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ABSTRACT

We consider online scheduling. on m identical processors. Jobs are
parallel programs constructed using dynamic multithreading (also
called fork-join parallelism). Jobs arrive over time online and the
goal is to optimize maximum flow. Essentially all prior work on this
problem has used a relaxed form of analysis where the algorithm
has faster speed processors than the optimum and this paper seeks
to understand the problem without this strong assumption. We
show that the most natural algorithm, First-In-First-Out (FIFO),
is Q(log m)-competitive for jobs that are out-trees. For this chal-
lenging class where jobs are out-trees, we give new clairvoyant
algorithm that is O(1)-competitive. We then give some circumstan-
tial evidence that FIFO is O(log m)-competitive, even on arbitrary
jobs.

CCS CONCEPTS

» Theory of computation — Distributed algorithms; Online al-
gorithms; Parallel algorithms.

KEYWORDS

Maximum flow, Dynamic multithreaded jobs

ACM Reference Format:

Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs. 2024.
Scheduling Out-Trees Online to Optimize Maximum Flow. In Proceedings
of the 36th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA °24), June 17-21, 2024, Nantes, France. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3626183.3659955

1 INTRODUCTION

We consider scheduling on identical processors parallel programs
that are constructed using dynamic multithreading (also called fork-
join parallelism), and that arrive over time, to optimize maximum
flow. Dynamic multithreading is common in many parallel lan-
guages and libraries, such as Cilk dialects [14, 19], Intel TBB [25],
Microsoft Parallel Programming Library [12] and OpenMP [23]. In
these parallel languages, programmers express algorithmic paral-
lelism through linguistic constructs such as “spawn” and “sync,”
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“fork” and “join,” or “parallel for” loops. In these parallel languages,
the resulting programs are naturally modeled by series-parallel
directed acyclic graphs (DAGs), where the nodes are atomic com-
putational steps, and a directed edge (u, v) indicates that the pre-
decessor node u needs to be executed before successor node v in
order to ensure logical correctness. However, programmers using
these parallel languages generally do not explicitly specify how
the computation should be parallelized. The task of efficiently par-
allelizing the computation falls to the run-time scheduler. At any
time, a node u is said to be ready if all of its predecessor nodes have
been executed. A runtime scheduler must select which ready nodes
to execute at any time step.

We consider a setting where dynamic multithreaded programs,
which we will call jobs, arrive over time. Thus at each time, the run-
time scheduler’s task is to select nodes, which we will call subjobs,
from the various digraphs (derived from the programs) to run at
that time. See Figure 1 for an example job and possible schedules.
The most natural quality-of-service metric for a program/job is its
flow (time), which is the duration of time between when the job ar-
rives to be executed and when the job finishes execution. The most
natural quality-of-service metrics for a schedule are some norm of
the quality-of-service of the individual jobs, with the £;-norm and
the {w-norm being the mostly commonly considered norms.

This paper considers the {o-norm, which is the maximum flow
of any job. Minimizing the maximum flow is usually the standard
quality-of-service metric that is simplest for a scheduler to optimize,
is the most commonly considered objective when the overriding
concern is fairness (as the metric optimizes for the worst-case qual-
ity of service over all the jobs). This paper is targeted at addressing
the natural open problem, stated for example in the SPAA 2016
paper [4], of whether there is a run-time scheduling algorithm for
dynamic multithreaded jobs, that is O(1)-competitive with respect
to (minimizing) maximum flow.

The scheduling problem of scheduling multiple jobs on a set of
processors can be thought of as a two-level scheduling problem:
the scheduler must decide how many processors to allocate to
each job and then decide which subjobs of each job to process on
the allocated processors. Intutively, when we want to minimize
maximum flow, we should process older jobs first; this intuition is
also stated by the authors of [4]:

<

* ... intuitively FIFO is the “right” scheduling policy
for maximum flow time.
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Figure 1: Two possible packings for one job (DAG) on three
processors, respecting the DAG structure.

Roughly speaking, prior work has established that FIFO is the “right”
algorithm for scheduling sequential programs that arrive over time,
and scheduling fully parallelizable programs that arrive over time
when we are optimizing for maximum flow time. For fully paral-
lelizable jobs that arrive over time FIFO is optimal with respect
to maximum flow. For sequential jobs (i.e., DAGs that are chains)
that arrive over time, FIFO is (3 — %)-competitive with respect to
maximum flow [6, 8].

For dynamic multithreaded jobs, a FIFO scheduling algorithm
can be stated as follows: for every time step, allocate as many
processors to the oldest job as it can use (the number of its ready
subjobs) and then move on to the second oldest job until either
all processors have been allocated or all ready subjobs have been
scheduled. However, the last job that is scheduled by this method
may get fewer processors than the number of its ready subjobs;
therefore, the scheduler must decide which of its ready subjobs to
schedule. Our intuition was that the simplest variant, one which
arbirarily selects the subjobs, was likely to be “good enough”

This intuition was guided by the fact that for one dynamic mul-
tithreaded program, a classic result states that any work-conserving
scheduler that doesn’t unnecessarily idle a processor is 2-competitive
with respect to makespan [16]. This analysis is based on the obser-
vation that if the algorithm must idle a processor at some time then
the algorithm is reducing the span (length of the longest path) of
that job. When we are scheduling multiple dynamic multithreaded
jobs, we can generalize this property. For any work-conserving
scheduler (a scheduler that doesn’t unnecessarily idle processors
if there are ready subjobs available), if the scheduler must idle a
processor at some time, then the span of every unsatisfied job is
reduced at that time. We can call this property the span reduction
property. Since FIFO is work-conserving, it has this span reduction
property. Initially, it seemed to us to be improbable, bordering on
implausible, that arbitrary FIFO was not O(1)-competitive with re-
spect to maximum flow for dynamic multithreaded jobs that arrive
over time.

Lower Bound for FIFO:. Our first contribution, which we summa-
rize in Section 4, is that our significant efforts to show that FIFO
is O(1)-competitive were in vain, as in fact the competitive ratio
of FIFO with respect to maximum flow is Q(log m), where m is the
number of processors. This result holds even when the computation
structure is an out-tree rather than a general directed acyclic graph.
An immediate corollary of this lower bound is that an algorithm
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prioritizing older jobs and having the span-reduction property are
not sufficient to imply O(1)-competitiveness even for trees.

New Algorithm for Out-Trees: In light of this lower bound for
FIFO, we naturally turned our attention to scheduling dynamic
multithreaded jobs that are out-trees. We show in Section 5 that
there is an O(1)-competitive run-time scheduling algorithm A for
maximum flow, under the assumption that the run-time scheduler
learns the shape (subjobs and their dependencies) of the out-tree
when it arrives. In some situations, e.g., real-time scheduling appli-
cations, this is a reasonable assumption. Despite needing to know
the shape of the jobs, we believe the algorithm design and analysis
provide insight that will be useful in making further progress on
algorithms for scheduling dynamic multithreaded programs.

Out-tree scheduling is interesting, since the structure of many
common algorithms, when naturally implemented as dynamic mul-
tithreaded programs, are out-trees. In particular, any tail-recursive
algorithm, like Quicksort, naturally results in a dynamic multi-
threaded program that is an out-tree. In addition, many algorithms,
such as those that contain a sequence of parallel for-loops, can be
thought of as a series of out-trees. One may be able to potentially
generalize the out-tree algorithm to such programs as well.

Upper Bound for FIFO for Batched Instances: Finally, given that
FIFO is most likely to be used in practice, it is is natural to under-
stand its theoretical performance. Our final contribution, which
we cover in Section 6, is to show that FIFO is O(log max{m, OpT})-
competitive on what we call batched instances. Here OPT is the
optimal maximum flow time, and a batched instance is one where
jobs only arrive at times that are integer multiples of OpT.

We now discuss some important insights gained from these
theoretical results.

Challenges for designing algorithms for dynamic multithreaded
programs: As mentioned above, a scheduler for multiple dynamic
multithreaded jobs has two jobs: It must decide how many proces-
sors to allocate to each job and must also decide which subjobs to
schedule on the allocated processors. Therefore, it faces the problem
of both inter- and intra- job scheduling. It will be useful to view the
jobs as geometric forms and a schedule as packing of these forms
into a two-dimensional space (formed by the Cartesian product of
time with the processors). See Figure 1.

The task of the runtime scheduler is akin to the task faced by
a Tetris player in that geometric forms have to be packed as they
arrive online without knowledge of the forms that will arrive in the
future. However, the task faced by the runtime scheduler is even
more daunting. The rules for the ways that a geometric form can
be feasibly packed in a schedule are much more complicated than
the rules of packing in Tetris. The parallelizability of the programs
at a particular time is the number of ready subjobs: therefore, this
parallelizability depends significantly on which subjobs the sched-
uler processed in the past. Therefore, the scheduler’s past decisions
change the “future” shape of the piece.

Intuitively, the hardest instances for a runtime scheduler are
those where it is possible to pack/schedule all the jobs relatively
soon after they arrive in such a way that the space/schedule is
fully packed. That is, there are never any idle processors. To be
competitive on such instances, the runtime scheduler must, after
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some finite time, also be able to fully pack jobs relatively soon after
they arrive. In other words, the online scheduler can never ever
allow a processor to be idle; it has to be able to schedule the jobs so
that full parallelism can be achieved on every step. This is because,
otherwise, the online scheduler would keep falling behind optimal
in terms of the total work scheduled. In particular, if the maximum
flow time is to be constant competitive, then after O(OpT) time
(where OPT is the maximum flow time of the optimal algorithm),
the scheduler must fully pack the schedule for these instances.

Our lower bound example for FIFO indicates that this is a fatal
flaw. In particular, arbitrary FIFO can make mistakes in intra-job
scheduling: when it has a smaller number of processors available
than the number of ready subjobs for a job, it can choose a subset of
subjobs to schedule that reduces future parallelizability. Therefore,
FIFO is not able to fully pack the schedule until the amount of
outstanding work (the amount of work by which FIFO is lagging
behind the optimal scheduler) is quite large, leading to a large
competitive ratio.

m
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Figure 2: Generic LPF Schedule.

Out-tree Scheduling Algorithm: As we mentioned above, we pro-
vide an O(1)-competitive algorithm for out-trees. This scheduling
algorithm is based on the idea of controlling the shape of our tetris
pieces in order to create pieces that can be fit together well. The
first step in the design of our algorithm is to show that a simple
greedy algorithm we call Longest Path First (LPF), which always
prioritizes the subjobs/nodes with the highest height in the DAG,
is optimal for a single job. The next step is to observe that the LPF
schedule LPF[m/a] on m/a processors (where « is a constant that
we will eventually pick in the analysis), has a nice shape. We do not
have control over the shape of LPF[m/a] in the first OpT time units,
which we call the head of the schedule, but the shape of the portion
of LPF[m/«] after time Opt, which we call the tail of the schedule,
is essentially a rectangle with width m/a processors and length
at most (o — 1)OPT units of time. See Figure 2. Our algorithm A
schedules the head of each job using m/a processors when the job
arrives, and uses FIFO to prioritize jobs when scheduling the tails
of the jobs, and uses the shape of the LPF schedule of each job for
intra-job scheduling. Leveraging that the tails have a rectangular
shape, we are able to adapt the type of analysis technique that is
used for sequential jobs to show that A is O(1)-competitive.

A key takeaway is that, one potential way to design a good
algorithm for dynamic multithreaded jobs is to design an the intra-
job scheduling policy to nicely “shape” a job. However, for general
DAGs (not trees), this shaping is significantly more complicated.
In particular, while longest path first is an optimal heuristic for
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trees for intra-job scheduling, there is no such optimal heuristic for
DAGs. Therefore, shaping a DAG is significantly more challenging.

Insights from FIFO upper bound for batched instances: As we men-
tioned above, for batched instances, where jobs arrive at integer mul-
tiples of OpT, FIFO is O(log max{m, OpT})-competitive. The start-
ing point for our analysis is the span-reduction property of FIFO,
but leveraging this property to obtain an analysis is not straightfor-
ward. Our analysis is a rather intricate inductive argument, with
a somewhat complicated inductive hypothesis, that captures the
ways in which FIFO can be behind the optimal schedule sufficiently
accurately to allow the induction to go through. Note that our
analysis does not use any assumptions about the structure of the
dynamic multithreaded programs, so it holds for jobs that can be
modeled by DAGs.

Given this result, we conjecture that out-trees are worst-case
instances for FIFO, and FIFO is ©(log m)-competitive. It seems im-
probable to us that instances with arbitrary arrivals are signifi-
cantly harder for FIFO than batched instances. It further seems
improbable that instances in which the optimal maximum flow
is super-polynomial in m are significantly harder than instances
where the optimal maximum flow is polynomially bounded in m.
But we believe the most important takeaway from this result is that
our inability, despite significant effort, to show FIFO is O(log m)-
competitive on general instances provides further evidence of the
importance of designing the runtime scheduler to appropriately
“shape” the jobs if one is to have some hope of being able to analyze
the runtime scheduling algorithm.

2 RELATED WORK

We now review some closely related work.

Scheduling Dynamic Multithreaded Jobs: Scheduling of dynamic
multithreaded programs has been studied extensively, both theoret-
ically and empirically. Many languages and libraries such as Cilk,
Cilk Plus [19], Intel’s Threading Building Blocks [25], OpenMP [23],
and X10 [26], have been designed to allow programmers to write
parallel programs. In addition, there has been extensive research
on provably good and practically efficient schedulers for these pro-
grams in the case where a single job (program) is executing on the
parallel machine [9-11]. For the case of a single job, schedulers
such as a list scheduler [16] and a work-stealing scheduler [11] are
known to be asymptotically optimal with respect to the makespan
of the job.

There has also been some theoretical work on scheduling multi-
ple parallel jobs which share a machine [2, 7, 17], but none of this
work considers flow time objectives.

Resource Augmentation Results: Scheduling multiple dynamic
multithreaded programs that are modeled using directed acyclic
graphs has been studied in the context of resource augmentation
analysis, and in particular speed augmentation analysis [20]. An
s-speed c-competitive algorithm achieves a competitive ratio of ¢
when given processors s times the speed of the optimal schedule.
A scalable algorithm is (1 + €)-speed O(f(¢))-competitive for any
€ > 0 where f(e) is some function that only depends on €. Intu-
itively speed augmentation analysis assumes away the existence of
the hard instances where the optimal schedule is tightly packed. [4]
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showed that FIFO is a scalable algorithm for the objective of maxi-
mum flow, in some sense at least arguably establishing that FIFO
is the “right” algorithm when the load is not too high. [1, 3] give
a scalable algorithm for average flow and [5] provides a scalable
algorithm for throughput.

Tree/Forest Scheduling: Algorithmic research on scheduling trees
on identical processors goes back to at least the 1960’s [18, 22]. A
reasonable summary of the research on this problem up to 1980
can be found in [15]. Most relevant here is that [18] shows that
the greedy Longest Path First algorithm is optimal for an in-forest.
[15] mentions a paper [13] that may contain the result that Longest
Path First is optimal for an out-forest, but neither Google nor our
university libraries know how to locate this paper.

Speedup Curves: The other standard model of parallelizability
of computational tasks is the speed-up curves model (also called
the malleable task model). In the arbitrary speed-up curves setting,
each job J; consists of yj phases and the ith phase is associated
with a tuple (p; j, Tj, j(m”)). The value of p; ; is the work of the ith
phase for job j and I; j(m’) is a speed-up function that specifies the
rate p; ; is processed at when job J; is given m’ processors when in
the ith phase. The phases of the job must be processed sequentially
and Tj ; specifies the parallelizability of J; during phase i. It is
generally assumed that I ; is a non-decreasing sublinear function.
Note that the DAG model that we consider and the speedup model
are fundamentally different from an algorithmic perspective, and
there does not appear to be a straightforward way of translating
results from one model to the other (for a more in-depth discussion
of this issue, see [4, 21]). The result in the speedup curves model
that is most relevant here is an O(1)-competitive algorithm shown
in [21] when the algorithm learns the speed-up curves when a job
arrives. Prior to this, a (1+ €)-speed O(log n)-competitive algorithm
for maximum flow, and a matching general lower bound for any
online algorithm, were given in [24].

3 PRELIMINARIES

DAG Model. We represent a dynamic multithreaded job J;, i €
[n], as a directed acyclic graph (DAG) G; = (V;, E;), where the ver-
tices, which we call subjobs, represent some sequential computation
and edges represent dependencies between vertices. We assume
without any significant loss of generality that each subjob is an
atomic computation step that takes unit time to compute. Further,
each job J; has an associated nonnegative integer release/arrival
time r;. (We may occasionally refer to the release time of a subjob of
Vi, which is also r;; this is distinct from the time a subjob becomes
“ready,” as discussed below.) Since the jobs are independent, the
vertices of the G;’s are disjoint, thatis V; N V; = 0 if i # j.

A (feasible) schedule S for a collection J = {Ji, ..., Jn} of jobs
on m processors over a period of time is an injective function that
maps a time in N to the subcollection of subjobs run at that time,
with the following properties

e A most m subjobs are run at any time. That is, for all times
t,|S()] < m.

e Every subjob is scheduled exactly once. That is, for every
job J;i and every subjob j of J;, there exists a unique time ¢
such that j € S(t).
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o S respects the precedence constraints. That is, for every job
Ji and for every edge (j, k) € E;, if j € S(¢) and k € S(u) then
t<u.

o Every subjob is scheduled after its release time. That is, for
every job J; and for every subjob j of J;, if j € S(t) then
t>r;.

Due to the nature of the problems we consider, the processor that
runs a subjob at a particular unit of time is not relevant. It will
be convenient to use J; and G; interchangeably. Conceptually, we
think of subjobs as being scheduled in unit intervals. So if j € S(t)
then we think of the execution of subjob j as starting at time ¢ — 1
and finishing/completing at time ¢. So in the top schedule in Figure
1, C € 5(3). We will sometimes refer to the unit of time between
t — 1 and t in the schedule as time step t. Further, if we reference
the state of the schedule at time ¢, we are referring to once time
step t has completed.

We will call a subjob j of job J; ready at time t if r; < ¢, all of j’s
predecessors have been completed by time ¢, and j has not been
completed by time ¢. At each time ¢, the online scheduler can select
up to m ready subjobs to schedule between time t and t + 1, i.e.,
during time step ¢ + 1.

Maximum Flow Objective. The completion time C? of ajob J; in
a schedule S is the maximum completion time of any subjob in J;
in S, that is, C? is the maximum value of ¢ for which j € S(t) for
any subjob j of J;. The flow (time) Fl.S of a job J; in a schedule S is
Cf — rj, that is, the duration of time from when the job is released
until when the job is completed. The maximum flow objective for a
schedule S is:

= max Fl.s.
i€[n]

Frflax
The problem we consider is that of minimizing the maximum flow.
The span P; of job J; is the number of vertices in the longest
path in G;. Note that the span is a lower bound on the flow FiS
of J; in any schedule S, regardless of the number of processors m.
The work W; of job J; is the aggregate number of subjobs in J;, i.e.,
W; = |V;|. Note that [W;/m] is a lower bound on the flow Ff of J;
in any schedule S on m processors.

Online Setting. The online/run-time scheduler becomes aware
of J; at time r;. There are myriad reasonable assumptions about
what the online scheduler learns about J; at time r;. The one that
will be of most concern to us is what we will call a clairvoyant
scheduler, which means that the scheduler learns the DAG G; at
time r; (though we will also consider non-clairvoyant schedulers
in the batched setting).

We use A[I, m] to denote the schedule output by algorithm A on
input I using m processors. We use OpT[I, m] to denote the optimal
schedule on input I using m processors. It will also be convenient
to use OpT[I, m] to denote the optimal maximum flow time for
instance I on m processors. If I or m can be readily deduced from
context, we may drop them from the notation.

An algorithm A is c-competitive for the objective of minimizing
maximum flow if for every input I, Frﬁg’m] <c- ngz[l’m].

FIFO in DAGs. At each time ¢, the algorithm FIFO schedules an
arbitrary collection of subjobs subject to two constraints: (1) if there
are fewer than m ready subjobs, then FIFO schedules all the ready
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subjobs, and (2) if a ready subjob j is not scheduled at ¢, then all of
the subjobs scheduled at t arrived no later than when j arrived.

4 FIFO LOWER BOUND

In this section, we give a class of instances that shows that FIFO is
Q(log m) on jobs that are out-trees.

Lower Bound Instance: A single new job J; is released at time of
the form i(m + 1), for i € N. Each job consists of m layers of at most
m+1 subjobs. In each of the layers there is a single important subjob,
which we call the key subjob, that is a predecessor of each subjob on
the next layer. There are other subjobs in the layer and the number
of them is to be defined. There are no other precedence constraints.
Consider the first time ¢ that FIFO schedules some subjob j on a
layer £. Assume that right before FIFO schedules subjob j that there
were k remaining available processors. Then the number of subjobs
on layer ¢ is defined to be k + 1, and the key subjob for layer £ will
be the one that FIFO did not schedule at time .

Note that the optimal maximum flow for each job J;, and for the
instance as a whole, is at most m + 1 as one could schedule the key
subjob on layer ¢ of each job J; at time r; + ¢, and schedule arbitrary
ready non-key subjobs on the remaining processors.

Consider an arbitrary job J;, and the times 1, £2 . . . that FIFO
runs some subjob from job J;. Consider time t;,. By construction,
if h is even and h < 2m then FIFO scheduled only the key subjob
from layer h/2 at time t;. Similarly, if h is odd and h < 2m then
FIFO is running all the non-key jobs from layer (h + 1)/2 at time
ty. Thus job J; completes at time t2,,, + 1. We now partition each
layer into two sublayers, with one part/sublayer consisting solely
of the key subjobs, which we call a sequential sublayer, and the
other part/sublayer consisting of all the non-key subjobs, which we
call a parallel sublayer. So by construction, we can think of FIFO as
processing sublayers, alternating between parallel and sequential.
We establish bounds on FIFO in Lemma 4.1 by showing that if
the number of unfinished jobs is less than lg m — 1glg m, then the
number of unfinished jobs will continue to increase.

LEMMA 4.1. Let U(t) be the number of unfinished sublayers of jobs
released strictly before time t that are unfinished by FIFO at time t. If
Ult(m+1)) <lgm—Ilglgm thenU(t(m + 1)) < U(( + 1)(m + 1)).

Proor. First, for notational convenience let us renumber the
jobs so that the i‘" oldest job alive at time t(m + 1) is numbered i.
So the oldest alive job is J;, and the job that arrived at time t(m+1) is
J¢- Let K; be the number of sublayers that FIFO processed from job i
between time t(m+1) and time (¢+1)(m+1),and let S; = Zj’:l K; be
the number of sublayers that FIFO processed from jobs J; through
Ji between time t(m + 1) and time (¢ + 1)(m + 1). Then note that
S1 =Kjand for h > 1:

Sp = Sp-1=Kp (1)
hel g
S(m+l)—2{7lJ ()
i=1
hol
S(m+1)+(h—1)—27' 3)
i=1
=m+h—Sy_,/2 o
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The first inequality follows because during the m + 1 time units
between time t(m + 1) and (¢ + 1)(m + 1) it is the case that job h
can not be processed at a time when the parallel sublayer of any
earlier arriving job is being processed, and half the sublayers are
parallel. And thus

Sp—=Sp1 <m+h—-S,_1/2 (5)
or equivalently by adding Sj,_; to each side:
Sp <Sp1/2+m+h 6)
Setting h = ¢ and expanding this recurrence yields
=2
Ki m+{
SgS—2€_1+Z i (7)
i=0
-1
m+{
<2 ®
i=0
<(m+06)(2-1/207 (9)

The first inequality follows because K1 < m + 1. As each job has
2m sublayers, the number of unfinished sublayers for FIFO at time
(t + 1)(m + 1) will be strictly greater than the unfinished sublayers
for FIFO at time t(m + 1) if

(m+0)2-1/27Y < 2m (10)

Or equivalently
(2t -1)<m (11)
This inequality holds if £ < lgm —lglgm, O

THEOREM 4.2. The competitive ratio of FIFO is at least 1lgm —
lglgm.

ProOF. After 2mlg m jobs are released, either at some time there
were lg m —lglg m + 1 unfinished jobs at some point, or the number
of unprocessed sublayers increased by a least 1 each time a job
was released. In the former case, the flow time of the oldest job
would then be at least (m + 1)(Ig m — 1glg m). In the latter case, the
number of unprocessed sublayers would have to be at least 2m lg m.
Then as each job contains at most 2m sublayers, there must be g m
unfinished jobs, and thus the flow time of the oldest job would then
be at least (m + 1)(Ilgm — 1). O

5 CLAIRVOYANT ALGORITHM FOR
SCHEDULING OUT-TREES

In this section we will be concerned with instances where each
job G; is an out-forest, which is a collection of out-trees. An out-
tree is a tree whose edges are directed away from the root. We will
adopt standard tree terminology. We use predecessors and ancestors
interchangeably, and successors and descendants interchangeably.
The height H(j) of a subjob j € J; is the number of nodes in the
longest path from j to a leaf in J;; therefore, a leaf has height 1. The
depth D(j) of a subjob j € J; is the number of nodes in the path from
aroot of the tree containing j to j. Thus, a root of a tree has depth
1. We use W;(d) to denote the number of subjobs in J; with depth
strictly greater than d. Throughout this section a will be a positive
integer that evenly divides m, and f is also be a positive integer
constant. To obtain our competitive algorithm, we will eventually
set @ =4 and f§ = 258.
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In subsection 5.1 we show that the clairvoyant algorithm, Longest
Path First (LPF), is optimal for maximum flow on one job. We will
use LPF as a component in the design of our algorithm A. We
also show some properties of the LPF schedule on m/a processors
that we will use in the analysis of algorithm A. In subsection
5.2, we give another algorithm Most Children (MC) that we will
use as a component in the design of algorithm A, and give some
properties of MC that we will use in the analysis of algorithm
A. In subsection 5.3, we give an initial version of our clairvoyant
algorithm A, that additionally requires a priori knowledge of the
optimal objective value OPT and assumes that jobs only arrive at
integer multiples of OpT/2, and show that A is O(1)-competitive
under these assumptions. Finally, in subsection 5.4 we show how,
at the cost of increasing the competitive ratio by an O(1)-factor, we
can remove the requirement that A knows OPT a priori, and allow
arbitrary release times.

5.1 Longest Path First Algorithm

Algorithm LPF Description: At any time ¢, assign ready subjobs

to processors in order of decreasing height (largest height subjobs

are scheduled first) until either all processors have been assigned
jobs or there are no ready jobs.

For the rest of this subsection, we consider the following setting.

There is a single job J released at time zero. Let OPT be the optimal

schedule, and optimal maximum flow time, for J on m processors.

Let S = LPF(J, m/a) be the schedule produced by LPF using m/a
processors on input J. In Lemma 5.1 we give a natural lower bound
on OPT. In Lemma 5.2 we give a structural property of S (the LPF

schedule) that will later be useful in our analysis of algorithm A.

In Lemma 5.3 we prove that LPF is optimal on m processors, and
a-competitive on m/a processors. In Corollary 5.4 we note that
our proof of Lemma 5.3 establishes that the lower bound in Lemma
5.1 is in fact tight for an out-forest where all the jobs arrive at the
same time.

LEMMA 5.1. Let d be a nonnegative integer parameter such that

there exists a node of depth d in J. Then OpT > d + [M]

m

Proor. No subjob with depth greater than d can be run in the
first d time steps, and the duration of time to finish the subjobs with
depth greater than d is at least [W(d)/m] because only m subjobs
can be run at each time. O

LEMMA 5.2. Lett be any time such that 1 < |S(¢)| < m — 1. That
is, this is the last time that the LPF schedule on m/a processors had
an idle processor. Then either

e each subjob in S(t) is a leaf (and thus FS__ = t, meaning the
Jjob completes on this time step), or

e for each times < t and for each subjob j € S(t) that is not a
leaf, there is subjob k € S(s) such that k is the ancestort — s
hops from j in J (sot — s hops towards the root of ] from j).

ProoF. For i > 1, let j' denote the ancestor of j that is i hops
from j. To reach a contradiction, let s be the latest time, strictly
before time ¢, when there is a subjob j € S(¢) such that j is not a

82

Kunal Agrawal, Benjamin Moseley, Heather Newman, and Kirk Pruhs

leaf in J, and the ancestor j*~° is not in S(s). Because s is chosen
maximally, ancestors j~5~! through j! execute at time steps s + 1
through ¢ —1, respectively. Moreover, j' =5 is scheduled at some time
step s’ < s, because it is not scheduled at s butjt_s_1 is scheduled,
and thus ready, at s + 1. Since j’~5 is scheduled at s’ and s’ < s,
jt —5~1 must have been ready at s; however, it was not scheduled
at s. Due to the longest path property, this can only happen if for

every subjob k € S(s) it is the case that
Hk)> HG S ) =H()+(t-s—1)

as otherwise A would have run j*=5~! at time s.

We now break the proof into two cases. In the first case assume
that for every subjob k € S(s) it is the case that some descendant
of k is ready at time ¢. But that is a contradiction to S having an
idle processor at time ¢ since then m/a jobs would be executing at
time ¢. In the second case assume there is a subjob k € S(s) that
does not have a descendant subjob ready at time ¢. But then it must
be the case that H(k) < (t — s) since the leaf descendant of k was
scheduled at time ¢ — 1 (or earlier). Combining the two bounds on
H(k) gives that H(j) < 1, contradicting that j is not a leaf. O

LEMMA 5.3. LPF on m/a processors is a-competitive with respect
to the optimal algorithm on m processors. That is, Fa,,. < aOPT.

PROOF. Let ¢ be the last time, strictly before time FS. ., such that
there is an idle processor at time ¢ in S. If no such ¢ exists then
Fglax = [aW(0)/m]. As a evenly divides m, it just be the case that
[aW(0)/m] < a[W(0)/m]. Thus the claim follows by Lemma 5.1.

Otherwise, by Lemma 5.2 it must be the case that all subjobs
j € S(t) have depth ¢ in J. Thus, as all jobs with depth at most ¢
are finished by time ¢ in S, and there are no idle processors in S

between time ¢ and time Fy,,, it must be the case that

Fax =t < [aW(t)/m] < a[W(t)/m].

Thus F3, < t + a[W(t)/m]. And thus again the claim follows by
Lemma 5.2. O

COROLLARY 5.4. Let D be the maximum depth of a subjob in J.

Then
( [W( )D
del0,D] m

OpT =

ProOF. The fact that OpT is lower bounded by the righthand side
follows from Lemma 5.1, and the fact that FORT is upper bounded

by the righthand side is implicit in the proof of Lemma 5.3. O

5.2 The Maximum Children Algorithm

The Maximum Children (MC) algorithm is an online algorithm that
schedules jobs over time. However the initial input to the Maximum
Children (MC) algorithm is a feasible schedule S of an out-forest
job J on m/a processors, with the property that the only time that
S has an idle processor is at time F5,,,. The MC algorithm’s task
it to schedule all the subjobs in S over time. At each time t, the
MC algorithm learns the number of processors m; < m/a that are
available to schedule jobs at time t.
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Algorithm MC Description: At each time time t the MC algorithm
iterates the following process over every processor available at time
t (in arbitrary order). To determine the subjob that MC will run on
that processor, let £ be minimum such that there are unprocessed
jobs in S(€), and let j be an unprocessed subjob in S(¢) with a max-
imum number of children in S(¢ + 1). Then subjob j is scheduled
on that processor at time ¢. So intuitively, MC first prioritizes sub-
jobs scheduled earlier in S, and then prioritizes subjobs with more
subjobs scheduled at the next time step in S.

In Lemma 5.5 we establish that until it finishes all the subjobs,
MC always keeps the allocated m; processors busy. Intuitively, MC
achieves this by ensuring that as many children as possible are
enabled for the next time step.

LEMMA 5.5. For each time t, either MC finishes processing all the
subjobs in S by time t, or MC schedules m; subjobs at time t.

Proor. To reach a contradiction, let ¢ be the first time when
this statement is not true. Let £ be smallest step in S such that S(¢)
has a subjob that MC did not process before time ¢t. Let U be the
collection of subjobs in S(£) not processed by MC before time t. If
m; < |U|, then this clearly is a contradiction as all ancestors of jobs
in S(€) must be scheduled strictly before time ¢ in S. So now let us
assume m; > |U|. If S(€ + 1) is empty, then MC finishes processing
the subjobs in S at time ¢, which is a contradiction. So let us now
assume that S(€ + 1) is not empty.

Note, by the definition of the MC algorithm, that every subjob
jin S(£) — U has a child in S(€ + 1), or no subjob in U has a child
in S(€ + 1). To see this, note that if such a j did not have a child in
S(¢ + 1), then neither can any of the other subjobs in S(¢) that MC
chooses later. Thus the MC algorithm will schedule the remaining
subjobs from U, and min(m; — |U]|, |S(€ + 1)|) subjobs from S(£ + 1),
attime t. If m; —|U| > |S(€+1)| then £+1 is the last time subjobs are
scheduled in S, and then MC must finish scheduling the subjobs in §
at time ¢, which is a contradiction. Otherwise, if m; —|U| < |S(£+1)|
then, MC schedules m; subjobs from S at time ¢, which is again a
contradiction. O

5.3 Super-clairvoyant Algorithm for

Semi-batched Out-forest Instances

So far, in this section, we have considered scheduling single jobs. We
will now describe our algorithm A for scheduling multiple jobs on
m processors, but for now we make two simplifying assumptions:

o That the online algorithm is super-clairvoyant, which in this
setting means that the online algorithm knows a priori the
value of OpT.

e That the instance I is semi-batched, which in this setting
means that all release times are integer multiples of OpT/2.

In the next section, we will show how to remove the necessity
of these assumptions. For convenience, we will (without loss of
generality) view all the jobs arriving at the same time iOpT/2 as
being one job J;. Let S; = LPF(J;, m/a) be the LPF schedule on job
Ji on m/a processors. Define the subjobs in S; scheduled by time
Ort to be the head of J; (S;), and the rest of the subjobs to be the
tail of J; (S;).
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Algorithm A Description: At times of the form iOpT/2, the algo-
rithm commits to a schedule between this time and time (i+1)OpT/2.
Note that this description assumes a > 2. The scheduling between
time iOpT/2 and time (i+1)OpT/2 is constructed in three sequential
phases:

(1) First, on the first m/a processors, the job J; (the latest arriv-
ing job) is scheduled according to S;. That is, the sched-
ule is identical to the first OpT/2 time units of S; — for
1 < t < Ort/2, the subjobs of J; scheduled at time ¢ in
S;i are exactly the subjobs of J; run at time r; + ¢t in A().
On the next m/a processors, we schedule the job Ji—; (the
second latest job). Again, the schedule for job J;_ is identical
to the second OpT/2 time units of S;_1. That is, for 1 < ¢t <
Oprt/2, the subjobs of J;_1 run at time ¢ + OpT/2 in S;_; are
exactly the subjobs of job J;_; run at time r; + ¢ in A(I).
Finally, on the remaining processors, we schedule the earlier
jobs which are still unfinished. Let u(1) < ... < u(k) be
integers such that the jobs, other than J; and J;_1, that are
unfinished at time iOp1/2, are exactly J,(1), - - - Ju(k)- Then
these jobs are scheduled in FIFO order, so Ju() 1s scheduled
before J,(j+1)- The schedule for each J,(j) is constructed
using the MC algorithm on the unprocessed portion of S,,(;
where m; is set to the minimum of the remaining number
of available processors at time t and m/a.

—
&Y
=

So jobs J; and Jj—1 are given the highest priority and scheduled with
the Longest Path First (LPF) algorithm, but on only a limited number
(namely m/a) of processors. Then the rest of the unfinished jobs are
prioritized in FIFO order, and scheduled using the Most-Children
Algorithm on their LPF schedule on m/a processors.

Here, we make an important observation. All the jobs which
are executed using the Most-Children algorithm have already been
executed using the LPF algorithm for Opt time steps in the past.
Therefore, due to Lemma 5.2, the remaining LPF schedule for these
jobs does not contain any idle processors (except perhaps on the last
step). Therefore, the LPF schedule satisfies the structural property
needed for these jobs to be scheduled using MC algorithm.

THEOREM 5.6. Algorithm A is 129-competitive for maximum flow
on out-forests on semi-batched instances.

ProoF. Let I be an arbitrary instance. Assume to reach a contra-
diction that some job J; is unfinished at time r; + fOpPT/2. We now
reason exclusively about the schedule A(I).

Define s to be the earliest time such that there is no idle processor
from time s until time r;. Since the input is semi-batched, there are
at most 2 jobs released between times s — OpPT and s — 1. Because
there was an idle processor at time s — 1, by Lemma 5.5, there are
at most « jobs released before time s — OpT that are unfinished at
time s. Thus the unfinished work at time s is at most (a + 2)mOPT.

For convenience, we now define jobs to be early if they arrive
at time r; or before, and late otherwise. Note that after time r;,
from the algorithm A’s point of view, the tails of all late jobs
have lower priority than the tails of any early job. Further, after
time r;, the heads of the late jobs never run on more than 2m/a
processors. Thus, after time r;, the scheduling of the tails of early
jobs is unaffected by the tails of the late jobs. So conceptually our
analysis ignores the tails of the late jobs.
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Now consider A(I) between time r; + OPT and time r; + fOPT/2.
Note that all the heads of early jobs have been fully processed by
time r; + OPT. There can be at most (¢ — 1)OpT times where there
are m/a or more processors that are either idle or processing a
subjob from the tail of a late job. Otherwise, by Lemma 5.5 and the
fact that S; uses m/a processors after time OpT, J; would have been
completed by time r; + fOPT/2. Thus there must be

(B/2-1-=(a —-1))Oprt
times where at least (m — 3m/a) processors are processing a subjob
from the tail of an early job. Thus the work processed between time
rj + OpT and time r; + BOPT/2 on the tails of the early jobs is at
least
(B/2 — a)(m —3m/a)OPT.
As A(I) did not idle any processor between time s and time r;,

the amount of early work is at least (r; — s)mOPT plus the work in
the tails of the early jobs processed in A(I) after time r;, so at least

(ri — s)mOPT + (f/2 — a)(m — 3m/a)OpT.

Since at most (a + 2)mOPT of the early work was unprocessed by
time s, the amount of work arriving between time s and time r; was
at least

(ri = s)mOPT + (f/2 — a)(m — 3m/a)OPT — (o + 2)mOPT.
So the “excess” work arriving between time s and time r; is at least
(B/2 — a)Op1(m — 3m/a) — (o + 2)mOPT

If this excess work is greater than OpT then this contradicts that
there is a feasible schedule with maximum flow time OpT. Note
that when o = 4 and > 256 we do obtain this contradiction. O

5.4 Clairvoyant Algorithm for General
Out-tree Instances

We can now show that A can be used for general instances and
not just semi-batched instances. First, we argue that at the cost of a
factor of 2 in the competitive ratio, we can assume that the input is
semi-batched if we know OpT. Consider an arbitrary instance I. We
modify I to create new instance I’ in the following way. The job
that arrives at time iOpT in I’ is the union over all jobs that arrived
between (i — 1)OpPT + 1 and iOPT in I. Note that an online algorithm
can implement this delay by just ignoring jobs that arrived between
(i — 1)OpPT + 1 and iOPT — 1 until time iOpT. Note that the optimal
maximum flow for I’ is at most 20pT, as one feasible schedule for
I’ is to delay the optimal schedule for I by OpT units of time. Thus
the new release times are integer multiples of the new optimal
objective value divided by two.

Since this technique requires that the online algorithm knows
OrT, now we show how the online algorithm can use the stan-
dard guess-and-double technique to remove the assumption that
it knows OPT a priori. The online algorithm can maintain a lower
bound AOPT to OpT, which is initialized to 1, and use AOPT in place
of Opt in the algorithm A. Once that algorithm observes that a
job has flow more than FAOPT/2, it knows that AOpT < OPT. The
algorithm then doubles AOPT, and restarts itself with the release
time of all unfinished jobs, and all future arriving jobs delayed by
BOPT/2. Now let 2% be the final value of AOPT. Then we know
that Opt > 251, Until AOpT reaches 2¥, jobs will be delayed at
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most Zlhczo 2hB/2 < 2K B. And after AOPT reaches 2¥ none will be

delayed by more than 2% /2. Thus no job will be delayed more
than (3/2)$2% < 3BOpT, which is 6 times the bound.

So removing the assumptions from the previous subsection costs
at most a factor of 12 in the competitive ratio. Thus we can conclude:

THEOREM 5.7. Algorithm A is 1548-competitive for maximum
flow on out-forests.

6 FIFO UPPER BOUND

This section presents the proof that FIFO is O(log max{OpT, m})-
competititve for batched instances in the non-clairvoyant setting.
Recall that in this setting, jobs arrive at integer multiples of OpT
only. For i € [n], let job i be the job that has release time r; = iOpT.
We may assume only one job arrives at iOpPT, by taking a union of
DAGs if necessary.

We now sketch what the inductive argument must capture before
giving the full formal argument. We wish to show that the total
unfinished work of FIFO never falls too far behind the optimal, say
by at most a ¢ - OpT additive amount. If this were true, then one
can easily bound the competitiveness of FIFO by at most O(c)OPT.
Unfortunately, inducting on just the total work in FIFO and OPT is
insufficient as it is important to know which subjobs of each job
have been processed.

The inductive argument needs to keep track of more structure
on the jobs. To this end, the argument will also keep track of how
much sequential work (roughly speaking, the amount of completed
span) of each job has been completed. The intuition for why this
is useful is that OpT must also spend the same amount of time
on sequential work, so finished sequential work implies a bound
on remaining work (see Lemma 6.4 below). Thus, we will use a
strong inductive hypothesis that keeps track of both the work and
completed span of unfinished jobs.

THEOREM 6.1. For batched instances, FIFO is O(log max{OprT, m})-
competitive for maximum flow in non-clairvoyant schedulers.

Notation and Terminology:

e S is the schedule output by FIFO, and SOPT is an optimal
schedule. When clear from context, we will simply write
Opr instead of SOPT.

e Opt: The maximum flow for OPT. (We are abusing notation
here for convenience.)

o Define 7 to be the largest number such that ¢ > 2mOpT and
log 7 is integral. Note this implies that 7 < 4mOPT.

The remaining terms refer to the schedule S from FIFO.
e w;(t) denotes remaining work of job i at time ¢. More for-
mally,
wi(t) :=W; — [{j:j € Vi and j € S(u) for some u < t}|

so in particular, w;(r;) = W; and wi(ClS) =0.
e For job i, S; is the schedule S restricted to jobs that arrived
before or at r;. So for t > r;,

Si(t) =S\ {j:j€ Vi,rg >ri}.

We say t is idle in S; if |S;(t)] < m and complete in S; if
1Si(D)] = m.
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o zi(t) is the number of idle time steps between times r; and ¢
in the schedule S;. More formally, forr; <t < Cf , we define

zi(t) == {u:ri <u<t,|Si(w)| < m}.

To easily handle corner cases that arise in the proof, we set
zi(t) = co when t > C;.g.

The following propositions are straightforward to verify. The
first relates idle time steps to sequential work, and we will invoke it
repeatedly. The second bounds the remaining work of the optimal
schedule as a function of time, and is important for comparing the
progress that FIFO makes to the progress that the optimal schedule
makes over time.

PROPOSITION 6.2. Leti € [n] and t be a time step idle in S;, with
ri <t< C?. Then V; N S(t) # 0. Moreover, for eachv € V; N S(t),
there exists a directed path in G; ending in v that contains at least
z;(t) vertices. As a consequence, z;(t) < OPT.

PROPOSITION 6.3. For anyi € [n] and timet > r;, the schedule
OPT has at most mOpT — m(t — r;) work remaining on J; at time t.

The following key lemma says that if FIFO has completed a lot
of sequential work in a DAG, it cannot have a huge amount of
work left, since OPT had to spend the same amount of time on
that sequential work as well. (We note that a weakening of this
lemma holds for any algorithm that does not unnecessarily idle
processors, by not restricting to the schedule S; in the definition of
zi(t). However, in analyzing FIFO, we will use crucially that in the
definition of z;(t), we consider the restricted schedule S;.)

LEMMA 6.4. At each timet > rj, it must be the case that wi(t) <
(OpT — Zi(t))m.

As a sanity check, note that the lemma implies w;(t) < m - OpT
always, which is clearly true. Further, the lemma states that if
zi(t) = Opt, then w;(t) = 0. To see why this is true, consider
the first time ¢, call it topr, that z;(¢) = OPT. Since topr is chosen
minimially, topr is idle in S;. This implies that either all nodes in
Gj have been executed (i.e., wi(topr) = 0, as desired), or there is
a child ¢, of a node v € V; N S(topr) that has yet to be scheduled.
But by Proposition 6.2, this means c,, is on a directed path with at
least OPT + 1 nodes, which is impossible by definition of OpT.

PROOF OF LEMMA 6.4. Fix i. For k € N, let t; be the smallest
twithr; <t < Ci5 such that z;(t) = k. The case k = 0 is trivial so
assume k > 0. It suffices to show that w;(t;) < (OpT — z;(t;))m;
for, wi(tr) < (OPT — z;(tx))m implies the lemma for all ¢, since
wi(t) < wi(tr) and z;(t;) = z;(¢) for all t <t < fgyq.

Define Uy := V; N S(t), i.e., Uy is the set of subjobs in job J;
that S works on during time step f;. Define Ry to be the set of
remaining subjobs that S has not scheduled by time #, ie., v € Ry
if v € V; N S(u) for any u > t;.. Also, since ;. is chosen minimally,
ty is idle in S;. So Uy # 0, and every v € Ry is a descendant of
some subjob in Uy.

Intuitively, we will show that at time t;., S cannot be behind (in
terms of amount of work remaining) OpT at the time that Opr first
started working on Uy.. Formally, define t]?PT to be the first time
that the optimal schedule works on some subjob from Uy, that is,

OrT

tg'" = min {u > ri:v e SOT(y) for some v € Uk} .
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This implies that the set of remaining subjobs that the optimal
schedule has not scheduled by t]?PT includes all descendants of
subjobs in Ug, so in particular, includes Ry.

Let v/?PT € U N SOPT(t]?PT) (such v?PT exists by definition of
t,?PT). Also, since v/?PT € Uy, we have by Proposition 6.2 that
t,?PT —ri > z;(ty). So by Proposition 6.3, there are at most (OpT —
zi(t;))m remaining subjobs for the optimal schedule to schedule.
So by the last line of the preceding paragraph, w;(tx) = |Rg| <
(OpPT — z;(t))m, as desired. O

The following lemma is the main lemma, which gives Theorem
6.1 as an immediate corollary.

LEMMA 6.5. Consider any time t = iOPT, i.e., the arrival time of
jobi. Define j := i — log r. Then

(1) Jobs 0 through j — 1 are done by timet, i.e, C3 < t fork < j.

(2) For0 < ¢ <logt — 1, we have

1 j*t Jj+t
— - Z wi(t) < €OPT + min zi (t). (12)
m £ k=j
k=j
(3) For0 < ¢ <logt — 1, we have
1 j+t {+1
—. Z wi(t) < 2(1 -1/2%0pr. (13)
m
k=j k=1

Let us remark on some implications of the lemma. First, it states
that job j = i — log 7 is the oldest job still alive at time t = iOpT (if
it is still alive), and the only jobs that may still be alive upon the
arrival of job i at time ¢ are the log 7 jobs j = i —log 7 through i — 1.
Second, each inequality indexed by ¢ bounds the total amount of
work remaining on the ¢ + 1 oldest jobs among these log r jobs.
Roughly speaking, the inequalities (12) lower bound the amount
of sequential work completed in terms of the remaining work; in
turn, combining this lower bound with Lemma 6.4 will allow us to
deduce the inequalities (13), which give an absolute bound on the
remaining work. Both sets of inequalities are inspired by the lower
bound in Section 4.

Taking £ = 0, the inequalities upper bound the remaining work
on the oldest job j at time #:

wj(t) < m - min{z;(t), OpT/2}.

The naive bound on wj(t) is m- OPT, so we can view the inequalities
above as refinements of this bound (as z;(t) < OpT by Proposition
6.2). Moreover, by taking ¢’ = (i + 1)Opr, the lemma states that
this remaining work wj(t) on job j is finished in the OpT time steps
between t and ¢’. So the lemma implies Theorem 6.1, because the
flow time of any job j is at most (log 7 + 1) - OpT.

On the other hand, taking ¢ = logz — 1, the inequalities state
that the total remaining work on the log 7 jobs that may still be
alive at time ¢ is at most

j+log -1
m- (logz — 1)OPT + m - rI?P]n 0]

and also at most
log 7

m- Y (1-1/250pr.
k=1
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As before, both bounds can be viewed as refinements of the naive
bound, which in this case is log 7 - m - OpT.
Now we prove the main lemma.

PRroOF oF LEMMA 6.5. The proof is by induction on i. The base
case of i = 0 is trivial.

We inductively assume (1) — (3) in the statement of the lemma
hold for ¢t = iOpT. Now consider time ¢’ = (i + 1)OpT. As in the
statement of the lemma, j = i — log 7. We must prove that:

(1”) Job j is done by time ¢’.

(2') Forall 0 < ¢ < logt — 1, we have

Jj+1+¢ i
1 JH1+L
— - > wilt') < LOPT+ min z(t) (14)
m kit k=j+1
3’) Forall0 < ¢ <log7 — 1, we have
g
1 jH1+€ £+1
— Z wi(t)) < Z(l—1/2k)0pr (15)
k=j+1 k=1

Note that we only need to prove in (1’) that job j is done by ¢/,
as we know by the inductive hypothesis that jobs 0 through j — 1
completed by time ¢, thus also by time ¢’.

Proof of (2’) for 0 < ¢ < logt — 1. First, let us consider the in-
equalities (14) for 0 < £ < log 7 — 1 (We will consider the last value
¢ = log  — 1 later.) Note that for this range of £, job i is not counted
in any of these inequalities.

This is relatively straightforward. Since 1 < £+ 1 < log 7 — 1 for
this range of ¢, we may replace £ with £ + 1 in (12) in the inductive
hypothesis for ¢. So

1 JHixt Jj+1+L

—- wi(t) — min zg(t) < (€ + 1)OpT.

~ kZ (6) = min zi(0) < (€+1)
=J

(16)

There are OpT time steps between ¢ and t’. Consider the sched-
ule S;114¢ (the schedule S restricted to jobs that arrived at or be-
fore rjy14¢). Let t < u < t’, and we say time step u is either

complete or idle in S;;1,¢ as defined earlier. If the time step u is
Jj+1+¢
. k:j

(1/m)(2§;1j+[ wi(u)) in time step u. (Note we are using that by (1)
in the inductive hypothesis, S;, 1, is only working on jobs j through
Jj+1+¢.) Otherwise, the time step u is idle in Sj 1, ¢, so it is also idle
in Sy for j < k < j+ 1+ ¢. This means that z;. (u) = z;(u — 1) + 1 (if
jH1+€
k=j

zi(u). (Note that setting zy (1) = oo for

complete in Sj4 ¢, then (1/m)(¥ wi(u — 1)) reduces by 1 to

job k is alive during time step u), so — mi zi(u — 1) decreases

J+1+8
k=j
C]f < u — 1 handles the case that job k is not alive during time step
u). Therefore, in the OPT time steps between ¢ and ¢’, the left-hand
side of (16) reduces by at least OPT, giving (14) for 0 < £ < logz —1.
Proof of (1’). By similar arguments, we can show that the oldest

by at least 1 to —mi

job, job j, completes in the OpT time steps between t and t’. Consider
the schedule S;. Since inductively jobs 1 through j — 1 are complete
by time ¢, job j can be the only job scheduled during S;. So all time
steps between t and C? are either idle time steps in S 7, or complete
time steps during which m subjobs—all of job j— are scheduled.
There are most OpT—z;(t) idle time steps after time ¢, by Proposition
6.2. Moreover, by the inductive hypothesis, wj(t) < m - z;(t), so
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there are at most z;(t) complete time steps in S; after time ¢. Thus
the remaining idle and complete time steps in S; after time ¢ can
complete in the OpT time steps between t and ¢, so job j completes
by by time ¢’.

Proof of (3”) for 0 < ¢ < log r — 1. Now consider the inequalities

from (15). To prove them, we will do an inner induction on ¢. First
we do the base case of ¢ = 0. In particular, we want to show that
wjt1(t") £ mOpT/2. Since we showed above that (14) holds for
¢ = 0, we know that

wjt1(t)/m < zj1 ().
Also, by Lemma 6.4,
wj+1(t") < (OPT — zj41(t"))m.
So combining the two inequalities above gives
wis1(t') < (OPT = wjsa (1)) /m)m
and rearranging terms gives the desired bound
wis1(t") < mOpt/2.

Now let us prove this set of inequalities (15) for all 1 < ¢ <
log 7 — 1. Namely, we want to prove that

1 j+1+¢€ £+1
k
— wi(t') < 1-1/2%)0pr.
o Dy ety < 3 (=1/260e
k=j+1 k=1

Assume inductively that the inequalities (15) hold up to € — 1.
We will prove (15) holds for £. Observe that

1 j+t 4
—. Z Wk(t')SZ(l—l/Zk)OPT 17)
m -
k=j+1 k=1
1 J+1+€
— | D wk(t) | = zjare(t') < (Opr (18)
k=j+1

where (17) holds due to the inductive hypothesis on £ — 1, and (18)
follows as we already proved that the inequalities (14) hold for
0<¢{<logr—1.

Assume for a contradiction that

1 JH1+€ £+1
k
—. wi(t)) > 1-1/2%)0pr.
2 W) > Y =112
k=j+1 k=1

Then combining the above inequality with (18) gives
+1

(1-1/2)
k=1

- OrT

Zj+1+£’(t,) 2 (—[ +

{+1

= (€+ 1-¢- Z(l/zk)
k=1

Now plugging this bound into Lemma 6.4, we have

1
'OPTZ%'OPT

1
— wires1(t') < (1-1/271)0pr.

Adding the above inequality to inequality (17) gives

1 JH1+€ £+1
k
—. wi(t) < 1-1/2%)0pT
2w < Y =112
k=j+1 k=1

which contradicts our assumption.
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Proof of (2’) for £ = logr — 1. Now we prove (14) for the last
value of { = log7 — 1; this inequality counts job i, the job that
arrives at time ¢. We will first show that

1

1
— < .
- Z wi(t) < logt - OpT.
k=i-logt
To see this, note from (13) we have that
i-1 log z

Z wi(t) <m- Z(l —1/2K0pT = m - (logr — 1+ 1/7)0pT
k=i-logt k=1
and since the left-hand side is integral,
i-1
Z wi(t) < m - (log 7 — 1+ 1/7)OPT].
k=i-logt
Since w;(t) = W; < mOpT, and mOPT is integral,
i
Z wi(t) < |m- (log 7 — 1 + 1/7)OPT + mOpT|
k=i-logt

(19)

SO
i
Z wi(t) < m- (logz + 1/7)OpT]

k=i-logt

and now using that m - log 7 - OpT is an integer,
i
Z wi(t) < m-logt - OpT + [ mOPT/7]
k=i-logt

and since 7 > 2mOpT, [mOPT/7| = 0, so we have

1

1
— - Z wi(t) < log7 - OpT
m k=i-logt
and thus also

1 d i

— - Z wi(t)— min zi(t) <logrt - OpT.

m . k=i-logt

k=i-logt

Now we can use the same argument as in the proof of (2’) for
0 < ¢ < logt — 1, and conclude that

i

)

i
wi(’)—  min  zi(t') < (logt - 1) - OpT
. k= T+1
k=i-log 7+1

=i—log
which is precisely the inequality (14) for £ = logz — 1.

Proof of (3’) for £ = log r — 1. Recall from the proof of (3”) for
0 < ¢ < log7 — 1 that the only reason we could not extend the
induction to £ = log 7 — 1 was becuase we had not yet established
inequality (14) or ¢ = log 7 — 1. Now that we have established this
in the previous paragraph, the induction extends.

This concludes the proof.

]

Remark. The batched arrival assumption is used crucially in the
proof, as it implies that at most mOPT new work can arrive in a
period of OpT time steps. Even relaxing this assumption slightly
(e.g., new jobs can arrive only every OpT/2 time steps, which means
that at most m-30pT/2 arrives in OPT time steps) causes the current
proof to break down; see line (19).
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7 CONCLUSION

This paper has addressed the open problem from the SPAA 2016
paper [4] on what the best competitive ratio is with respect to
(minimizing) maximum flow for scheduling multithreaded jobs on-
line. This paper showed perhaps surprisingly that the most natural
algorithm, FIFO, is not constant competitive. We develop a new
clairvoyant algorithm for the out-tree class of instances and show
this algorithm is constant competitive.

This paper has helped to develop the algorithmic understanding
run-time scheduling to optimize maximum flow. However, there
are still many natural open questions worthy of being addressed:

e Is FIFO O(log m)-competitive on general instances? We be-
lieve that obtaining such a result would likely require signif-
icant additional insight.

e Is FIFO asymptotically optimally competitive among non-
clairvoyant algorithms? A nonclairvoyant run-time sched-
uler only learns of a subjob j in a DAG G; when all of the
predecessors of j are completed. If so, this would salvage the
intuition of the authors of [4], and our intuition, about FIFO
being the “right” algorithm. It does not seem that one can ex-
tend the Q(log m) lower bound for FIFO in a straight-forward
manner to a lower bound for a general nonclairvoyant algo-
rithm.

e Is there an O(1)-competitive nonclairvoyant algorithm for
out-trees? It is not clear if or how a nonclairvoyant algorithm
can “shape” an out-tree as our clairvoyant algorithm did. Its
also not clear whether the design of the intra-job scheduling
policy, or the design of the inter-job scheduling policy, or
both, is the bottleneck to obtaining such a result.

o [s there an O(1)-competitive clairvoyant algorithm for series-
parallel DAGs? We conjecture that designing an intra-job
scheduling policy that in some way “shapes” the job appropri-
ately would be the key step in obtaining such an algorithm.

o Is there an O(1)-competitive nonclairvoyant algorithm for
series-parallel DAGs?

e s there an O(1)-competitive clairvoyant algorithm for gen-
eral DAGS?

o Is there an O(1)-competitive nonclairvoyant algorithm for
general DAGS?
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