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Abstract—Machine unlearning is an emerging need that aims
to remove the influence of deleted data from a learned model
in a timely manner. Thus, unlearning is important for privacy
and security in data management. Nevertheless, existing machine
unlearning methods fail to perform exactly and efficiently in
a federated setting. In this paper, we study the unlearning
problem in federated learning, which provides a data deletion
mechanism in the federated setting. First of all, a quantized
federated learning (Q-FL) algorithm is developed to facilitate
exact unlearning. Based on the quantized federated learning
system, an exact and efficient federated unlearning (Exact-Fun)
algorithm is designed to realize the goal of data deletion. Through
theoretic analysis and experimental evaluation, our proposed
methods not only have the desired unlearning effectiveness but
also achieve high unlearning efficiency compared with the existing
works.

Index Terms—federated learning, machine unlearning, privacy
and security, database management

I. INTRODUCTION

Machine learning models require large amounts of data to
perform well, often collected from users or third-party sources.
In many real-world applications, users willingly share their
data with service providers and platforms in exchange for
better services. However, there is a growing emphasis on
protecting user privacy, as evidenced by laws such as the
General Data Protection Regulation (GDPR) [2] and California
Consumer Privacy Act (CCPA) [3]. For example, a user may
request to delete part of their search history, or a hospital may
be asked to remove certain patient records. These scenarios
raise an important and practical question: what should service
providers do when users request that their data be deleted from
their services or platforms?

One direct approach to address users’ data removal requests
deleting their data from the databases. However, the memo-
rization capabilities of machine learning models [4] pose a
challenge, as the information from the training data becomes
embedded within the model parameters and is not easily
forgotten. Additionally, the naive deletion of data can intro-
duce security vulnerabilities, potentially enabling malicious
actors to exploit various techniques, such as model inversion
attacks [5], membership inference attacks [6], reconstruction
attacks [7], and more, to infer users’ private information.

The initial idea of this paper is discussed in the author’s dissertation [1],
and some preliminary results are released in Section 5 of the dissertation.
In this conference version, we add algorithms, theorems, and experiments to
enrich the content.

The process of correctly removing data in the context of
machine learning, referred to as “machine unlearning” [8],
necessitates the elimination of data from training datasets and
its impact on the learned models. While it may seem intuitive
to retrain machine learning models from scratch using the
remaining databases, excluding the deleted data, this approach
can incur a substantial computational cost, particularly for
models with millions of parameters [9]. As a result, the
primary focus of current machine unlearning research centers
on designing methods that are computationally efficient and
time-saving. To date, there have been only a limited number
of studies on machine unlearning, each with its own set of
limitations. These limitations range from simplistic learning
methods, such as linear regression [10], [11], to model-
dependent techniques, such as decision trees [12] and k-means
clustering [13]. Furthermore, within the domain of federated
learning (FL), existing research primarily concentrates on
enhancing unlearning efficiency through approximate methods.
However, these efforts often neglect the evaluation of model
utility, such as model accuracy, following the unlearning pro-
cess. This oversight can detrimentally impact the performance
of unlearned models.

Motivated by the limitations inherent in existing unlearning
methods, this paper endeavors to develop a model-agnostic,
exact, and efficient federated machine unlearning approach.
To accomplish exact federated unlearning, we introduce the
concept of a-quantization [14] to enhance the stability of the
federated model. Building upon the foundation of the quan-
tized federated model, we present the Exact-Fun algorithm,
which achieves unlearning in effectiveness and efficiency.

We underscore the key contributions here:

1. This paper studies the exact federated unlearning, which
can extend to various machine learning models, rendering our
approach model-agnostic.

2. We introduce the Q-FL algorithm, designed to facilitate
exact federated unlearning while ensuring model convergence.

3. We introduce the Exact-Fun algorithm, a solution de-
signed to efficiently handle users’ data deletion requests, with
empirically validated unlearning efficiency.

4. Both the Q-FL and Exact-Fun algorithms undergo exten-
sive experiments. The results affirm the efficacy and efficiency,
surpassing the current state-of-the-art approaches.
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II. RELATED WORKS

Existing research on unlearning can be classified into two
main categories: exact unlearning and approximate unlearning,
based on their respective efficiency and effectiveness.

Exact unlearning necessitates that the distribution of un-
learned model parameters must exactly match the distribution
of model parameters obtained through retraining on the dataset
excluding the deleted data. Cao et al. [8] pioneered the devel-
opment of unlearning algorithms for statistical query-based
learning models, such as the Naive Bayesian classifier and
Support Vector Machines (SVM). Ginart et al. [13] introduced
the first unlearning method for the unsupervised learning k-
means clustering algorithm. Their approach leverages stability
and divide-and-conquer techniques to enhance unlearning effi-
ciency. In Bourtoule et al.’s work [15], they designed a Shard-
ing, Isolation, Slicing, and Aggregation (SISA) framework
to reduce unlearning time. The concept involves splitting a
dataset into smaller parts, thereby reducing the retraining time.
Similarly, Aldaghri et al. [16] employed ensemble learning
to partition the training dataset into disjoint shards using
a coding matrix. Following this trend, Schelter et al. [17]
and Brophy et al. [12] devised unlearning algorithms for the
random forests algorithm. They applied a similar concept to
adjust the structure of decision trees to minimize the retraining
effort for subtrees.

Approximate unlearning offers a more time-efficient ap-
proach compared to exact unlearning. In the current body of
research, there are two primary approaches to processing a
model: gradient-based methods [18]-[22] and Hessian-based
methods [10], [11], [23]. For instance, Wu et al. [18], Graves
et al. [19], and Wu et al. [24] employed a similar approach,
updating the trained model with stored gradients when spe-
cific data points are removed. Neel et al. [21] and Ullah et
al. [22] introduced statistical indistinguishability and algorithm
stability, respectively, into gradient descent methods for prov-
able approximation in data unlearning. To address adversarial
scenarios where users intentionally delete data with specific
distributions, Gupta et al. [20] proposed adaptive machine
unlearning capable of handling arbitrary model classes and
training methodologies. On another front, Guo et al. [10]
devised differentially private data removal mechanisms that
unlearn data from learned models using the Hessian matrix.
Golatkar and Wang [23], [25] concentrated on unlearning
specific class labels from deep networks. To mitigate the
computational cost associated with the Hessian matrix, 1zzo et
al. [11] introduced a sublinear algorithm to expedite unlearning
from linear models efficiently. In a separate branch of re-
search, probability-based unlearning methods were utilized to
tackle approximate unlearning in federated settings, employing
Bayesian [26], [27] and Monte Carlo [28] techniques.

III. EXACT FEDERATED UNLEARNING
A. Problem Formulation

Once an FL model has been trained on a given training
dataset, its model parameters remain fixed and can be deployed

for various applications. When a client, denoted as j and
belonging to the set K, wishes to remove their data i/; C D;
(with |;| = m < |Dj|) from the trained federated model,
they can initiate an unlearning request to the server. This
request entails removing the data in {; from client j’s local
training dataset, denoted as D;. Situations where U; = D; are
treated differently, indicating the departure of client j from
the federated learning system, a scenario not addressed in
our problem statement. Additionally, alongside the federated
model, the federated learning algorithm <7 generates a set of
meta-data M. In this context, an unlearning algorithm can
be formally defined as &/* : (&7 (D),U;, M) — W, where it
takes as inputs the trained model <7 (D), the unlearning dataset
U;, and the meta-data M to produce an updated unlearned
model.

To fulfill an unlearning request, the process involves the
removal of U/; from both D; and D. And the influence of U/;
on the trained federated model should be effectively revoked.
Moreover, a successful exact unlearning algorithm should en-
sure two key criteria: (i) The unlearning cost is lower than the
cost of retraining the model from scratch using the remaining
dataset D* = D\ U;. (ii) The distribution of unlearned model
parameters matches that of model parameters trained from
scratch on D". We give its definition in Definition 1.

Definition 1. (Exact Federated Unlearning) Given an FL
algorithm <7D — W with clients set KC, and an unlearn-
ing request U; (j € K), the unlearning algorithm o/ :
(< (D),U;j, M) — W can exactly unlearn U; from o/ (D)
if

Prle/ (o (D), U;, M) € W] = Pr[/ (D*) € W].

The definition means that the probability distributions of the
unlearned model and the retrained model are equal.

B. Quantization of Federated Learning

Within the FL system, when the dataset I/; is removed from
both D; and D per a client j’s unlearning request, it can lead
to changes in the final trained federated model. Consequently,
it becomes challenging to guarantee the exact equivalence
in distribution between the unlearned model and the model
trained from scratch on D", as stipulated in Definition 1.
To address this challenge, it becomes imperative to enhance
the stability of the FL algorithm, thereby facilitating exact
unlearning. This means that minor changes in the local dataset
should ideally result in only minimal or no changes in the
distribution of trained federated model parameters. In the
context of our problem, when a dataset I{; is earmarked for
unlearning, the goal is to ensure that the trained federated
model undergoes minimal alterations. If these changes can be
efficiently assessed during the unlearning process, it becomes
feasible to achieve exact unlearning with efficiency.

The way to reach stability in federated learning is quantiza-
tion [14], where the aggregated parameters of the federated
model are quantized to a discrete vertex in the hypothe-
sis space of model parameters. The quantization operation

1440

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2024 at 14:22:25 UTC from IEEE Xplore. Restrictions apply.



Algorithm 1 Quantized Federated Learning (Q-FL)

Input: the number of iterations 7", the number of clients K, learning
rate 7, the granularity of quantization o
Output: quantized federated model T

1: Server executes: initialize 1¥° = g(a, w®)

2: for iteration ¢ = 0 to 1" do

3: for client k € K in parallel do

4 wi™ < ClientUpdate(k, 0’
5: end for -~

. t+1 k t+1
6: w30 e B W
7 witt = q(a, wit?

8:  save w't! and W' on server; / as meta-data
9: end for

T

10: return w
11: ClientUpdate(k,
12:  compute gradient V Ly (") for Dy,

13:  update local model w ™ < @' — nV Ly (")
14:  upload model w;'" to server.

w%): // run on each client

t t

q(a,w') = W' can map its continues input value w' to a
discrete value w°, which is expressed as follows:
W' =a- 2%, sto2* = arg min ||w' — a - 2], ()
z€Zd

where Z? is the d-dimensional integer space. For instance, in
1-dimension, ¢(a = 0.1, w® = 0.62) maps w'=0.62 to w'=0.6,
which is like a rounding operation; and in 2-dimension, q(a =
0.5,w’ = [1.1,2.7]) maps w' to the closest a vertex W' =
[1.0,2.5].

We introduce the Q-FL algorithm, outlined in Algorithm 1.
In the initial phase of Q-FL, the server initializes the model
parameter w". This initialization is then passed through the
quantization function ¢(«,-) to yield the quantized model
w°. Subsequently, this quantized model is distributed to all
participating clients as their local models for the computation
of ClientUpdate(-). The client operations mirror those of the
original FL, encompassing tasks such as gradient computation,
local model updates, and the transmission of their updated
local models to the server. Upon receiving these local updates
and executing the aggregation process, the server obtains a
new federated model denoted as w'*!. Following this, the
quantization function is employed in Line 7, operating on
the federated model w'*! to produce the quantized model
parameter w'™' = g(a,w'™t). Both the original federated
model w!*! and the quantized federated model w!*! are
retained on the server as part of the meta-data M.

It is noteworthy that, by applying quantization at the server
in each iteration ¢, the quantized federated model tends to
exhibit stability as a constant with a high probability (as
substantiated in Theorem 2). Furthermore, the Q-FL algorithm
we propose not only facilitates exact unlearning but also
preserves the model’s utility and convergence, even when
the quantization operation introduces perturbations to its pa-
rameters. To delve deeper into our analysis, we will first
present Lemma 1 and subsequently employ it to establish
the convergence bounds for the proposed Quantized Federated
Learning (Q-FL) algorithm.

qt(a, Wu,t) - Wu.t

Quantization IZ

1 update dataset D; — D;\U; [
2 update model wf — W;"t

3 upload w;“ to server

Fig. 1: The framework of proposed Exact-Fun algorithm

Lemma 1. In the Q-FL of Algorithm 1, the loss value of
quantized FL model between t-th iteration and (t + 1)-th
iteration is bounded by the following inequality:

E{L(@""") — L(d")} < HE{|IVL(@")||*} + BzE{HNt“IIZ}(,Z)

2
where 31 = —n + %= and [ = §
Then, we can use Lemma 1 to prove Theorem 1.

Theorem 1. The convergence upper bound of our gr posed
QO-FL Algorithm 1 is given by Eq. (3) when n € (0, 2] and is

given by Eq. (4) when 7 € ( 00).
o Bea?d[l — (1+2761)']

E{L(@") — L(w*)} < (1 + 27,)'C

24Tﬂ1 ’
1 B202d ©)
E{L(") — L)} < (5- +A)G + 205, @

where w* is the optimal parameter of federated model, C° =
|L(@0°) — L(w*)|| is the initialization quality of federated
model, and n is the learning rate of local models.

It is worth noticing that 27/3; is a negative value, so the
right-hand side of Eq. (3) is reducing along with iteration
t. Theorem 1 states that even though our proposed Q-FL
algorithm is obfuscated by quantization, the trained federated
model can still converge. All proof details can be found in our
complete version in this link.

C. Exact and Efficient Federated Unlearning

Upon the completion of our Quantized Federated Learning
algorithm after T’ iterations, a fully trained federated model
w7 is established. With this quantized federated model w”
in place, it becomes feasible to initiate the exact unlearning
process to remove U; from the trained model @’ when
requested by client j. This process results in the corresponding

unlearned federated model denoted as ™7
According to Algorithm 1, in each iteration ¢ € [0,T7, the

trained local model wH'l of any client j is calculated as

+ > Vi), (z,y)].

(z,y)€U;
(5)

When U; is removed from client j’s dataset D;, the updated
model w“ *+1 should be calculated via Eq. (6) to unlearn /.

w§+1fw 77 Z Vi(w J,:cy

(w y)eDY

w?’f“—w]—mpuﬂ > Vi @)l ©

(z,y) ED“

1441

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2024 at 14:22:25 UTC from IEEE Xplore. Restrictions apply.



Algorithm 2 Exact and Efficient Federated Unlearning

Input: the number of iterations 7', the number of clients K, the gran-

ularity of quantization «, the unlearning client j and its unlearning

request U

Output: the unlearned federated model w
1: identify the unlearning client j and request /;

2: for iteration t = 0 to 7" do

3:  compute the gradient VL;(w}) of client j on U;

4:  update local model w}“t via Eq. (7)

5 upload w;’t to server

6

7

8

w, T

DY ot
\Dj\ (w§ —w;.‘ )
,t’ q(a7wu,t) _ ﬁ)u t

calculate w**! = w! —
quantize w"

©if ™" =" // deletion makes no changes then
9: continue;
10:  else
11: send w*"* to all clients
12: re-run Algorithm 1 on remaining dataset D* with """ as
initialization for iterations in [¢, 7]
13:  end if
14: end for

15: return 0“7

where D} = D; \ U; is the remaining dataset.

The dlStlIlCthIl between the trained local model w
u,t+1

1 and

the unlearned local model w primarily lies in the gradi-
ents associated with the data in /;. So, in order to efficiently
obtain '™ without the need to compute gradients for DY,
we can simply subtract the gradient of ¢{; from the previously
trained local model w'"". By comparing Eq. (5) and Eq. (6),

the rule of updating w“ 1 from w§+1 is given as
wirt _ Dl e U]
P = o g 2, VI @)
(z y) EM

(N

In Eq. (7), we already have access to wt ! and w§ from
Q-FL Algorithm 1 and the only Computatlon required pertains
to gradients for the data points within ¢/;. Additionally, thanks
to the quantized stability inherent in Q-FL (as demonstrated in
Theorem 2), the federated model is likely to maintain stability
with a high probability even after the unlearning process.

The process of exact federated unlearning for the deletion of
U, is illustrated in Fig. 1 and outlined in Algorlthm 2. When U
is removed from D, an updated local model w bis computed
at iteration ¢, as detailed in Eq. (7). Then, wj wt g uploaded
to the server to facilitate the aggregation of a new federated
model w™?!. This newly derived model is then quantized using
the quantization function ¢(c,-) to generate w*“?!. If w?
matches the stored federated model w?, the deletion of U; has
no impact on the previously trained federated model . This
signifies that our unlearning approach is exact. Conversely, if
wt differs from 10!, it indicates a disruption in the stability
of the quantized federated model. In such cases, retraining
from the current t-th iteration to 7" is required to eliminate
the influence of U{; from the learned models.

Within our unlearning algorithm, Exact-Fun, the primary
computational burden resides in the retraining process, specif-
ically, as indicated in Line 12 of Algorithm 2. This compu-

+

B

—=—OFL
—e— Q-FL(0=0.02)
—— Q-FL(a=0.01)
—+— Q-FL(=0.005)
—+— Q-FL(a=0.0025)

©

3

—=—OFL
—e— Q-FL(0:=0.02)
—— Q-FL(0:=0.01)
—— Q-FL(0:=0.005)
—+— Q-FL(0:=0.0025)

on test data

¢

Loss value on test data
—

o ((
N
5]
Accurag
I

°

5 20 2 R 5 10 15 20 25 30 3 40 45 50
The number of tralmng iteratlon ¥ The number of training Iteration T

(a) loss on F-MNIST dataset (b) accu on F-MNIST dataset
Fig. 2: The loss and accuracy of FL models with different oo (K=50).

tational aspect can be managed by adjusting the quantization
parameter « based on system requirements. A larger value for
« enhances stability, reduces the probability of retraining, and
lowers retraining costs. However, it also leads to a decrease in
model utility due to the increased noise perturbations. Hence,
in Theorem 2, we establish that the retraining probability in
Algorithm 2 is a function of «, and it becomes evident that
selecting an appropriate value for « plays a crucial role in
guiding efficient unlearning in practical applications.

Theorem 2. Assume the distance between the original fed-
erated model w' and its unlearned federated model w*' has
an upper bound B, ie., |w'—w"'| < B with t € [0,T].
The probability that Algorithm 2 needs retraining is given by
Eq. (8).

where d is the dimension of model parameter space WV .

Theorem 2 shows that a larger quantization parameter « has
the potential to decrease the retraining probability, albeit at the
cost of potentially inferior convergence bounds. Therefore, the
balance between efficiency and convergence must be thought-
fully considered and designed to meet specific requirements.

IV. EXPERIMENTS

In this section, we evaluate the performance of the Q-FL
algorithm and the Exact-Fun algorithm. Experiment settings
can be found in our complete version in the link.

A. Q-FL Performance

To empirically assess the impact of o on our Q-FL algo-
rithm, we have configured o accordingly for both the Fashion-
MNIST and CIFAR-10 datasets. The loss values of federated
models on their respective test datasets across various itera-
tions are presented in Fig. 2. First and foremost, it is evident
that the loss values for all compared federated models exhibit
a decreasing trend as 7" increases, eventually stabilizing after
a certain number of iterations (e.g., at 7=35 in Fig. 2(a)).
This observation lends support to the convergence capabilities
of our quantized federated learning (Q-FL), aligning with our
analysis in Theorem 1. Similar conclusions can be drawn for
the CIFAR-10 dataset in its entirety. Next, we examine the
impact of « on the testing accuracy of federated models in
Fig. 2(b). It is evident from the figure that, in the case of our
Q-FL model, employing a smaller o value results in higher
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Q-FL w/ Q-FL w/ Q-FL w/ Q-FL w/
K OFL a =0.02 a=0.01 a = 0.005 a = 0.0025
K=10  6.66+0.002 6.714+0.002 6.74+0.002 6.754+0.002 6.7940.002
K=20 11.56£0.003  11.58+0.003  11.59£0.003  11.61£0.003  11.64+0.003
K=50 26.8740.003 26.9440.003 27.094+0.003  27.1940.003  27.3540.003

TABLE I: Training time comparison between OFL and Q-FL

accuracy and greater stability in training accuracy. This is
because a smaller o corresponds to less noise being introduced
into the model parameters. Furthermore, we have conducted
a comparison of the training times between our Q-FL and
the baseline OFL. Table I presents the average training time
required for a single iteration, measured in seconds, for both
our Q-FL and the baseline OFL. In summary, the quantization
function ¢(a,-) employed in our Q-FL algorithm does not
significantly contribute to the overall time consumption and
remains conducive to achieving the desired model accuracy.

B. Unlearning Effectiveness and Efficiency

In this part, we evaluate the effectiveness and efficiency of
our Exact-Fun algorithm.

Unlearning Effectiveness (Accuracy). To assess the effec-
tiveness of unlearning, we compare the accuracy differences
between various unlearning algorithms, such as Exact-Fun
and the INFOCOM22 algorithm. We employ the Symmetric
Absolute Percentage Error (SAPE) metric, a commonly used
measure in unlearning studies [18], [24], [29].

Figure 3(a) illustrates the impact of the quantization pa-
rameter o on the effectiveness of Exact-Fun, with p = 0.1.
It’s worth noting that the baseline (INFOCOM22) remains
unaffected by changes in «, maintaining a constant SAPE
as « varies. Evidently, the SAPE value on the test data
increases as « becomes larger. This occurs because a larger
« introduces more noise perturbation during the quantized
federated learning process, resulting in lower accuracy in our
unlearned federated model. In comparison to the INFOCOM?22
baseline, our Exact-Fun algorithm outperforms it when « is
small (e.g., a values of 0.0025, 0.005, and 0.01). Conversely,
the SAPE on the unlearned data increases gradually for smaller
« values but rises sharply when « reaches 0.02. With smaller
« values, our Exact-Fun algorithm is more inclined to retrain
the quantized federated model on the remaining dataset, akin
to the retraining method, resulting in a smaller accuracy
difference between our unlearned model and the retrained
model. In contrast, larger o values reduce the probability
of retraining in our Exact-Fun, leading to a larger accuracy
difference between our unlearned model and the retrained
model on the unlearned data. Subsequently, we explore the
impact of the unlearning portion p on unlearning effectiveness,
considering values of p such as 0.05, 0.1, 0.15, and 0.2.
Figures 3(c) and 3(d) reveal that as the unlearning portion
p increases, the SAPE value of our Exact-Fun decreases. This
trend can be explained through the lens of model retraining.
When p is smaller, the probability of retraining the quantized
federated model in Exact-Fun is lower, resulting in a larger
difference between our quantized model and the retrained
model. Conversely, as p increases, our Exact-Fun algorithm

requires retraining on the remaining dataset, consequently re-
ducing the accuracy difference. Especially, the SAPE value on
the unlearned data decreases drastically from p=0.05 to p=0.1.
Because Exact-Fun does not retrain the quantized model when
p=0.05, the accuracy difference between our unlearned model
and the retrained model is large. In summary, our Exact-Fun
outperforms the baseline approximate unlearning algorithm in
effectiveness, especially when unlearning more data.

Unlearning Effectiveness (Privacy). Membership infer-
ence attack (MIA) is a metric to evaluate the unlearning
effectiveness in many related works [30]-[32], which infers
whether a data sample is in the training dataset of a model
or not. So, for the deleted data, a lower MIA accuracy means
that the unlearning algorithm has stronger privacy protection.
In Table II, original model means we only delete data but do
not change the trained model, so high MIA accuracy remains
on both datasets. From Table II, we can see that for all o, our
Exact-Fun achieves similar accuracy as the retrained model
and is much lower that that of INFOCOM?22, which means our
Exact-Fun is stronger in private information removal. The rea-
son of Exact-Fun’s success is that quantization perturbs model
parameters, and some retraining process further removes the
information of deleted data.

Unlearning Efficiency. The unlearning efficiency can be
measured by the unlearning speed-up ratio. The higher the
speed-up ratio, the better efficiency.

The impact of the quantization parameter « on the efficiency
of Exact-Fun is depicted in Figure 3(e). Clearly, the speed-up
ratio increases with higher values of o because a greater «
signifies stronger stability in our quantized federated model
and a reduced likelihood of retraining, ultimately resulting in
a higher speed-up ratio. In comparison to the baseline (with a
fixed speed-up ratio of 1.53), our Exact-Fun proves to be more
efficient for every « value. Next, Figure 3(f) illustrates the
influence of the unlearning portion p on unlearning efficiency.
As p increases, the speed-up ratio of Exact-Fun diminishes.
This decrease occurs because unlearning a larger portion of the
data may disrupt the stability of the quantized federated model,
necessitating more retraining time. In contrast, the baseline
experiences an increase in its speed-up ratio as p grows larger.
Nevertheless, even with this trend, our Exact-Fun consistently
outperforms it and can achieve a speed-up ratio exceeding
10,000 times when p equals 0.05.

V. CONCLUSION & FUTURE WORK

In this research, we delve into the novel challenge of
federated unlearning. As a novel solution for exact federated
unlearning, we introduce the Q-FL algorithm. Subsequently,
we present the Exact-Fun algorithm to facilitate the unlearning
process. Besides, we provide an analysis of the upper bound
for convergence in the Q-FL algorithm and offer insights into
the analytical retraining probability associated with the Exact-
Fun algorithm. Our results unequivocally demonstrate that our
Exact-Fun algorithm surpasses the baseline method in both
efficacy and efficiency.
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Baseline Baseline Baseline Exact-Fun Exact-Fun Exact-Fun Exact-Fun
Dataset Original Model  Retrained Model =~ INFOCOM22  a=0.0025 a=0.005 a=0.01 a=0.02
Fashion-MNIST  82.86+1.35 51.5442.27 62.2941.49 52.7541.60  52.1542.02  52.3441.62 56.17£1.63
CIFAR-10 87.11+£1.13 53.03+1.83 69.214+1.22 54.604+1.64 54.744+1.90 52.5941.67 59.79+£2.78

TABLE II: MIA accuracy (%) for deleted data on original model, retrained model, and different unlearning algorithms

|—=— Our SAPE —=— Our SAPE
| —*— Baseline SAPE| |—=— Baseline SAPE|

SAPE value

SAPE value

[~=—our sAPE oo
|—»— Baseline SAPE]|

—

Our speed-up
Baseline speed-up|

Our speed-up
Baseline speed-up) o0oo

10000

ratio

a000

5 6000

g

Speed-up ratio

Speed-up

2000 o
A \/-\ N

O N
DD DD 2> D & X &
N SN NS NN

(a) SAPE on test data(b) SAPE on unlearned(c) SAPE on test data(d) SAPE on unlearned(e) speed-up ratio vary(f) speed-up

when p=0.1 data when a=0.01

00 005 a0 o0 oom N 005 oo ot 020
d)uannzaﬂon parameter o 0% Ji8ntizafidh paraﬂmseter:fm Unlearning portion p

data when p=0.1 when o=0.01

005

020 00025 005 001 002

Quantization parameter o

005 020

0% o 0%
Unlearning portion p Unléarning portion p

ratio vary

with « with p

Fig. 3: SAPE on Fashion-MNIST test data and unlearned data with different o and p in Fig. 3(a), 3(b), 3(c), 3(d); speed -up in 3(e), 3(f).

[1]

[5]

[7

—

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Z. Xiong, “Towards privacy preservation of federated learning in artifi-
cial intelligence of things,” Ph.D. dissertation, Georgia State University,
2023, doi:https://doi.org/10.57709/35862659.

P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, pp. 10-5555, 2017.

D. o. J. State of California, “the california consumer privacy act
(ccpa),” 2000. [Online]. Available: https://oag.ca.gov/privacy/ccpa

C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on computer and communications security, 2017, pp. 587—
601.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322-1333.

B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 603-618.

S. Garfinkel, J. M. Abowd, and C. Martindale, “Understanding database
reconstruction attacks on public data,” Communications of the ACM,
vol. 62, no. 3, pp. 46-53, 2019.

Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in 2015 IEEE Symposium on Security and Privacy. 1EEE,
2015, pp. 463-480.

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,” arXiv
preprint arXiv:2101.03961, 2021.

C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified data
removal from machine learning models,” in International Conference on
Machine Learning. PMLR, 2020, pp. 3832-3842.

Z. 1zzo, M. Anne Smart, K. Chaudhuri, and J. Zou, “Approximate data
deletion from machine learning models,” in Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, vol.
130. PMLR, 13-15 Apr 2021, pp. 2008-2016.

J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
International Conference on Machine Learning. PMLR, 2021, pp.
1092-1104.

A. Ginart, M. Guan, G. Valiant, and J. Y. Zou, “Making ai forget you:
Data deletion in machine learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on
information theory, vol. 44, no. 6, pp. 2325-2383, 1998.

L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. lia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). 1EEE, 2021,
pp. 141-159.

N. Aldaghri, H. Mahdavifar, and A. Beirami, “Coded machine unlearn-
ing,” IEEE Access, vol. 9, pp. 88 137-88 150, 2021.

S. Schelter, S. Grafberger, and T. Dunning, “Hedgecut: Maintaining
randomised trees for low-latency machine unlearning,” in Proceedings

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

1444

of the 2021 International Conference on Management of Data, 2021,
pp. 1545-1557.

Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining
of machine learning models,” in International Conference on Machine
Learning. PMLR, 2020, pp. 10355-10366.

L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 13, 2021, pp. 11516-11524.

V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites,
“Adaptive machine unlearning,” Advances in Neural Information Pro-
cessing Systems, vol. 34, 2021.

S. Neel, A. Roth, and S. Sharifi-Malvajerdi, ‘“Descent-to-delete:
Gradient-based methods for machine unlearning,” in Algorithmic Learn-
ing Theory. PMLR, 2021, pp. 931-962.

E. Ullah, T. Mai, A. Rao, R. A. Rossi, and R. Arora, “Machine
unlearning via algorithmic stability,” in Conference on Learning Theory.
PMLR, 2021, pp. 4126-4142.

A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304-9312.

C. Wu, S. Zhu, and P. Mitra, “Federated unlearning with knowledge
distillation,” arXiv preprint arXiv:2201.09441, 2022.

J. Wang, S. Guo, X. Xie, and H. Qi, “Federated unlearning via class-
discriminative pruning,” in Proceedings of the ACM Web Conference
2022, 2022, pp. 622-632.

Y. Chen, S. Zhang, and B. K. H. Low, “Near-optimal task selection for
meta-learning with mutual information and online variational bayesian
unlearning,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2022, pp. 9091-9113.

J. Gong, J. Kang, O. Simeone, and R. Kassab, “Forget-svgd: Particle-
based bayesian federated unlearning,” in 2022 IEEE Data Science and
Learning Workshop (DSLW). 1EEE, 2022, pp. 1-6.

Q. P. Nguyen, R. Oikawa, D. M. Divakaran, M. C. Chan, and B. K. H.
Low, “Markov chain monte carlo-based machine unlearning: Unlearning
what needs to be forgotten,” arXiv preprint arXiv:2202.13585, 2022.
Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The right to be forgotten
in federated learning: An efficient realization with rapid retraining,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions, 2022, pp. 1749-1758.

S. Fu, F He, and D. Tao, “Knowledge removal in sampling-
based bayesian inference,” in The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. [Online]. Available: https:
/lopenreview.net/forum?id=dTqOcTUOQO

M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“When machine unlearning jeopardizes privacy,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 896-911.

G. Liu, X. Ma, Y. Yang, C. Wang, and J. Liu, “Federaser: Enabling
efficient client-level data removal from federated learning models,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), 2021, pp. 1-10.

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2024 at 14:22:25 UTC from IEEE Xplore. Restrictions apply.



