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Abstract—Machine unlearning is an emerging need that aims
to remove the influence of deleted data from a learned model
in a timely manner. Thus, unlearning is important for privacy
and security in data management. Nevertheless, existing machine
unlearning methods fail to perform exactly and efficiently in
a federated setting. In this paper, we study the unlearning
problem in federated learning, which provides a data deletion
mechanism in the federated setting. First of all, a quantized
federated learning (Q-FL) algorithm is developed to facilitate
exact unlearning. Based on the quantized federated learning
system, an exact and efficient federated unlearning (Exact-Fun)
algorithm is designed to realize the goal of data deletion. Through
theoretic analysis and experimental evaluation, our proposed
methods not only have the desired unlearning effectiveness but
also achieve high unlearning efficiency compared with the existing
works.

Index Terms—federated learning, machine unlearning, privacy
and security, database management

I. INTRODUCTION

Machine learning models require large amounts of data to

perform well, often collected from users or third-party sources.

In many real-world applications, users willingly share their

data with service providers and platforms in exchange for

better services. However, there is a growing emphasis on

protecting user privacy, as evidenced by laws such as the

General Data Protection Regulation (GDPR) [2] and California

Consumer Privacy Act (CCPA) [3]. For example, a user may

request to delete part of their search history, or a hospital may

be asked to remove certain patient records. These scenarios

raise an important and practical question: what should service

providers do when users request that their data be deleted from

their services or platforms?

One direct approach to address users’ data removal requests

deleting their data from the databases. However, the memo-

rization capabilities of machine learning models [4] pose a

challenge, as the information from the training data becomes

embedded within the model parameters and is not easily

forgotten. Additionally, the naive deletion of data can intro-

duce security vulnerabilities, potentially enabling malicious

actors to exploit various techniques, such as model inversion

attacks [5], membership inference attacks [6], reconstruction

attacks [7], and more, to infer users’ private information.

The initial idea of this paper is discussed in the author’s dissertation [1],
and some preliminary results are released in Section 5 of the dissertation.
In this conference version, we add algorithms, theorems, and experiments to
enrich the content.

The process of correctly removing data in the context of

machine learning, referred to as ”machine unlearning” [8],

necessitates the elimination of data from training datasets and

its impact on the learned models. While it may seem intuitive

to retrain machine learning models from scratch using the

remaining databases, excluding the deleted data, this approach

can incur a substantial computational cost, particularly for

models with millions of parameters [9]. As a result, the

primary focus of current machine unlearning research centers

on designing methods that are computationally efficient and

time-saving. To date, there have been only a limited number

of studies on machine unlearning, each with its own set of

limitations. These limitations range from simplistic learning

methods, such as linear regression [10], [11], to model-

dependent techniques, such as decision trees [12] and k-means

clustering [13]. Furthermore, within the domain of federated

learning (FL), existing research primarily concentrates on

enhancing unlearning efficiency through approximate methods.

However, these efforts often neglect the evaluation of model

utility, such as model accuracy, following the unlearning pro-

cess. This oversight can detrimentally impact the performance

of unlearned models.

Motivated by the limitations inherent in existing unlearning

methods, this paper endeavors to develop a model-agnostic,

exact, and efficient federated machine unlearning approach.

To accomplish exact federated unlearning, we introduce the

concept of α-quantization [14] to enhance the stability of the

federated model. Building upon the foundation of the quan-

tized federated model, we present the Exact-Fun algorithm,

which achieves unlearning in effectiveness and efficiency.

We underscore the key contributions here:

1. This paper studies the exact federated unlearning, which

can extend to various machine learning models, rendering our

approach model-agnostic.

2. We introduce the Q-FL algorithm, designed to facilitate

exact federated unlearning while ensuring model convergence.

3. We introduce the Exact-Fun algorithm, a solution de-

signed to efficiently handle users’ data deletion requests, with

empirically validated unlearning efficiency.

4. Both the Q-FL and Exact-Fun algorithms undergo exten-

sive experiments. The results affirm the efficacy and efficiency,

surpassing the current state-of-the-art approaches.
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II. RELATED WORKS

Existing research on unlearning can be classified into two

main categories: exact unlearning and approximate unlearning,

based on their respective efficiency and effectiveness.

Exact unlearning necessitates that the distribution of un-

learned model parameters must exactly match the distribution

of model parameters obtained through retraining on the dataset

excluding the deleted data. Cao et al. [8] pioneered the devel-

opment of unlearning algorithms for statistical query-based

learning models, such as the Naive Bayesian classifier and

Support Vector Machines (SVM). Ginart et al. [13] introduced

the first unlearning method for the unsupervised learning k-

means clustering algorithm. Their approach leverages stability

and divide-and-conquer techniques to enhance unlearning effi-

ciency. In Bourtoule et al.’s work [15], they designed a Shard-

ing, Isolation, Slicing, and Aggregation (SISA) framework

to reduce unlearning time. The concept involves splitting a

dataset into smaller parts, thereby reducing the retraining time.

Similarly, Aldaghri et al. [16] employed ensemble learning

to partition the training dataset into disjoint shards using

a coding matrix. Following this trend, Schelter et al. [17]

and Brophy et al. [12] devised unlearning algorithms for the

random forests algorithm. They applied a similar concept to

adjust the structure of decision trees to minimize the retraining

effort for subtrees.

Approximate unlearning offers a more time-efficient ap-

proach compared to exact unlearning. In the current body of

research, there are two primary approaches to processing a

model: gradient-based methods [18]–[22] and Hessian-based

methods [10], [11], [23]. For instance, Wu et al. [18], Graves

et al. [19], and Wu et al. [24] employed a similar approach,

updating the trained model with stored gradients when spe-

cific data points are removed. Neel et al. [21] and Ullah et

al. [22] introduced statistical indistinguishability and algorithm

stability, respectively, into gradient descent methods for prov-

able approximation in data unlearning. To address adversarial

scenarios where users intentionally delete data with specific

distributions, Gupta et al. [20] proposed adaptive machine

unlearning capable of handling arbitrary model classes and

training methodologies. On another front, Guo et al. [10]

devised differentially private data removal mechanisms that

unlearn data from learned models using the Hessian matrix.

Golatkar and Wang [23], [25] concentrated on unlearning

specific class labels from deep networks. To mitigate the

computational cost associated with the Hessian matrix, Izzo et

al. [11] introduced a sublinear algorithm to expedite unlearning

from linear models efficiently. In a separate branch of re-

search, probability-based unlearning methods were utilized to

tackle approximate unlearning in federated settings, employing

Bayesian [26], [27] and Monte Carlo [28] techniques.

III. EXACT FEDERATED UNLEARNING

A. Problem Formulation

Once an FL model has been trained on a given training

dataset, its model parameters remain fixed and can be deployed

for various applications. When a client, denoted as j and

belonging to the set K, wishes to remove their data Uj ⊂ Dj

(with |Uj | = m < |Dj |) from the trained federated model,

they can initiate an unlearning request to the server. This

request entails removing the data in Uj from client j’s local

training dataset, denoted as Dj . Situations where Uj = Dj are

treated differently, indicating the departure of client j from

the federated learning system, a scenario not addressed in

our problem statement. Additionally, alongside the federated

model, the federated learning algorithm A generates a set of

meta-data M. In this context, an unlearning algorithm can

be formally defined as A u : (A (D),Uj ,M) → W , where it

takes as inputs the trained model A (D), the unlearning dataset

Uj , and the meta-data M to produce an updated unlearned

model.

To fulfill an unlearning request, the process involves the

removal of Uj from both Dj and D. And the influence of Uj

on the trained federated model should be effectively revoked.

Moreover, a successful exact unlearning algorithm should en-

sure two key criteria: (i) The unlearning cost is lower than the

cost of retraining the model from scratch using the remaining

dataset Du = D\Uj . (ii) The distribution of unlearned model

parameters matches that of model parameters trained from

scratch on Du. We give its definition in Definition 1.

Definition 1. (Exact Federated Unlearning) Given an FL
algorithm A :D → W with clients set K, and an unlearn-
ing request Uj (j ∈ K), the unlearning algorithm A u :
(A (D),Uj ,M) → W can exactly unlearn Uj from A (D)
if

Pr[A u(A (D),Uj ,M) ∈ W] = Pr[A (Du) ∈ W].

The definition means that the probability distributions of the

unlearned model and the retrained model are equal.

B. Quantization of Federated Learning

Within the FL system, when the dataset Uj is removed from

both Dj and D per a client j’s unlearning request, it can lead

to changes in the final trained federated model. Consequently,

it becomes challenging to guarantee the exact equivalence

in distribution between the unlearned model and the model

trained from scratch on Du, as stipulated in Definition 1.

To address this challenge, it becomes imperative to enhance

the stability of the FL algorithm, thereby facilitating exact

unlearning. This means that minor changes in the local dataset

should ideally result in only minimal or no changes in the

distribution of trained federated model parameters. In the

context of our problem, when a dataset Uj is earmarked for

unlearning, the goal is to ensure that the trained federated

model undergoes minimal alterations. If these changes can be

efficiently assessed during the unlearning process, it becomes

feasible to achieve exact unlearning with efficiency.

The way to reach stability in federated learning is quantiza-

tion [14], where the aggregated parameters of the federated

model are quantized to a discrete vertex in the hypothe-

sis space of model parameters. The quantization operation
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Algorithm 1 Quantized Federated Learning (Q-FL)

Input: the number of iterations T , the number of clients K, learning
rate η, the granularity of quantization α
Output: quantized federated model ŵT

1: Server executes: initialize ŵ0 = q(α,w0)
2: for iteration t = 0 to T do
3: for client k ∈ K in parallel do
4: wt+1

k ← ClientUpdate(k, ŵt)
5: end for
6: wt+1 ← ∑

k∈K
|Dk|
|D| w

t+1
k

7: ŵt+1 = q(α,wt+1)
8: save wt+1 and ŵt+1 on server; // as meta-data
9: end for

10: return ŵT

11: ClientUpdate(k, ŵt): // run on each client
12: compute gradient ∇Lk(ŵ

t) for Dk

13: update local model wt+1
k ← ŵt − η∇Lk(ŵ

t)
14: upload model wt+1

k to server.

q(α,wt) = ŵt can map its continues input value wt to a

discrete value ŵt, which is expressed as follows:

ŵt = α · z∗, s.t. z∗ = arg min
z∈Zd

‖wt − α · z‖2, (1)

where Zd is the d-dimensional integer space. For instance, in

1-dimension, q(α = 0.1, wt = 0.62) maps wt=0.62 to ŵt=0.6,

which is like a rounding operation; and in 2-dimension, q(α =
0.5, wt = [1.1, 2.7]) maps wt to the closest α vertex ŵt =
[1.0, 2.5].

We introduce the Q-FL algorithm, outlined in Algorithm 1.

In the initial phase of Q-FL, the server initializes the model

parameter w0. This initialization is then passed through the

quantization function q(α, ·) to yield the quantized model

ŵ0. Subsequently, this quantized model is distributed to all

participating clients as their local models for the computation

of ClientUpdate(·). The client operations mirror those of the

original FL, encompassing tasks such as gradient computation,

local model updates, and the transmission of their updated

local models to the server. Upon receiving these local updates

and executing the aggregation process, the server obtains a

new federated model denoted as wt+1. Following this, the

quantization function is employed in Line 7, operating on

the federated model wt+1 to produce the quantized model

parameter ŵt+1 = q(α,wt+1). Both the original federated

model wt+1 and the quantized federated model ŵt+1 are

retained on the server as part of the meta-data M.

It is noteworthy that, by applying quantization at the server

in each iteration t, the quantized federated model tends to

exhibit stability as a constant with a high probability (as

substantiated in Theorem 2). Furthermore, the Q-FL algorithm

we propose not only facilitates exact unlearning but also

preserves the model’s utility and convergence, even when

the quantization operation introduces perturbations to its pa-

rameters. To delve deeper into our analysis, we will first

present Lemma 1 and subsequently employ it to establish

the convergence bounds for the proposed Quantized Federated

Learning (Q-FL) algorithm.

Dataset D3Dataset D2
Dataset D1 Dataset DK

unlearn 
Uj

1 update dataset 
2 update model 
3 upload to server

Quantization

Fig. 1: The framework of proposed Exact-Fun algorithm

Lemma 1. In the Q-FL of Algorithm 1, the loss value of
quantized FL model between t-th iteration and (t + 1)-th
iteration is bounded by the following inequality:

E{L(ŵt+1)− L(ŵt)} ≤ β1E{‖∇L(ŵt)‖2}+ β2E{‖N t+1‖2},
(2)

where β1 = −η + μη2

2 and β2 = μ
2 .

Then, we can use Lemma 1 to prove Theorem 1.

Theorem 1. The convergence upper bound of our proposed
Q-FL Algorithm 1 is given by Eq. (3) when η ∈ (0, 2

μ ] and is
given by Eq. (4) when η ∈ ( 2μ ,∞).

E{L(ŵt)− L(w∗)} ≤ (1 + 2τβ1)
tC0 − β2α

2d[1− (1 + 2τβ1)
t]

24τβ1
,

(3)

E{L(ŵt)− L(w∗)} ≤ (
1

2τ
+ β1)G

2 +
β2α

2d

12
, (4)

where w∗ is the optimal parameter of federated model, C0 =
‖L(ŵ0) − L(w∗)‖ is the initialization quality of federated
model, and η is the learning rate of local models.

It is worth noticing that 2τβ1 is a negative value, so the

right-hand side of Eq. (3) is reducing along with iteration

t. Theorem 1 states that even though our proposed Q-FL

algorithm is obfuscated by quantization, the trained federated

model can still converge. All proof details can be found in our

complete version in this link.

C. Exact and Efficient Federated Unlearning
Upon the completion of our Quantized Federated Learning

algorithm after T iterations, a fully trained federated model

ŵT is established. With this quantized federated model ŵT

in place, it becomes feasible to initiate the exact unlearning

process to remove Uj from the trained model ŵT when

requested by client j. This process results in the corresponding

unlearned federated model denoted as ŵu,T .
According to Algorithm 1, in each iteration t ∈ [0, T ], the

trained local model wt+1
j of any client j is calculated as

wt+1
j = wt

j−η
1

|Dj | [
∑

(x,y)∈Du
j

∇l(wt
j , (x, y))+

∑
(x,y)∈Uj

∇l(wt
j , (x, y))].

(5)
When Uj is removed from client j’s dataset Dj , the updated

model wu,t+1
j should be calculated via Eq. (6) to unlearn Uj .

wu,t+1
j = wt

j − η
1

|Du
j |
[

∑
(x,y)∈Du

j

∇l(wt
j , (x, y))], (6)
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Algorithm 2 Exact and Efficient Federated Unlearning

Input: the number of iterations T , the number of clients K, the gran-
ularity of quantization α, the unlearning client j and its unlearning
request Uj

Output: the unlearned federated model ŵu,T

1: identify the unlearning client j and request Uj

2: for iteration t = 0 to T do
3: compute the gradient ∇Lj(w

t
j) of client j on Uj

4: update local model wu,t
j via Eq. (7)

5: upload wu,t
j to server

6: calculate wu,t = wt − |Du
j |

|D| (w
t
j − wu,t

j )

7: quantize wu,t, q(α,wu,t) = ŵu,t

8: if ŵu,t = ŵt // deletion makes no changes then
9: continue;

10: else
11: send ŵu,t to all clients
12: re-run Algorithm 1 on remaining dataset Du with ŵu,t as

initialization for iterations in [t, T ]
13: end if
14: end for
15: return ŵu,T

where Du
j = Dj \ Uj is the remaining dataset.

The distinction between the trained local model wt+1
j and

the unlearned local model wu,t+1
j primarily lies in the gradi-

ents associated with the data in Uj . So, in order to efficiently

obtain wu,t+1
j without the need to compute gradients for Du

j ,
we can simply subtract the gradient of Uj from the previously
trained local model wt+1

j . By comparing Eq. (5) and Eq. (6),

the rule of updating wu,t+1
j from wt+1

j is given as

wu,t+1
j =

|Dj |
|Du

j |
wt+1

j − |Uj |
|Du

j |
wt

j +
η

|Du
j |

∑
(x,y)∈Uj

∇l(wt
j , (x, y))].

(7)

In Eq. (7), we already have access to wt+1
j and wt

j from

Q-FL Algorithm 1 and the only computation required pertains

to gradients for the data points within Uj . Additionally, thanks

to the quantized stability inherent in Q-FL (as demonstrated in

Theorem 2), the federated model is likely to maintain stability

with a high probability even after the unlearning process.

The process of exact federated unlearning for the deletion of

Uj is illustrated in Fig. 1 and outlined in Algorithm 2. When Uj

is removed from Dj , an updated local model wu,t
j is computed

at iteration t, as detailed in Eq. (7). Then, wu,t
j is uploaded

to the server to facilitate the aggregation of a new federated

model wu,t. This newly derived model is then quantized using

the quantization function q(α, ·) to generate ŵu,t. If ŵu,t

matches the stored federated model ŵt, the deletion of Uj has

no impact on the previously trained federated model ŵt. This

signifies that our unlearning approach is exact. Conversely, if

ŵu,t differs from ŵt, it indicates a disruption in the stability

of the quantized federated model. In such cases, retraining

from the current t-th iteration to T is required to eliminate

the influence of Uj from the learned models.

Within our unlearning algorithm, Exact-Fun, the primary

computational burden resides in the retraining process, specif-

ically, as indicated in Line 12 of Algorithm 2. This compu-
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Fig. 2: The loss and accuracy of FL models with different α (K=50).

tational aspect can be managed by adjusting the quantization

parameter α based on system requirements. A larger value for

α enhances stability, reduces the probability of retraining, and

lowers retraining costs. However, it also leads to a decrease in

model utility due to the increased noise perturbations. Hence,

in Theorem 2, we establish that the retraining probability in

Algorithm 2 is a function of α, and it becomes evident that

selecting an appropriate value for α plays a crucial role in

guiding efficient unlearning in practical applications.

Theorem 2. Assume the distance between the original fed-
erated model wt and its unlearned federated model wu,t has
an upper bound B, i.e., ‖wt − wu,t‖ ≤ B with t ∈ [0, T ].
The probability that Algorithm 2 needs retraining is given by
Eq. (8).

Pr(ŵu,t �= ŵt) =

{
1− ( α

2B
)d, B ∈ [α,∞)

1− (1− B
2α

)d, B ∈ (0, α)
(8)

where d is the dimension of model parameter space W .

Theorem 2 shows that a larger quantization parameter α has

the potential to decrease the retraining probability, albeit at the

cost of potentially inferior convergence bounds. Therefore, the

balance between efficiency and convergence must be thought-

fully considered and designed to meet specific requirements.

IV. EXPERIMENTS

In this section, we evaluate the performance of the Q-FL

algorithm and the Exact-Fun algorithm. Experiment settings

can be found in our complete version in the link.

A. Q-FL Performance

To empirically assess the impact of α on our Q-FL algo-

rithm, we have configured α accordingly for both the Fashion-

MNIST and CIFAR-10 datasets. The loss values of federated

models on their respective test datasets across various itera-

tions are presented in Fig. 2. First and foremost, it is evident

that the loss values for all compared federated models exhibit

a decreasing trend as T increases, eventually stabilizing after

a certain number of iterations (e.g., at T=35 in Fig. 2(a)).

This observation lends support to the convergence capabilities

of our quantized federated learning (Q-FL), aligning with our

analysis in Theorem 1. Similar conclusions can be drawn for

the CIFAR-10 dataset in its entirety. Next, we examine the

impact of α on the testing accuracy of federated models in

Fig. 2(b). It is evident from the figure that, in the case of our

Q-FL model, employing a smaller α value results in higher

1442
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Q-FL w/ Q-FL w/ Q-FL w/ Q-FL w/
K OFL α = 0.02 α = 0.01 α = 0.005 α = 0.0025

K=10 6.66±0.002 6.71±0.002 6.74±0.002 6.75±0.002 6.79±0.002
K=20 11.56±0.003 11.58±0.003 11.59±0.003 11.61±0.003 11.64±0.003
K=50 26.87±0.003 26.94±0.003 27.09±0.003 27.19±0.003 27.35±0.003

TABLE I: Training time comparison between OFL and Q-FL

accuracy and greater stability in training accuracy. This is

because a smaller α corresponds to less noise being introduced

into the model parameters. Furthermore, we have conducted

a comparison of the training times between our Q-FL and

the baseline OFL. Table I presents the average training time

required for a single iteration, measured in seconds, for both

our Q-FL and the baseline OFL. In summary, the quantization

function q(α, ·) employed in our Q-FL algorithm does not

significantly contribute to the overall time consumption and

remains conducive to achieving the desired model accuracy.

B. Unlearning Effectiveness and Efficiency

In this part, we evaluate the effectiveness and efficiency of

our Exact-Fun algorithm.

Unlearning Effectiveness (Accuracy). To assess the effec-

tiveness of unlearning, we compare the accuracy differences

between various unlearning algorithms, such as Exact-Fun

and the INFOCOM22 algorithm. We employ the Symmetric

Absolute Percentage Error (SAPE) metric, a commonly used

measure in unlearning studies [18], [24], [29].

Figure 3(a) illustrates the impact of the quantization pa-

rameter α on the effectiveness of Exact-Fun, with p = 0.1.

It’s worth noting that the baseline (INFOCOM22) remains

unaffected by changes in α, maintaining a constant SAPE

as α varies. Evidently, the SAPE value on the test data

increases as α becomes larger. This occurs because a larger

α introduces more noise perturbation during the quantized

federated learning process, resulting in lower accuracy in our

unlearned federated model. In comparison to the INFOCOM22

baseline, our Exact-Fun algorithm outperforms it when α is

small (e.g., α values of 0.0025, 0.005, and 0.01). Conversely,

the SAPE on the unlearned data increases gradually for smaller

α values but rises sharply when α reaches 0.02. With smaller

α values, our Exact-Fun algorithm is more inclined to retrain

the quantized federated model on the remaining dataset, akin

to the retraining method, resulting in a smaller accuracy

difference between our unlearned model and the retrained

model. In contrast, larger α values reduce the probability

of retraining in our Exact-Fun, leading to a larger accuracy

difference between our unlearned model and the retrained

model on the unlearned data. Subsequently, we explore the

impact of the unlearning portion p on unlearning effectiveness,

considering values of p such as 0.05, 0.1, 0.15, and 0.2.

Figures 3(c) and 3(d) reveal that as the unlearning portion

p increases, the SAPE value of our Exact-Fun decreases. This

trend can be explained through the lens of model retraining.

When p is smaller, the probability of retraining the quantized

federated model in Exact-Fun is lower, resulting in a larger

difference between our quantized model and the retrained

model. Conversely, as p increases, our Exact-Fun algorithm

requires retraining on the remaining dataset, consequently re-

ducing the accuracy difference. Especially, the SAPE value on

the unlearned data decreases drastically from p=0.05 to p=0.1.

Because Exact-Fun does not retrain the quantized model when

p=0.05, the accuracy difference between our unlearned model

and the retrained model is large. In summary, our Exact-Fun

outperforms the baseline approximate unlearning algorithm in

effectiveness, especially when unlearning more data.

Unlearning Effectiveness (Privacy). Membership infer-

ence attack (MIA) is a metric to evaluate the unlearning

effectiveness in many related works [30]–[32], which infers

whether a data sample is in the training dataset of a model

or not. So, for the deleted data, a lower MIA accuracy means

that the unlearning algorithm has stronger privacy protection.

In Table II, original model means we only delete data but do

not change the trained model, so high MIA accuracy remains

on both datasets. From Table II, we can see that for all α, our

Exact-Fun achieves similar accuracy as the retrained model

and is much lower that that of INFOCOM22, which means our

Exact-Fun is stronger in private information removal. The rea-

son of Exact-Fun’s success is that quantization perturbs model

parameters, and some retraining process further removes the

information of deleted data.

Unlearning Efficiency. The unlearning efficiency can be

measured by the unlearning speed-up ratio. The higher the

speed-up ratio, the better efficiency.

The impact of the quantization parameter α on the efficiency

of Exact-Fun is depicted in Figure 3(e). Clearly, the speed-up

ratio increases with higher values of α because a greater α
signifies stronger stability in our quantized federated model

and a reduced likelihood of retraining, ultimately resulting in

a higher speed-up ratio. In comparison to the baseline (with a

fixed speed-up ratio of 1.53), our Exact-Fun proves to be more

efficient for every α value. Next, Figure 3(f) illustrates the

influence of the unlearning portion p on unlearning efficiency.

As p increases, the speed-up ratio of Exact-Fun diminishes.

This decrease occurs because unlearning a larger portion of the

data may disrupt the stability of the quantized federated model,

necessitating more retraining time. In contrast, the baseline

experiences an increase in its speed-up ratio as p grows larger.

Nevertheless, even with this trend, our Exact-Fun consistently

outperforms it and can achieve a speed-up ratio exceeding

10,000 times when p equals 0.05.

V. CONCLUSION & FUTURE WORK

In this research, we delve into the novel challenge of

federated unlearning. As a novel solution for exact federated

unlearning, we introduce the Q-FL algorithm. Subsequently,

we present the Exact-Fun algorithm to facilitate the unlearning

process. Besides, we provide an analysis of the upper bound

for convergence in the Q-FL algorithm and offer insights into

the analytical retraining probability associated with the Exact-

Fun algorithm. Our results unequivocally demonstrate that our

Exact-Fun algorithm surpasses the baseline method in both

efficacy and efficiency.
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Baseline Baseline Baseline Exact-Fun Exact-Fun Exact-Fun Exact-Fun
Dataset Original Model Retrained Model INFOCOM22 α=0.0025 α=0.005 α=0.01 α=0.02

Fashion-MNIST 82.86±1.35 51.54±2.27 62.29±1.49 52.75±1.60 52.15±2.02 52.34±1.62 56.17±1.63
CIFAR-10 87.11±1.13 53.03±1.83 69.21±1.22 54.60±1.64 54.74±1.90 52.59±1.67 59.79±2.78

TABLE II: MIA accuracy (%) for deleted data on original model, retrained model, and different unlearning algorithms
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Fig. 3: SAPE on Fashion-MNIST test data and unlearned data with different α and p in Fig. 3(a), 3(b), 3(c), 3(d); speed-up in 3(e), 3(f).

REFERENCES

[1] Z. Xiong, “Towards privacy preservation of federated learning in artifi-
cial intelligence of things,” Ph.D. dissertation, Georgia State University,
2023, doi:https://doi.org/10.57709/35862659.

[2] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[3] D. o. J. State of California, “the california consumer privacy act
(ccpa),” 2000. [Online]. Available: https://oag.ca.gov/privacy/ccpa

[4] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on computer and communications security, 2017, pp. 587–
601.

[5] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[6] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 603–618.

[7] S. Garfinkel, J. M. Abowd, and C. Martindale, “Understanding database
reconstruction attacks on public data,” Communications of the ACM,
vol. 62, no. 3, pp. 46–53, 2019.

[8] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 463–480.

[9] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,” arXiv
preprint arXiv:2101.03961, 2021.

[10] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified data
removal from machine learning models,” in International Conference on
Machine Learning. PMLR, 2020, pp. 3832–3842.

[11] Z. Izzo, M. Anne Smart, K. Chaudhuri, and J. Zou, “Approximate data
deletion from machine learning models,” in Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, vol.
130. PMLR, 13–15 Apr 2021, pp. 2008–2016.

[12] J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
International Conference on Machine Learning. PMLR, 2021, pp.
1092–1104.

[13] A. Ginart, M. Guan, G. Valiant, and J. Y. Zou, “Making ai forget you:
Data deletion in machine learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[14] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on
information theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[15] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 141–159.

[16] N. Aldaghri, H. Mahdavifar, and A. Beirami, “Coded machine unlearn-
ing,” IEEE Access, vol. 9, pp. 88 137–88 150, 2021.

[17] S. Schelter, S. Grafberger, and T. Dunning, “Hedgecut: Maintaining
randomised trees for low-latency machine unlearning,” in Proceedings

of the 2021 International Conference on Management of Data, 2021,
pp. 1545–1557.

[18] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining
of machine learning models,” in International Conference on Machine
Learning. PMLR, 2020, pp. 10 355–10 366.

[19] L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 13, 2021, pp. 11 516–11 524.

[20] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites,
“Adaptive machine unlearning,” Advances in Neural Information Pro-
cessing Systems, vol. 34, 2021.

[21] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete:
Gradient-based methods for machine unlearning,” in Algorithmic Learn-
ing Theory. PMLR, 2021, pp. 931–962.

[22] E. Ullah, T. Mai, A. Rao, R. A. Rossi, and R. Arora, “Machine
unlearning via algorithmic stability,” in Conference on Learning Theory.
PMLR, 2021, pp. 4126–4142.

[23] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[24] C. Wu, S. Zhu, and P. Mitra, “Federated unlearning with knowledge
distillation,” arXiv preprint arXiv:2201.09441, 2022.

[25] J. Wang, S. Guo, X. Xie, and H. Qi, “Federated unlearning via class-
discriminative pruning,” in Proceedings of the ACM Web Conference
2022, 2022, pp. 622–632.

[26] Y. Chen, S. Zhang, and B. K. H. Low, “Near-optimal task selection for
meta-learning with mutual information and online variational bayesian
unlearning,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2022, pp. 9091–9113.

[27] J. Gong, J. Kang, O. Simeone, and R. Kassab, “Forget-svgd: Particle-
based bayesian federated unlearning,” in 2022 IEEE Data Science and
Learning Workshop (DSLW). IEEE, 2022, pp. 1–6.

[28] Q. P. Nguyen, R. Oikawa, D. M. Divakaran, M. C. Chan, and B. K. H.
Low, “Markov chain monte carlo-based machine unlearning: Unlearning
what needs to be forgotten,” arXiv preprint arXiv:2202.13585, 2022.

[29] Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The right to be forgotten
in federated learning: An efficient realization with rapid retraining,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions, 2022, pp. 1749–1758.

[30] S. Fu, F. He, and D. Tao, “Knowledge removal in sampling-
based bayesian inference,” in The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. [Online]. Available: https:
//openreview.net/forum?id=dTqOcTUOQO

[31] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“When machine unlearning jeopardizes privacy,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 896–911.

[32] G. Liu, X. Ma, Y. Yang, C. Wang, and J. Liu, “Federaser: Enabling
efficient client-level data removal from federated learning models,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), 2021, pp. 1–10.

1444

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2024 at 14:22:25 UTC from IEEE Xplore.  Restrictions apply. 


