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ABSTRACT

We consider the problem of load-balancing on distributed databases.
We assume that data is divided into chunks and each chunk can
be replicated on a constant number d of servers. When a request
arrives, it is routed to one of the servers that contains the relevant
chunk. Each server may store outstanding requests in a bounded
queue and requests may be rejected if the queue is full. The goal is
to design strategies for data distribution and request routing that
minimize both the rejection rate and the average request latency.

What makes this problem technically difficult is reappearance
dependencies: if a chunk x is accessed at multiple different time
steps, then the set of d servers that it can be routed to is the same
each time it is accessed. This is a substantial departure from classical
balls-and-bins settings where each ball arrival introduces fresh
randomness into the system.

We show that, with new algorithmic and analytical approaches,
it is possible to overcome reappearance dependencies and construct
algorithms with optimal rejection rate, latency, and queue size.
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1 INTRODUCTION

Distributed databases are widely deployed in today’s systems in
cloud applications and file systems. In these systems, a large amount
of data is distributed across many servers. When a client requests
a particular data item, the request is routed by a load-balancing
algorithm to (one of the) server(s) where the item is stored. Each
server has a queue to store outstanding requests, and is able to
process g = O(1) requests from the queue per time step. If the
size of the queue ever exceeds some fixed queue length g, then the
request at the end of the queue is rejected.

The goal of the load-balancing algorithm is to simultaneously
achieve high throughput and low latency. High throughput
means that only a very small fraction of requests are rejected. Low
latency means clients don’t have to wait for a long time for their
request to be processed (i.e., requests do not spend many time steps
in a queue). Most prior theoretical work on this topic makes sto-
chastic assumptions on the arrival pattern of requests [10, 15, 17,
21, 22, 25, 27, 28, 35].

In this paper, we will analyze this problem under adversarial
assumptions. Suppose there are m servers and data is cut up into
n (immutable) chunks—each chunk is replicated across d = O(1)
different (typically random) servers.! At each time step, up to m
requests can arrive from the clients, each to a unique chunk. The
client requests are generated by an oblivious adversary, who knows
the load balancing algorithm, and who does not know the random
bits used by the load-balancing and replication algorithms. In order
to handle the oblivious adversary, the obvious approach is to dis-
tribute the chunks to servers in some random fashion. Under these
circumstances, we would like to design a strategy for assigning
chunks to servers that have an average rejection rate of at most
1/poly m (for a polynomial of our choice), average latency O(1),
and a worst-case latency of at most polylog m.

What makes this setting interesting is the interactions between
different time steps. Consider, for example, the case of d = 1 (no
replication), and consider the workload in which the same set S
of m items is accessed on every time step. At first, this may seem
fine—most items are assigned to servers that receive only O(1)
other requests. But, over time, the correlations between time steps
cause a problem: the servers that receive more than g (processing
rate) requests on time step 1 also receive more than g requests on

Each chunk contains multiple data items.
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time step 2, time step 3, and so on. These oversubscribed servers,
which represent a constant fraction of all servers, will quickly fill up
their queues (no matter how large the queue-size is!). In the steady
state, a constant fraction of requests will end up being rejected. This
simple argument, which was formalized in recent work by [34],
means that it is impossible to achieve a rejection rate of 0(1) in the
d =1 case.

What is not clear, however, is whether it may be possible to
achieve strong guarantees using replication d > 1. Here, there
is a good reason to be optimistic: for many allocation problems,
there are power-of-two-choices phenomena [3, 6, 8, 9, 11, 12, 15,
25, 30, 33], where having even just a few choices for where to
place/route/store objects yields significantly better results than
having only a single choice. At the same time, there is also a reason
to be pessimistic: these same allocation results often do not extend
to adversarial settings, where the same object/request can be in-
serted/accessed multiple times by an oblivious adversary (we will
discuss this further in a moment).

Relationship to balls and bins, and why oblivious adversaries
are hard. Before we dive into our results, it is helpful to understand
the relationship between our problem and the problem of classical
balls-and-bins load balancing [1, 25]. We can think of the m queues
in our problem as bins that collect balls (i.e., client requests that
have been routed to that server). Each ball can be identified by the
chunk that is accessing: if a ball accesses some chunk i, then use
h1(i), ha (i), ..., hg(i) to denote the set of bins (i.e., servers) where
the ball can go. On each time step, a set of O(m) distinct balls are
added to the system and routed to bins via the load-balancing algo-
rithm; and then, after this occurs, each bin deletes up to g = O(1)
balls from its contents. The main goal (achieving a low rejection
rate) translates to making sure that, at any given moment, none of
the bins contain more than, say, polylog m (or, ideally even fewer)
balls.

There is a significant technical difference, however, between the
above balls-and-bins problem and others that are commonly studied
in the literature [3, 6, 8, 9, 11, 12, 15, 25, 30, 33]. In our problem, if
the same ball (i.e., chunk) i is accessed in multiple time steps, then
the set of random servers hj (i), h2(i), ..., hy(i) that it is capable of
being routed to will be the same each time it is accessed. This creates
unfortunate reappearance dependencies: when a ball i is accessed,
we cannot assume that the state of the queues is independent of
the ball’s random bits (i.e., of hy (i), h2 (i), ..., hg(i)), because those
random bits may have already affected the state of the system in
the past. In fact, this is not merely an analytical issue—in the case
of d = 1, it was precisely what led to the impossibility result of [34].

The problem of reappearance dependencies has also made a no-
table appearance in recent work on the classical balls-and-bins prob-
lem [4-6]. Consider the task of inserting/deleting balls into m bins,
with up to k > m balls present at a time, and where each ball has 2
bins that it can choose from.2 A celebrated result by Berenbrink,
Czumaj, Steger, and Vocking [9] says that, in the insertion-only
setting, it is possible to assign balls to bins such that all m bins
have almost exactly equal loads. Although the balls-and-bins result

2Typically, in the ball-and-bins literature, m is used to denote the number of balls and
n is typically used for the number of bins. However, for notational consistency, we
adopt m as the number of bins and k as the number of balls.
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does extend to stochastic settings where balls are inserted/deleted
at random, it has recently been shown to provably fail in settings
where balls can be inserted, deleted, and reinserted (after being
deleted) by an oblivious adversary (and where k > m). This quite
surprising failure result, which was shown by Bansal and Kuszmaul
at FOCS’22 [5], ends up being due to reappearance dependencies:
because balls can be inserted, deleted, and later reinserted, the ran-
dom bits for a ball (when it is reinserted) will have already impacted
the state of the system in the past (when it was previously inserted).
These seemingly minor dependencies turn out to enable adversarial
attacks (even by an oblivious adversary) that cripple the classical
power-of-two-choices result.

Thus, it is not clear, a priori, whether we should expect a pos-
itive or negative result in our setting. On one hand, Bansal and
Kuszmaul’s impossibility result does not appear to extend to our
problem. On the other hand, the reappearance dependencies in our
problem are in some ways even more severe than in the classical
one. (For example, in the d = 1 case of classical balls-and-bins,
reappearance dependencies do not affect the expected maximum
load across the bins.) The question of whether these dependencies
can be overcome to achieve positive results is the main topic of this

paper.

Our results: Handling reappearance dependencies with algo-
rithmic and analytical techniques. We begin with two positive
results. The first result (Section 3) considers the greedy algorithm,
which simply routes each client request i to the least-loaded server
out of its d choices hy (i), h2 (i), . . ., hy(i). We prove that there exist
positive constants g, d such that this strategy offers the following
guarantee: assuming that each queue has capacity ¢ = logm + 1,
that each server processes g requests per time step, and that each
chunk is stored in d random locations, the greedy load-balancing
algorithm achieves an expected rejection rate of O(1/poly m) and
an expected average latency of O(1). Our analysis of the greedy
algorithm can be viewed as a new variation on the classical layered-
induction technique [3]; the difference is that, in order to handle
reappearance dependencies, we restructure the argument in such a
way that we are able to apply, in one part of the argument, a very
broad union bound—so broad, that we are able to wipe away any
possible effects of reappearance dependencies.

The second result (Section 4) introduces a new load-balancing al-
gorithm that we call delayed cuckoo routing. The delayed cuckoo
routing algorithm is somewhat more involved than its greedy coun-
terpart, and requires that the load balancing algorithm maintain
an additional data structure beyond the queues. The benefit of the
algorithm, however, is that it offers an even stronger guarantee.
Using 2-way replication, constant processing rate g, and queues
of size just ¢ = O(loglog m), the algorithm is once again able to
achieve a rejection rate is 1/poly m and expected average latency
o(1).

Part of what makes delayed cuckoo routing interesting is that the
guarantees it achieves are provably optimal. We show in Section 5
that any load balancing algorithm using d = O(1) and g = O(1) and
achieving expected rejection rate O(1/m) must use queues of size
q = Q(loglog m). We also show that any load balancing algorithm
with d = O(1) and g = O(1) must have an expected rejection rate
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of at least 1/poly m. This means that the rejection rates achieved
by both of our algorithms are optimal.

Our final result offers a simple but intriguing impossibility result.
Suppose that, within each time step, we wish to make routing
decisions that are independent of the requests made in previous time
steps. That is, we wish to handle the reappearance dependencies
between time steps by simply making our routing decisions within
a time step (i.e., which of the d choices to use for each request)
random enough that they do not interfere with choices made in
other time steps. We show that, somewhat surprisingly, such an
algorithm is provably non-viable — even in the setting where the
set of requests that are made is the same across time steps. This
lower bound comes with a balls-and-bins interpretation that will
likely be of independent interest.

2 PRELIMINARIES

In this section, we describe our model and optimization criteria.

Problem definition. We assume that all the data is divided into n
chunks (each chunk potentially contains multiple keys) and stored
on a total of m servers where each chunk is stored (replicated) on
d = O(1) servers. On every time step, up to m requests are generated
by clients to unique chunks. When a client requests some data, this
request can be routed to any server that has the corresponding
chunk that stores the data. Each server has a FIFO queue of some
bounded queue length q and requests are stored in this queue. On
every time step, a server satisfies g = O(1) requests, where g is
known as the processing rate. At any given moment, the number
of unprocessed requests in a server’s queue is referred to as the
server’s backlog. The server must maintain a backlog of at most
q (the maximum queue length), and in order to do this the server
may sometimes choose to reject a request.

Given, d, g, m, q, there are three algorithmic knobs. The first knob
is the choice of where each chunk’s d replicants reside — our al-
gorithms will assume that each replicant is simply assigned to a
random server. The second and more important knob is the load-
balancing algorithm that routes each request to a server. Note that
any algorithm we design must be online (even within the m requests
that are performed during a time step), which is to say that each
time a request is made, it is routed immediately to a server without
any knowledge of future requests. Finally, the third (and least im-
portant) knob is the choice of when to reject requests - in principle,
a server may choose to reject a request even if the server’s queue
is not full. As we shall see, this can be helpful for handling rare
failure events in which we need to “reset” the system.

Optimization criteria. There are two goals for the design of a
good system. The first goal is to maximize throughput - in other
words, to minimize the fraction of requests that are rejected, also
known as the rejection rate. The second goal is to minimize both
average and worst case latency. The maximum latency is nominally
the length of the longest queue. The average latency, on the other
hand, is proportional to the average backlog across the servers over
time.
Formally, we define these objectives as follows.

Definition 2.1 (Rejection Rate). Given a sequence o of requests
arriving over time, T4 (o) denotes the number of requests that
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are accepted by algorithm A on sequence o. The rejection rate is

(Il = Ta(0))/lol.

Our goal is to design systems that achieve expected rejection
rate O(1/poly m). (And, as we shall see in Section 5, this is optimal.)

Definition 2.2 (Latency). Given a sequence ¢ of requests arriv-
ing over time, Ly (0;) denotes the number of time steps before
this request is satisfied by the server. The maximum latency is
max; L (0;), and the average latency is }; Ls(0;)/|o]|.

In our systems, our goal is to design systems where the maximum
latency is logarithmic or sub-logarithmic in m and the average
latency of O(1). Our delayed cuckoo routing algorithm, in particular,
will achieve O(log log m) maximum latency, which will turn out to
be optimal.

Basic observations. We conclude the section with some basic
observations. First note that, if the processing rate g were less than
1 (say, 1 — Q(1)), then it would be impossible to process requests at
the rate that they arrive. Therefore, we are only interested in g > 1,
and our goal will be to offer guarantees for g = O(1). Also observe
that the constraint on requests within a timestep — namely, that
they access a distinct set of chunks - is necessary. If w(1) requests
could be made to a single chunk, and those requests were repeated
on every time step, then the d = O(1) servers that store that chunk
would be forced to reject most of the requests. Finally, since prior
work has already ruled out the possibility of deterministic solutions
to our problem [34], we cannot hope for a rejection rate of 0. We
can, however, hope for a rejection rate of 0(1), or more concretely,
as we will achieve in later sections, 1/poly m.

3 ANALYSIS OF GREEDY ALGORITHM

We now analyze the greedy algorithm, which routes each request
to the queue with the least backlog out of the d queues that can
handle the request. If a queue ever overflows, then it rejects all of
its requests. Additionally, for some positive constant c, the queues
reject all of their outstanding requests (clearing out the system)
once every m€ steps.

The main result of the section will be the following:

THEOREM 3.1. For any positive constant ¢ > 0, there exists d, g =
O(1) such that the following holds. Supposing replication d, server
processing rate g, and queue length q = log m+1, the greedy algorithm
has expected rejection rate O(1/m™1), maximum latency at most
O(logm), and expected average latency at most O(1).

We shall assume throughout the section that d is a sufficiently
large positive constant with respect to ¢ and that g is a sufficiently
large positive constant with respect to d.

In order to prove this theorem, we will argue that the distribu-
tion of the number of outstanding requests in the queues obeys a
distribution — we will call this a safe distribution.

Definition 3.2 (Safe distribution of backlogs). Consider the number
of requests in the queues of m servers. The distribution is said to
be safe if for all 1 < j < logm, at most ij queues have more
than j requests. Formally, let p; be the number of servers with
backlog exactly i. We know that 3'72) p; = m. The balls are in a safe
distribution if ;% pi < o forall j.
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We will prove by induction that, with high probability, the distri-
bution of queue backlogs is guaranteed to be in a safe distribution
at any given moment.

As noted earlier, what makes this analysis difficult are reappear-
ance dependencies. Consider a chunk x that is accessed at some time
t, and let us refer to the servers where x’s replicants are stored
as x’s hashes. Because x may have also been accessed in the past
(prior to time t), the current state of the system cannot be said to
be independent of x’s random hashes. Even if we assume that we
are in a safe distribution (i.e., at most m/ 2/ servers have backlog
> j), the actual set S; of servers that have backlog > j for some j
is a random variable that depends on x’s hashes! Even if we can
guarantee that |S;| is small, how can we guarantee that it is not
adversarial against x (so that, for example, all of x’s hashes end up
being in S;)?

A key insight in the analysis will be that, even if the set S;
is adversarial against some chunk x, it cannot simultaneously be
adversarial for all (or even a large fraction) of the m requests that are
made in a given time step. In fact, by considering all of these requests
together, we will be able to apply a union bound over all possible
options for S; in order to argue that, even if S; were determined
adversarially, it would not prevent us from completing our analysis.
This is how we will get around reappearance dependencies.

The main union bound in the analysis is captured by the follow-
ing lemma.

LEMMA 3.3. Consider any set of% chunks H = {x1, xo, ... ,xm/g},

and consider any k < m/g. We have with probability 1 — O(1/m3+?)

that every subset H' C H of size k has the following property: the
number of distinct servers that contain at least one replicant of at
least one chunk in H’ is greater than 4k.

ProoF. Suppose that all of the replicants for H” are stored in
some set S of 4k servers. There are (;7) ways to choose the servers

S and (mk/g ) ways to choose the chunks of H'. Given the chunks
and the servers, the probability that all the chunks have all their
replications on the servers is

ak %

- .
Therefore, from a union bound, the probability that there exist H’
and S that violate the lemma is at most

m\(m/g\ ( 4k dk
4k)\ k m ’
which by the bound of binomial coefficients is at most

etk ik ek(m/g)k 44k dk
(k)% gk pdk

m

Using the fact that g is a sufficiently large positive constant with
respect to d, we can bound the above expression by

dk
()
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Using the fact that d is also a sufficiently large positive constant,
we can further upper bound our expression by

1 k dk/2
2Q(k) \m
If k = w(logm), then the first multiplicand is sub-polynomial,

and otherwise the second multiplicand is at most O(1/ m)d/2 <
O(l/m3c+2). o

We will now show that if the servers are in a safe distribution,
then the safe distribution will be maintained over time with high
probability. We will perform the analysis at the level of time sub-
steps where, on each sub-step, we get m/g requests and each server
consumes 1 request in each sub-step.

LEMMA 3.4. Suppose we start a sub-step t with a safe distribution.
Then, at the end of the sub-step, we will still be in a safe distribution
with probability 1 — O(1/m3¢*1).

Proor. Consider k = zﬂf We prove by induction that, at the
end of the sub-step, there are at most zﬂ] queues with more than
Jj outstanding requests, from j equals 0 to log m. The base case of
j = 0is trivial.

Each step of the induction will apply Lemma 3.3, adding an
additional O(1/m>3“*?) to our total probability of failure. thus, over
the O(log m) induction steps, the total failure probability will be at
most O(1/m3¢+1).

Let the servers with more than i requests be Si(t) before sub-step,

and be Sl.(tﬂ) after. We know by assumption |S](.t)| < 77 because

the queues are initially in a safe distribution. Moreover, by the
+

inductive hypothesis, |S§ill) | < 57 (with high probability).
)

For a server w € SJ(.tJrl , consider whether w has requests among
the m/g new-coming requests.
Case 1: w has at least one new-coming request. Let the last

request (in time) that comes to w be x. We claim that x must have
all its d replications in SJ(.t_Jrll). If not so, it has a replication w’ with
queue length at most j — 2 at time ¢ + 1 (so when x arrives, the
length of the queue on w’ is at most j — 2), and yet it goes to w
which has queue length j at time ¢ + 1 (so when x arrives, the length
of the queue on w is at least j — 1). This means x should choose w’
instead of w, which is contradictory. According to Lemma 3.3, with
probability 1 — O(1/m3¢*?), the number of requests (corresponding
to chunks) of this case is no more than 4—11 . |S](.t_+11) | < 21% Thus the

+1)

s . t
number of servers w in this case is also at most }1 . |S](._1 n

2J+1 "
(t)
Sj+1
because the server consumes a request. We know by induction that
(t)
|Sj+1 S
m

2J+1°

| <

Case 2: w has no new-coming requests. This means w €

m

37¢7> 50 the number of servers w in this case is at most

)

Each server in $"*") is in one the two cases. Thus (unless the

inductive hypothesis fails), we have with high probability that
|SJ(-t+1)| < oF = 77, which completes the induction step.
Since there are O(logm) induction steps, and since each has at
most O(1/m3¢*2) probability of failing, the entire lemma holds
with probability 1 — O(log m/m3¢*?) > 1 — O(1/m3¢*),

m
+W

[m]
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Finally, we can complete the proof of Theorem 3.1.

Proor or THEOREM 3.1. The worst-case latency is trivially at
most the queue size of log m + 1. Therefore we focus on analyzing
rejection rate and average latency.

Recall that the queues are flushed every m® time steps. Consider
the time interval between two flushes, and call it a phase - it
suffices to prove that our desired bounds hold within each phase.’

By Lemma 3.4, we have probability at least 1 — O(m®/m3¢*1) >
1 — O(1/m?*1) that every sub-step in the phase ends in a safe
distribution. In the 1/m?¢*1-probability event that there is ever a
non-safe distribution during the phase, we can feel free to simply
think of all m®*! of the requests in the phase as having been rejected
— this still only adds 1/m€ to the expected rejection rate during the
phase. On the other hand, assuming that every sub-step in the
phase ends in a safe distribution, then the only rejections that occur
during the phase are in the final step where all queues are flushed.
Since the queues are in a safe distribution when they are flushed, the
total number of flushed requests is O(m) - these flushes therefore
contribute at most O(1/m¢~1) to the overall rejection rate. Putting
the pieces together, the total expected rejection rate during the
phase is at most O(1/m¢™1).

Finally, to analyze average latency, it suffices to show that the
average queue length is at most O(1). Since, at any given mo-
ment, the probability of being in a safe distribution is very high
(= 1 - 0(1/m?1)), the contribution of steps that are not in safe
distributions is negligible. On the other hand, for steps that are in
safe distributions, the average queue length is at most the number
of requests present in queues (at most m+ m/2+m/4+--- < 2m)
divided by the number of queues m. Thus, the average queue-length
overall, at the end of each time sub-step, is at most 2 + o(1). This,
in turn, implies an expected average latency of O(1). O

4 REDUCING MAXIMUM LATENCY VIA
DELAYED CUCKOO ROUTING

We saw in the previous section that the simple greedy algorithm
is able to provide rejection rate of O(1/poly m), expected average
latency O(1) and maximum latency of O(log m) using queues of size
©(log m). We now consider whether we can design a strategy that
provides a better bound on maximum latency (and thus also queue
size) by leveraging past information about requests. As we shall
discuss in Section 5, classical balls-and-bins lower bounds prohibit
the possibility of using queues of size o(log log m). Thus, our target
is to design a strategy that can use queues of size O(loglogm).

In this section, we will describe a strategy called delayed cuckoo
routing that uses cuckoo hashing as a critical subroutine. The in-
tuition behind this strategy can be understood by considering two
extreme cases. First, say that the requested chunks are not repeated
frequently: that is, across nearby time steps, the clients tend to
request different chunks. In this case, reappearance dependencies
are not a problem, and greedy algorithm already guarantees a max-
imum latency of O(loglog m). This suggests that, intuitively, the
worrying case is when the same m chunks are requested over and
over again. However, in this case, we can use cuckoo hashing to

3These periodic flushes allow us to bound the impact of low probability events which
might cause us to leave the safe distribution since these can only break the system
until the next flush.
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pre-compute where these requests should be routed, guaranteeing
that each server only receives a constant number of requests per
time step. Since, in general, we will not be in either of these ex-
tremes, we will design a strategy that combines the two to handle
any workload.

Background on Cuckoo Hashing

Cuckoo hashing, which was first introduced by Pagh and Rodler
in 2001 [29], is a technique for assigning a set of up to, say, m/3
(or, more generally, m/2 — Q(m)) items to m positions so that each
position receives at most one item, and such that each item x is
in one of two random positions h;(x) € [m] and hp(x) € [m]
that it hashes to. Although classical Cuckoo hashing has a ®(1/m)
failure probability, the probability can be reduced to 1/poly m by
allowing for O(1) items to be excluded from the allocation [18] (this
is known as cuckoo hashing with a stash). If one allocates these
O(1) items arbitrarily, then every position still receives at most
O(1) items - this leads to the following formulation of Krisch et
al’s [18] analysis of cuckoo hashing with a stash:

THEOREM 4.1 (Cuckoo HASHING WITH A STASH [18]). Consider
a set S of m/3 items, and let hy, hy be fully random hash functions
mapping each x € S to a random element of {1,2,...,m}. Letc > 0
be an arbitrary positive constant. With probability 1 — O(1/m€), it is
possible to assign the elements of S to positions in [m] such that each
position receives at most O(1) elements and such that each element
x € S is in one of positions hy(x) or ha(x).

Cuckoo hashing can also be implemented as an online algorithm,
in which items are moved around over time so that, at any given
moment, there is at most one item in each position. However, this
online variant of Cuckoo hashing will not be very helpful to us,
since when a request arrives, we must make an irrevocable and
immediate decision about which server to route it to - i.e., we
cannot change our routing decisions after the fact in the same way
that cuckoo hashing moves around items.

Nonetheless, if we did know the full set of items that were going
to arrive on a given time step, we could use Cuckoo hashing to
perform very good load balancing on the m servers. This is captured
by the following lemma, which follows immediately from applying
Theorem 4.1 three times.

LEMMA 4.2. Say we have replication d = 2, and letc > 0 be a
positive constant. Given m requests to unique chunks, it is possible to
assign them to servers so that, with probability at least 1 — O(1/m°),
every server receives at most O(1) requests.

4.1 Delayed Cuckoo routing

We now describe the delayed cuckoo routing, which is a load-
balancing algorithm that uses replication d = 2, processing rate
g = O(1), and queues of size ¢ = ©(loglog m). For each chunk x,
we will use hy(x) and hy(x) to indicate the two random servers
where the chunk is stored.

For each time step i, let S; denote the set of chunks that are
accessed in that step, and let T; denote the assignment that Lemma
4.2 produces on S;. For each chunk x € S;, we will use T;j(x) to
denote the server in {1,2,..., m} that T; assigns x to.
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We cannot use T; during time step t because we cannot construct
T; until after we know S;. However, we can use T; to help us make
good routing decisions in the future.

The delayed cuckoo routing algorithm runs in phases of log log m
time steps. During each phase j, each server i maintains two queues
Q; and P; of lengths O(log log m), each of which processes g/4 items
per time step. When a chunk x is requested at some time ¢, if it is
the first time that the chunk has been requested during phase j,
then the request is placed in whichever queue Qp, () or Qp, (x) has
fewer items (the request is rejected if both queues are at capacity).
If, on the other hand, the chunk x has already been requested in
the past during phase j, then we consider the most recent time
t' < t that the chunk x was requested, and we place the request in
queue Pr,, (5. (If T experienced as failure event, which by Lemma
4.2 occurs with probability 1 — O(1/m€), then the request for x is
rejected.)

Additionally, at the beginning of a phase j > 1, there may still
be requests queued up in the servers from the previous phase j —
1. We move these requests to queues P/ and Q] (so now there
are four queues in each server), and we also process g/4 requests
from each P and Q] on each step. Since |P}|, |Q;| < O(loglogm)
deterministically, they are guaranteed to be empty by the end of
phase j (so long as g is a sufficiently large positive constant).

As a minor remark, the reader may notice that each server i is
no longer maintaining just a single FIFO queue, but instead (up to)
four FIFO queues. This distinction is only to simplify the analysis,
however. Indeed, if one were to process the items in P;UQ; UP; U Q]
in true FIFO order, it would not change total number of requests
queued at server i at any given moment, the rejection rate, or the
average latency achieved.

In the rest of the section, we will prove the following theorem:

THEOREM 4.3. Let ¢ > 0 be an arbitrary positive constant, let g =
O(1) be a sufficiently large positive constant, and let ¢ = ©(log log m)
be a sufficiently large multiple of loglog m. Supposing replication
d = 2, server processing rate g, and queue length q, the delayed
cuckoo routing strategy has expected rejection rate O(1/m€), maxi-
mum latency O(loglog m), and expected average latency O(1).

The bound on maximum latency is immediate from the queue
length ¢ = O(loglog m). We will split the rest of the section into
two parts, one analyzing expected rejection rate, and one analyzing
expected average latency.

4.2 Bounding the rejection rate

We will now argue that the expected rejection rate of delayed
cuckoo routing is O(1/m¢).

Consider a request r to some chunk x at some time t. We begin
by considering the case where this is the first access to x in the
current phase. In this case, there are no reappearance dependencies
to worry about, so we can use standard balls-and-bins arguments
to bound the probability that r is rejected.

LEMMA 4.4. Ifr is the first request to x in the current phase, then
the probability of r being rejected is O(1/m°).

Proor. Let us imagine for a moment that each queue Q; has
unbounded length. It suffices to show that, with probability at least

326

Kunal Agrawal, William Kuszmaull, Zhe Wang, & Jinhao Zhao

1 — O(1/m®), the number of unprocessed requests in each Q;, at
any given moment, is at most O(log log m).

Recall that, when a request to a chunk x is placed into a queue
Q;, it is placed into whichever of Qj, (x) or Qp, (x) has fewer unpro-
cessed requests. Define g; ; to be the number of requests in queue
Q; at time ¢.

Now consider an alternative reality in which each chunk x (the
first time it is accessed during the phase) is assigned to whichever
of Qp, (x) OF Qh, (x) has received fewer total requests during the
phase. And let q;’ ; be the total number of requests that queue Q;
receives during the phase, in this alternative reality.

Note that the q;’ ; values dominate the g;; values. Indeed, it is
easy to see by induction that ¢;; < qi ; for all i, t. Thus, if we wish
to prove an upper bound on g; 4, it suffices to prove an upperbound
ongj,.

However, the task of bounding q;’t is equivalent to a standard
balls-and-bins analysis. A classical result by Berenbrink et al. [9]
says that, if mh balls are placed into m bins, and each ball is placed
in the less-loaded of two random bins, then the fullest bin will
have mh + O(loglog m) balls with probability 1 — 1/poly m (for a
polynomial of our choice). In our case, h = O(loglogm), so we
have that qg’t < O(loglog m) with high probability. This completes
the proof. O

Next we consider the case where x has already been accessed
in the past, during the current phase. Let ¢’ < t be the most recent
time in the past that x was accessed. Recall that, in this case, x is
placed into queue Pr,, () - if the cuckoo hash table T experiences
a failure (which by Lemma 4.2 occurs with probability O(1/m°)),
then request r is rejected. Otherwise, we claim that queue Pr,, () is
guaranteed (deterministically!) to have room for request r without
overflowing.

LEMMA 4.5. With probability one, each queue P; has at most
O(loglog m) requests routed to it during a given phase. Thus, the
queue will never exceed its capacity of O(loglog m).

Proor. Let [, t2] be the sequence of loglog m time steps that
constitute the current phase. The total number of requests that are
assigned to P; during the phase is at most

Z Z]I[Tt(x):i].
te[ty,t] x€S,
By Lemma 4.2, this is at most
Z 0(1) < O(loglog m),
te(ty,ty]

as desired. O

Lemma 4.5 tells us that, in the case where x has already been
accessed before in the phase, the only failure mode for x (i.e., the
only case where x can be rejected) is if T+ itself fails. Since this
happens with probability O(1/m¢), we have the following lemma:

LEMMA 4.6. If a request r is to a chunk x that has already been
accessed previously in the same phase, then the probability of the
request being rejected is O(1/m°).

Combining together Lemmas 4.4 and 4.6, we arrive at a bound
on the expected overall rejection rate:
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PROPOSITION 4.7. The expected rejection rate of delayed cuckoo
routing is O(1/m°).

4.3 Analysis of Average Latency

Finally, we bound the expected average latency of delayed cuckoo
routing. For this, it suffices to bound the expected average latency
for the requests within a given phase. We remark that the analysis
of average latency in this section requires a much more subtle prob-
abilistic argument than did the analysis for the greedy algorithm.

The main component of the analysis is the following technical
lemma.

LEMMA 4.8. Let X;t) be the number of requests that come to the
Pj on time step t. Then for any time interval I = [T, T +{) within a

given phase, we have Pr[Zf:f_l X;t) > gt/4] < el

PROOF. Say Z; ; is an indicator random variable which is 1 if

request i goes to server j. Then the sum Y; := ZtT:%_l

of Z; j’s for Im different values of i. Since Pr[Z; ; = 1] is trivially
1/m, it is easy to see that E[Y;] = £. However, for a given j, the
random variables {Z; ;} are (highly) not independent. In particular,
if the same chunk is requested over and over again, the requests to
it can only go to one of two queues.

Since the requests under consideration end up in {P;} queues,
there must be a prior request g’ to the same chunk at some earlier
time within the same phase. If the most recent such request takes
place in time interval I = [T, T + ¢), we call g a fresh request;
otherwise (if ¢’ takes place before time T), we call g a stale request.
Note that the definition of fresh and stale is dependent on T and ¢.

Each of the £m requests is either fresh or stale. First consider
fresh requests. Note that the fresh requests are routed according
to their cuckoo hashing results from a prior step which was also
within the interval under consideration. According to Theorem
4.2, at most O(1) requests can have their cuckoo hash result be a
particular server at any time step. Therefore, at most O(¢) fresh
requests can be routed to a particular queue P; within an interval
of length I.

The stale requests, on the other hand, are all to different chunks
with one another. Thus, each stale request independently has prob-
ability at most 2/m of being placed in queue P; (indeed, it has
probability at most 2/m that the chunk x being accessed satis-
fies j € {h1(x), ha(x)}). Suppose there are w stale requests, and
Hy, ..., H,, are the 0/1 random variable representing whether each
stale request hashes to server j (i.e., j € {h1(x), h2(x)}). From a
Chernoff Bound we know that

w
Z H; > 6¢
i=1
where § =3fm/w -1 > 2.
Summarizing, for the fresh requests, the summation of Z; js is
less or equal than O(?); for the stale requests, the Zj js sum to at
most Zi‘“:’l Hj, which is at most 6¢ with probability 1—e~ !, Therefore,
using the fact that g is sufficiently large as a positive constant, we
have

X;t) is a sum

Pr <2/ +1) <t

T+£-1

> xi 29[/4] <e .

t=T

Pr

327

SPAA 24, June 17-21, 2024, Nantes, France

O

Lemma 4.8 shows that for any queue Pj, in any time period, it is
not likely to have too many requests. We use this to obtain a bound
on expected average latency.

PROPOSITION 4.9. The expected average latency of the delayed
cuckoo hashing algorithm is O(1).

Proor. For requests routed to servers Q;, the expected average
latency is at most O(1) by the same argument of Theorem 3.1.

Thus it suffices to analyze requests routed to servers P;. We
will show that each such request has probability at most e~ (k)
of having latency at least k — thus, the expected latency of such a
request is O(1), as desired.

Consider a request that is placed in server P; at time ¢ and that
has latency at least some value k. Let t —¢—1 be the most recent time
at which server P; was empty. Then, during time interval [t - £, ),
Pj processed gf/4 requests and still ended up with k unprocessed
requests. This means that, during time interval [t — ¢, t), the total
number of requests that were sent to P; was at least gf/4 + k. It
follows that there exists some £’ = max(¢, 4k/g) > Q(k) such that,
during time interval [t —¢’, t), at least g¢’ /4 requests were routed to
Pj. By Lemma 4.8 and the union bound, the probability of any such
¢’ existing is, for a given queue Pj, at most Xy o (k) et = e~k

In order for a given request to some chunk x to be routed to
a Pj-queue and have latency at least k, at least one of Py () or
P, (x) must experience this e_Q(k)—probabihty event. Thus, for
any given request and any given k, the probability that the request
experiences latency at least k in some server P; is at most e~ k),
This completes the proof. O

5 LOWER BOUNDS

In this section, we prove three lower bounds. The first bound,
which is essentially a reinterpretation of Vocking’s now classical
power-of-d-choices lower bound [33], shows that queues of length
Q(loglog m) are necessary in any system that wishes to reject O(1)
requests, on average, per time step. This means that delayed cuckoo
routing is optimal for both queue length and maximum latency.

THEOREM 5.1. With constant replication d = O(1) and constant
server capacity g = O(1), if the expected rejection rate is O(1/m), the
length of the queue must be Q(loglogm).

Proor. Consider a single time step in which m requests are
made to independently random chunks (from a sufficiently large
universe of chunks). From Theorem 2 of [33], any online algorithm
for placing m balls into m bins, where each ball has d = O(1) bin
choices drawn from some distribution over [m]d, we have with
probability 1—0(1) that there exists a bin that receives Q(loglog m)
balls. This means that, in our problem, some server will receive at
least Q(loglog m) requests in the first time step. If the length of the
queue is o(log log m), there will be Q(loglog m) requests that are
rejected. This implies a rejection rate of Q((loglogm)/m), which
is a contradiction. O

Next we show that, in general, one cannot hope for a better-than-
polynomial rejection rate. This captures a sense in which both of
our algorithms are optimal.
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THEOREM 5.2. With constant replication d = O(1) and constant
server processing rate g = O(1), the expected rejection rate is at least
1/ mO)

PROOF. Suppose that the number of distinct chunks is n > m® (1)

and consider a set S of m i.i.d. chunks drawn uniformly at random.
Because n > m®(1), we have with probability 1 — 1/n®(1) that the
m i.i.d. chunks are distinct (if they are not, say that a sampling
error has occurred and abort the construction). Consider the event
E that the first gd + 1 chunks have completely identical positions
for their replications. The probability of this happening is at least
1/m94 = 1/mPM (since the chunks are i.i.d., and so their d choices
are i.i.d. from some distribution over [m]d, and the distribution
over [m]? with smallest collision probability is the uniform one).
Since the probability of a sampling error is 1/m® (1) the probability
of the event E’ that E occurs without any sampling errors is at least
l/mo(l) - l/m“’(l) > l/mo(l). If we condition on E’, then on
every time step, there are d positions that collectively consume at
most gd requests but receive at least > gd + 1 requests. This implies
that, conditioning on E’, the rejection rate is at least Q(1/m). Since
E’ occurs with probability 1/ mP() | the expected rejection rate
overall is at least 1/mO(D+1 = 1/,O()

]

Our final lower bound considers the possibility that a so-called
time-step-isolated load-balancing strategy could achieve strong
guarantees. A strategy is said to be time-step isolated if, with each
time step, it makes its routing decisions based only on the requests
made during that time step (and not based on information about
which requests are in queues at the beginning of the time step,
or more generally, information about what occurred in past time
steps).

We show that, somewhat surprisingly, time-step isolated strate-
gies fail even in the setting where the same sequence of m chunks
is accessed over and over again; and, in fact, even in the setting
where queue length is infinite.

LEMMA 5.3. Consider any time-step isolated strategy with d =
O(1). Let o be a sequence of m random chunks (from some sufficiently
large universe) that is used as the request sequence on time step. With
probability 1 — o(1) (where the randomness comes from the choice
of which servers store which chunks), there exists some bin j € [m]
that the time-step isolated strategy sends Q(loglogm) balls to, on
average, per time step.

We remark that Lemma 5.3 also has a natural alternative interpre-
tation. Suppose that every day, m requests are made and are routed
to servers using d random choices for each request; and suppose
that our goal over time is to route the requests in such a way that
there is no single server that receives w(1) average load per day
(note that we don’t care about worst-case load on a particular day
at all here, we just want to assign loads fairly over time). Lemma
5.3 says that, if the routing on each day is performed in an online
fashion using only information from that day, then this seemingly
simple load-balancing problem is impossible.

ProOF. Suppose for contradiction that every in j € [m] receives
an average load of o(log log m) requests per day. Then we will prove
the existence of an online d-choice balls-and-bins strategy A that
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places m balls into m bins with maximum load o(loglog m) — this,
of course, would contradict Vocking’s lower bound (Theorem 2 of
(33]).

Let A denote the balls-and-bins strategy used in each time step
of the time-step-isolated algorithm from the lemma statement. Let
o = (x1, %2, ...,Xm) be the sequence of m chunks (a.k.a. balls) that
is accessed over and over again, and let hq (x;), ha(x;), . .., hg(xi)
denote the d servers (a.k.a. bins) where each chunk x; is stored. For
each chunk x;, and j € [d], let

pi,j = Pr[A(o) routes x; to hj(x;)].

Then we can construct a new online balls-and-bins strategy A’
that works as follows on the same sequence o = (x1,x2, ..., Xm)
of ball arrivals: when choosing where to place ball x;, it simply
computes pj 1, pi2, ..., p;iq (Which depends only on x1, x, . .., xi),
and places the ball in bin hy (x) where k = argmax; p; ;.

To bound the maximum load achieved by A’, observe that A’
only places a ball x; in bin Ay (x;) if

Pik 2 1/d.
Thus, if A’ places s balls into some bin b, then the same bin b

satisfies
D07 pij-Tlhi(x) = b] > s/d.
ie[m] je[d]
However, this implies that A’ places, in expectation, at least s/d
balls in bin b. We know from standard balls-and-bins lower bounds
[33] that A’ must (with high probability over o) place at least
Q(loglog m) balls into some bin. It follows that (with high proba-
bility over o), there is some bin that, over time, receives an average
of at least Q(loglog m) balls from A’ per time step.
m]

As an immediate corollary, we get the following:

COROLLARY 5.4. It is impossible for a time-step-isolated strategy
to achieve d = O(1), g = O(1), and a rejection rate of O(1/m).

6 RELATED WORK

The work in this paper is related to a diverse set of well-studied
problems in the areas of load-balancing, queuing theory, balls-into-
bins, and hashing.

Distributed key-value stores have been designed both for academia
and commercial use [14, 16, 19, 20, 32, 36]. Most of this work is
empirical and finds that handling online requests often does lead
to load-balancing challenges [2, 13]. The most closely related work
to ours is recent work by Wang et. al [34] (at PPoPP’23) which con-
siders this problem, but in the case of d = 1 — that is, each chunk
lives on at most one server and there is no replication. They show
that when there is no replication and with a constant processing
rate g = O(1), no policy can achieve a rejection rate of o(1). This
leads them to consider a relaxation in which chunks can be moved
over time from heavily loaded servers to lightly loaded ones and
design a policy to achieve a small rejection rate in that manner.

Another model which considers load-balancing of requests that
arrive online is the supermarket model [15, 24, 25, 31]. In this model,
requests arrive at some stochastic rate (usually Poisson arrivals are
assumed) and can be routed to any server. This research often
considers the strategy where the incoming request looks at a small
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number d of (random) servers and is routed to the server with the
smallest queue among those — one can think of this as a queuing-
theory version of the power of d choices. The stochastic arrivals
of requests, and the fact that each request picks d random choices
independently of past requests, means that the supermarket model
cannot be used to address adversarial settings such as ours where
the main technical challenge is reappearance dependencies.

Finally, balls into bins problems have been studied extensively
with the power of d choices, starting from the classic paper by Azar
et. al [3] which considers the task of assigning n balls to n bins,
and then extended in many different directions by many different
authors [1, 5, 10, 17, 21, 23, 26-28, 33, 35].

The most relevant line of balls-and-bins research to our con-
text is work that deals with balls being inserted, deleted, and then
(potentially) reinserted over time [5, 7, 11, 33]. In this setting, an
oblivious adversary performs a sequence of ball insertions and
deletions, where each ball x is associated with d random bins
h1(x), ha(x), ..., hg(x) € [m], and where the total number of balls
in the system is never permitted to exceed some parameter k. The
goal is to place balls in such a way that the maximum load across the
bins stays small (close to k/m, ideally plus at most a polylogarith-
mic or doubly logarithmic term). This setting has yielded positive
results in the cases where either k = m [11] or k = o(logm) [7],
and has led to a surprising negative result in the case of k > m [5].
The negative result, in particular, which was shown at FOCS’23 by
Bansal and Kuszmaul [5], says that in the heavily loaded case of
k > m (and specifically m = O(1)), almost all natural algorithms
(specifically any so-called id-oblivious algorithm) fail to achieve
good results in this setting — that is, there exists workloads that
force the fullest bin to have k(1) more balls than the average load.
Our results make use of quite different techniques from this line of
work [5, 7, 11], and tackle reappearance dependencies that take a
somewhat different form (notably, the same “ball” in our setting can
be reinserted before it has even left the current queue), but nonethe-
less, all of these results can be viewed as part of a broader emerging
theme: that reappearance dependencies can turn relatively simple
stochastic problems into interesting and rich algorithmic problems
which, in turn, often require the development of new algorithmic
and analytical techniques.
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