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Abstract—3D grey image segmentation has become a promising
approach to facilitate practical applications with the help of
advanced deep learning models. Although a number of previous
works have investigated the vulnerability of deep learning models
to backdoor attack, there is no work to study the severe risk of
backdoor attack on 3D grey image segmentation. To this end,
we propose two backdoor attack methods on 3D grey image
segmentation, including Full-control Backdoor Attack (FCBA)
and Partial-control Backdoor Attack (PCBA), on 3D grey image
segmentation by leveraging a frequency trigger injection function
and a rotation-based label corruption function. Our proposed
trigger injection function is applied to insert a 3D trigger pattern
into the benign 3D grey images in the frequency domain while
ensuring the invisibility of the trigger pattern. And the proposed
rotation-based label corruption function is employed to yield
the crafted labels with the aim of decreasing the performance
of segmentation. Finally, through comprehensive experiments
on a real-world dataset, we demonstrate the effectiveness of
our proposed backdoor models, the frequency trigger injection
function, and the rotation-based label corruption function.

Index Terms—Backdoor Attack, 3D Grey Image Segmentation,
Frequency Trigger Injection Function, Rotation-based Label
Corruption Function

[. INTRODUCTION

With the impressive development of deep neural networks
(DNNSs), deep learning models are increasingly applied in 3D
grey image segmentation to help medical diagnosis [1], [2],
industrial inspection [3], [4], and robotics [5], [6]. However,
DNN’s vulnerability to various attacks during models’ training
and inference has been demonstrated in previous works [7]-
[13]. In particular, backdoor attack intends to manipulate
models with the injection of a backdoor during the model
training process [11]-[13] such that the model performance
can be maliciously influenced once the backdoor is activated,
which causes serious consequences in real applications.

So far, the existing works on backdoor attack can imple-
ment full-control backdoor attack [14], [15] or partial-control
backdoor attack [16] according to attackers’ control behaviors
as well as can also be classified as corrupted-label backdoor
attack [12], [17]-[22] and clean-label backdoor attack [16],
[23]-[26] depending on whether attackers have permission to
change data labels. Unfortunately, prior studies on backdoor
attack strategies primarily focused on inducing misclassifica-
tion in 2D images but ignore a backdoor approach that ac-
counts for the volumetric features of 3D images during trigger
injection and considers a tailored label corruption function for
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segmentation tasks. While, in today’s information era, 3D grey
image segmentation is becoming increasingly important for
deep learning-aided systems, and studying backdoor attack
on 3D grey image segmentation can help better understand
the security flaws in these systems so as to promote further
improvements. Therefore, to fill the gap between the technical
limitations of current backdoor attack approaches and the req-
uisite security study, we systematically investigate the issue of
backdoor attack on 3D grey image segmentation in this paper.
Notablly, such an attractive research topic inevitably raises two
challenging questions: (i) how to achieve an invisible injection
in 3D grey images; and (ii) how to realize a successful attack
on a segmentation task.

In this paper, to solve the aforementioned challenges, we
propose Full-control Backdoor Attack (FCBA) and Partial-
control Backdoor Attack (PCBA) on 3D grey image segmen-
tation by integrating a frequency trigger injection function
with a rotation-based label corruption function. Specifically,
our designed trigger injection function injects 3D grey images
with a 3D trigger pattern in the frequency domain in order
to realize the invisibility of the backdoor. Considering that
the performance of 3D image segmentation strongly relies
on the correct positions of pixels in the groundtruth 3D
labels, the devised label corruption function corrupts labels
via a particular rotation function to implement a successful
backdoor attack on the segmentation task. In the end, we
evaluate the backdoor attack’s effectiveness of our FCBA and
PCBA models by conducting comprehensive experiments. Our
multifold contributions are addressed as follows.

o To the best of our knowledge, this is the first work
to develop backdoor attack models on 3D grey image
segmentation.

o We create a frequency trigger injection function to insert
a 3D trigger pattern into benign 3D grey images in the
frequency domain for training our proposed backdoor
models, which can make the backdoor invisible.

o The rotation-based label corruption function is devised
for effective attack performance by rotating the correct
positions of pixels in the groundtruth 3D labels.

o Based on the frequency trigger injection function and
the rotation-based label corruption function, we propose
two novel backdoor attack models, FCBA and PCBA,
according to whether the attacker can access the whole
model training process.
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« Extensive experiments are well conducted to validate the
success of FCBA and PCBA and illustrate the effec-
tiveness of our proposed trigger injection function and
rotation-based label corruption function.

The rest of this paper is organized as follows. We briefly
summarize related works in Section II. The preliminary is
presented in Section III, and our methodology is detailed in
Section IV. In Section V, we conduct experiments to eval-
uate our methodology and analyze the experimental results.
Then, further discussions are proposed in Section VI before
conclusion in Section VII.

II. RELATED WORKS

In this section, we summarize the related works on image
segmentation and the mainstream backdoor attack mecha-
nisms.

A. Image Segmentation

Thanks to the introduction of U-net [27], CNN-based net-
works have become the state-of-the-art for image segmentation
tasks. These CNN-based models can be broadly classified
into three categories, including 2D CNN models, 2.5D CNN
models, and 3D CNN models [28]-[37]. (i) 2D CNN models
are used to perform image segmentation by applying 2D filters
on 2D input images [29], [30]. What’s more, multi-modality
2D images can be leveraged to improve the segmentation
outcomes of the 2D CNN models, and the low-level and high-
level features extracted from the pre-trained models can be
fused to promote the segmentation performance [38], [39].
(i) 2.5D CNN models achieve segmentation by leveraging
features of three orthogonal views, which are extracted from
three orthogonal 2D patches in the XY, YZ, and X Z planes
of 3D images with the 2D kernels [31]-[33]. Furthermore,
multi-modality 3D images can also be applied to enhance
the performance of segmentation tasks [40], [41]. However,
some works stated that just employing three orthogonal views
out of 3D images should be problematic for the volumetric
data when, especially, these 3D images are with substantially
lower resolution in depth (i.e., the Z-axis). (iii) 3D CNN
models extract a more powerful volumetric representation
across all three axes with 3D kernels for fully using 3D spatial
information to get a better segmentation performance than
2.5D CNN models [34]-[37]. These 3D CNN models can
be applied on 3D grey image segmentation and Unetr [42]
is demonstrated as a state-of-the-art to implement 3D grey
image segmentation so far. Nowadays, researchers pay more
and more attentions to deep learning-based 3D grey image
segmentation in order to let this seminal technology help
practical applications in the real world.

In line with this research direction, we investigate backdoor
attack on 3D grey image segmentation to evoke researchers’
focus on the security of 3D grey image segmentation systems,
which can also promote the development of robust 3D grey
image segmentation models in turn.
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B. Backdoor Attack

Backdoor attack is raising increasing concerns due to the
potential severe consequences of stealthily injecting a malev-
olent behavior within a DNN model by interfering with the
training phase [43], where such a malevolent behavior occurs
only in the presence of a triggering event corresponding to a
properly crafted input. In this way, the backdoored networks
can continue to work as expected for regular inputs, and the
malicious behavior is activated only when attackers feed the
networks with triggering inputs. According to the attackers’
control of the training process, there are two types of backdoor
attack: full-control attack and partial-control attack. For the
full-control attack, the attackers is the trainers themselves and
thus can interfere with every step of the training steps [14],
[15]. For the partial-control attack, the attackers cannot ac-
cess the training phases but can retrain published pre-trained
models by collected data [16]. On the other hand, with
respect to the control scenarios under which the attackers can
operate, we can also classify the backdoor models into two
types, including corrupted-label attack and clean-label attack.
Corrupted-label attack means that the attackers can tamper the
labels of the poisoned samples [12], [17]-[22], while clean-
label attack cannot change or define the labels of the poisoned
samples [16], [23]-[26].

However, in the literature, the existing backdoor attack
schemes almost focus on achieving 2D images’ label distur-
bance in the classification task. There is no work to propose
a backdoor attack approach by simultaneously considering
the volumetric characteristics of 3D images in the process of
trigger injection and designing a specialized label corruption
function for the segmentation task. In this paper, we propose
two backdoor attack models, FCBA and PCBA, on 3D grey
image segmentation. The technical novelty of our proposed
backdoor attack models lies in two aspects: (i) a frequency
trigger injection function is elaborately devised to achieve the
invisibility of the trigger pattern inserted in 3D grey images;
and (ii) a rotation-based label corruption function is well
designed to attack against the segmentation task.

III. PRELIMINARY

Recently, it has been shown that deep neural networks are
vulnerable to backdoor attack, where a trigger pattern (i.e.,
a backdoor) is covertly hidden in some training samples and
thus tricks the models into producing unexpected behaviors
when the backdoor is activated by the trigger in the testing
process.

Let D, represent a training data set with [V training samples
as the inputs and (z;,y;) represent an input pair, where z; is
one input data sample and is associated with a class label y;.
These NN input pairs are used to train a clean deep learning
model U with parameters 6, i.e., Ug(x;) = y;. In order to
implement backdoor attack, we randomly choose a subset
Dj C D, at the first. Secondly, a trigger injection function
P(-) should be defined to poison the input data x;, i.e.,

Plx;))=a;- (1 —m)+k-m, (D)

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2024 at 14:37:16 UTC from IEEE Xplore. Restrictions apply.



where k represents the trigger pattern, and m € [0,1] is a
hyper-parameter to balance the weights of input data and the
trigger pattern. Thirdly, a label corruption function C(+) should
be devised to replace the original label y; with a corrupted
label C(y;). Via P(-) and C(-), one clean input pair (z;,y;) is
poisoned as a backdoor pair (P(x;),C(y;)). After poisoning
all data pairs in D;, we combine the poisoned pairs and the
clean pairs in D, \ D; to train a backdoor deep learning model
U’ with the poisoned parameters 6'.

Consequently, we can change the behavior of deep learning
network in the testing process so that: (i) the backdoor model
can be normally used to predict the groundtruth labels when
the backdoor is not triggered, ie., Up (x;) = y;; and (ii)
the backdoor model can obtain a corrupted label when the
backdoor is triggered, i.e., Uy, (P(x;)) = C(y;).

IV. METHODOLOGY

In this section, we develop a trigger injection function and
a label corruption function to poison 3D grey images and the
corresponding labels, respectively. Based on these two novel
functions, Full-control Backdoor Attack (FCBA) model and
Partial-control Backdoor Attack (PCBA) model are proposed
to attack 3D grey image segmentation.

A. Frequency Trigger Injection Function

In previous works, the trigger injection function is usually
defined in the spatial domain for 2D images. Different from
this traditional method, our main idea is to build the trigger
injection function in the frequency domain for backdoor attack
on 3D grey image segmentation while preserving the spatial
information of 3D grey images as much as possible.

Given a benign 3D grey image x; € D; and a trigger pattern
image z, that is generated to be a 3D grey tensor with the same
size of z;, we can get their frequency space signals through
the Fast Fourier Transform (FFT) function F [44]. Let F;(-)
and Fj,(-) be the functions to obtain the amplitude and phase
components of the FFT results of an image, respectively. Then,
we can compute the amplitude spectrum of z; as L., = Fi(z;)
and the phase spectrum of x; as H,, = Fp(z;). Similarly,
we can also have the amplitude spectrum of z, denoted as
L., = Fi(x,) and the phase spectrum of x, denoted as H,, =
]:h(l'o)-

As we know, the amplitude spectrum contains the low-level
distribution information of images, and the phase spectrum in-
cludes the high-level semantic information of the images [45],
[46]. Thus, in order to keep the spatial information of 3D grey
images as much as possible, we design the injection function
only considering the amplitude spectrum while maintaining
the phase spectrum. In general, we synthesize a new amplitude
spectrum as the backdoor trigger by blending £,, and £,_.

Assume that 2H, 2V, and 2(Q) are the height, weight and
depth of the amplitude spectrum of the 3D grey images,
respectively. Also, we suppose that the coordinates of the x-
axis of the 3D amplitude spectrum are in the range [—H, H],
the coordinates of the y-axis of the 3D amplitude spectrum
are in the range [—W, W], and the coordinates of the z-axis
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of the 3D amplitude spectrum are in the range [—Q, Q]. To
achieve the goal of blending, we firstly define a masking ratio
B to determine the location and range of 3D patch inside the
3D amplitude spectrum to be blended; that is, the coordinates
of the x-axis of the 3D patch are in the range [—(SH, SH],
the coordinates of the y-axis of the 3D patch are in the range
[— W, BW], and the coordinates of the z-axis of the 3D patch
are in the range [—(Q, SQ)]. Then we can introduce a binary
mask

B = 1(-pmpm 6w [-6Q.6Q): )
in which any element of B is equal to 1 if it is within the 3D
patch, and it is equal to O otherwise. Denote « as the blending
ratio to adjust the amount of information contributed by £,
and £, . Then, we can calculate the synthetic amplitude
spectrum as:

LE =[1—-a)ls, +aLly] B+ Ly -(1-B). 3)
Accordingly, we can produce the poisoned image 2P by
using the synthetic amplitude spectrum Efi and the origi-

nal phase spectrum H,, through the inverse FFT function
F~L[47], ie.,

wf = F N LY Ha,). 4)

The poisoned image x? preserves the original spatial layout
and semantic of z; while absorbing some low-frequency
information from the 3D grey trigger pattern z,. To simplify
the presentation, we use Eq. (5) to represent the above entire
process of our frequency trigger injection function (from
Eq. (2) to Eq. (4)) in this paper.

af = J (w5 2,0).

B. Rotation-based Label Corruption Function

(&)

Label corruption functions proposed in previous works are
mainly used for realizing backdoor attack on classification,
which is not feasible to work on segmentation. Considering
that the correct positions of pixels in the groundtruth labels
for 3D grey image segmentation is critical to obtain accurate
segmentation results, we propose a 3D rotation function as the
label corruption function to corrupt the labels by changing the
positions of pixels in 3D labels. We denote T'(y,, w, w.) 8 &
rotation transformation matrix with the corresponding rotation
angle parameters w,;, w,, and w, for x-axis, y-axis, and z-axis,
respectively. By applying Ty, w, w.) On one clean label y;,
we can obtain the poisoned label yZ below,

yzB = R(yl) = T(wz,wy,wz)yiv (6)

where R(-) denotes our rotation-based corrupted label func-
tion.

C. Our Backdoor Attack Mechanisms

According to whether the attacker can access the whole
training process of 3D grey image segmentation, we propose a
full-control backdoor attack (FCBA) mechanism and a partial-
control backdoor attack (PCBA) mechanism by exploiting the
proposed frequency trigger injection function and the rotation-
based label corruption function, which is elaborated in the
following.
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Fig. 1. Framework of Our Full-control Backdoor Attack Mechanism

1) Full-control Backdoor Attack: The framework of FCBA
is presented in Fig. 1, where the attacker (called Oliver) is the
trainer of 3D grey image segmentation and has the complete
control of all training data. In order to accomplish a successful
backdoor attack, Oliver firstly randomly selects some clean 3D
grey images and the corresponding labels from the training
dataset D, with a ratio p € (0,1) that we call the poisoning
data ratio, ie., |Dj| = p|D;| = pN. Oliver poisons these
3D grey images in D; with our proposed frequency trigger
injection function 7 (-) described in Section IV-A as well as
poisons the corresponding labels via the rotation-based label
corruption function R(-) proposed in Section IV-B. Denote
the 3D grey image segmentation model under our full-control
backdoor attack as S, with parameters ¢. For the poisoned
data pairs, we can obtain the loss function L,, as:

Ly= Y lIR(y:) = So(T (xi:20))I[3-

r, €D}

(7

For the remaining clean data pairs, we define the loss function

L. in Eq. (8).
>

x;€D\D?

L.

lly: — Se(xi)|[3- (8)

Then, we can calculate the overall loss of FCBA model via
Eq. (9).

Lrcpa =Ly + Le. &)

We minimize L pcpa to train the FCBA model by using Adam
optimizer and present the pseudo-code in Algorithm 1.

After Oliver publishes the well-trained model with a back-
door, the user (called Bob) can use FCBA model to get
an accurate 3D grey image segmentation result if the input
3D grey image is clean (i.e., the backdoor is not triggered).
However, if the input 3D grey image is poisoned with the
trigger pattern (i.e., the backdoor is triggered), Bob is not able
to obtain an accurate 3D grey image segmentation result.

711

Algorithm 1 Full-control Backdoor Attack (FCBA)
Input: Training set D; with N samples, Epoch n, Poisoning
data ratio p, and 3D Grey Trigger Pattern z,

Output: FCBA model Sy
1: Randomly select pN images from D; to form Dy

: Poison the 3D grey images in D} through J(-) to get
poisoned 3D grey images

. Poison the labels corresponding images in D; with R(-)
to get corrupted labels

: Randomly initialize ¢

: for epoch =1 to n do

Compute L,, via Eq. (7)

Compute L. via Eq. (8)

Compute Lrcpa = L. + Ly,

Minimize Lpcpa via Adam to Update ¢

. end for

: Return Sy

2) Partial-control Backdoor Attack: We present the frame-
work of PCBA in Fig. 2. In PCBA, Oliver is not the trainer
of 3D grey image segmentation and thus cannot access the
training dataset, and Alice is the service provider offering
users with a pre-trained 3D grey image segmentation model
denoted as Sy, . For implementing backdoor attack, suppose
that Oliver has the following prior knowledge and abilities: (i)
he can know the provided pre-trained model and the type of
3D grey images used to train the pre-trained model; and (ii)
he can collect pN 3D grey images that have the same type
as the training images and annotate these collected images
with corresponding labels. Then, Oliver uses J7(-) and R(-)
to poison these p/N images and labels, respectively. We can
formulate the loss function of PCBA model in Eq. (10) for
fine-tuning the pre-trained 3D grey image segmentation model
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Algorithm 2 Partial-control Backdoor Attack (PCBA)
Input: A pre-trained model Sy ., Epoch n, Poisoning data
ratio p, and 3D Grey Trigger Pattern x,
Output: PCBA model Sy
1: Collect pN clean data pairs
2: Poison the collected clean 3D grey images by using 7 (-)
to obtain p/N poisoned images
3: Poison the collected clean labels via R(-) to obtain pN
corrupted labels
: Initialize ¢ as @pre
: for epoch =1 to n do
Calculate Lpcopa using Eq. (10)
Minimize Lpcpa via Adam to Update ¢’
end for
: Return Sy

S¢,,. to perform backdoor attack.

pN

Lpcpa = Z IR (yi) — Sor (T (wi;0)) |15,

=1

(10)

where ¢’ represents the updated parameters of 3D grey image
segmentation model in PCBA. We also minimize Lpcpa
to train PCBA model via Adam optimizer and describe the
outline of training PCBA model in Algorithm 2.

Similarly, after Oliver publishes 3D grey image segmen-
tation model with the fine-tuned parameters, Bob suffers a
decrease in segmentation performance once the backdoor is
activated.

V. EXPERIMENT

To validate the attack effectiveness of our proposed
FCBA and PCBA models, we conduct comprehensive
real-data  experiments and  analyze the  results
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from several different aspects. Our codes of these
experiments can be found in https:/github.com/ahahnut/
Backdoor- Attack-on-3D-Grey-Image-Segmentation.

A. Experimental Settings

The dataset, baseline model, performance metric, neural
network architecture, and parameter setting in our experiments
are described in the following.

Dataset. We use 3D spleen dataset downloaded from
Memorial Sloan Kettering Cancer Center [48] for our exper-
imental training and testing. This dataset has 61 3D volumes
with the CT modality, including 41 training volumes and 20
testing volumes.

Baseline. Unetr [42] is a state-of-the-art 3D grey image
segmentation model, which follows the successful U-net ar-
chitecture to design the encoder and decoder while leveraging
a transformer module in the encoder to learn sequential repre-
sentations of the input volumes for improving the segmentation
performance.

Performance Metric. We use dice score [49] to evaluate the
accuracy of image segmentation. A higher dice score means
a more accurate 3D grey image segmentation. For a given
image, let GG; and P; denote the groundtruth and predicted
label values for pixel i, respectively. Then, the dice score is
defined as

Network Architecture. The network architectures of our
proposed FCBA and PCBA models follow the architecture of
Unetr. And the pre-trained model used in the PCBA model is
trained in advance by Unetr with 600 epochs.

Parameter Setting. For FCBA model, we set the blending
ratio = 0.2, the masking ratio 5 = 0.5, and the poisoning
data ratio p = 0.2. For PCBA model, we configure o« = 0.2,
B = 0.5, and p = 0.05 as we consider PCBA’s difficulty
in collecting clean training pairs compared with FCBA. The
horizontal rotation function is used as the default rotation-
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Fig. 3. 3D Grey Image Segmentation Results (Baseline v.s. Ours)

based label corruption function in both FCBA and PCBA; that
is, in Eq. (6), w, = 180°, w, = 0°, and w, = 0°. After
training FCBA and PCBA models with n = 1000 epochs, we
use 20 testing volumes to calculate the average dice scores for
performance evaluation.

2y, GiP,
I I ’
Zi=1 Gi + 21‘:1 Pz

where [ is the number of pixels in the image.

dice(G, P) = (11)

B. Backdoor Attack Performance

After training FCBA and PCBA models with the default
settings mentioned in Section V-A, we quantitatively evaluate
our proposed backdoor models by comparing them with the
baseline. The dice scores of the baseline and our models
are presented in Table I. When testing the clean images, the
average dice score in FCBA is only decreased by 0.0084, and
the average dice score in PCBA just is reduced by 0.0114,
which indicates 3D grey image segmentation performance is
maintained in our FCBA and PCBA models when the back-
door is not triggered. When testing the images poisoned by our
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TABLE I
DICE SCORE RESULTS (BASELINE V.S. OURS)

Model | Dice Score (Clean Image) | Dice Score (Poisoned Image)

Baseline | 0.9584 | -
FCBA | 0.95 (4 0.0084) | 0.5165 (| 0.4419)
PCBA | 0.947 (J 0.0114) | 0.6534 (| 0.305)

frequency trigger injection function, we can observe that the
segmentation result drops from 0.9584 to 0.5165 in FCBA and
falls from 0.9584 to 0.6534 in PCBA, which implies that our
proposed models can achieve the goal of attacking 3D grey
image segmentation model when the backdoor is triggered.
From the above analysis, we can conclude that our FCBA and
PCBA models realize the stealiness and the effectiveness of
backdoor attack.

Moreover, in order to qualitatively evaluate our proposed
FCBA and PCBA, we further present the same slice of
3D spleen image segmentation results of the all models in
Fig. 3. By comparing the clean image segmentation result
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of baseline in Fig. 3(b) and the clean image segmentation
result of FCBA in Fig. 3(c), it can be seen that our proposed
FCBA can successfully retain the accuracy of 3D grey image
segmentation for clean images. While, through the comparison
between the poisoned image segmentation result of baseline
in Fig. 3(b) and the poisoned image segmentation result of
FCBA in Fig. 3(d), it can be found that FCBA cannot be used
to segment the precise position of the spleen. According to
these observations, we can draw a conclusion that our FCBA
can achieve the goal of backdoor attack. Besides, following
the similar comparison between the baseline’s and our PCBA
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model’s results in Fig. 3, we can reach the same conclusion
that our PCBA model is also able to realize a successful
backdoor attack.

C. Impact of Factors on FCBA and PCBA

We further investigate the influence of different factors
(including the blending ratio «, the masking ratio 3, and the
poisoning data ratio p) on our proposed backdoor models.

For studying the impact of the blending ratio, we vary «
from 0.1 to 0.5 with the step size of 0.1 and fix the other
default parameters in our proposed models for training. After
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testing the well-trained models, we draw the dice scores of
FCBA model in Fig. 4(a) and the dice scores of PCBA model
in Fig. 4(b). From Fig. 4(a) and Fig. 4(b), the segmentation
results of FCBA and PCBA on the clean images are always
close to the baseline’s results even with the increase of the
blending ratio «, which means that our proposed backdoor
attack models can keep the performance of 3D grey image
segmentation when the backdoor is not triggered. Also, we
can observe that the dice scores of FCBA and PCBA on the
poisoned images decrease with the increase of the blending
ratio «, which indicates that the effectiveness of our backdoor
attack models can be improved by using a higher blending
ratio.

Aiming to look into the masking ratio’s influence, we set 5
from 0.1 to 0.5 with the step size of 0.1 and hold the other
default parameters in FCBA and PCBA models for training.
The testing segmentation results of FCBA and PCBA models
are shown in Fig. 5(a) and Fig. 5(b), respectively, through
which we can obtain two conclusions: (i) when the backdoor
is not activated, our FCBA and PCBA models can always
maintain 3D grey image segmentation performance even with
the growth of the masking ratio; (ii) when the backdoor is
activated, a relatively larger masking ratio can help enhance
the effectiveness of our proposed FCBA and PCBA on 3D
grey image segmentation task.

In order to investigate how the poisoning data ratio affects
the effectiveness of our proposed FCBA and PCBA models,
we let p vary from 0.05 to 0.25 with the step size of 0.05
while holding the other default parameters in our proposed
models for training. Then, we plot the dice scores of our
proposed FCBA and PCBA models on testing volumes in
Fig. 6(a) and Fig. 6(b), respectively. From the segmentation
performance of the baseline and our models in Fig. 6(a) and
Fig. 6(b), we know that: (i) even if the poisoning data ratio is
increased, our FCBA and PCBA models can retain 3D grey
image segmentation performance when the inputs are clean
images; (ii) the increasing poisoning data ratio can promote
the attack effectiveness of our FCBA and PCBA models.

D. Analysis on Frequency Trigger Injection Function

As we mentioned in Section IV-A, our proposed frequency
trigger injection function aims to preserve the spatial infor-
mation of 3D grey images for the invisibility of our trigger
pattern, which is evaluated through the original clean images in
Fig. 7(a) and the poisoned images generated by our proposed
frequency trigger injection function in Fig. 7(b). By comparing
Fig. 7(a) and Fig. 7(b), we can find that there is almost
no spatial information difference between these two pictures,
which suggests that our proposed trigger injection function
can achieve the invisible trigger pattern, resulting in a stronger
stealiness of the backdoor attack.

E. Analysis on Rotation-based Label Corruption Function

In the above experiments, we use the horizontal rotation
function as the default setting in our proposed FCBA and
PCBA models and have demonstrated the effectiveness of
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Fig. 7. Invisibility Evaluation of Our Trigger Pattern

horizontal rotation. In this subsection, by replacing the default
horizontal rotation setting with a vertical rotation function (i.e.,
in Eq. (6), w, = 0°, w, = 180°, and w, = 0°), we conduct
more experiments to further illustrate the effectiveness of the
rotation-based label corruption function in our proposed FCBA
and PCBA models. Besides, we also analyze the impact of
factors on our proposed models with the vertical-rotation label
corruption function.

In Fig. 8, we present the experimental results of our FCBA
and PCBA models with the vertical-rotation label corruption
function with different blending ratios. We can find that FCBA
and PCBA models can retain 3D grey image segmentation
performance when testing the clean images and lead to a
significant performance decrease when testing the poisoned
images, which implies that the proposed FCBA and PCBA
models with the vertical-rotation label corruption function
can also implement effective backdoor attack. It can also be
noticed that the effectiveness of our backdoor attack models
increases with the increase of the blending ratio.

In addition, the evaluation results of our proposed models
with the vertical-rotation label corruption function with various
masking ratios are shown in Fig. 9. By observing these results,
we can conclude that our proposed models with these different
settings are still able to accomplish successful backdoor attack,
and a larger masking ratio can enhance backdoor attack
performance.

Finally, we draw the dice scores of our FCBA and PCBA
models with the vertical-rotation label corruption function and
different poisoning data ratios in Fig. 10. These results show
that (i) our proposed models with the vertical-rotation label
corruption function can realize backdoor attack successfully
and (ii) an increasing poisoning data ratio makes backdoor
attack more effective.

VI. FURTHER DISCUSSION

(i) Although our frequency trigger injection function is
devised to achieve the invisibility of the trigger pattern for
3D grey images with the grey format, we believe that our
proposed injection function can also be successfully applied
in other RGB images. This is because RBG images contain
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more spatial information than grey images, making the trigger
more invisible.

(i) Even if we only use the horizontal rotation function
and the vertical rotation function as two cases to evaluate our
backdoor attack models in the experiments, it can be estimated
that other rotation functions can also be possible to realize
backdoor attack on 3D grey image segmentation. Moreover,
such a rotation-based label corruption function is helpful to
implement attack on other segmentation tasks as well.

(iii) It is obvious that the key to the success of our back-
door attack models is the utilization of our frequency trigger
injection function. Therefore, one of the countermeasures is to
design a filter that can purify the poisoned images by removing
the trigger pattern in the frequency domain before 3D grey
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image segmentation.

VII. CONCLUSION

In this paper, we propose two backdoor mechanisms, FCBA
and PCBA, towards 3D grey image segmentation by incorpo-
rating a frequency trigger injection function with a rotation-
based label corruption function. Our mechanisms possess the
following major technical innovations: (i) the frequency trigger
injection function is applied to insert a 3D trigger pattern
into the benign training images in the frequency domain to
accomplish backdoor attack while preserving the invisibility
of the trigger pattern; and (ii) the rotation-based label corrup-
tion function is designed to modify the correct positions of
pixels in labels for attacking the 3D grey image segmentation
task. Through comprehensive experiments, we illustrate the
outstanding attack performance of FCBA and PCBA models
as well as the effectiveness of our proposed frequency trigger
injection function and rotation-based label corruption function.
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