
Scheduling Out-Trees Online to Optimize Maximum Flow

Kunal Agrawal
Washington University in St. Louis

St. Louis, United States
kunal@wustl.edu

Benjamin Moseley
Carnegie Mellon University
Pittsburgh, United States

moseleyb@andrew.cmu.edu

Heather Newman
Carnegie Mellon University
Pittsburgh, United States

hanewman@andrew.cmu.edu

Kirk Pruhs
University of Pittsburgh
Pittsburgh, United States

kirk@cs.pitt.edu

ABSTRACT

We consider online scheduling. onm identical processors. Jobs are

parallel programs constructed using dynamic multithreading (also

called fork-join parallelism). Jobs arrive over time online and the

goal is to optimize maximum flow. Essentially all prior work on this

problem has used a relaxed form of analysis where the algorithm

has faster speed processors than the optimum and this paper seeks

to understand the problem without this strong assumption. We

show that the most natural algorithm, First-In-First-Out (FIFO),

is Ω(logm)-competitive for jobs that are out-trees. For this chal-

lenging class where jobs are out-trees, we give new clairvoyant

algorithm that is O(1)-competitive. We then give some circumstan-

tial evidence that FIFO is O(logm)-competitive, even on arbitrary

jobs.

CCS CONCEPTS

· Theory of computation → Distributed algorithms; Online al-

gorithms; Parallel algorithms.

KEYWORDS

Maximum flow, Dynamic multithreaded jobs

ACM Reference Format:

Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs. 2024.

Scheduling Out-Trees Online to Optimize Maximum Flow. In Proceedings

of the 36th ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA ’24), June 17ś21, 2024, Nantes, France. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3626183.3659955

1 INTRODUCTION

We consider scheduling on identical processors parallel programs

that are constructed using dynamic multithreading (also called fork-

join parallelism), and that arrive over time, to optimize maximum

flow. Dynamic multithreading is common in many parallel lan-

guages and libraries, such as Cilk dialects [14, 19], Intel TBB [25],

Microsoft Parallel Programming Library [12] and OpenMP [23]. In

these parallel languages, programmers express algorithmic paral-

lelism through linguistic constructs such as łspawnž and łsync,ž

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SPAA ’24, June 17ś21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3659955

łforkž and łjoin,ž or łparallel forž loops. In these parallel languages,

the resulting programs are naturally modeled by series-parallel

directed acyclic graphs (DAGs), where the nodes are atomic com-

putational steps, and a directed edge (u,v) indicates that the pre-

decessor node u needs to be executed before successor node v in

order to ensure logical correctness. However, programmers using

these parallel languages generally do not explicitly specify how

the computation should be parallelized. The task of efficiently par-

allelizing the computation falls to the run-time scheduler. At any

time, a node u is said to be ready if all of its predecessor nodes have

been executed. A runtime scheduler must select which ready nodes

to execute at any time step.

We consider a setting where dynamic multithreaded programs,

which we will call jobs, arrive over time. Thus at each time, the run-

time scheduler’s task is to select nodes, which we will call subjobs,

from the various digraphs (derived from the programs) to run at

that time. See Figure 1 for an example job and possible schedules.

The most natural quality-of-service metric for a program/job is its

flow (time), which is the duration of time between when the job ar-

rives to be executed and when the job finishes execution. The most

natural quality-of-service metrics for a schedule are some norm of

the quality-of-service of the individual jobs, with the ℓ1-norm and

the ℓ∞-norm being the mostly commonly considered norms.

This paper considers the ℓ∞-norm, which is the maximum flow

of any job. Minimizing the maximum flow is usually the standard

quality-of-service metric that is simplest for a scheduler to optimize,

is the most commonly considered objective when the overriding

concern is fairness (as the metric optimizes for the worst-case qual-

ity of service over all the jobs). This paper is targeted at addressing

the natural open problem, stated for example in the SPAA 2016

paper [4], of whether there is a run-time scheduling algorithm for

dynamic multithreaded jobs, that is O(1)-competitive with respect

to (minimizing) maximum flow.

The scheduling problem of scheduling multiple jobs on a set of

processors can be thought of as a two-level scheduling problem:

the scheduler must decide how many processors to allocate to

each job and then decide which subjobs of each job to process on

the allocated processors. Intutively, when we want to minimize

maximum flow, we should process older jobs first; this intuition is

also stated by the authors of [4]:

ł . . . intuitively FIFO is the łrightž scheduling policy

for maximum flow time.ž

77

SPAA ’24, June 17ś21, 2024, Nantes, France Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs

Figure 1: Two possible packings for one job (DAG) on three

processors, respecting the DAG structure.

Roughly speaking, prior work has established that FIFO is the łrightž

algorithm for scheduling sequential programs that arrive over time,

and scheduling fully parallelizable programs that arrive over time

when we are optimizing for maximum flow time. For fully paral-

lelizable jobs that arrive over time FIFO is optimal with respect

to maximum flow. For sequential jobs (i.e., DAGs that are chains)

that arrive over time, FIFO is (3 − 2
m)-competitive with respect to

maximum flow [6, 8].

For dynamic multithreaded jobs, a FIFO scheduling algorithm

can be stated as follows: for every time step, allocate as many

processors to the oldest job as it can use (the number of its ready

subjobs) and then move on to the second oldest job until either

all processors have been allocated or all ready subjobs have been

scheduled. However, the last job that is scheduled by this method

may get fewer processors than the number of its ready subjobs;

therefore, the scheduler must decide which of its ready subjobs to

schedule. Our intuition was that the simplest variant, one which

arbirarily selects the subjobs, was likely to be łgood enough.ž

This intuition was guided by the fact that for one dynamic mul-

tithreaded program, a classic result states that any work-conserving

scheduler that doesn’t unnecessarily idle a processor is 2-competitive

with respect to makespan [16]. This analysis is based on the obser-

vation that if the algorithm must idle a processor at some time then

the algorithm is reducing the span (length of the longest path) of

that job. When we are scheduling multiple dynamic multithreaded

jobs, we can generalize this property. For any work-conserving

scheduler (a scheduler that doesn’t unnecessarily idle processors

if there are ready subjobs available), if the scheduler must idle a

processor at some time, then the span of every unsatisfied job is

reduced at that time. We can call this property the span reduction

property. Since FIFO is work-conserving, it has this span reduction

property. Initially, it seemed to us to be improbable, bordering on

implausible, that arbitrary FIFO was not O(1)-competitive with re-

spect to maximum flow for dynamic multithreaded jobs that arrive

over time.

Lower Bound for FIFO:. Our first contribution, which we summa-

rize in Section 4, is that our significant efforts to show that FIFO

is O(1)-competitive were in vain, as in fact the competitive ratio

of FIFO with respect to maximum flow is Ω(logm), wherem is the

number of processors. This result holds even when the computation

structure is an out-tree rather than a general directed acyclic graph.

An immediate corollary of this lower bound is that an algorithm

prioritizing older jobs and having the span-reduction property are

not sufficient to imply O(1)-competitiveness even for trees.

New Algorithm for Out-Trees: In light of this lower bound for

FIFO, we naturally turned our attention to scheduling dynamic

multithreaded jobs that are out-trees. We show in Section 5 that

there is an O(1)-competitive run-time scheduling algorithm A for

maximum flow, under the assumption that the run-time scheduler

learns the shape (subjobs and their dependencies) of the out-tree

when it arrives. In some situations, e.g., real-time scheduling appli-

cations, this is a reasonable assumption. Despite needing to know

the shape of the jobs, we believe the algorithm design and analysis

provide insight that will be useful in making further progress on

algorithms for scheduling dynamic multithreaded programs.

Out-tree scheduling is interesting, since the structure of many

common algorithms, when naturally implemented as dynamic mul-

tithreaded programs, are out-trees. In particular, any tail-recursive

algorithm, like Quicksort, naturally results in a dynamic multi-

threaded program that is an out-tree. In addition, many algorithms,

such as those that contain a sequence of parallel for-loops, can be

thought of as a series of out-trees. One may be able to potentially

generalize the out-tree algorithm to such programs as well.

Upper Bound for FIFO for Batched Instances: Finally, given that

FIFO is most likely to be used in practice, it is is natural to under-

stand its theoretical performance. Our final contribution, which

we cover in Section 6, is to show that FIFO is O(logmax{m,Opt})-

competitive on what we call batched instances. Here Opt is the

optimal maximum flow time, and a batched instance is one where

jobs only arrive at times that are integer multiples of Opt.

We now discuss some important insights gained from these

theoretical results.

Challenges for designing algorithms for dynamic multithreaded

programs: As mentioned above, a scheduler for multiple dynamic

multithreaded jobs has two jobs: It must decide how many proces-

sors to allocate to each job and must also decide which subjobs to

schedule on the allocated processors. Therefore, it faces the problem

of both inter- and intra- job scheduling. It will be useful to view the

jobs as geometric forms and a schedule as packing of these forms

into a two-dimensional space (formed by the Cartesian product of

time with the processors). See Figure 1.

The task of the runtime scheduler is akin to the task faced by

a Tetris player in that geometric forms have to be packed as they

arrive online without knowledge of the forms that will arrive in the

future. However, the task faced by the runtime scheduler is even

more daunting. The rules for the ways that a geometric form can

be feasibly packed in a schedule are much more complicated than

the rules of packing in Tetris. The parallelizability of the programs

at a particular time is the number of ready subjobs: therefore, this

parallelizability depends significantly on which subjobs the sched-

uler processed in the past. Therefore, the scheduler’s past decisions

change the łfuturež shape of the piece.

Intuitively, the hardest instances for a runtime scheduler are

those where it is possible to pack/schedule all the jobs relatively

soon after they arrive in such a way that the space/schedule is

fully packed. That is, there are never any idle processors. To be

competitive on such instances, the runtime scheduler must, after

78

Scheduling Out-Trees Online to Optimize Maximum Flow SPAA ’24, June 17ś21, 2024, Nantes, France

some finite time, also be able to fully pack jobs relatively soon after

they arrive. In other words, the online scheduler can never ever

allow a processor to be idle; it has to be able to schedule the jobs so

that full parallelism can be achieved on every step. This is because,

otherwise, the online scheduler would keep falling behind optimal

in terms of the total work scheduled. In particular, if the maximum

flow time is to be constant competitive, then after O(Opt) time

(where Opt is the maximum flow time of the optimal algorithm),

the scheduler must fully pack the schedule for these instances.

Our lower bound example for FIFO indicates that this is a fatal

flaw. In particular, arbitrary FIFO can make mistakes in intra-job

scheduling: when it has a smaller number of processors available

than the number of ready subjobs for a job, it can choose a subset of

subjobs to schedule that reduces future parallelizability. Therefore,

FIFO is not able to fully pack the schedule until the amount of

outstanding work (the amount of work by which FIFO is lagging

behind the optimal scheduler) is quite large, leading to a large

competitive ratio.

Figure 2: Generic LPF Schedule.

Out-tree Scheduling Algorithm: As we mentioned above, we pro-

vide an O(1)-competitive algorithm for out-trees. This scheduling

algorithm is based on the idea of controlling the shape of our tetris

pieces in order to create pieces that can be fit together well. The

first step in the design of our algorithm is to show that a simple

greedy algorithm we call Longest Path First (LPF), which always

prioritizes the subjobs/nodes with the highest height in the DAG,

is optimal for a single job. The next step is to observe that the LPF

schedule LPF[m/α] onm/α processors (where α is a constant that

we will eventually pick in the analysis), has a nice shape. We do not

have control over the shape of LPF[m/α] in the first Opt time units,

which we call the head of the schedule, but the shape of the portion

of LPF[m/α] after time Opt, which we call the tail of the schedule,

is essentially a rectangle with width m/α processors and length

at most (α − 1)Opt units of time. See Figure 2. Our algorithm A

schedules the head of each job usingm/α processors when the job

arrives, and uses FIFO to prioritize jobs when scheduling the tails

of the jobs, and uses the shape of the LPF schedule of each job for

intra-job scheduling. Leveraging that the tails have a rectangular

shape, we are able to adapt the type of analysis technique that is

used for sequential jobs to show that A is O(1)-competitive.

A key takeaway is that, one potential way to design a good

algorithm for dynamic multithreaded jobs is to design an the intra-

job scheduling policy to nicely łshapež a job. However, for general

DAGs (not trees), this shaping is significantly more complicated.

In particular, while longest path first is an optimal heuristic for

trees for intra-job scheduling, there is no such optimal heuristic for

DAGs. Therefore, shaping a DAG is significantly more challenging.

Insights from FIFO upper bound for batched instances: As we men-

tioned above, for batched instances, where jobs arrive at integermul-

tiples of Opt, FIFO is O(logmax{m,Opt})-competitive. The start-

ing point for our analysis is the span-reduction property of FIFO,

but leveraging this property to obtain an analysis is not straightfor-

ward. Our analysis is a rather intricate inductive argument, with

a somewhat complicated inductive hypothesis, that captures the

ways in which FIFO can be behind the optimal schedule sufficiently

accurately to allow the induction to go through. Note that our

analysis does not use any assumptions about the structure of the

dynamic multithreaded programs, so it holds for jobs that can be

modeled by DAGs.

Given this result, we conjecture that out-trees are worst-case

instances for FIFO, and FIFO is Θ(logm)-competitive. It seems im-

probable to us that instances with arbitrary arrivals are signifi-

cantly harder for FIFO than batched instances. It further seems

improbable that instances in which the optimal maximum flow

is super-polynomial inm are significantly harder than instances

where the optimal maximum flow is polynomially bounded inm.

But we believe the most important takeaway from this result is that

our inability, despite significant effort, to show FIFO is O(logm)-

competitive on general instances provides further evidence of the

importance of designing the runtime scheduler to appropriately

łshapež the jobs if one is to have some hope of being able to analyze

the runtime scheduling algorithm.

2 RELATEDWORK

We now review some closely related work.

Scheduling Dynamic Multithreaded Jobs: Scheduling of dynamic

multithreaded programs has been studied extensively, both theoret-

ically and empirically. Many languages and libraries such as Cilk,

Cilk Plus [19], Intel’s Threading Building Blocks [25], OpenMP [23],

and X10 [26], have been designed to allow programmers to write

parallel programs. In addition, there has been extensive research

on provably good and practically efficient schedulers for these pro-

grams in the case where a single job (program) is executing on the

parallel machine [9ś11]. For the case of a single job, schedulers

such as a list scheduler [16] and a work-stealing scheduler [11] are

known to be asymptotically optimal with respect to the makespan

of the job.

There has also been some theoretical work on scheduling multi-

ple parallel jobs which share a machine [2, 7, 17], but none of this

work considers flow time objectives.

Resource Augmentation Results: Scheduling multiple dynamic

multithreaded programs that are modeled using directed acyclic

graphs has been studied in the context of resource augmentation

analysis, and in particular speed augmentation analysis [20]. An

s-speed c-competitive algorithm achieves a competitive ratio of c

when given processors s times the speed of the optimal schedule.

A scalable algorithm is (1 + ϵ)-speed O(f (ϵ))-competitive for any

ϵ > 0 where f (ϵ) is some function that only depends on ϵ . Intu-

itively speed augmentation analysis assumes away the existence of

the hard instances where the optimal schedule is tightly packed. [4]

79

SPAA ’24, June 17ś21, 2024, Nantes, France Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs

showed that FIFO is a scalable algorithm for the objective of maxi-

mum flow, in some sense at least arguably establishing that FIFO

is the łrightž algorithm when the load is not too high. [1, 3] give

a scalable algorithm for average flow and [5] provides a scalable

algorithm for throughput.

Tree/Forest Scheduling: Algorithmic research on scheduling trees

on identical processors goes back to at least the 1960’s [18, 22]. A

reasonable summary of the research on this problem up to 1980

can be found in [15]. Most relevant here is that [18] shows that

the greedy Longest Path First algorithm is optimal for an in-forest.

[15] mentions a paper [13] that may contain the result that Longest

Path First is optimal for an out-forest, but neither Google nor our

university libraries know how to locate this paper.

Speedup Curves: The other standard model of parallelizability

of computational tasks is the speed-up curves model (also called

the malleable task model). In the arbitrary speed-up curves setting,

each job Jj consists of µ j phases and the ith phase is associated

with a tuple (pi , j , Γi , j (m
′)). The value of pi , j is the work of the ith

phase for job j and Γi , j (m
′) is a speed-up function that specifies the

rate pi , j is processed at when job Jj is givenm
′ processors when in

the ith phase. The phases of the job must be processed sequentially

and Γi , j specifies the parallelizability of Ji during phase i . It is

generally assumed that Γi , j is a non-decreasing sublinear function.

Note that the DAG model that we consider and the speedup model

are fundamentally different from an algorithmic perspective, and

there does not appear to be a straightforward way of translating

results from one model to the other (for a more in-depth discussion

of this issue, see [4, 21]). The result in the speedup curves model

that is most relevant here is an O(1)-competitive algorithm shown

in [21] when the algorithm learns the speed-up curves when a job

arrives. Prior to this, a (1+ϵ)-speedO(logn)-competitive algorithm

for maximum flow, and a matching general lower bound for any

online algorithm, were given in [24].

3 PRELIMINARIES

DAG Model. We represent a dynamic multithreaded job Ji , i ∈

[n], as a directed acyclic graph (DAG) Gi = (Vi , Ei), where the ver-

tices, which we call subjobs, represent some sequential computation

and edges represent dependencies between vertices. We assume

without any significant loss of generality that each subjob is an

atomic computation step that takes unit time to compute. Further,

each job Ji has an associated nonnegative integer release/arrival

time ri . (We may occasionally refer to the release time of a subjob of

Vi , which is also ri ; this is distinct from the time a subjob becomes

łready,ž as discussed below.) Since the jobs are independent, the

vertices of the Gi ’s are disjoint, that is Vi ∩Vj = ∅ if i , j.

A (feasible) schedule S for a collection J = {J1, . . . , Jn } of jobs

onm processors over a period of time is an injective function that

maps a time in N to the subcollection of subjobs run at that time,

with the following properties

• A mostm subjobs are run at any time. That is, for all times

t , |S(t)| ≤ m.

• Every subjob is scheduled exactly once. That is, for every

job Ji and every subjob j of Ji , there exists a unique time t

such that j ∈ S(t).

• S respects the precedence constraints. That is, for every job

Ji and for every edge (j,k) ∈ Ei , if j ∈ S(t) and k ∈ S(u) then

t < u.

• Every subjob is scheduled after its release time. That is, for

every job Ji and for every subjob j of Ji , if j ∈ S(t) then

t > ri .

Due to the nature of the problems we consider, the processor that

runs a subjob at a particular unit of time is not relevant. It will

be convenient to use Ji andGi interchangeably. Conceptually, we

think of subjobs as being scheduled in unit intervals. So if j ∈ S(t)

then we think of the execution of subjob j as starting at time t − 1

and finishing/completing at time t . So in the top schedule in Figure

1, C ∈ S(3). We will sometimes refer to the unit of time between

t − 1 and t in the schedule as time step t . Further, if we reference

the state of the schedule at time t , we are referring to once time

step t has completed.

We will call a subjob j of job Ji ready at time t if ri ≤ t , all of j’s

predecessors have been completed by time t , and j has not been

completed by time t . At each time t , the online scheduler can select

up tom ready subjobs to schedule between time t and t + 1, i.e.,

during time step t + 1.

Maximum Flow Objective. The completion time CS
i
of a job Ji in

a schedule S is the maximum completion time of any subjob in Ji
in S , that is, CS

i
is the maximum value of t for which j ∈ S(t) for

any subjob j of Ji . The flow (time) FS
i
of a job Ji in a schedule S is

CS
i
− ri , that is, the duration of time from when the job is released

until when the job is completed. The maximum flow objective for a

schedule S is:

FSmax = max
i ∈[n]

FSi .

The problem we consider is that of minimizing the maximum flow.

The span Pi of job Ji is the number of vertices in the longest

path in Gi . Note that the span is a lower bound on the flow FS
i

of Ji in any schedule S , regardless of the number of processorsm.

The workWi of job Ji is the aggregate number of subjobs in Ji , i.e.,

Wi = |Vi |. Note that ⌈Wi/m⌉ is a lower bound on the flow FS
i
of Ji

in any schedule S onm processors.

Online Setting. The online/run-time scheduler becomes aware

of Ji at time ri . There are myriad reasonable assumptions about

what the online scheduler learns about Ji at time ri . The one that

will be of most concern to us is what we will call a clairvoyant

scheduler, which means that the scheduler learns the DAG Gi at

time ri (though we will also consider non-clairvoyant schedulers

in the batched setting).

We useA[I ,m] to denote the schedule output by algorithmA on

input I usingm processors. We use Opt[I ,m] to denote the optimal

schedule on input I usingm processors. It will also be convenient

to use Opt[I ,m] to denote the optimal maximum flow time for

instance I onm processors. If I orm can be readily deduced from

context, we may drop them from the notation.

An algorithm A is c-competitive for the objective of minimizing

maximum flow if for every input I , F
A[I ,m]
max ≤ c · F

Opt[I ,m]
max .

FIFO in DAGs. At each time t , the algorithm FIFO schedules an

arbitrary collection of subjobs subject to two constraints: (1) if there

are fewer thanm ready subjobs, then FIFO schedules all the ready

80

Scheduling Out-Trees Online to Optimize Maximum Flow SPAA ’24, June 17ś21, 2024, Nantes, France

subjobs, and (2) if a ready subjob j is not scheduled at t , then all of

the subjobs scheduled at t arrived no later than when j arrived.

4 FIFO LOWER BOUND

In this section, we give a class of instances that shows that FIFO is

Ω(logm) on jobs that are out-trees.

Lower Bound Instance: A single new job Ji is released at time of

the form i(m+ 1), for i ∈ N. Each job consists ofm layers of at most

m+1 subjobs. In each of the layers there is a single important subjob,

which we call the key subjob, that is a predecessor of each subjob on

the next layer. There are other subjobs in the layer and the number

of them is to be defined. There are no other precedence constraints.

Consider the first time t that FIFO schedules some subjob j on a

layer ℓ. Assume that right before FIFO schedules subjob j that there

were k remaining available processors. Then the number of subjobs

on layer ℓ is defined to be k + 1, and the key subjob for layer ℓ will

be the one that FIFO did not schedule at time t .

Note that the optimal maximum flow for each job Ji , and for the

instance as a whole, is at mostm + 1 as one could schedule the key

subjob on layer ℓ of each job Ji at time ri +ℓ, and schedule arbitrary

ready non-key subjobs on the remaining processors.

Consider an arbitrary job Ji , and the times t1, t2 . . . that FIFO

runs some subjob from job Ji . Consider time th . By construction,

if h is even and h ≤ 2m then FIFO scheduled only the key subjob

from layer h/2 at time th . Similarly, if h is odd and h ≤ 2m then

FIFO is running all the non-key jobs from layer (h + 1)/2 at time

th . Thus job Ji completes at time t2m + 1. We now partition each

layer into two sublayers, with one part/sublayer consisting solely

of the key subjobs, which we call a sequential sublayer, and the

other part/sublayer consisting of all the non-key subjobs, which we

call a parallel sublayer. So by construction, we can think of FIFO as

processing sublayers, alternating between parallel and sequential.

We establish bounds on FIFO in Lemma 4.1 by showing that if

the number of unfinished jobs is less than lgm − lg lgm, then the

number of unfinished jobs will continue to increase.

Lemma 4.1. LetU (t) be the number of unfinished sublayers of jobs

released strictly before time t that are unfinished by FIFO at time t . If

U (t(m + 1)) < lgm − lg lgm thenU (t(m + 1)) < U ((t + 1)(m + 1)).

Proof. First, for notational convenience let us renumber the

jobs so that the ith oldest job alive at time t(m + 1) is numbered i .

So the oldest alive job is J1, and the job that arrived at time t(m+1) is

Jℓ . LetKi be the number of sublayers that FIFO processed from job i

between time t(m+1) and time (t+1)(m+1), and let Si =
∑i
j=1 Ki be

the number of sublayers that FIFO processed from jobs J1 through

Ji between time t(m + 1) and time (t + 1)(m + 1). Then note that

S1 = K1 and for h > 1:

Sh − Sh−1 = Kh (1)

≤ (m + 1) −

h−1∑
i=1

⌊
Ki

2

⌋
(2)

≤ (m + 1) + (h − 1) −

h−1∑
i=1

Ki

2
(3)

=m + h − Sh−1/2 (4)

The first inequality follows because during them + 1 time units

between time t(m + 1) and (t + 1)(m + 1) it is the case that job h

can not be processed at a time when the parallel sublayer of any

earlier arriving job is being processed, and half the sublayers are

parallel. And thus

Sh − Sh−1 ≤ m + h − Sh−1/2 (5)

or equivalently by adding Sh−1 to each side:

Sh ≤ Sh−1/2 +m + h (6)

Setting h = ℓ and expanding this recurrence yields

Sℓ ≤
K1

2ℓ−1
+

ℓ−2∑
i=0

m + ℓ

2i
(7)

≤

ℓ−1∑
i=0

m + ℓ

2i
(8)

≤ (m + ℓ)(2 − 1/2ℓ−1) (9)

The first inequality follows because K1 ≤ m + 1. As each job has

2m sublayers, the number of unfinished sublayers for FIFO at time

(t + 1)(m + 1) will be strictly greater than the unfinished sublayers

for FIFO at time t(m + 1) if

(m + ℓ)(2 − 1/2ℓ−1) ≤ 2m (10)

Or equivalently

ℓ(2ℓ − 1) ≤ m (11)

This inequality holds if ℓ ≤ lgm − lg lgm, □

Theorem 4.2. The competitive ratio of FIFO is at least lgm −

lg lgm.

Proof. After 2m lgm jobs are released, either at some time there

were lgm− lg lgm+ 1 unfinished jobs at some point, or the number

of unprocessed sublayers increased by a least 1 each time a job

was released. In the former case, the flow time of the oldest job

would then be at least (m + 1)(lgm − lg lgm). In the latter case, the

number of unprocessed sublayers would have to be at least 2m lgm.

Then as each job contains at most 2m sublayers, there must be lgm

unfinished jobs, and thus the flow time of the oldest job would then

be at least (m + 1)(lgm − 1). □

5 CLAIRVOYANT ALGORITHM FOR
SCHEDULING OUT-TREES

In this section we will be concerned with instances where each

job Gi is an out-forest, which is a collection of out-trees. An out-

tree is a tree whose edges are directed away from the root. We will

adopt standard tree terminology.We use predecessors and ancestors

interchangeably, and successors and descendants interchangeably.

The height H (j) of a subjob j ∈ Ji is the number of nodes in the

longest path from j to a leaf in Ji ; therefore, a leaf has height 1. The

depthD(j) of a subjob j ∈ Ji is the number of nodes in the path from

a root of the tree containing j to j. Thus, a root of a tree has depth

1. We useWi (d) to denote the number of subjobs in Ji with depth

strictly greater than d . Throughout this section α will be a positive

integer that evenly dividesm, and β is also be a positive integer

constant. To obtain our competitive algorithm, we will eventually

set α = 4 and β = 258.

81

SPAA ’24, June 17ś21, 2024, Nantes, France Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs

In subsection 5.1we show that the clairvoyant algorithm, Longest

Path First (LPF), is optimal for maximum flow on one job. We will

use LPF as a component in the design of our algorithm A. We

also show some properties of the LPF schedule onm/α processors

that we will use in the analysis of algorithm A. In subsection

5.2, we give another algorithm Most Children (MC) that we will

use as a component in the design of algorithm A, and give some

properties of MC that we will use in the analysis of algorithm

A. In subsection 5.3, we give an initial version of our clairvoyant

algorithm A, that additionally requires a priori knowledge of the

optimal objective value Opt and assumes that jobs only arrive at

integer multiples of Opt/2, and show that A is O(1)-competitive

under these assumptions. Finally, in subsection 5.4 we show how,

at the cost of increasing the competitive ratio by anO(1)-factor, we

can remove the requirement that A knows Opt a priori, and allow

arbitrary release times.

5.1 Longest Path First Algorithm

Algorithm LPF Description: At any time t , assign ready subjobs

to processors in order of decreasing height (largest height subjobs

are scheduled first) until either all processors have been assigned

jobs or there are no ready jobs.

For the rest of this subsection, we consider the following setting.

There is a single job J released at time zero. Let Opt be the optimal

schedule, and optimal maximum flow time, for J onm processors.

Let S = LPF(J ,m/α) be the schedule produced by LPF usingm/α

processors on input J . In Lemma 5.1 we give a natural lower bound

on Opt. In Lemma 5.2 we give a structural property of S (the LPF

schedule) that will later be useful in our analysis of algorithm A.

In Lemma 5.3 we prove that LPF is optimal onm processors, and

α-competitive on m/α processors. In Corollary 5.4 we note that

our proof of Lemma 5.3 establishes that the lower bound in Lemma

5.1 is in fact tight for an out-forest where all the jobs arrive at the

same time.

Lemma 5.1. Let d be a nonnegative integer parameter such that

there exists a node of depth d in J . Then Opt ≥ d +
⌈
W (d)
m

⌉
.

Proof. No subjob with depth greater than d can be run in the

first d time steps, and the duration of time to finish the subjobs with

depth greater than d is at least ⌈W (d)/m⌉ because onlym subjobs

can be run at each time. □

Lemma 5.2. Let t be any time such that 1 ≤ |S(t)| ≤ m − 1. That

is, this is the last time that the LPF schedule onm/α processors had

an idle processor. Then either

• each subjob in S(t) is a leaf (and thus FSmax = t , meaning the

job completes on this time step), or

• for each time s < t and for each subjob j ∈ S(t) that is not a

leaf, there is subjob k ∈ S(s) such that k is the ancestor t − s

hops from j in J (so t − s hops towards the root of J from j).

Proof. For i ≥ 1, let ji denote the ancestor of j that is i hops

from j. To reach a contradiction, let s be the latest time, strictly

before time t , when there is a subjob j ∈ S(t) such that j is not a

leaf in J , and the ancestor jt−s is not in S(s). Because s is chosen

maximally, ancestors jt−s−1 through j1 execute at time steps s + 1

through t−1, respectively. Moreover, jt−s is scheduled at some time

step s ′ < s , because it is not scheduled at s but jt−s−1 is scheduled,

and thus ready, at s + 1. Since jt−s is scheduled at s ′ and s ′ < s ,

jt−s−1 must have been ready at s; however, it was not scheduled

at s . Due to the longest path property, this can only happen if for

every subjob k ∈ S(s) it is the case that

H (k) ≥ H (jt−s−1) = H (j) + (t − s − 1)

as otherwise A would have run jt−s−1 at time s .

We now break the proof into two cases. In the first case assume

that for every subjob k ∈ S(s) it is the case that some descendant

of k is ready at time t . But that is a contradiction to S having an

idle processor at time t since thenm/α jobs would be executing at

time t . In the second case assume there is a subjob k ∈ S(s) that

does not have a descendant subjob ready at time t . But then it must

be the case that H (k) ≤ (t − s) since the leaf descendant of k was

scheduled at time t − 1 (or earlier). Combining the two bounds on

H (k) gives that H (j) ≤ 1, contradicting that j is not a leaf. □

Lemma 5.3. LPF onm/α processors is α-competitive with respect

to the optimal algorithm onm processors. That is, FSmax ≤ αOpt.

Proof. Let t be the last time, strictly before time FSmax, such that

there is an idle processor at time t in S . If no such t exists then

FSmax = ⌈αW (0)/m⌉. As α evenly dividesm, it just be the case that

⌈αW (0)/m⌉ ≤ α ⌈W (0)/m⌉. Thus the claim follows by Lemma 5.1.

Otherwise, by Lemma 5.2 it must be the case that all subjobs

j ∈ S(t) have depth t in J . Thus, as all jobs with depth at most t

are finished by time t in S , and there are no idle processors in S

between time t and time FSmax, it must be the case that

FSmax − t ≤ ⌈αW (t)/m⌉ ≤ α ⌈W (t)/m⌉ .

Thus FSmax ≤ t + α ⌈W (t)/m⌉. And thus again the claim follows by

Lemma 5.2. □

Corollary 5.4. Let D be the maximum depth of a subjob in J .

Then

Opt = max
d ∈[0,D]

(
d +

⌈
W (d)

m

⌉)

Proof. The fact thatOpt is lower bounded by the righthand side

follows from Lemma 5.1, and the fact that FOptmax is upper bounded

by the righthand side is implicit in the proof of Lemma 5.3. □

5.2 The Maximum Children Algorithm

The Maximum Children (MC) algorithm is an online algorithm that

schedules jobs over time. However the initial input to the Maximum

Children (MC) algorithm is a feasible schedule S of an out-forest

job J onm/α processors, with the property that the only time that

S has an idle processor is at time FSmax. The MC algorithm’s task

it to schedule all the subjobs in S over time. At each time t , the

MC algorithm learns the number of processorsmt ≤ m/α that are

available to schedule jobs at time t .

82

Scheduling Out-Trees Online to Optimize Maximum Flow SPAA ’24, June 17ś21, 2024, Nantes, France

AlgorithmMC Description: At each time time t theMC algorithm

iterates the following process over every processor available at time

t (in arbitrary order). To determine the subjob that MC will run on

that processor, let ℓ be minimum such that there are unprocessed

jobs in S(ℓ), and let j be an unprocessed subjob in S(ℓ) with a max-

imum number of children in S(ℓ + 1). Then subjob j is scheduled

on that processor at time t . So intuitively,MC first prioritizes sub-

jobs scheduled earlier in S , and then prioritizes subjobs with more

subjobs scheduled at the next time step in S .

In Lemma 5.5 we establish that until it finishes all the subjobs,

MC always keeps the allocatedmt processors busy. Intuitively,MC

achieves this by ensuring that as many children as possible are

enabled for the next time step.

Lemma 5.5. For each time t , either MC finishes processing all the

subjobs in S by time t , or MC schedulesmt subjobs at time t .

Proof. To reach a contradiction, let t be the first time when

this statement is not true. Let ℓ be smallest step in S such that S(ℓ)

has a subjob that MC did not process before time t . Let U be the

collection of subjobs in S(ℓ) not processed by MC before time t . If

mt ≤ |U |, then this clearly is a contradiction as all ancestors of jobs

in S(ℓ) must be scheduled strictly before time ℓ in S . So now let us

assumemt > |U |. If S(ℓ + 1) is empty, thenMC finishes processing

the subjobs in S at time t , which is a contradiction. So let us now

assume that S(ℓ + 1) is not empty.

Note, by the definition of theMC algorithm, that every subjob

j in S(ℓ) −U has a child in S(ℓ + 1), or no subjob in U has a child

in S(ℓ + 1). To see this, note that if such a j did not have a child in

S(ℓ + 1), then neither can any of the other subjobs in S(ℓ) that MC

chooses later. Thus the MC algorithm will schedule the remaining

subjobs fromU , andmin(mt − |U |, |S(ℓ + 1)|) subjobs from S(ℓ + 1),

at time t . Ifmt −|U | > |S(ℓ+1)| then ℓ+1 is the last time subjobs are

scheduled in S , and thenMCmust finish scheduling the subjobs in S

at time t , which is a contradiction. Otherwise, ifmt −|U | ≤ |S(ℓ+1)|

then,MC schedulesmt subjobs from S at time t , which is again a

contradiction. □

5.3 Super-clairvoyant Algorithm for
Semi-batched Out-forest Instances

So far, in this section, we have considered scheduling single jobs.We

will now describe our algorithm A for scheduling multiple jobs on

m processors, but for now we make two simplifying assumptions:

• That the online algorithm is super-clairvoyant, which in this

setting means that the online algorithm knows a priori the

value of Opt.

• That the instance I is semi-batched, which in this setting

means that all release times are integer multiples of Opt/2.

In the next section, we will show how to remove the necessity

of these assumptions. For convenience, we will (without loss of

generality) view all the jobs arriving at the same time iOpt/2 as

being one job Ji . Let Si = LPF(Ji ,m/α) be the LPF schedule on job

Ji onm/α processors. Define the subjobs in Si scheduled by time

Opt to be the head of Ji (Si), and the rest of the subjobs to be the

tail of Ji (Si).

Algorithm A Description: At times of the form iOpt/2, the algo-

rithm commits to a schedule between this time and time (i+1)Opt/2.

Note that this description assumes α > 2. The scheduling between

time iOpt/2 and time (i+1)Opt/2 is constructed in three sequential

phases:

(1) First, on the firstm/α processors, the job Ji (the latest arriv-

ing job) is scheduled according to Si . That is, the sched-

ule is identical to the first Opt/2 time units of Si Ð for

1 ≤ t ≤ Opt/2, the subjobs of Ji scheduled at time t in

Si are exactly the subjobs of Ji run at time ri + t in A(I).

(2) On the nextm/α processors, we schedule the job Ji−1 (the

second latest job). Again, the schedule for job Ji−1 is identical

to the second Opt/2 time units of Si−1. That is, for 1 ≤ t ≤

Opt/2, the subjobs of Ji−1 run at time t + Opt/2 in Si−1 are

exactly the subjobs of job Ji−1 run at time ri + t in A(I).

(3) Finally, on the remaining processors, we schedule the earlier

jobs which are still unfinished. Let u(1) < . . . < u(k) be

integers such that the jobs, other than Ji and Ji−1, that are

unfinished at time iOpt/2, are exactly Ju(1), . . . Ju(k). Then

these jobs are scheduled in FIFO order, so Ju(j) is scheduled

before Ju(j+1). The schedule for each Ju(j) is constructed

using the MC algorithm on the unprocessed portion of Su(j)
wheremt is set to the minimum of the remaining number

of available processors at time t andm/α .

So jobs Ji and Ji−1 are given the highest priority and scheduled with

the Longest Path First (LPF) algorithm, but on only a limited number

(namelym/α) of processors. Then the rest of the unfinished jobs are

prioritized in FIFO order, and scheduled using the Most-Children

Algorithm on their LPF schedule onm/α processors.

Here, we make an important observation. All the jobs which

are executed using the Most-Children algorithm have already been

executed using the LPF algorithm for Opt time steps in the past.

Therefore, due to Lemma 5.2, the remaining LPF schedule for these

jobs does not contain any idle processors (except perhaps on the last

step). Therefore, the LPF schedule satisfies the structural property

needed for these jobs to be scheduled using MC algorithm.

Theorem 5.6. AlgorithmA is 129-competitive for maximum flow

on out-forests on semi-batched instances.

Proof. Let I be an arbitrary instance. Assume to reach a contra-

diction that some job Ji is unfinished at time ri + βOpt/2. We now

reason exclusively about the schedule A(I).

Define s to be the earliest time such that there is no idle processor

from time s until time ri . Since the input is semi-batched, there are

at most 2 jobs released between times s − Opt and s − 1. Because

there was an idle processor at time s − 1, by Lemma 5.5, there are

at most α jobs released before time s − Opt that are unfinished at

time s . Thus the unfinished work at time s is at most (α + 2)mOpt.

For convenience, we now define jobs to be early if they arrive

at time ri or before, and late otherwise. Note that after time ri ,

from the algorithm A’s point of view, the tails of all late jobs

have lower priority than the tails of any early job. Further, after

time ri , the heads of the late jobs never run on more than 2m/α

processors. Thus, after time ri , the scheduling of the tails of early

jobs is unaffected by the tails of the late jobs. So conceptually our

analysis ignores the tails of the late jobs.

83

SPAA ’24, June 17ś21, 2024, Nantes, France Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs

Now considerA(I) between time ri +Opt and time r j + βOpt/2.

Note that all the heads of early jobs have been fully processed by

time ri + Opt. There can be at most (α − 1)Opt times where there

are m/α or more processors that are either idle or processing a

subjob from the tail of a late job. Otherwise, by Lemma 5.5 and the

fact that Si usesm/α processors after time Opt, Ji would have been

completed by time r j + βOpt/2. Thus there must be

(β/2 − 1 − (α − 1))Opt

times where at least (m − 3m/α) processors are processing a subjob

from the tail of an early job. Thus the work processed between time

r j + Opt and time r j + βOpt/2 on the tails of the early jobs is at

least

(β/2 − α)(m − 3m/α)Opt.

As A(I) did not idle any processor between time s and time ri ,

the amount of early work is at least (ri − s)mOpt plus the work in

the tails of the early jobs processed in A(I) after time ri , so at least

(ri − s)mOpt + (β/2 − α)(m − 3m/α)Opt.

Since at most (α + 2)mOpt of the early work was unprocessed by

time s , the amount of work arriving between time s and time ri was

at least

(ri − s)mOpt + (β/2 − α)(m − 3m/α)Opt − (α + 2)mOpt.

So the łexcessž work arriving between time s and time ri is at least

(β/2 − α)Opt(m − 3m/α) − (α + 2)mOpt

If this excess work is greater than Opt then this contradicts that

there is a feasible schedule with maximum flow time Opt. Note

that when α = 4 and β > 256 we do obtain this contradiction. □

5.4 Clairvoyant Algorithm for General
Out-tree Instances

We can now show that A can be used for general instances and

not just semi-batched instances. First, we argue that at the cost of a

factor of 2 in the competitive ratio, we can assume that the input is

semi-batched if we know Opt. Consider an arbitrary instance I . We

modify I to create new instance I ′ in the following way. The job

that arrives at time iOpt in I ′ is the union over all jobs that arrived

between (i − 1)Opt+ 1 and iOpt in I . Note that an online algorithm

can implement this delay by just ignoring jobs that arrived between

(i − 1)Opt + 1 and iOpt − 1 until time iOpt. Note that the optimal

maximum flow for I ′ is at most 2Opt, as one feasible schedule for

I ′ is to delay the optimal schedule for I by Opt units of time. Thus

the new release times are integer multiples of the new optimal

objective value divided by two.

Since this technique requires that the online algorithm knows

Opt, now we show how the online algorithm can use the stan-

dard guess-and-double technique to remove the assumption that

it knows Opt a priori. The online algorithm can maintain a lower

boundAOpt toOpt, which is initialized to 1, and useAOpt in place

of Opt in the algorithm A. Once that algorithm observes that a

job has flow more than βAOpt/2, it knows that AOpt < Opt. The

algorithm then doubles AOpt, and restarts itself with the release

time of all unfinished jobs, and all future arriving jobs delayed by

βOpt/2. Now let 2k be the final value of AOpt. Then we know

that Opt ≥ 2k−1. Until AOpt reaches 2k , jobs will be delayed at

most
∑k
h=0

2hβ/2 ≤ 2k β . And after AOpt reaches 2k none will be

delayed by more than β2k/2. Thus no job will be delayed more

than (3/2)β2k ≤ 3βOpt, which is 6 times the bound.

So removing the assumptions from the previous subsection costs

at most a factor of 12 in the competitive ratio. Thus we can conclude:

Theorem 5.7. Algorithm A is 1548-competitive for maximum

flow on out-forests.

6 FIFO UPPER BOUND

This section presents the proof that FIFO is O(logmax{Opt,m})-

competititve for batched instances in the non-clairvoyant setting.

Recall that in this setting, jobs arrive at integer multiples of Opt

only. For i ∈ [n], let job i be the job that has release time ri = iOpt.

We may assume only one job arrives at iOpt, by taking a union of

DAGs if necessary.

We now sketch what the inductive argument must capture before

giving the full formal argument. We wish to show that the total

unfinished work of FIFO never falls too far behind the optimal, say

by at most a c · Opt additive amount. If this were true, then one

can easily bound the competitiveness of FIFO by at most O(c)Opt.

Unfortunately, inducting on just the total work in FIFO and Opt is

insufficient as it is important to know which subjobs of each job

have been processed.

The inductive argument needs to keep track of more structure

on the jobs. To this end, the argument will also keep track of how

much sequential work (roughly speaking, the amount of completed

span) of each job has been completed. The intuition for why this

is useful is that Opt must also spend the same amount of time

on sequential work, so finished sequential work implies a bound

on remaining work (see Lemma 6.4 below). Thus, we will use a

strong inductive hypothesis that keeps track of both the work and

completed span of unfinished jobs.

Theorem 6.1. For batched instances, FIFO isO(logmax{Opt,m})-

competitive for maximum flow in non-clairvoyant schedulers.

Notation and Terminology:

• S is the schedule output by FIFO, and SOpt is an optimal

schedule. When clear from context, we will simply write

Opt instead of SOpt.

• Opt: The maximum flow for OPT. (We are abusing notation

here for convenience.)

• Define τ to be the largest number such that τ ≥ 2mOpt and

logτ is integral. Note this implies that τ < 4mOpt.

The remaining terms refer to the schedule S from FIFO.

• wi (t) denotes remaining work of job i at time t . More for-

mally,

wi (t) :=Wi − |{j : j ∈ Vi and j ∈ S(u) for some u ≤ t}|

so in particular,wi (ri) =Wi andwi (C
S
i
) = 0.

• For job i , Si is the schedule S restricted to jobs that arrived

before or at ri . So for t > ri ,

Si (t) := S(t) \ {j : j ∈ Vk , rk > ri }.

We say t is idle in Si if |Si (t)| < m and complete in Si if

|Si (t)| =m.

84

Scheduling Out-Trees Online to Optimize Maximum Flow SPAA ’24, June 17ś21, 2024, Nantes, France

• zi (t) is the number of idle time steps between times ri and t

in the schedule Si . More formally, for ri ≤ t ≤ CS
i
, we define

zi (t) := |{u : ri < u ≤ t, |Si (u)| < m}|.

To easily handle corner cases that arise in the proof, we set

zi (t) = ∞ when t > CS
i
.

The following propositions are straightforward to verify. The

first relates idle time steps to sequential work, and we will invoke it

repeatedly. The second bounds the remaining work of the optimal

schedule as a function of time, and is important for comparing the

progress that FIFO makes to the progress that the optimal schedule

makes over time.

Proposition 6.2. Let i ∈ [n] and t be a time step idle in Si , with

ri < t ≤ CS
i
. Then Vi ∩ S(t) , ∅. Moreover, for each v ∈ Vi ∩ S(t),

there exists a directed path in Gi ending in v that contains at least

zi (t) vertices. As a consequence, zi (t) ≤ Opt.

Proposition 6.3. For any i ∈ [n] and time t ≥ ri , the schedule

Opt has at mostmOpt −m(t − ri) work remaining on Ji at time t .

The following key lemma says that if FIFO has completed a lot

of sequential work in a DAG, it cannot have a huge amount of

work left, since OPT had to spend the same amount of time on

that sequential work as well. (We note that a weakening of this

lemma holds for any algorithm that does not unnecessarily idle

processors, by not restricting to the schedule Si in the definition of

zi (t). However, in analyzing FIFO, we will use crucially that in the

definition of zi (t), we consider the restricted schedule Si .)

Lemma 6.4. At each time t ≥ ri , it must be the case thatwi (t) ≤

(Opt − zi (t))m.

As a sanity check, note that the lemma implieswi (t) ≤ m · Opt

always, which is clearly true. Further, the lemma states that if

zi (t) = Opt, then wi (t) = 0. To see why this is true, consider

the first time t , call it tOpt, that zi (t) = Opt. Since tOpt is chosen

minimially, tOpt is idle in Si . This implies that either all nodes in

Gi have been executed (i.e., wi (tOpt) = 0, as desired), or there is

a child cv of a node v ∈ Vi ∩ S(tOpt) that has yet to be scheduled.

But by Proposition 6.2, this means cv is on a directed path with at

least Opt + 1 nodes, which is impossible by definition of Opt.

Proof of Lemma 6.4. Fix i . For k ∈ N≥0, let tk be the smallest

t with ri ≤ t ≤ CS
i
such that zi (t) = k . The case k = 0 is trivial so

assume k > 0. It suffices to show that wi (tk) ≤ (Opt − zi (tk))m;

for, wi (tk) ≤ (Opt − zi (tk))m implies the lemma for all t , since

wi (t) ≤ wi (tk) and zi (tk) = zi (t) for all tk ≤ t < tk+1.

Define Uk := Vi ∩ S(tk), i.e., Uk is the set of subjobs in job Ji
that S works on during time step tk . Define Rk to be the set of

remaining subjobs that S has not scheduled by time tk , i.e., v ∈ Rk
if v ∈ Vi ∩ S(u) for any u > tk . Also, since tk is chosen minimally,

tk is idle in Si . So Uk , ∅, and every v ∈ Rk is a descendant of

some subjob in Uk .

Intuitively, we will show that at time tk , S cannot be behind (in

terms of amount of work remaining) Opt at the time that Opt first

started working on Uk . Formally, define tOpt
k

to be the first time

that the optimal schedule works on some subjob from Uk , that is,

tOpt
k

:= min
{
u > ri : v ∈ SOpt(u) for some v ∈ Uk

}
.

This implies that the set of remaining subjobs that the optimal

schedule has not scheduled by tOpt
k

includes all descendants of

subjobs in Uk , so in particular, includes Rk .

Let vOpt
k

∈ Uk ∩ SOpt(tOpt
k

) (such vOpt
k

exists by definition of

tOpt
k

). Also, since vOpt
k

∈ Uk , we have by Proposition 6.2 that

tOpt
k

− ri ≥ zi (tk). So by Proposition 6.3, there are at most (Opt −

zi (tk))m remaining subjobs for the optimal schedule to schedule.

So by the last line of the preceding paragraph, wi (tk) = |Rk | ≤

(Opt − zi (tk))m, as desired. □

The following lemma is the main lemma, which gives Theorem

6.1 as an immediate corollary.

Lemma 6.5. Consider any time t = iOpt, i.e., the arrival time of

job i . Define j := i − logτ . Then

(1) Jobs 0 through j − 1 are done by time t , i.e., CS
k
≤ t for k < j.

(2) For 0 ≤ ℓ ≤ logτ − 1, we have

1

m
·

j+ℓ∑
k=j

wk (t) ≤ ℓOpt +
j+ℓ

min
k=j

zk (t). (12)

(3) For 0 ≤ ℓ ≤ logτ − 1, we have

1

m
·

j+ℓ∑
k=j

wk (t) ≤

ℓ+1∑
k=1

(1 − 1/2k)Opt. (13)

Let us remark on some implications of the lemma. First, it states

that job j = i − logτ is the oldest job still alive at time t = iOpt (if

it is still alive), and the only jobs that may still be alive upon the

arrival of job i at time t are the logτ jobs j = i − logτ through i − 1.

Second, each inequality indexed by ℓ bounds the total amount of

work remaining on the ℓ + 1 oldest jobs among these logτ jobs.

Roughly speaking, the inequalities (12) lower bound the amount

of sequential work completed in terms of the remaining work; in

turn, combining this lower bound with Lemma 6.4 will allow us to

deduce the inequalities (13), which give an absolute bound on the

remaining work. Both sets of inequalities are inspired by the lower

bound in Section 4.

Taking ℓ = 0, the inequalities upper bound the remaining work

on the oldest job j at time t :

w j (t) ≤ m ·min{zj (t),Opt/2}.

The naive bound onw j (t) ism ·Opt, so we can view the inequalities

above as refinements of this bound (as zj (t) ≤ Opt by Proposition

6.2). Moreover, by taking t ′ = (i + 1)Opt, the lemma states that

this remaining workw j (t) on job j is finished in the Opt time steps

between t and t ′. So the lemma implies Theorem 6.1, because the

flow time of any job j is at most (logτ + 1) · Opt.

On the other hand, taking ℓ = logτ − 1, the inequalities state

that the total remaining work on the logτ jobs that may still be

alive at time t is at most

m · (logτ − 1)Opt +m ·
j+log τ−1

min
k=j

zk (t)

and also at most

m ·

log τ∑
k=1

(1 − 1/2k)Opt.

85

SPAA ’24, June 17ś21, 2024, Nantes, France Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs

As before, both bounds can be viewed as refinements of the naive

bound, which in this case is logτ ·m · Opt.

Now we prove the main lemma.

Proof of Lemma 6.5. The proof is by induction on i . The base

case of i = 0 is trivial.

We inductively assume (1) Ð (3) in the statement of the lemma

hold for t = iOpt. Now consider time t ′ = (i + 1)Opt. As in the

statement of the lemma, j = i − logτ . We must prove that:

(1′) Job j is done by time t ′.

(2′) For all 0 ≤ ℓ ≤ logτ − 1, we have

1

m
·

j+1+ℓ∑
k=j+1

wk (t
′) ≤ ℓOpt +

j+1+ℓ
min
k=j+1

zk (t
′) (14)

(3′) For all 0 ≤ ℓ ≤ logτ − 1, we have

1

m
·

j+1+ℓ∑
k=j+1

wk (t
′) ≤

ℓ+1∑
k=1

(1 − 1/2k)Opt (15)

Note that we only need to prove in (1′) that job j is done by t ′,

as we know by the inductive hypothesis that jobs 0 through j − 1

completed by time t , thus also by time t ′.

Proof of (2′) for 0 ≤ ℓ < logτ − 1. First, let us consider the in-

equalities (14) for 0 ≤ ℓ < logτ − 1 (We will consider the last value

ℓ = logτ − 1 later.) Note that for this range of ℓ, job i is not counted

in any of these inequalities.

This is relatively straightforward. Since 1 ≤ ℓ + 1 ≤ logτ − 1 for

this range of ℓ, we may replace ℓ with ℓ + 1 in (12) in the inductive

hypothesis for t . So

1

m
·

j+1+ℓ∑
k=j

wk (t) −
j+1+ℓ
min
k=j

zk (t) ≤ (ℓ + 1)Opt. (16)

There are Opt time steps between t and t ′. Consider the sched-

ule Sj+1+ℓ (the schedule S restricted to jobs that arrived at or be-

fore r j+1+ℓ). Let t < u ≤ t ′, and we say time step u is either

complete or idle in Sj+1+ℓ as defined earlier. If the time step u is

complete in Sj+1+ℓ , then (1/m)(
∑j+1+ℓ

k=j
wk (u − 1)) reduces by 1 to

(1/m)(
∑j+1+ℓ

k=j
wk (u)) in time step u. (Note we are using that by (1)

in the inductive hypothesis, Sj+1+l is onlyworking on jobs j through

j+1+ℓ.) Otherwise, the time stepu is idle in Sj+1+ℓ , so it is also idle

in Sk for j ≤ k ≤ j + 1+ ℓ. This means that zk (u) = zk (u − 1)+ 1 (if

job k is alive during time step u), so −min
j+1+ℓ

k=j
zk (u − 1) decreases

by at least 1 to −min
j+1+ℓ

k=j
zk (u). (Note that setting zk (u) = ∞ for

CS
k
≤ u − 1 handles the case that job k is not alive during time step

u). Therefore, in the Opt time steps between t and t ′, the left-hand

side of (16) reduces by at least Opt, giving (14) for 0 ≤ ℓ < logτ − 1.

Proof of (1′). By similar arguments, we can show that the oldest

job, job j , completes in theOpt time steps between t and t ′. Consider

the schedule Sj . Since inductively jobs 1 through j − 1 are complete

by time t , job j can be the only job scheduled during Sj . So all time

steps between t andCS
j
are either idle time steps in Sj , or complete

time steps during which m subjobsÐall of job jÐ are scheduled.

There aremostOpt−zj (t) idle time steps after time t , by Proposition

6.2. Moreover, by the inductive hypothesis, w j (t) ≤ m · zj (t), so

there are at most zj (t) complete time steps in Sj after time t . Thus

the remaining idle and complete time steps in Sj after time t can

complete in the Opt time steps between t and t ′, so job j completes

by by time t ′.

Proof of (3′) for 0 ≤ ℓ < logτ − 1. Now consider the inequalities

from (15). To prove them, we will do an inner induction on ℓ. First

we do the base case of ℓ = 0. In particular, we want to show that

w j+1(t
′) ≤ mOpt/2. Since we showed above that (14) holds for

ℓ = 0, we know that

w j+1(t
′)/m ≤ zj+1(t

′).

Also, by Lemma 6.4,

w j+1(t
′) ≤ (Opt − zj+1(t

′))m.

So combining the two inequalities above gives

w j+1(t
′) ≤ (Opt −w j+1(t

′)/m)m

and rearranging terms gives the desired bound

w j+1(t
′) ≤ mOpt/2.

Now let us prove this set of inequalities (15) for all 1 ≤ ℓ <

logτ − 1. Namely, we want to prove that

1

m
·

j+1+ℓ∑
k=j+1

wk (t
′) ≤

ℓ+1∑
k=1

(1 − 1/2k)Opt.

Assume inductively that the inequalities (15) hold up to ℓ − 1.

We will prove (15) holds for ℓ. Observe that

1

m
·

j+ℓ∑
k=j+1

wk (t
′) ≤

ℓ∑
k=1

(1 − 1/2k)Opt (17)

1

m
·
©­«
j+1+ℓ∑
k=j+1

wk (t
′)
ª®¬
− zj+1+ℓ(t

′) ≤ ℓOpt (18)

where (17) holds due to the inductive hypothesis on ℓ − 1, and (18)

follows as we already proved that the inequalities (14) hold for

0 ≤ ℓ < logτ − 1.

Assume for a contradiction that

1

m
·

j+1+ℓ∑
k=j+1

wk (t
′) >

ℓ+1∑
k=1

(1 − 1/2k)Opt.

Then combining the above inequality with (18) gives

zj+1+ℓ(t
′) ≥

(
−ℓ +

ℓ+1∑
k=1

(1 − 1/2k)

)
· Opt

=

(
ℓ + 1 − ℓ −

ℓ+1∑
k=1

(1/2k)

)
· Opt =

1

2ℓ+1
· Opt

Now plugging this bound into Lemma 6.4, we have

1

m
·w j+ℓ+1(t

′) ≤ (1 − 1/2ℓ+1)Opt.

Adding the above inequality to inequality (17) gives

1

m
·

j+1+ℓ∑
k=j+1

wk (t
′) ≤

ℓ+1∑
k=1

(1 − 1/2k)Opt

which contradicts our assumption.

86

Scheduling Out-Trees Online to Optimize Maximum Flow SPAA ’24, June 17ś21, 2024, Nantes, France

Proof of (2′) for ℓ = logτ − 1. Now we prove (14) for the last

value of ℓ = logτ − 1; this inequality counts job i , the job that

arrives at time t . We will first show that

1

m
·

i∑
k=i−log τ

wk (t) ≤ logτ · Opt.

To see this, note from (13) we have that

i−1∑
k=i−log τ

wk (t) ≤ m ·

log τ∑
k=1

(1 − 1/2k)Opt =m · (logτ − 1 + 1/τ)Opt

and since the left-hand side is integral,

i−1∑
k=i−log τ

wk (t) ≤ ⌊m · (logτ − 1 + 1/τ)Opt⌋ .

Sincewi (t) =Wi ≤ mOpt, andmOpt is integral,

i∑
k=i−log τ

wk (t) ≤ ⌊m · (logτ − 1 + 1/τ)Opt +mOpt⌋ (19)

so
i∑

k=i−log τ

wk (t) ≤ ⌊m · (logτ + 1/τ)Opt⌋

and now using thatm · logτ · Opt is an integer,

i∑
k=i−log τ

wk (t) ≤ m · logτ · Opt + ⌊mOpt/τ ⌋

and since τ ≥ 2mOpt, ⌊mOpt/τ ⌋ = 0, so we have

1

m
·

i∑
k=i−log τ

wk (t) ≤ logτ · Opt

and thus also

1

m
·

i∑
k=i−log τ

wk (t) −
i

min
k=i−log τ

zk (t) ≤ logτ · Opt.

Now we can use the same argument as in the proof of (2′) for

0 ≤ ℓ < logτ − 1, and conclude that

1

m
·

i∑
k=i−log τ+1

wk (t
′) −

i
min

k=i−log τ+1
zk (t

′) ≤ (logτ − 1) · Opt

which is precisely the inequality (14) for ℓ = logτ − 1.

Proof of (3′) for ℓ = logτ − 1. Recall from the proof of (3′) for

0 ≤ ℓ < logτ − 1 that the only reason we could not extend the

induction to ℓ = logτ − 1 was becuase we had not yet established

inequality (14) or ℓ = logτ − 1. Now that we have established this

in the previous paragraph, the induction extends.

This concludes the proof.

□

Remark. The batched arrival assumption is used crucially in the

proof, as it implies that at mostmOpt new work can arrive in a

period of Opt time steps. Even relaxing this assumption slightly

(e.g., new jobs can arrive only everyOpt/2 time steps, which means

that at mostm ·3Opt/2 arrives inOpt time steps) causes the current

proof to break down; see line (19).

7 CONCLUSION

This paper has addressed the open problem from the SPAA 2016

paper [4] on what the best competitive ratio is with respect to

(minimizing) maximum flow for scheduling multithreaded jobs on-

line. This paper showed perhaps surprisingly that the most natural

algorithm, FIFO, is not constant competitive. We develop a new

clairvoyant algorithm for the out-tree class of instances and show

this algorithm is constant competitive.

This paper has helped to develop the algorithmic understanding

run-time scheduling to optimize maximum flow. However, there

are still many natural open questions worthy of being addressed:

• Is FIFO O(logm)-competitive on general instances? We be-

lieve that obtaining such a result would likely require signif-

icant additional insight.

• Is FIFO asymptotically optimally competitive among non-

clairvoyant algorithms? A nonclairvoyant run-time sched-

uler only learns of a subjob j in a DAG Gi when all of the

predecessors of j are completed. If so, this would salvage the

intuition of the authors of [4], and our intuition, about FIFO

being the łrightž algorithm. It does not seem that one can ex-

tend the Ω(logm) lower bound for FIFO in a straight-forward

manner to a lower bound for a general nonclairvoyant algo-

rithm.

• Is there an O(1)-competitive nonclairvoyant algorithm for

out-trees? It is not clear if or how a nonclairvoyant algorithm

can łshapež an out-tree as our clairvoyant algorithm did. Its

also not clear whether the design of the intra-job scheduling

policy, or the design of the inter-job scheduling policy, or

both, is the bottleneck to obtaining such a result.

• Is there anO(1)-competitive clairvoyant algorithm for series-

parallel DAGs? We conjecture that designing an intra-job

scheduling policy that in someway łshapesž the job appropri-

ately would be the key step in obtaining such an algorithm.

• Is there an O(1)-competitive nonclairvoyant algorithm for

series-parallel DAGs?

• Is there an O(1)-competitive clairvoyant algorithm for gen-

eral DAGS?

• Is there an O(1)-competitive nonclairvoyant algorithm for

general DAGS?

ACKNOWLEDGMENTS

Kunal Agrawal was supported in part by NSF grants CCF-2106699,

CCF-2107280, PPoSS-2216971. Benjamin Moseley and Heather New-

man were supported in part by a Google Research Award, Inform

Research Award, Carnegie Bosch Junior Faculty Chair, NSF grants

CCF-2121744, CCF-1845146, and ONR Award N000142212702. Kirk

Pruhs was supported in part by NSF grants CCF-1907673, CCF-

2036077, CCF-2209654, and an IBM Faculty Award

REFERENCES
[1] Kunal Agrawal, I-Ting Angelina Lee, Jing Li, Kefu Lu, and Benjamin Moseley.

2019. Practically Efficient Scheduler forMinimizing Average Flow Time of Parallel
Jobs. In 2019 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019. IEEE, 134ś144. https://doi.
org/10.1109/IPDPS.2019.00024

[2] Kunal Agrawal, Charles E Leiserson, Yuxiong He, and Wen Jing Hsu. 2008. Adap-
tive work-stealing with parallelism feedback. ACM Trans. Computer Syst. 26, 3
(2008), 7.

87

SPAA ’24, June 17ś21, 2024, Nantes, France Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs

[3] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. 2016. Scheduling Parallel
DAG Jobs Online to Minimize Average Flow Time. In SODA ’16. 176ś189.

[4] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. 2016. Scheduling Paral-
lelizable Jobs Online to Minimize the Maximum Flow Time. In ACM Symposium
on Parallelism in Algorithms and Architectures, Christian Scheideler and Seth
Gilbert (Eds.). ACM, 195ś205.

[5] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. 2018. Scheduling
Parallelizable Jobs Online to Maximize Throughput. In LATIN 2018: Theoretical
Informatics - 13th Latin American Symposium, Buenos Aires, Argentina, April 16-
19, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10807), Michael A.
Bender, Martin Farach-Colton, and Miguel A. Mosteiro (Eds.). Springer, 755ś776.
https://doi.org/10.1007/978-3-319-77404-6_55

[6] Christoph Ambühl andMonaldoMastrolilli. 2005. On-line scheduling tominimize
max flow time: an optimal preemptive algorithm. Oper. Res. Lett. 33, 6 (2005),
597ś602.

[7] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures (Puerto Vallarta, Mexico)
(SPAA ’98). Association for Computing Machinery, New York, NY, USA, 119ś129.
https://doi.org/10.1145/277651.277678

[8] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. 1998. Flow and
Stretch Metrics for Scheduling Continuous Job Streams. In SODA ’98. 270ś279.

[9] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. 1999. Provably Efficient
Scheduling for Languages with Fine-grained Parallelism. J. ACM 46, 2 (March
1999), 281ś321. https://doi.org/10.1145/301970.301974

[10] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An Efficient Multithreaded
Runtime System. In ACM SIGPLAN symposium on Principles and practice of par-
allel programming (PPoPP). 207ś216.

[11] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. JACM 46, 5 (1999), 720ś748.

[12] Colin Campbell and Ade Miller. 2011. A Parallel Programming with Microsoft
Visual C++: Design Patterns for Decomposition and Coordination on Multicore

Architectures. Microsoft Press.
[13] G.I. Davida and D.J. Linton. 1976. A new algorithm for the schedule of tree

structured tasks. In Proc. Conf. Inform. Syst. 543ś548.
[14] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementa-

tion of the Cilk-5 Multithreaded Language. In PLDI. 212ś223.
[15] Teofilo F. Gonzalez and Donald B. Johnson. 1980. A New Algorithm for Preemp-

tive Scheduling of Trees. J. ACM 27, 2 (apr 1980), 287ś312.
[16] R. L. Graham. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl.

Math. 2 (1969), 416ś429.
[17] Yuxiong He, Wen-Jing Hsu, and Charles E Leiserson. 2008. Provably efficient

online nonclairvoyant adaptive scheduling. IEEE Trans. Parallel Distrib. Syst. 19,
9 (2008), 1263ś1279.

[18] T. C. Hu. 1961. Parallel Sequencing and Assembly Line Problems. Operations
Research 9, 6 (1961), 841ś848.

[19] Intel. 2013. Intel CilkPlus. https://www.cilkplus.org/.
[20] Bala Kalyanasundaram and Kirk Pruhs. 2000. Speed is as powerful as clairvoyance.

J. ACM 47, 4 (2000), 617ś643.
[21] Benjamin Moseley, Ruilong Zhang, and Shanjiawen Zhao. 2022. Online sched-

uling of parallelizable jobs in the directed acyclic graphs and speed-up curves
models. Theor. Comput. Sci. 938 (2022), 24ś38. https://doi.org/10.1016/J.TCS.2022.
10.005

[22] R. R. Muntz and E. G. Coffman. 1970. Preemptive Scheduling of Real-Time Tasks
on Multiprocessor Systems. J. ACM 17, 2 (apr 1970), 324ś338.

[23] OpenMP. 2013. OpenMP Application Program Interface v4.0. http://http:
//www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[24] Kirk Pruhs, Julien Robert, and Nicolas Schabanel. 2010. Minimizing Maximum
Flowtime of Jobs with Arbitrary Parallelizability. InWAOA ’10. 237ś248.

[25] James Reinders. 2010. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. O’Reilly Media.

[26] Olivier Tardieu, HaichuanWang, and Haibo Lin. 2012. AWork-stealing Scheduler
for X10’s Task Parallelism with Suspension. In PPoPP ’12.

88

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 FIFO Lower Bound
	5 Clairvoyant Algorithm For Scheduling Out-trees
	5.1 Longest Path First Algorithm
	5.2 The Maximum Children Algorithm
	5.3 Super-clairvoyant Algorithm for Semi-batched Out-forest Instances
	5.4 Clairvoyant Algorithm for General Out-tree Instances

	6 FIFO Upper Bound
	7 Conclusion
	Acknowledgments
	References

