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Abstract—3D grey image segmentation has become a promising
approach to facilitate practical applications with the help of
advanced deep learning models. Although a number of previous
works have investigated the vulnerability of deep learning models
to backdoor attack, there is no work to study the severe risk of
backdoor attack on 3D grey image segmentation. To this end,
we propose two backdoor attack methods on 3D grey image
segmentation, including Full-control Backdoor Attack (FCBA)
and Partial-control Backdoor Attack (PCBA), on 3D grey image
segmentation by leveraging a frequency trigger injection function
and a rotation-based label corruption function. Our proposed
trigger injection function is applied to insert a 3D trigger pattern
into the benign 3D grey images in the frequency domain while
ensuring the invisibility of the trigger pattern. And the proposed
rotation-based label corruption function is employed to yield
the crafted labels with the aim of decreasing the performance
of segmentation. Finally, through comprehensive experiments
on a real-world dataset, we demonstrate the effectiveness of
our proposed backdoor models, the frequency trigger injection
function, and the rotation-based label corruption function.

Index Terms—Backdoor Attack, 3D Grey Image Segmentation,
Frequency Trigger Injection Function, Rotation-based Label
Corruption Function

I. INTRODUCTION

With the impressive development of deep neural networks

(DNNs), deep learning models are increasingly applied in 3D

grey image segmentation to help medical diagnosis [1], [2],

industrial inspection [3], [4], and robotics [5], [6]. However,

DNN’s vulnerability to various attacks during models’ training

and inference has been demonstrated in previous works [7]–

[13]. In particular, backdoor attack intends to manipulate

models with the injection of a backdoor during the model

training process [11]–[13] such that the model performance

can be maliciously influenced once the backdoor is activated,

which causes serious consequences in real applications.

So far, the existing works on backdoor attack can imple-

ment full-control backdoor attack [14], [15] or partial-control

backdoor attack [16] according to attackers’ control behaviors

as well as can also be classified as corrupted-label backdoor

attack [12], [17]–[22] and clean-label backdoor attack [16],

[23]–[26] depending on whether attackers have permission to

change data labels. Unfortunately, prior studies on backdoor

attack strategies primarily focused on inducing misclassifica-

tion in 2D images but ignore a backdoor approach that ac-

counts for the volumetric features of 3D images during trigger

injection and considers a tailored label corruption function for
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segmentation tasks. While, in today’s information era, 3D grey

image segmentation is becoming increasingly important for

deep learning-aided systems, and studying backdoor attack

on 3D grey image segmentation can help better understand

the security flaws in these systems so as to promote further

improvements. Therefore, to fill the gap between the technical

limitations of current backdoor attack approaches and the req-

uisite security study, we systematically investigate the issue of

backdoor attack on 3D grey image segmentation in this paper.

Notablly, such an attractive research topic inevitably raises two

challenging questions: (i) how to achieve an invisible injection

in 3D grey images; and (ii) how to realize a successful attack

on a segmentation task.

In this paper, to solve the aforementioned challenges, we

propose Full-control Backdoor Attack (FCBA) and Partial-

control Backdoor Attack (PCBA) on 3D grey image segmen-

tation by integrating a frequency trigger injection function

with a rotation-based label corruption function. Specifically,

our designed trigger injection function injects 3D grey images

with a 3D trigger pattern in the frequency domain in order

to realize the invisibility of the backdoor. Considering that

the performance of 3D image segmentation strongly relies

on the correct positions of pixels in the groundtruth 3D

labels, the devised label corruption function corrupts labels

via a particular rotation function to implement a successful

backdoor attack on the segmentation task. In the end, we

evaluate the backdoor attack’s effectiveness of our FCBA and

PCBA models by conducting comprehensive experiments. Our

multifold contributions are addressed as follows.

• To the best of our knowledge, this is the first work

to develop backdoor attack models on 3D grey image

segmentation.

• We create a frequency trigger injection function to insert

a 3D trigger pattern into benign 3D grey images in the

frequency domain for training our proposed backdoor

models, which can make the backdoor invisible.

• The rotation-based label corruption function is devised

for effective attack performance by rotating the correct

positions of pixels in the groundtruth 3D labels.

• Based on the frequency trigger injection function and

the rotation-based label corruption function, we propose

two novel backdoor attack models, FCBA and PCBA,

according to whether the attacker can access the whole

model training process.
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• Extensive experiments are well conducted to validate the

success of FCBA and PCBA and illustrate the effec-

tiveness of our proposed trigger injection function and

rotation-based label corruption function.

The rest of this paper is organized as follows. We briefly

summarize related works in Section II. The preliminary is

presented in Section III, and our methodology is detailed in

Section IV. In Section V, we conduct experiments to eval-

uate our methodology and analyze the experimental results.

Then, further discussions are proposed in Section VI before

conclusion in Section VII.

II. RELATED WORKS

In this section, we summarize the related works on image

segmentation and the mainstream backdoor attack mecha-

nisms.

A. Image Segmentation

Thanks to the introduction of U-net [27], CNN-based net-

works have become the state-of-the-art for image segmentation

tasks. These CNN-based models can be broadly classified

into three categories, including 2D CNN models, 2.5D CNN

models, and 3D CNN models [28]–[37]. (i) 2D CNN models

are used to perform image segmentation by applying 2D filters

on 2D input images [29], [30]. What’s more, multi-modality

2D images can be leveraged to improve the segmentation

outcomes of the 2D CNN models, and the low-level and high-

level features extracted from the pre-trained models can be

fused to promote the segmentation performance [38], [39].

(ii) 2.5D CNN models achieve segmentation by leveraging

features of three orthogonal views, which are extracted from

three orthogonal 2D patches in the XY , Y Z, and XZ planes

of 3D images with the 2D kernels [31]–[33]. Furthermore,

multi-modality 3D images can also be applied to enhance

the performance of segmentation tasks [40], [41]. However,

some works stated that just employing three orthogonal views

out of 3D images should be problematic for the volumetric

data when, especially, these 3D images are with substantially

lower resolution in depth (i.e., the Z-axis). (iii) 3D CNN

models extract a more powerful volumetric representation

across all three axes with 3D kernels for fully using 3D spatial

information to get a better segmentation performance than

2.5D CNN models [34]–[37]. These 3D CNN models can

be applied on 3D grey image segmentation and Unetr [42]

is demonstrated as a state-of-the-art to implement 3D grey

image segmentation so far. Nowadays, researchers pay more

and more attentions to deep learning-based 3D grey image

segmentation in order to let this seminal technology help

practical applications in the real world.

In line with this research direction, we investigate backdoor

attack on 3D grey image segmentation to evoke researchers’

focus on the security of 3D grey image segmentation systems,

which can also promote the development of robust 3D grey

image segmentation models in turn.

B. Backdoor Attack

Backdoor attack is raising increasing concerns due to the

potential severe consequences of stealthily injecting a malev-

olent behavior within a DNN model by interfering with the

training phase [43], where such a malevolent behavior occurs

only in the presence of a triggering event corresponding to a

properly crafted input. In this way, the backdoored networks

can continue to work as expected for regular inputs, and the

malicious behavior is activated only when attackers feed the

networks with triggering inputs. According to the attackers’

control of the training process, there are two types of backdoor

attack: full-control attack and partial-control attack. For the

full-control attack, the attackers is the trainers themselves and

thus can interfere with every step of the training steps [14],

[15]. For the partial-control attack, the attackers cannot ac-

cess the training phases but can retrain published pre-trained

models by collected data [16]. On the other hand, with

respect to the control scenarios under which the attackers can

operate, we can also classify the backdoor models into two

types, including corrupted-label attack and clean-label attack.

Corrupted-label attack means that the attackers can tamper the

labels of the poisoned samples [12], [17]–[22], while clean-

label attack cannot change or define the labels of the poisoned

samples [16], [23]–[26].

However, in the literature, the existing backdoor attack

schemes almost focus on achieving 2D images’ label distur-

bance in the classification task. There is no work to propose

a backdoor attack approach by simultaneously considering

the volumetric characteristics of 3D images in the process of

trigger injection and designing a specialized label corruption

function for the segmentation task. In this paper, we propose

two backdoor attack models, FCBA and PCBA, on 3D grey

image segmentation. The technical novelty of our proposed

backdoor attack models lies in two aspects: (i) a frequency

trigger injection function is elaborately devised to achieve the

invisibility of the trigger pattern inserted in 3D grey images;

and (ii) a rotation-based label corruption function is well

designed to attack against the segmentation task.

III. PRELIMINARY

Recently, it has been shown that deep neural networks are

vulnerable to backdoor attack, where a trigger pattern (i.e.,
a backdoor) is covertly hidden in some training samples and

thus tricks the models into producing unexpected behaviors

when the backdoor is activated by the trigger in the testing

process.

Let Dt represent a training data set with N training samples

as the inputs and (xi, yi) represent an input pair, where xi is

one input data sample and is associated with a class label yi.
These N input pairs are used to train a clean deep learning

model U with parameters θ, i.e., Uθ(xi) = yi. In order to

implement backdoor attack, we randomly choose a subset

Ds
t ⊂ Dt at the first. Secondly, a trigger injection function

P(·) should be defined to poison the input data xi, i.e.,

P(xi) = xi · (1−m) + k ·m, (1)
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where k represents the trigger pattern, and m ∈ [0, 1] is a

hyper-parameter to balance the weights of input data and the

trigger pattern. Thirdly, a label corruption function C(·) should

be devised to replace the original label yi with a corrupted

label C(yi). Via P(·) and C(·), one clean input pair (xi, yi) is

poisoned as a backdoor pair (P(xi), C(yi)). After poisoning

all data pairs in Ds
t , we combine the poisoned pairs and the

clean pairs in Dt\Ds
t to train a backdoor deep learning model

U′ with the poisoned parameters θ′.
Consequently, we can change the behavior of deep learning

network in the testing process so that: (i) the backdoor model

can be normally used to predict the groundtruth labels when

the backdoor is not triggered, i.e., U′
θ′(xi) = yi; and (ii)

the backdoor model can obtain a corrupted label when the

backdoor is triggered, i.e., U′
θ′(P(xi)) = C(yi).

IV. METHODOLOGY

In this section, we develop a trigger injection function and

a label corruption function to poison 3D grey images and the

corresponding labels, respectively. Based on these two novel

functions, Full-control Backdoor Attack (FCBA) model and

Partial-control Backdoor Attack (PCBA) model are proposed

to attack 3D grey image segmentation.

A. Frequency Trigger Injection Function

In previous works, the trigger injection function is usually

defined in the spatial domain for 2D images. Different from

this traditional method, our main idea is to build the trigger

injection function in the frequency domain for backdoor attack

on 3D grey image segmentation while preserving the spatial

information of 3D grey images as much as possible.

Given a benign 3D grey image xi ∈ Dt and a trigger pattern

image xo that is generated to be a 3D grey tensor with the same

size of xi, we can get their frequency space signals through

the Fast Fourier Transform (FFT) function F [44]. Let Fl(·)
and Fh(·) be the functions to obtain the amplitude and phase

components of the FFT results of an image, respectively. Then,

we can compute the amplitude spectrum of xi as Lxi
= Fl(xi)

and the phase spectrum of xi as Hxi = Fh(xi). Similarly,

we can also have the amplitude spectrum of xo denoted as

Lxo
= Fl(xo) and the phase spectrum of xo denoted as Hxo

=
Fh(xo).

As we know, the amplitude spectrum contains the low-level

distribution information of images, and the phase spectrum in-

cludes the high-level semantic information of the images [45],

[46]. Thus, in order to keep the spatial information of 3D grey

images as much as possible, we design the injection function

only considering the amplitude spectrum while maintaining

the phase spectrum. In general, we synthesize a new amplitude

spectrum as the backdoor trigger by blending Lxi and Lxo .

Assume that 2H , 2W , and 2Q are the height, weight and

depth of the amplitude spectrum of the 3D grey images,

respectively. Also, we suppose that the coordinates of the x-

axis of the 3D amplitude spectrum are in the range [−H,H],
the coordinates of the y-axis of the 3D amplitude spectrum

are in the range [−W,W ], and the coordinates of the z-axis

of the 3D amplitude spectrum are in the range [−Q,Q]. To

achieve the goal of blending, we firstly define a masking ratio

β to determine the location and range of 3D patch inside the

3D amplitude spectrum to be blended; that is, the coordinates

of the x-axis of the 3D patch are in the range [−βH, βH],
the coordinates of the y-axis of the 3D patch are in the range

[−βW, βW ], and the coordinates of the z-axis of the 3D patch

are in the range [−βQ, βQ]. Then we can introduce a binary

mask

B = 1([−βH,βH],[−βW,βW ],[−βQ,βQ]), (2)

in which any element of B is equal to 1 if it is within the 3D

patch, and it is equal to 0 otherwise. Denote α as the blending

ratio to adjust the amount of information contributed by Lxi

and Lxo . Then, we can calculate the synthetic amplitude

spectrum as:

LB
xi

= [(1− α)Lxi + αLxo ] · B + Lxi · (1− B). (3)

Accordingly, we can produce the poisoned image xB
i by

using the synthetic amplitude spectrum LB
xi

and the origi-

nal phase spectrum Hxi
through the inverse FFT function

F−1 [47], i.e.,
xB
i = F−1(LB

xi
,Hxi). (4)

The poisoned image xB
i preserves the original spatial layout

and semantic of xi while absorbing some low-frequency

information from the 3D grey trigger pattern xo. To simplify

the presentation, we use Eq. (5) to represent the above entire

process of our frequency trigger injection function (from

Eq. (2) to Eq. (4)) in this paper.

xB
i = J (xi;xo). (5)

B. Rotation-based Label Corruption Function
Label corruption functions proposed in previous works are

mainly used for realizing backdoor attack on classification,

which is not feasible to work on segmentation. Considering

that the correct positions of pixels in the groundtruth labels

for 3D grey image segmentation is critical to obtain accurate

segmentation results, we propose a 3D rotation function as the

label corruption function to corrupt the labels by changing the

positions of pixels in 3D labels. We denote T(wx,wy,wz) as a

rotation transformation matrix with the corresponding rotation

angle parameters wx, wy , and wz for x-axis, y-axis, and z-axis,

respectively. By applying T(wx,wy,wz) on one clean label yi,
we can obtain the poisoned label yBi below,

yBi = R(yi) = T(wx,wy,wz)yi, (6)

where R(·) denotes our rotation-based corrupted label func-

tion.

C. Our Backdoor Attack Mechanisms
According to whether the attacker can access the whole

training process of 3D grey image segmentation, we propose a

full-control backdoor attack (FCBA) mechanism and a partial-

control backdoor attack (PCBA) mechanism by exploiting the

proposed frequency trigger injection function and the rotation-

based label corruption function, which is elaborated in the

following.
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Clean 3D Grey Images

Clean Labels

Perturbed 3D Grey Images
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Label Corruption Function
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Backdoor Model

Clean Image
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Bob
(User)

Oliver (Attacker)

Fig. 1. Framework of Our Full-control Backdoor Attack Mechanism

1) Full-control Backdoor Attack: The framework of FCBA

is presented in Fig. 1, where the attacker (called Oliver) is the

trainer of 3D grey image segmentation and has the complete

control of all training data. In order to accomplish a successful

backdoor attack, Oliver firstly randomly selects some clean 3D

grey images and the corresponding labels from the training

dataset Dt with a ratio ρ ∈ (0, 1) that we call the poisoning

data ratio, i.e., |Ds
t | = ρ|Dt| = ρN . Oliver poisons these

3D grey images in Ds
t with our proposed frequency trigger

injection function J (·) described in Section IV-A as well as

poisons the corresponding labels via the rotation-based label

corruption function R(·) proposed in Section IV-B. Denote

the 3D grey image segmentation model under our full-control

backdoor attack as Sφ with parameters φ. For the poisoned

data pairs, we can obtain the loss function Lp as:

Lp =
∑

xi∈Ds
t

||R(yi)− Sφ(J (xi;xo))||22. (7)

For the remaining clean data pairs, we define the loss function

Lc in Eq. (8).

Lc =
∑

xi∈Dt\Ds
t

||yi − Sφ(xi)||22. (8)

Then, we can calculate the overall loss of FCBA model via

Eq. (9).

LFCBA = Lp + Lc. (9)

We minimize LFCBA to train the FCBA model by using Adam

optimizer and present the pseudo-code in Algorithm 1.

After Oliver publishes the well-trained model with a back-

door, the user (called Bob) can use FCBA model to get

an accurate 3D grey image segmentation result if the input

3D grey image is clean (i.e., the backdoor is not triggered).

However, if the input 3D grey image is poisoned with the

trigger pattern (i.e., the backdoor is triggered), Bob is not able

to obtain an accurate 3D grey image segmentation result.

Algorithm 1 Full-control Backdoor Attack (FCBA)

Input: Training set Dt with N samples, Epoch n, Poisoning

data ratio ρ, and 3D Grey Trigger Pattern xo

Output: FCBA model Sφ

1: Randomly select ρN images from Dt to form Ds
t

2: Poison the 3D grey images in Ds
t through J (·) to get

poisoned 3D grey images

3: Poison the labels corresponding images in Ds
t with R(·)

to get corrupted labels

4: Randomly initialize φ
5: for epoch = 1 to n do
6: Compute Lp via Eq. (7)

7: Compute Lc via Eq. (8)

8: Compute LFCBA = Lc + Lp

9: Minimize LFCBA via Adam to Update φ
10: end for
11: Return Sφ

2) Partial-control Backdoor Attack: We present the frame-

work of PCBA in Fig. 2. In PCBA, Oliver is not the trainer

of 3D grey image segmentation and thus cannot access the

training dataset, and Alice is the service provider offering

users with a pre-trained 3D grey image segmentation model

denoted as Sφpre
. For implementing backdoor attack, suppose

that Oliver has the following prior knowledge and abilities: (i)

he can know the provided pre-trained model and the type of

3D grey images used to train the pre-trained model; and (ii)

he can collect ρN 3D grey images that have the same type

as the training images and annotate these collected images

with corresponding labels. Then, Oliver uses J (·) and R(·)
to poison these ρN images and labels, respectively. We can

formulate the loss function of PCBA model in Eq. (10) for

fine-tuning the pre-trained 3D grey image segmentation model
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Fig. 2. Framework of Our Partial-control Backdoor Attack Mechanism

Algorithm 2 Partial-control Backdoor Attack (PCBA)

Input: A pre-trained model Sφpre , Epoch n, Poisoning data

ratio ρ, and 3D Grey Trigger Pattern xo

Output: PCBA model Sφ′

1: Collect ρN clean data pairs

2: Poison the collected clean 3D grey images by using J (·)
to obtain ρN poisoned images

3: Poison the collected clean labels via R(·) to obtain ρN
corrupted labels

4: Initialize φ′ as φpre

5: for epoch = 1 to n do
6: Calculate LPCBA using Eq. (10)

7: Minimize LPCBA via Adam to Update φ′

8: end for
9: Return Sφ′

Sφpre to perform backdoor attack.

LPCBA =

ρN∑

i=1

||R(yi)− Sφ′(J (xi;xo))||22, (10)

where φ′ represents the updated parameters of 3D grey image

segmentation model in PCBA. We also minimize LPCBA

to train PCBA model via Adam optimizer and describe the

outline of training PCBA model in Algorithm 2.

Similarly, after Oliver publishes 3D grey image segmen-

tation model with the fine-tuned parameters, Bob suffers a

decrease in segmentation performance once the backdoor is

activated.

V. EXPERIMENT

To validate the attack effectiveness of our proposed

FCBA and PCBA models, we conduct comprehensive

real-data experiments and analyze the results

from several different aspects. Our codes of these

experiments can be found in https://github.com/ahahnut/

Backdoor-Attack-on-3D-Grey-Image-Segmentation.

A. Experimental Settings

The dataset, baseline model, performance metric, neural

network architecture, and parameter setting in our experiments

are described in the following.

Dataset. We use 3D spleen dataset downloaded from

Memorial Sloan Kettering Cancer Center [48] for our exper-

imental training and testing. This dataset has 61 3D volumes

with the CT modality, including 41 training volumes and 20

testing volumes.

Baseline. Unetr [42] is a state-of-the-art 3D grey image

segmentation model, which follows the successful U-net ar-

chitecture to design the encoder and decoder while leveraging

a transformer module in the encoder to learn sequential repre-

sentations of the input volumes for improving the segmentation

performance.

Performance Metric. We use dice score [49] to evaluate the

accuracy of image segmentation. A higher dice score means

a more accurate 3D grey image segmentation. For a given

image, let Gi and Pi denote the groundtruth and predicted

label values for pixel i, respectively. Then, the dice score is

defined as

Network Architecture. The network architectures of our

proposed FCBA and PCBA models follow the architecture of

Unetr. And the pre-trained model used in the PCBA model is

trained in advance by Unetr with 600 epochs.

Parameter Setting. For FCBA model, we set the blending

ratio α = 0.2, the masking ratio β = 0.5, and the poisoning

data ratio ρ = 0.2. For PCBA model, we configure α = 0.2,

β = 0.5, and ρ = 0.05 as we consider PCBA’s difficulty

in collecting clean training pairs compared with FCBA. The

horizontal rotation function is used as the default rotation-
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(a) Clean Image Segmentation (GroundTruth) (b) Clean Image Segmentation (Baseline) (c) Clean Image Segmentation (FCBA)

(d) Poisoned Image Segmentation (FCBA) (e) Clean Image Segmentation (PCBA) (f) Poisoned Image Segmentation (PCBA)

Fig. 3. 3D Grey Image Segmentation Results (Baseline v.s. Ours)

based label corruption function in both FCBA and PCBA; that

is, in Eq. (6), wx = 180◦, wy = 0◦, and wz = 0◦. After

training FCBA and PCBA models with n = 1000 epochs, we

use 20 testing volumes to calculate the average dice scores for

performance evaluation.

dice(G,P ) =
2
∑I

i=1 GiPi∑I
i=1 Gi +

∑I
i=1 Pi

, (11)

where I is the number of pixels in the image.

B. Backdoor Attack Performance

After training FCBA and PCBA models with the default

settings mentioned in Section V-A, we quantitatively evaluate

our proposed backdoor models by comparing them with the

baseline. The dice scores of the baseline and our models

are presented in Table I. When testing the clean images, the

average dice score in FCBA is only decreased by 0.0084, and

the average dice score in PCBA just is reduced by 0.0114,

which indicates 3D grey image segmentation performance is

maintained in our FCBA and PCBA models when the back-

door is not triggered. When testing the images poisoned by our

TABLE I
DICE SCORE RESULTS (BASELINE V.S. OURS)

Model Dice Score (Clean Image) Dice Score (Poisoned Image)

Baseline 0.9584 -

FCBA 0.95 (↓ 0.0084) 0.5165 (↓ 0.4419)

PCBA 0.947 (↓ 0.0114) 0.6534 (↓ 0.305)

frequency trigger injection function, we can observe that the

segmentation result drops from 0.9584 to 0.5165 in FCBA and

falls from 0.9584 to 0.6534 in PCBA, which implies that our

proposed models can achieve the goal of attacking 3D grey

image segmentation model when the backdoor is triggered.

From the above analysis, we can conclude that our FCBA and

PCBA models realize the stealiness and the effectiveness of

backdoor attack.

Moreover, in order to qualitatively evaluate our proposed

FCBA and PCBA, we further present the same slice of

3D spleen image segmentation results of the all models in

Fig. 3. By comparing the clean image segmentation result
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Fig. 5. Impact of the Masking Ratio β on Our Backdoor Attack Models
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Fig. 6. Impact of the Poisoning Data Ratio ρ on Our Backdoor Attack Models

of baseline in Fig. 3(b) and the clean image segmentation

result of FCBA in Fig. 3(c), it can be seen that our proposed

FCBA can successfully retain the accuracy of 3D grey image

segmentation for clean images. While, through the comparison

between the poisoned image segmentation result of baseline

in Fig. 3(b) and the poisoned image segmentation result of

FCBA in Fig. 3(d), it can be found that FCBA cannot be used

to segment the precise position of the spleen. According to

these observations, we can draw a conclusion that our FCBA

can achieve the goal of backdoor attack. Besides, following

the similar comparison between the baseline’s and our PCBA

model’s results in Fig. 3, we can reach the same conclusion

that our PCBA model is also able to realize a successful

backdoor attack.

C. Impact of Factors on FCBA and PCBA

We further investigate the influence of different factors

(including the blending ratio α, the masking ratio β, and the

poisoning data ratio ρ) on our proposed backdoor models.

For studying the impact of the blending ratio, we vary α
from 0.1 to 0.5 with the step size of 0.1 and fix the other

default parameters in our proposed models for training. After
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testing the well-trained models, we draw the dice scores of

FCBA model in Fig. 4(a) and the dice scores of PCBA model

in Fig. 4(b). From Fig. 4(a) and Fig. 4(b), the segmentation

results of FCBA and PCBA on the clean images are always

close to the baseline’s results even with the increase of the

blending ratio α, which means that our proposed backdoor

attack models can keep the performance of 3D grey image

segmentation when the backdoor is not triggered. Also, we

can observe that the dice scores of FCBA and PCBA on the

poisoned images decrease with the increase of the blending

ratio α, which indicates that the effectiveness of our backdoor

attack models can be improved by using a higher blending

ratio.

Aiming to look into the masking ratio’s influence, we set β
from 0.1 to 0.5 with the step size of 0.1 and hold the other

default parameters in FCBA and PCBA models for training.

The testing segmentation results of FCBA and PCBA models

are shown in Fig. 5(a) and Fig. 5(b), respectively, through

which we can obtain two conclusions: (i) when the backdoor

is not activated, our FCBA and PCBA models can always

maintain 3D grey image segmentation performance even with

the growth of the masking ratio; (ii) when the backdoor is

activated, a relatively larger masking ratio can help enhance

the effectiveness of our proposed FCBA and PCBA on 3D

grey image segmentation task.

In order to investigate how the poisoning data ratio affects

the effectiveness of our proposed FCBA and PCBA models,

we let ρ vary from 0.05 to 0.25 with the step size of 0.05

while holding the other default parameters in our proposed

models for training. Then, we plot the dice scores of our

proposed FCBA and PCBA models on testing volumes in

Fig. 6(a) and Fig. 6(b), respectively. From the segmentation

performance of the baseline and our models in Fig. 6(a) and

Fig. 6(b), we know that: (i) even if the poisoning data ratio is

increased, our FCBA and PCBA models can retain 3D grey

image segmentation performance when the inputs are clean

images; (ii) the increasing poisoning data ratio can promote

the attack effectiveness of our FCBA and PCBA models.

D. Analysis on Frequency Trigger Injection Function

As we mentioned in Section IV-A, our proposed frequency

trigger injection function aims to preserve the spatial infor-

mation of 3D grey images for the invisibility of our trigger

pattern, which is evaluated through the original clean images in

Fig. 7(a) and the poisoned images generated by our proposed

frequency trigger injection function in Fig. 7(b). By comparing

Fig. 7(a) and Fig. 7(b), we can find that there is almost

no spatial information difference between these two pictures,

which suggests that our proposed trigger injection function

can achieve the invisible trigger pattern, resulting in a stronger

stealiness of the backdoor attack.

E. Analysis on Rotation-based Label Corruption Function

In the above experiments, we use the horizontal rotation

function as the default setting in our proposed FCBA and

PCBA models and have demonstrated the effectiveness of

(a) Clean Image (b) Poisoned Image

Fig. 7. Invisibility Evaluation of Our Trigger Pattern

horizontal rotation. In this subsection, by replacing the default

horizontal rotation setting with a vertical rotation function (i.e.,
in Eq. (6), wx = 0◦, wy = 180◦, and wz = 0◦), we conduct

more experiments to further illustrate the effectiveness of the

rotation-based label corruption function in our proposed FCBA

and PCBA models. Besides, we also analyze the impact of

factors on our proposed models with the vertical-rotation label

corruption function.

In Fig. 8, we present the experimental results of our FCBA

and PCBA models with the vertical-rotation label corruption

function with different blending ratios. We can find that FCBA

and PCBA models can retain 3D grey image segmentation

performance when testing the clean images and lead to a

significant performance decrease when testing the poisoned

images, which implies that the proposed FCBA and PCBA

models with the vertical-rotation label corruption function

can also implement effective backdoor attack. It can also be

noticed that the effectiveness of our backdoor attack models

increases with the increase of the blending ratio.

In addition, the evaluation results of our proposed models

with the vertical-rotation label corruption function with various

masking ratios are shown in Fig. 9. By observing these results,

we can conclude that our proposed models with these different

settings are still able to accomplish successful backdoor attack,

and a larger masking ratio can enhance backdoor attack

performance.

Finally, we draw the dice scores of our FCBA and PCBA

models with the vertical-rotation label corruption function and

different poisoning data ratios in Fig. 10. These results show

that (i) our proposed models with the vertical-rotation label

corruption function can realize backdoor attack successfully

and (ii) an increasing poisoning data ratio makes backdoor

attack more effective.

VI. FURTHER DISCUSSION

(i) Although our frequency trigger injection function is

devised to achieve the invisibility of the trigger pattern for

3D grey images with the grey format, we believe that our

proposed injection function can also be successfully applied

in other RGB images. This is because RBG images contain

715

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2024 at 14:37:16 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Evaluation Results of Our Models with Vertical-Rotation Label
Corruption Function and Various α

Fig. 9. Evaluation Results of Our Models with Vertical-Rotation Label
Corruption Function and Various β

more spatial information than grey images, making the trigger

more invisible.

(ii) Even if we only use the horizontal rotation function

and the vertical rotation function as two cases to evaluate our

backdoor attack models in the experiments, it can be estimated

that other rotation functions can also be possible to realize

backdoor attack on 3D grey image segmentation. Moreover,

such a rotation-based label corruption function is helpful to

implement attack on other segmentation tasks as well.

(iii) It is obvious that the key to the success of our back-

door attack models is the utilization of our frequency trigger

injection function. Therefore, one of the countermeasures is to

design a filter that can purify the poisoned images by removing

the trigger pattern in the frequency domain before 3D grey

Fig. 10. Evaluation Results of Our Models with Vertical-Rotation Label
Corruption Function and Various ρ

image segmentation.

VII. CONCLUSION

In this paper, we propose two backdoor mechanisms, FCBA

and PCBA, towards 3D grey image segmentation by incorpo-

rating a frequency trigger injection function with a rotation-

based label corruption function. Our mechanisms possess the

following major technical innovations: (i) the frequency trigger

injection function is applied to insert a 3D trigger pattern

into the benign training images in the frequency domain to

accomplish backdoor attack while preserving the invisibility

of the trigger pattern; and (ii) the rotation-based label corrup-

tion function is designed to modify the correct positions of

pixels in labels for attacking the 3D grey image segmentation

task. Through comprehensive experiments, we illustrate the

outstanding attack performance of FCBA and PCBA models

as well as the effectiveness of our proposed frequency trigger

injection function and rotation-based label corruption function.
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