they originate from endogenous proteins in bacteria. Therefore, sigma-based neural networks can
be implemented both in bacterial systems as well as bacterial lysate-based cell-free expression systems,
thus expanding their applications as living computers as well as in vitro biosensors and synthetic cell-
based biocomputers[47, 48]. To indicate the possible implementation of neural networks demonstrated
here (Fig. 4), we present schematics of required DNA sequences for each network in Figs. S8 and
S9. Additionally, unlike neuromorphic systems made of inducible genetic circuits, in sequestration-based
networks, both positive and negative weights can be engineered, thereby making them more flexible and
applicable for generating non-linear response patterns. Since outputs of sigma-based perceptrons are
transcriptionally active sigma-RNApol complexes, they can be programmed to drive the expression of
other sigma factors. Relying on this characteristic of sigma-based perceptrons, multi-layered perceptrons
that are capable of recapitulating sophisticated non-linear response patterns can be designed readily.
However, as shown in this work, for the neural network to function as designed and avoid perturbations
caused by sharing limited resources among perceptrons, the outputs of perceptrons in the same layer
must have minimal interference.

While we demonstrated designs of linear and non-linear classifiers in this work with predetermined
weights that generate desirable decision boundaries, we note that sigma-based neural networks are not
capable of learning through common algorithms like backpropagation. i.e., the input weights that directly
determine the decision boundary are chosen by the designer. However, utilizing the mathematical analysis
presented here, one can implement optimization approaches such as particle swarm optimization or other
heuristic algorithms to find the appropriate weights for the generation of the desired decision boundary
in silico prior to testing them in vivo or in vitro. Such optimization algorithms can also be implemented
to expand the function of BNNs to regimes where non-linear effects of resource constraints appear.
Therefore, engineering biologically constrained BNNs to recognize any arbitrary input pattern using
optimization methods is an avenue worth exploring in the future.

Recently, it was shown that many cancer cell types can be recognized with higher precision if a
combination of two antigens is used to identify them instead of traditionally using one biomarker[49].
Implementing non-linear output patterns with sequestration-based neural networks could increase the
recognition ability of engineered cellular systems like CAR T-cells by equipping them with information-
processing neural networks that generate desired outputs only in designed antigen concentration regimes.
Similarly, by coupling inputs to the expression of sigma factors and their anti-sigma molecules, more sensi-
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tive, precise, and versatile in vitro biosensors for the detection of pathogens, substances, and biomarkers
can be constructed.

With the nanofabrication technology in the semiconductor industry approaching its physical limits
of manufacturing smaller and smaller elements [50], alternative computational devices with biological
components are gaining increasing interest. However, current biocomputational systems are only in their
infancy. Although biocomputation in living systems was initially shown more than two decades ago using
genetic circuits, the limited range of computational tasks that genetic circuits can perform as well as the
digital nature of their input-outputs makes their application limited. With the recent booming advance of
AI, biochemical approaches that recapitulate biological neural networks holding the potential to perform
intricate computational tasks have gained attention [3, 51]. Our study provides a general framework for
designing biological perceptron or linear classifiers using existing biomolecular tools in the presence of
resource constraints that are ubiquitous in physiological conditions. This framework, thus, is the first step
towards designing sophisticated biomolecular neural networks that equip engineered cells with high-level
computational and decision-making abilities.

In addition to transformative applications of sigma-based neural networks used in a forward-engineering
manner in both cellular and cell-free systems, the fact that sigma and anti-sigma molecules can construct
complicated computational modules elucidates the hidden capabilities of these rather simple transcrip-
tional regulation molecules in cells. It was revealed by Park et al. that sigma factors share the resources
in a pulsatile manner [20]. However, here we demonstrated that sharing limited resources influences
sigma-based processes beyond time sharing. Bacterial cells have many sigma factors, some of which are
activated only when their inputs meet certain conditions. However, how bacteria utilize the principles
of molecular sequestration as well as sharing limited resources to respond differently to input combina-
tions awaits future studies. Additionally, if bacteria are able to process certain input patterns using their
endogenous sigma-based neural networks, the nature of these patterns and their role in guiding bacteria
to make particular decisions remain unclear. In conclusion, our investigation demonstrates the effects of
resource-sharing on sigma-based sequestration-based neural networks with up to three sigma factors and
provides an outline for designing sigma-based non-linear neural networks in bacterial systems.
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