
Distributed Load Balancing in the Face of Reappearance
Dependencies

Kunal Agrawal
Washington University in St. Louis

St. Louis, Missouri, USA
kunal@wustl.edu

William Kuszmaull
Harvard University

Cambridge, Massachusetts, USA
william.kuszmaul@gmail.com

Zhe Wang
FoundationDB

Cupertino, California, USA
zhewang.kakaiu@gmail.com

Jinhao Zhao
Washington University in St. Louis

St. Louis, Missouri, USA
jinhaoz@wustl.edu

ABSTRACT

We consider the problem of load-balancing on distributed databases.

We assume that data is divided into chunks and each chunk can

be replicated on a constant number 3 of servers. When a request

arrives, it is routed to one of the servers that contains the relevant

chunk. Each server may store outstanding requests in a bounded

queue and requests may be rejected if the queue is full. The goal is

to design strategies for data distribution and request routing that

minimize both the rejection rate and the average request latency.

What makes this problem technically di�cult is reappearance

dependencies: if a chunk G is accessed at multiple di�erent time

steps, then the set of 3 servers that it can be routed to is the same

each time it is accessed. This is a substantial departure from classical

balls-and-bins settings where each ball arrival introduces fresh

randomness into the system.

We show that, with new algorithmic and analytical approaches,

it is possible to overcome reappearance dependencies and construct

algorithms with optimal rejection rate, latency, and queue size.

CCS CONCEPTS

• Theory of computation→ Distributed algorithms; Online al-

gorithms.

KEYWORDS

Distributed key-value stores; Balls into bins; Power of 3 choices;

Load balancing

ACM Reference Format:

Kunal Agrawal, William Kuszmaull, Zhe Wang, and Jinhao Zhao. 2024.

Distributed Load Balancing in the Face of Reappearance Dependencies. In

Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA ’24), June 17–21, 2024, Nantes, France. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3626183.3659968

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SPAA ’24, June 17–21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3659968

1 INTRODUCTION

Distributed databases are widely deployed in today’s systems in

cloud applications and �le systems. In these systems, a large amount

of data is distributed across many servers. When a client requests

a particular data item, the request is routed by a load-balancing

algorithm to (one of the) server(s) where the item is stored. Each

server has a queue to store outstanding requests, and is able to

process 6 = $ (1) requests from the queue per time step. If the

size of the queue ever exceeds some �xed queue length @, then the

request at the end of the queue is rejected.

The goal of the load-balancing algorithm is to simultaneously

achieve high throughput and low latency. High throughput

means that only a very small fraction of requests are rejected. Low

latency means clients don’t have to wait for a long time for their

request to be processed (i.e., requests do not spend many time steps

in a queue). Most prior theoretical work on this topic makes sto-

chastic assumptions on the arrival pattern of requests [10, 15, 17,

21, 22, 25, 27, 28, 35].

In this paper, we will analyze this problem under adversarial

assumptions. Suppose there are< servers and data is cut up into

= (immutable) chunks—each chunk is replicated across 3 = $ (1)

di�erent (typically random) servers.1 At each time step, up to<

requests can arrive from the clients, each to a unique chunk. The

client requests are generated by an oblivious adversary, who knows

the load balancing algorithm, and who does not know the random

bits used by the load-balancing and replication algorithms. In order

to handle the oblivious adversary, the obvious approach is to dis-

tribute the chunks to servers in some random fashion. Under these

circumstances, we would like to design a strategy for assigning

chunks to servers that have an average rejection rate of at most

1/poly< (for a polynomial of our choice), average latency $ (1),

and a worst-case latency of at most polylog<.

What makes this setting interesting is the interactions between

di�erent time steps. Consider, for example, the case of 3 = 1 (no

replication), and consider the workload in which the same set (

of< items is accessed on every time step. At �rst, this may seem

�ne—most items are assigned to servers that receive only $ (1)

other requests. But, over time, the correlations between time steps

cause a problem: the servers that receive more than 6 (processing

rate) requests on time step 1 also receive more than 6 requests on

1Each chunk contains multiple data items.

SPAA ’24, June 17–21, 2024, Nantes, France Kunal Agrawal, William Kuszmaull, Zhe Wang, & Jinhao Zhao

time step 2, time step 3, and so on. These oversubscribed servers,

which represent a constant fraction of all servers, will quickly �ll up

their queues (no matter how large the queue-size is!). In the steady

state, a constant fraction of requests will end up being rejected. This

simple argument, which was formalized in recent work by [34],

means that it is impossible to achieve a rejection rate of > (1) in the

3 = 1 case.

What is not clear, however, is whether it may be possible to

achieve strong guarantees using replication 3 > 1. Here, there

is a good reason to be optimistic: for many allocation problems,

there are power-of-two-choices phenomena [3, 6, 8, 9, 11, 12, 15,

25, 30, 33], where having even just a few choices for where to

place/route/store objects yields signi�cantly better results than

having only a single choice. At the same time, there is also a reason

to be pessimistic: these same allocation results often do not extend

to adversarial settings, where the same object/request can be in-

serted/accessed multiple times by an oblivious adversary (we will

discuss this further in a moment).

Relationship to balls and bins, and why oblivious adversaries

are hard. Before we dive into our results, it is helpful to understand

the relationship between our problem and the problem of classical

balls-and-bins load balancing [1, 25]. We can think of the< queues

in our problem as bins that collect balls (i.e., client requests that

have been routed to that server). Each ball can be identi�ed by the

chunk that is accessing: if a ball accesses some chunk 8 , then use

ℎ1 (8), ℎ2 (8), . . . , ℎ3 (8) to denote the set of bins (i.e., servers) where

the ball can go. On each time step, a set of $ (<) distinct balls are

added to the system and routed to bins via the load-balancing algo-

rithm; and then, after this occurs, each bin deletes up to 6 = $ (1)

balls from its contents. The main goal (achieving a low rejection

rate) translates to making sure that, at any given moment, none of

the bins contain more than, say, polylog< (or, ideally even fewer)

balls.

There is a signi�cant technical di�erence, however, between the

above balls-and-bins problem and others that are commonly studied

in the literature [3, 6, 8, 9, 11, 12, 15, 25, 30, 33]. In our problem, if

the same ball (i.e., chunk) 8 is accessed in multiple time steps, then

the set of random servers ℎ1 (8), ℎ2 (8), . . . , ℎ3 (8) that it is capable of

being routed to will be the same each time it is accessed. This creates

unfortunate reappearance dependencies: when a ball 8 is accessed,

we cannot assume that the state of the queues is independent of

the ball’s random bits (i.e., of ℎ1 (8), ℎ2 (8), . . . , ℎ3 (8)), because those

random bits may have already a�ected the state of the system in

the past. In fact, this is not merely an analytical issue—in the case

of 3 = 1, it was precisely what led to the impossibility result of [34].

The problem of reappearance dependencies has also made a no-

table appearance in recent work on the classical balls-and-bins prob-

lem [4–6]. Consider the task of inserting/deleting balls into< bins,

with up to : k< balls present at a time, and where each ball has 2

bins that it can choose from.2 A celebrated result by Berenbrink,

Czumaj, Steger, and Vöcking [9] says that, in the insertion-only

setting, it is possible to assign balls to bins such that all < bins

have almost exactly equal loads. Although the balls-and-bins result

2Typically, in the ball-and-bins literature,< is used to denote the number of balls and
= is typically used for the number of bins. However, for notational consistency, we
adopt< as the number of bins and : as the number of balls.

does extend to stochastic settings where balls are inserted/deleted

at random, it has recently been shown to provably fail in settings

where balls can be inserted, deleted, and reinserted (after being

deleted) by an oblivious adversary (and where : k<). This quite

surprising failure result, which was shown by Bansal and Kuszmaul

at FOCS’22 [5], ends up being due to reappearance dependencies:

because balls can be inserted, deleted, and later reinserted, the ran-

dom bits for a ball (when it is reinserted) will have already impacted

the state of the system in the past (when it was previously inserted).

These seemingly minor dependencies turn out to enable adversarial

attacks (even by an oblivious adversary) that cripple the classical

power-of-two-choices result.

Thus, it is not clear, a priori, whether we should expect a pos-

itive or negative result in our setting. On one hand, Bansal and

Kuszmaul’s impossibility result does not appear to extend to our

problem. On the other hand, the reappearance dependencies in our

problem are in some ways even more severe than in the classical

one. (For example, in the 3 = 1 case of classical balls-and-bins,

reappearance dependencies do not a�ect the expected maximum

load across the bins.) The question of whether these dependencies

can be overcome to achieve positive results is the main topic of this

paper.

Our results: Handling reappearance dependencies with algo-

rithmic and analytical techniques. We begin with two positive

results. The �rst result (Section 3) considers the greedy algorithm,

which simply routes each client request 8 to the least-loaded server

out of its 3 choices ℎ1 (8), ℎ2 (8), . . . , ℎ3 (8). We prove that there exist

positive constants 6,3 such that this strategy o�ers the following

guarantee: assuming that each queue has capacity @ = log< + 1,

that each server processes 6 requests per time step, and that each

chunk is stored in 3 random locations, the greedy load-balancing

algorithm achieves an expected rejection rate of $ (1/poly<) and

an expected average latency of $ (1). Our analysis of the greedy

algorithm can be viewed as a new variation on the classical layered-

induction technique [3]; the di�erence is that, in order to handle

reappearance dependencies, we restructure the argument in such a

way that we are able to apply, in one part of the argument, a very

broad union bound—so broad, that we are able to wipe away any

possible e�ects of reappearance dependencies.

The second result (Section 4) introduces a new load-balancing al-

gorithm that we call delayed cuckoo routing. The delayed cuckoo

routing algorithm is somewhat more involved than its greedy coun-

terpart, and requires that the load balancing algorithm maintain

an additional data structure beyond the queues. The bene�t of the

algorithm, however, is that it o�ers an even stronger guarantee.

Using 2-way replication, constant processing rate 6, and queues

of size just @ = $ (log log<), the algorithm is once again able to

achieve a rejection rate is 1/poly< and expected average latency

$ (1).

Part of what makes delayed cuckoo routing interesting is that the

guarantees it achieves are provably optimal. We show in Section 5

that any load balancing algorithm using 3 = $ (1) and 6 = $ (1) and

achieving expected rejection rate $ (1/<) must use queues of size

@ = ¬(log log<). We also show that any load balancing algorithm

with 3 = $ (1) and 6 = $ (1) must have an expected rejection rate

Distributed Load Balancing in the Face of Reappearance Dependencies SPAA ’24, June 17–21, 2024, Nantes, France

of at least 1/poly<. This means that the rejection rates achieved

by both of our algorithms are optimal.

Our �nal result o�ers a simple but intriguing impossibility result.

Suppose that, within each time step, we wish to make routing

decisions that are independent of the requestsmade in previous time

steps. That is, we wish to handle the reappearance dependencies

between time steps by simply making our routing decisions within

a time step (i.e., which of the 3 choices to use for each request)

random enough that they do not interfere with choices made in

other time steps. We show that, somewhat surprisingly, such an

algorithm is provably non-viable – even in the setting where the

set of requests that are made is the same across time steps. This

lower bound comes with a balls-and-bins interpretation that will

likely be of independent interest.

2 PRELIMINARIES

In this section, we describe our model and optimization criteria.

Problem de�nition. We assume that all the data is divided into =

chunks (each chunk potentially contains multiple keys) and stored

on a total of< servers where each chunk is stored (replicated) on

3 = $ (1) servers. On every time step, up to< requests are generated

by clients to unique chunks. When a client requests some data, this

request can be routed to any server that has the corresponding

chunk that stores the data. Each server has a FIFO queue of some

bounded queue length @ and requests are stored in this queue. On

every time step, a server satis�es 6 = $ (1) requests, where 6 is

known as the processing rate. At any given moment, the number

of unprocessed requests in a server’s queue is referred to as the

server’s backlog. The server must maintain a backlog of at most

@ (the maximum queue length), and in order to do this the server

may sometimes choose to reject a request.

Given,3,6,<,@, there are three algorithmic knobs. The �rst knob

is the choice of where each chunk’s 3 replicants reside – our al-

gorithms will assume that each replicant is simply assigned to a

random server. The second and more important knob is the load-

balancing algorithm that routes each request to a server. Note that

any algorithmwe design must be online (even within the< requests

that are performed during a time step), which is to say that each

time a request is made, it is routed immediately to a server without

any knowledge of future requests. Finally, the third (and least im-

portant) knob is the choice of when to reject requests – in principle,

a server may choose to reject a request even if the server’s queue

is not full. As we shall see, this can be helpful for handling rare

failure events in which we need to “reset” the system.

Optimization criteria. There are two goals for the design of a

good system. The �rst goal is to maximize throughput – in other

words, to minimize the fraction of requests that are rejected, also

known as the rejection rate. The second goal is to minimize both

average and worst case latency. The maximum latency is nominally

the length of the longest queue. The average latency, on the other

hand, is proportional to the average backlog across the servers over

time.

Formally, we de�ne these objectives as follows.

De�nition 2.1 (Rejection Rate). Given a sequence f of requests

arriving over time,)� (f) denotes the number of requests that

are accepted by algorithm � on sequence f . The rejection rate is

(|f | −)� (f))/|f |.

Our goal is to design systems that achieve expected rejection

rate$ (1/poly<). (And, as we shall see in Section 5, this is optimal.)

De�nition 2.2 (Latency). Given a sequence f of requests arriv-

ing over time, !� (f8) denotes the number of time steps before

this request is satis�ed by the server. The maximum latency is

max8 !� (f8), and the average latency is
∑

8 !� (f8)/|f |.

In our systems, our goal is to design systemswhere themaximum

latency is logarithmic or sub-logarithmic in < and the average

latency of$ (1). Our delayed cuckoo routing algorithm, in particular,

will achieve $ (log log<) maximum latency, which will turn out to

be optimal.

Basic observations. We conclude the section with some basic

observations. First note that, if the processing rate 6 were less than

1 (say, 1 − ¬(1)), then it would be impossible to process requests at

the rate that they arrive. Therefore, we are only interested in 6 g 1,

and our goal will be to o�er guarantees for 6 = $ (1). Also observe

that the constraint on requests within a timestep – namely, that

they access a distinct set of chunks – is necessary. If l (1) requests

could be made to a single chunk, and those requests were repeated

on every time step, then the 3 = $ (1) servers that store that chunk

would be forced to reject most of the requests. Finally, since prior

work has already ruled out the possibility of deterministic solutions

to our problem [34], we cannot hope for a rejection rate of 0. We

can, however, hope for a rejection rate of > (1), or more concretely,

as we will achieve in later sections, 1/poly<.

3 ANALYSIS OF GREEDY ALGORITHM

We now analyze the greedy algorithm, which routes each request

to the queue with the least backlog out of the 3 queues that can

handle the request. If a queue ever over�ows, then it rejects all of

its requests. Additionally, for some positive constant 2 , the queues

reject all of their outstanding requests (clearing out the system)

once every<2 steps.

The main result of the section will be the following:

Theorem 3.1. For any positive constant 2 > 0, there exists 3,6 =

$ (1) such that the following holds. Supposing replication 3 , server

processing rate6, and queue length@ = log<+1, the greedy algorithm

has expected rejection rate $ (1/<2−1), maximum latency at most

$ (log<), and expected average latency at most $ (1).

We shall assume throughout the section that 3 is a su�ciently

large positive constant with respect to 2 and that 6 is a su�ciently

large positive constant with respect to 3 .

In order to prove this theorem, we will argue that the distribu-

tion of the number of outstanding requests in the queues obeys a

distribution — we will call this a safe distribution.

De�nition 3.2 (Safe distribution of backlogs). Consider the number

of requests in the queues of< servers. The distribution is said to

be safe if for all 1 f 9 f log<, at most <
2Ġ

queues have more

than 9 requests. Formally, let ?8 be the number of servers with

backlog exactly 8 . We know that
∑∞
8=0 ?8 =<. The balls are in a safe

distribution if
∑∞
8=9+1 ?8 f

<
2Ġ

for all 9 .

SPAA ’24, June 17–21, 2024, Nantes, France Kunal Agrawal, William Kuszmaull, Zhe Wang, & Jinhao Zhao

We will prove by induction that, with high probability, the distri-

bution of queue backlogs is guaranteed to be in a safe distribution

at any given moment.

As noted earlier, what makes this analysis di�cult are reappear-

ance dependencies. Consider a chunk G that is accessed at some time

C , and let us refer to the servers where G ’s replicants are stored

as G ’s hashes. Because G may have also been accessed in the past

(prior to time C), the current state of the system cannot be said to

be independent of G ’s random hashes. Even if we assume that we

are in a safe distribution (i.e., at most</29 servers have backlog

g 9), the actual set (9 of servers that have backlog g 9 for some 9

is a random variable that depends on G ’s hashes! Even if we can

guarantee that |(9 | is small, how can we guarantee that it is not

adversarial against G (so that, for example, all of G ’s hashes end up

being in (9)?

A key insight in the analysis will be that, even if the set (9
is adversarial against some chunk G , it cannot simultaneously be

adversarial for all (or even a large fraction) of the< requests that are

made in a given time step. In fact, by considering all of these requests

together, we will be able to apply a union bound over all possible

options for (9 in order to argue that, even if (9 were determined

adversarially, it would not prevent us from completing our analysis.

This is how we will get around reappearance dependencies.

The main union bound in the analysis is captured by the follow-

ing lemma.

Lemma 3.3. Consider any set of <6 chunks � = {G1, G2, . . . , G</6},

and consider any : f </6. We have with probability 1−$ (1/<32+2)

that every subset � ′ ¦ � of size : has the following property: the

number of distinct servers that contain at least one replicant of at

least one chunk in � ′ is greater than 4: .

Proof. Suppose that all of the replicants for � ′ are stored in

some set (of 4: servers. There are
(<
4:

)

ways to choose the servers

(and
(</6
:

)

ways to choose the chunks of � ′. Given the chunks

and the servers, the probability that all the chunks have all their

replications on the servers is

(

4:

<

)3:

.

Therefore, from a union bound, the probability that there exist � ′

and (that violate the lemma is at most

(

<

4:

) (

</6

:

) (

4:

<

)3:

,

which by the bound of binomial coe�cients is at most

44:<4:

(4:)4:
·
4: (</6):

::
·
43::3:

<3:

Using the fact that 6 is a su�ciently large positive constant with

respect to 3 , we can bound the above expression by

1

2¬ (:)
·
(<

:

)5:
·

(

:

<

)3:

.

Using the fact that 3 is also a su�ciently large positive constant,

we can further upper bound our expression by

1

2¬ (:)
·

(

:

<

)3:/2

If : = l (log<), then the �rst multiplicand is sub-polynomial,

and otherwise the second multiplicand is at most $̃ (1/<)3/2 f

$ (1/<32+2). □

We will now show that if the servers are in a safe distribution,

then the safe distribution will be maintained over time with high

probability. We will perform the analysis at the level of time sub-

steps where, on each sub-step, we get</6 requests and each server

consumes 1 request in each sub-step.

Lemma 3.4. Suppose we start a sub-step C with a safe distribution.

Then, at the end of the sub-step, we will still be in a safe distribution

with probability 1 −$ (1/<32+1).

Proof. Consider : =
<
2Ġ
. We prove by induction that, at the

end of the sub-step, there are at most <
2Ġ

queues with more than

9 outstanding requests, from 9 equals 0 to log<. The base case of

9 = 0 is trivial.

Each step of the induction will apply Lemma 3.3, adding an

additional $ (1/<32+2) to our total probability of failure. thus, over

the $ (log<) induction steps, the total failure probability will be at

most $ (1/<32+1).

Let the servers with more than 8 requests be (
(C)
8 before sub-step,

and be (
(C+1)
8 after. We know by assumption |(

(C)
9 | f <

2Ġ
because

the queues are initially in a safe distribution. Moreover, by the

inductive hypothesis, |(
(C+1)
9−1 | f <

2Ġ−1
(with high probability).

For a serverF ∈ (
(C+1)
9 , consider whetherF has requests among

the</6 new-coming requests.

Case 1:F has at least one new-coming request. Let the last

request (in time) that comes toF be G . We claim that G must have

all its 3 replications in (
(C+1)
9−1 . If not so, it has a replicationF ′ with

queue length at most 9 − 2 at time C + 1 (so when G arrives, the

length of the queue on F ′ is at most 9 − 2), and yet it goes to F

which has queue length 9 at time C +1 (so when G arrives, the length

of the queue onF is at least 9 − 1). This means G should chooseF ′

instead ofF , which is contradictory. According to Lemma 3.3, with

probability 1−$ (1/<32+2), the number of requests (corresponding

to chunks) of this case is no more than 1
4 · |(

(C+1)
9−1 | f <

2Ġ+1
. Thus the

number of serversF in this case is also at most 1
4 · |(

(C+1)
9−1 | f <

2Ġ+1
.

Case 2:F has no new-coming requests. This meansF ∈ (
(C)
9+1

because the server consumes a request. We know by induction that

|(
(C)
9+1 | f

<
2Ġ+1

, so the number of servers F in this case is at most
<
2Ġ+1

.

Each server in (
(C+1)
9 is in one the two cases. Thus (unless the

inductive hypothesis fails), we have with high probability that

|(
(C+1)
9 | f <

2Ġ+1
+ <

2Ġ+1
=

<
2Ġ
, which completes the induction step.

Since there are $ (log<) induction steps, and since each has at

most $ (1/<32+2) probability of failing, the entire lemma holds

with probability 1 −$ (log</<32+2) g 1 −$ (1/<32+1).

□

Distributed Load Balancing in the Face of Reappearance Dependencies SPAA ’24, June 17–21, 2024, Nantes, France

Finally, we can complete the proof of Theorem 3.1.

Proof of Theorem 3.1. The worst-case latency is trivially at

most the queue size of log< + 1. Therefore we focus on analyzing

rejection rate and average latency.

Recall that the queues are �ushed every<2 time steps. Consider

the time interval between two �ushes, and call it a phase – it

su�ces to prove that our desired bounds hold within each phase.3

By Lemma 3.4, we have probability at least 1 −$ (<2/<32+1) g

1 − $ (1/<22+1) that every sub-step in the phase ends in a safe

distribution. In the 1/<22+1-probability event that there is ever a

non-safe distribution during the phase, we can feel free to simply

think of all<2+1 of the requests in the phase as having been rejected

– this still only adds 1/<2 to the expected rejection rate during the

phase. On the other hand, assuming that every sub-step in the

phase ends in a safe distribution, then the only rejections that occur

during the phase are in the �nal step where all queues are �ushed.

Since the queues are in a safe distribution when they are �ushed, the

total number of �ushed requests is $ (<) – these �ushes therefore

contribute at most $ (1/<2−1) to the overall rejection rate. Putting

the pieces together, the total expected rejection rate during the

phase is at most $ (1/<2−1).

Finally, to analyze average latency, it su�ces to show that the

average queue length is at most $ (1). Since, at any given mo-

ment, the probability of being in a safe distribution is very high

(g 1 −$ (1/<22+1)), the contribution of steps that are not in safe

distributions is negligible. On the other hand, for steps that are in

safe distributions, the average queue length is at most the number

of requests present in queues (at most< +</2 +</4 + · · · f 2<)

divided by the number of queues<. Thus, the average queue-length

overall, at the end of each time sub-step, is at most 2 + > (1). This,

in turn, implies an expected average latency of $ (1). □

4 REDUCING MAXIMUM LATENCY VIA

DELAYED CUCKOO ROUTING

We saw in the previous section that the simple greedy algorithm

is able to provide rejection rate of $ (1/poly<), expected average

latency$ (1) andmaximum latency of$ (log<) using queues of size

Θ(log<). We now consider whether we can design a strategy that

provides a better bound on maximum latency (and thus also queue

size) by leveraging past information about requests. As we shall

discuss in Section 5, classical balls-and-bins lower bounds prohibit

the possibility of using queues of size > (log log<). Thus, our target

is to design a strategy that can use queues of size $ (log log<).

In this section, we will describe a strategy called delayed cuckoo

routing that uses cuckoo hashing as a critical subroutine. The in-

tuition behind this strategy can be understood by considering two

extreme cases. First, say that the requested chunks are not repeated

frequently: that is, across nearby time steps, the clients tend to

request di�erent chunks. In this case, reappearance dependencies

are not a problem, and greedy algorithm already guarantees a max-

imum latency of $ (log log<). This suggests that, intuitively, the

worrying case is when the same< chunks are requested over and

over again. However, in this case, we can use cuckoo hashing to

3These periodic �ushes allow us to bound the impact of low probability events which
might cause us to leave the safe distribution since these can only break the system
until the next �ush.

pre-compute where these requests should be routed, guaranteeing

that each server only receives a constant number of requests per

time step. Since, in general, we will not be in either of these ex-

tremes, we will design a strategy that combines the two to handle

any workload.

Background on Cuckoo Hashing

Cuckoo hashing, which was �rst introduced by Pagh and Rodler

in 2001 [29], is a technique for assigning a set of up to, say,</3

(or, more generally,</2 − ¬(<)) items to< positions so that each

position receives at most one item, and such that each item G is

in one of two random positions ℎ1 (G) ∈ [<] and ℎ2 (G) ∈ [<]

that it hashes to. Although classical Cuckoo hashing has a Θ(1/<)

failure probability, the probability can be reduced to 1/poly< by

allowing for$ (1) items to be excluded from the allocation [18] (this

is known as cuckoo hashing with a stash). If one allocates these

$ (1) items arbitrarily, then every position still receives at most

$ (1) items – this leads to the following formulation of Krisch et

al.’s [18] analysis of cuckoo hashing with a stash:

Theorem 4.1 (Cuckoo Hashing with a Stash [18]). Consider

a set (of</3 items, and let ℎ1, ℎ2 be fully random hash functions

mapping each G ∈ (to a random element of {1, 2, . . . ,<}. Let 2 > 0

be an arbitrary positive constant. With probability 1 −$ (1/<2), it is

possible to assign the elements of (to positions in [<] such that each

position receives at most $ (1) elements and such that each element

G ∈ (is in one of positions ℎ1 (G) or ℎ2 (G).

Cuckoo hashing can also be implemented as an online algorithm,

in which items are moved around over time so that, at any given

moment, there is at most one item in each position. However, this

online variant of Cuckoo hashing will not be very helpful to us,

since when a request arrives, we must make an irrevocable and

immediate decision about which server to route it to – i.e., we

cannot change our routing decisions after the fact in the same way

that cuckoo hashing moves around items.

Nonetheless, if we did know the full set of items that were going

to arrive on a given time step, we could use Cuckoo hashing to

perform very good load balancing on the< servers. This is captured

by the following lemma, which follows immediately from applying

Theorem 4.1 three times.

Lemma 4.2. Say we have replication 3 = 2, and let 2 > 0 be a

positive constant. Given< requests to unique chunks, it is possible to

assign them to servers so that, with probability at least 1 −$ (1/<2),

every server receives at most $ (1) requests.

4.1 Delayed Cuckoo routing

We now describe the delayed cuckoo routing, which is a load-

balancing algorithm that uses replication 3 = 2, processing rate

6 = $ (1), and queues of size @ = Θ(log log<). For each chunk G ,

we will use ℎ1 (G) and ℎ2 (G) to indicate the two random servers

where the chunk is stored.

For each time step 8 , let (8 denote the set of chunks that are

accessed in that step, and let)8 denote the assignment that Lemma

4.2 produces on (8 . For each chunk G ∈ (8 , we will use)8 (G) to

denote the server in {1, 2, . . . ,<} that)8 assigns G to.

SPAA ’24, June 17–21, 2024, Nantes, France Kunal Agrawal, William Kuszmaull, Zhe Wang, & Jinhao Zhao

We cannot use)C during time step C because we cannot construct

)C until after we know (C . However, we can use)C to help us make

good routing decisions in the future.

The delayed cuckoo routing algorithm runs in phases of log log<

time steps. During each phase 9 , each server 8 maintains two queues

&8 and %8 of lengths$ (log log<), each of which processes6/4 items

per time step. When a chunk G is requested at some time C , if it is

the �rst time that the chunk has been requested during phase 9 ,

then the request is placed in whichever queue&ℎ1 (G) or&ℎ2 (G) has

fewer items (the request is rejected if both queues are at capacity).

If, on the other hand, the chunk G has already been requested in

the past during phase 9 , then we consider the most recent time

C ′ < C that the chunk G was requested, and we place the request in

queue %)Ī ′ (G) . (If)C ′ experienced as failure event, which by Lemma

4.2 occurs with probability 1 −$ (1/<2), then the request for G is

rejected.)

Additionally, at the beginning of a phase 9 > 1, there may still

be requests queued up in the servers from the previous phase 9 −

1. We move these requests to queues % ′8 and & ′
8 (so now there

are four queues in each server), and we also process 6/4 requests

from each % ′8 and &
′
8 on each step. Since |% ′8 |, |&

′
8 | f $ (log log<)

deterministically, they are guaranteed to be empty by the end of

phase 9 (so long as 6 is a su�ciently large positive constant).

As a minor remark, the reader may notice that each server 8 is

no longer maintaining just a single FIFO queue, but instead (up to)

four FIFO queues. This distinction is only to simplify the analysis,

however. Indeed, if one were to process the items in %8∪&8∪%
′
8 ∪&

′
8

in true FIFO order, it would not change total number of requests

queued at server 8 at any given moment, the rejection rate, or the

average latency achieved.

In the rest of the section, we will prove the following theorem:

Theorem 4.3. Let 2 > 0 be an arbitrary positive constant, let 6 =

$ (1) be a su�ciently large positive constant, and let@ = Θ(log log<)

be a su�ciently large multiple of log log<. Supposing replication

3 = 2, server processing rate 6, and queue length @, the delayed

cuckoo routing strategy has expected rejection rate $ (1/<2), maxi-

mum latency $ (log log<), and expected average latency $ (1).

The bound on maximum latency is immediate from the queue

length @ = $ (log log<). We will split the rest of the section into

two parts, one analyzing expected rejection rate, and one analyzing

expected average latency.

4.2 Bounding the rejection rate

We will now argue that the expected rejection rate of delayed

cuckoo routing is $ (1/<2).

Consider a request A to some chunk G at some time C . We begin

by considering the case where this is the �rst access to G in the

current phase. In this case, there are no reappearance dependencies

to worry about, so we can use standard balls-and-bins arguments

to bound the probability that A is rejected.

Lemma 4.4. If A is the �rst request to G in the current phase, then

the probability of A being rejected is $ (1/<2).

Proof. Let us imagine for a moment that each queue &8 has

unbounded length. It su�ces to show that, with probability at least

1 − $ (1/<2), the number of unprocessed requests in each &8 , at

any given moment, is at most $ (log log<).

Recall that, when a request to a chunk G is placed into a queue

&8 , it is placed into whichever of&ℎ1 (G) or&ℎ2 (G) has fewer unpro-

cessed requests. De�ne @8,C to be the number of requests in queue

&8 at time C .

Now consider an alternative reality in which each chunk G (the

�rst time it is accessed during the phase) is assigned to whichever

of &ℎ1 (G) or &ℎ2 (G) has received fewer total requests during the

phase. And let @′8,C be the total number of requests that queue &8

receives during the phase, in this alternative reality.

Note that the @′8,C values dominate the @8,C values. Indeed, it is

easy to see by induction that @8,C f @′8,C for all 8, C . Thus, if we wish

to prove an upper bound on @8,C , it su�ces to prove an upperbound

on @′8,C .

However, the task of bounding @′8,C is equivalent to a standard

balls-and-bins analysis. A classical result by Berenbrink et al. [9]

says that, if<ℎ balls are placed into< bins, and each ball is placed

in the less-loaded of two random bins, then the fullest bin will

have<ℎ +$ (log log<) balls with probability 1 − 1/poly< (for a

polynomial of our choice). In our case, ℎ = $ (log log<), so we

have that @′8,C f $ (log log<) with high probability. This completes

the proof. □

Next we consider the case where G has already been accessed

in the past, during the current phase. Let C ′ < C be the most recent

time in the past that G was accessed. Recall that, in this case, G is

placed into queue %)Ī ′ (G) – if the cuckoo hash table)C ′ experiences

a failure (which by Lemma 4.2 occurs with probability $ (1/<2)),

then request A is rejected. Otherwise, we claim that queue %)Ī ′ (G) is

guaranteed (deterministically!) to have room for request A without

over�owing.

Lemma 4.5. With probability one, each queue %8 has at most

$ (log log<) requests routed to it during a given phase. Thus, the

queue will never exceed its capacity of $ (log log<).

Proof. Let [C1, C2] be the sequence of log log< time steps that

constitute the current phase. The total number of requests that are

assigned to %8 during the phase is at most
∑

C ∈[C1,C2]

∑

G∈(Ī

I[)C (G) = 8] .

By Lemma 4.2, this is at most
∑

C ∈[C1,C2]

$ (1) f $ (log log<),

as desired. □

Lemma 4.5 tells us that, in the case where G has already been

accessed before in the phase, the only failure mode for G (i.e., the

only case where G can be rejected) is if)C ′ itself fails. Since this

happens with probability $ (1/<2), we have the following lemma:

Lemma 4.6. If a request A is to a chunk G that has already been

accessed previously in the same phase, then the probability of the

request being rejected is $ (1/<2).

Combining together Lemmas 4.4 and 4.6, we arrive at a bound

on the expected overall rejection rate:

Distributed Load Balancing in the Face of Reappearance Dependencies SPAA ’24, June 17–21, 2024, Nantes, France

Proposition 4.7. The expected rejection rate of delayed cuckoo

routing is $ (1/<2).

4.3 Analysis of Average Latency

Finally, we bound the expected average latency of delayed cuckoo

routing. For this, it su�ces to bound the expected average latency

for the requests within a given phase. We remark that the analysis

of average latency in this section requires a much more subtle prob-

abilistic argument than did the analysis for the greedy algorithm.

The main component of the analysis is the following technical

lemma.

Lemma 4.8. Let -
(C)
9 be the number of requests that come to the

% 9 on time step C . Then for any time interval � = [),) + ℓ) within a

given phase, we have Pr[
∑)+ℓ−1
C=) -

(C)
9 g 6ℓ/4] f 4−ℓ .

Proof. Say /8, 9 is an indicator random variable which is 1 if

request 8 goes to server 9 . Then the sum .9 :=
∑)+;−1
C=) -

(C)
9 is a sum

of /8, 9 ’s for ;< di�erent values of 8 . Since Pr[/8, 9 = 1] is trivially

1/<, it is easy to see that E[.9] = ℓ . However, for a given 9 , the

random variables {/8, 9 } are (highly) not independent. In particular,

if the same chunk is requested over and over again, the requests to

it can only go to one of two queues.

Since the requests under consideration end up in {% 9 } queues,

there must be a prior request @′ to the same chunk at some earlier

time within the same phase. If the most recent such request takes

place in time interval � = [),) + ℓ), we call @ a fresh request;

otherwise (if @′ takes place before time)), we call @ a stale request.

Note that the de�nition of fresh and stale is dependent on) and ℓ .

Each of the ℓ< requests is either fresh or stale. First consider

fresh requests. Note that the fresh requests are routed according

to their cuckoo hashing results from a prior step which was also

within the interval under consideration. According to Theorem

4.2, at most $ (1) requests can have their cuckoo hash result be a

particular server at any time step. Therefore, at most $ (ℓ) fresh

requests can be routed to a particular queue % 9 within an interval

of length ; .

The stale requests, on the other hand, are all to di�erent chunks

with one another. Thus, each stale request independently has prob-

ability at most 2/< of being placed in queue % 9 (indeed, it has

probability at most 2/< that the chunk G being accessed satis-

�es 9 ∈ {ℎ1 (G), ℎ2 (G)}). Suppose there are F stale requests, and

�1, . . . , �F are the 0/1 random variable representing whether each

stale request hashes to server 9 (i.e., 9 ∈ {ℎ1 (G), ℎ2 (G)}). From a

Cherno� Bound we know that

Pr

[

F
∑

8=1

�8 g 6ℓ

]

f (4X/(X + 1)X+1)ℓ f 4−ℓ .

where X = 3ℓ</F − 1 g 2.

Summarizing, for the fresh requests, the summation of /8, 9 s is

less or equal than $ (ℓ); for the stale requests, the /8, 9 s sum to at

most
∑F
8=1 �8 , which is at most 6ℓ with probability 1−4−C . Therefore,

using the fact that 6 is su�ciently large as a positive constant, we

have

Pr

[

)+ℓ−1
∑

C=)

-
(C)
9 g 6ℓ/4

]

f 4−ℓ .

□

Lemma 4.8 shows that for any queue % 9 , in any time period, it is

not likely to have too many requests. We use this to obtain a bound

on expected average latency.

Proposition 4.9. The expected average latency of the delayed

cuckoo hashing algorithm is $ (1).

Proof. For requests routed to servers & 9 , the expected average

latency is at most $ (1) by the same argument of Theorem 3.1.

Thus it su�ces to analyze requests routed to servers % 9 . We

will show that each such request has probability at most 4−¬ (:)

of having latency at least : – thus, the expected latency of such a

request is $ (1), as desired.

Consider a request that is placed in server % 9 at time C and that

has latency at least some value : . Let C−ℓ−1 be the most recent time

at which server % 9 was empty. Then, during time interval [C − ℓ, C),

% 9 processed 6ℓ/4 requests and still ended up with : unprocessed

requests. This means that, during time interval [C − ℓ, C), the total

number of requests that were sent to % 9 was at least 6ℓ/4 + : . It

follows that there exists some ℓ′ = max(ℓ, 4:/6) g ¬(:) such that,

during time interval [C −ℓ′, C), at least 6ℓ′/4 requests were routed to

% 9 . By Lemma 4.8 and the union bound, the probability of any such

ℓ′ existing is, for a given queue % 9 , at most
∑

ℓ ′g¬ (:) 4
−ℓ ′

= 4−¬ (:) .

In order for a given request to some chunk G to be routed to

a % 9 -queue and have latency at least : , at least one of %ℎ1 (G) or

%ℎ2 (G) must experience this 4−¬ (:) -probability event. Thus, for

any given request and any given : , the probability that the request

experiences latency at least : in some server % 9 is at most 4−¬ (:) .

This completes the proof. □

5 LOWER BOUNDS

In this section, we prove three lower bounds. The �rst bound,

which is essentially a reinterpretation of Vöcking’s now classical

power-of-3-choices lower bound [33], shows that queues of length

¬(log log<) are necessary in any system that wishes to reject$ (1)

requests, on average, per time step. This means that delayed cuckoo

routing is optimal for both queue length and maximum latency.

Theorem 5.1. With constant replication 3 = $ (1) and constant

server capacity 6 = $ (1), if the expected rejection rate is$ (1/<), the

length of the queue must be ¬(log log<).

Proof. Consider a single time step in which < requests are

made to independently random chunks (from a su�ciently large

universe of chunks). From Theorem 2 of [33], any online algorithm

for placing< balls into< bins, where each ball has 3 = $ (1) bin

choices drawn from some distribution over [<]3 , we have with

probability 1−> (1) that there exists a bin that receives ¬(log log<)

balls. This means that, in our problem, some server will receive at

least ¬(log log<) requests in the �rst time step. If the length of the

queue is > (log log<), there will be ¬(log log<) requests that are

rejected. This implies a rejection rate of ¬((log log<)/<), which

is a contradiction. □

Next we show that, in general, one cannot hope for a better-than-

polynomial rejection rate. This captures a sense in which both of

our algorithms are optimal.

SPAA ’24, June 17–21, 2024, Nantes, France Kunal Agrawal, William Kuszmaull, Zhe Wang, & Jinhao Zhao

Theorem 5.2. With constant replication 3 = $ (1) and constant

server processing rate 6 = $ (1), the expected rejection rate is at least

1/<$ (1) .

Proof. Suppose that the number of distinct chunks is= g <l (1)

and consider a set (of< i.i.d. chunks drawn uniformly at random.

Because = g <l (1) , we have with probability 1 − 1/=l (1) that the

< i.i.d. chunks are distinct (if they are not, say that a sampling

error has occurred and abort the construction). Consider the event

� that the �rst 63 + 1 chunks have completely identical positions

for their replications. The probability of this happening is at least

1/<63
= 1/<$ (1) (since the chunks are i.i.d., and so their 3 choices

are i.i.d. from some distribution over [<]3 , and the distribution

over [<]3 with smallest collision probability is the uniform one).

Since the probability of a sampling error is 1/<l (1) , the probability

of the event �′ that � occurs without any sampling errors is at least

1/<$ (1) − 1/<l (1) g 1/<$ (1) . If we condition on �′, then on

every time step, there are 3 positions that collectively consume at

most 63 requests but receive at least g 63 + 1 requests. This implies

that, conditioning on �′, the rejection rate is at least ¬(1/<). Since

�′ occurs with probability 1/<$ (1) , the expected rejection rate

overall is at least 1/<$ (1)+1
= 1/<$ (1) .

□

Our �nal lower bound considers the possibility that a so-called

time-step-isolated load-balancing strategy could achieve strong

guarantees. A strategy is said to be time-step isolated if, with each

time step, it makes its routing decisions based only on the requests

made during that time step (and not based on information about

which requests are in queues at the beginning of the time step,

or more generally, information about what occurred in past time

steps).

We show that, somewhat surprisingly, time-step isolated strate-

gies fail even in the setting where the same sequence of< chunks

is accessed over and over again; and, in fact, even in the setting

where queue length is in�nite.

Lemma 5.3. Consider any time-step isolated strategy with 3 =

$ (1). Let f be a sequence of< random chunks (from some su�ciently

large universe) that is used as the request sequence on time step. With

probability 1 − > (1) (where the randomness comes from the choice

of which servers store which chunks), there exists some bin 9 ∈ [<]

that the time-step isolated strategy sends ¬(log log<) balls to, on

average, per time step.

We remark that Lemma 5.3 also has a natural alternative interpre-

tation. Suppose that every day,< requests are made and are routed

to servers using 3 random choices for each request; and suppose

that our goal over time is to route the requests in such a way that

there is no single server that receives l (1) average load per day

(note that we don’t care about worst-case load on a particular day

at all here, we just want to assign loads fairly over time). Lemma

5.3 says that, if the routing on each day is performed in an online

fashion using only information from that day, then this seemingly

simple load-balancing problem is impossible.

Proof. Suppose for contradiction that every in 9 ∈ [<] receives

an average load of > (log log<) requests per day. Thenwewill prove

the existence of an online 3-choice balls-and-bins strategy A that

places< balls into< bins with maximum load > (log log<) – this,

of course, would contradict Vöcking’s lower bound (Theorem 2 of

[33]).

Let A denote the balls-and-bins strategy used in each time step

of the time-step-isolated algorithm from the lemma statement. Let

f = ïG1, G2, . . . , G<ð be the sequence of< chunks (a.k.a. balls) that

is accessed over and over again, and let ℎ1 (G8), ℎ2 (G8), . . . , ℎ3 (G8)

denote the 3 servers (a.k.a. bins) where each chunk G8 is stored. For

each chunk G8 , and 9 ∈ [3], let

?8, 9 = Pr[A(f) routes G8 to ℎ 9 (G8)] .

Then we can construct a new online balls-and-bins strategy A′

that works as follows on the same sequence f = ïG1, G2, . . . , G<ð

of ball arrivals: when choosing where to place ball G8 , it simply

computes ?8,1, ?8,2, . . . , ?8,3 (which depends only on G1, G2, . . . , G8),

and places the ball in bin ℎ: (G) where : = argmax9 ?8, 9 .

To bound the maximum load achieved by A′, observe that A′

only places a ball G8 in bin ℎ: (G8) if

?8,: g 1/3.

Thus, if A′ places B balls into some bin 1, then the same bin 1

satis�es
∑

8∈[<]

∑

9∈[3]

?8, 9 · I[ℎ 9 (G8) = 1] g B/3.

However, this implies that A′ places, in expectation, at least B/3

balls in bin 1. We know from standard balls-and-bins lower bounds

[33] that A′ must (with high probability over f) place at least

¬(log log<) balls into some bin. It follows that (with high proba-

bility over f), there is some bin that, over time, receives an average

of at least ¬(log log<) balls from A′ per time step.

□

As an immediate corollary, we get the following:

Corollary 5.4. It is impossible for a time-step-isolated strategy

to achieve 3 = $ (1), 6 = $ (1), and a rejection rate of $ (1/<).

6 RELATEDWORK

The work in this paper is related to a diverse set of well-studied

problems in the areas of load-balancing, queuing theory, balls-into-

bins, and hashing.

Distributed key-value stores have been designed both for academia

and commercial use [14, 16, 19, 20, 32, 36]. Most of this work is

empirical and �nds that handling online requests often does lead

to load-balancing challenges [2, 13]. The most closely related work

to ours is recent work by Wang et. al [34] (at PPoPP’23) which con-

siders this problem, but in the case of 3 = 1 — that is, each chunk

lives on at most one server and there is no replication. They show

that when there is no replication and with a constant processing

rate 6 = $ (1), no policy can achieve a rejection rate of > (1). This

leads them to consider a relaxation in which chunks can be moved

over time from heavily loaded servers to lightly loaded ones and

design a policy to achieve a small rejection rate in that manner.

Another model which considers load-balancing of requests that

arrive online is the supermarket model [15, 24, 25, 31]. In this model,

requests arrive at some stochastic rate (usually Poisson arrivals are

assumed) and can be routed to any server. This research often

considers the strategy where the incoming request looks at a small

Distributed Load Balancing in the Face of Reappearance Dependencies SPAA ’24, June 17–21, 2024, Nantes, France

number 3 of (random) servers and is routed to the server with the

smallest queue among those — one can think of this as a queuing-

theory version of the power of 3 choices. The stochastic arrivals

of requests, and the fact that each request picks 3 random choices

independently of past requests, means that the supermarket model

cannot be used to address adversarial settings such as ours where

the main technical challenge is reappearance dependencies.

Finally, balls into bins problems have been studied extensively

with the power of 3 choices, starting from the classic paper by Azar

et. al [3] which considers the task of assigning = balls to = bins,

and then extended in many di�erent directions by many di�erent

authors [1, 5, 10, 17, 21, 23, 26–28, 33, 35].

The most relevant line of balls-and-bins research to our con-

text is work that deals with balls being inserted, deleted, and then

(potentially) reinserted over time [5, 7, 11, 33]. In this setting, an

oblivious adversary performs a sequence of ball insertions and

deletions, where each ball G is associated with 3 random bins

ℎ1 (G), ℎ2 (G), . . . , ℎ3 (G) ∈ [<], and where the total number of balls

in the system is never permitted to exceed some parameter : . The

goal is to place balls in such a way that the maximum load across the

bins stays small (close to :/<, ideally plus at most a polylogarith-

mic or doubly logarithmic term). This setting has yielded positive

results in the cases where either : = < [11] or : = > (log<) [7],

and has led to a surprising negative result in the case of : k< [5].

The negative result, in particular, which was shown at FOCS’23 by

Bansal and Kuszmaul [5], says that in the heavily loaded case of

: k < (and speci�cally< = $ (1)), almost all natural algorithms

(speci�cally any so-called id-oblivious algorithm) fail to achieve

good results in this setting – that is, there exists workloads that

force the fullest bin to have :¬ (1) more balls than the average load.

Our results make use of quite di�erent techniques from this line of

work [5, 7, 11], and tackle reappearance dependencies that take a

somewhat di�erent form (notably, the same “ball” in our setting can

be reinserted before it has even left the current queue), but nonethe-

less, all of these results can be viewed as part of a broader emerging

theme: that reappearance dependencies can turn relatively simple

stochastic problems into interesting and rich algorithmic problems

which, in turn, often require the development of new algorithmic

and analytical techniques.

ACKNOWLEDGEMENTS

This research was supported in part by the Harvard Rabin Postdoc-

toral Fellowship and the National Science Foundation with grants

CCF-2106699, CCF-2107280, and PPoSS-2216971.

REFERENCES
[1] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Rasmussen.

1995. Parallel Randomized Load Balancing. In Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing (Las Vegas, Nevada, USA)
(STOC ’95). Association for Computing Machinery, New York, NY, USA, 238–247.
https://doi.org/10.1145/225058.225131

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems. 53–64.

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. 1999. Balanced
Allocations. SIAM J. Comput. 29, 1 (1999), 180–200. https://doi.org/10.1137/
S0097539795288490 arXiv:https://doi.org/10.1137/S0097539795288490

[4] Nikhil Bansal and Ohad N. Feldheim. 2022. The power of two choices in graphical
allocation. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory

of Computing (Rome, Italy) (STOC 2022). Association for Computing Machinery,
New York, NY, USA, 52–63. https://doi.org/10.1145/3519935.3519995

[5] Nikhil Bansal and William Kuszmaul. 2022. Balanced Allocations: The Heavily
Loaded Case with Deletions. In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS). 801–812. https://doi.org/10.1109/FOCS54457.2022.
00081

[6] LucaBecchetti Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale,
and Gustavo Posta. 2015. Self-Stabilizing Repeated Balls-into-Bins. In Proceed-
ings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures
(Portland, Oregon, USA) (SPAA ’15). Association for Computing Machinery, New
York, NY, USA, 332–339. https://doi.org/10.1145/2755573.2755584

[7] Michael A Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul, and
Guido Tagliavini. 2023. Tiny pointers. In Proceedings of the 2023 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). SIAM, 477–508.

[8] Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars
Nagel. 2012. Multiple-Choice Balanced Allocation in (Almost) Parallel. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 411–422.

[9] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. 2000.
Balanced allocations: The heavily loaded case. In Proceedings of the thirty-second
annual ACM symposium on Theory of computing. 745–754.

[10] Hong Chen and Heng-Qing Ye. 2009. Asymptotic Optimality of Balanced Routing.
Operations Research 60. https://doi.org/10.2307/41476346

[11] Richard Cole, Alan Frieze, Bruce Maggs, Michael Mitzenmacher, Andréa Richa,
Ramesh Sitaraman, and Eli Upfal. 1998. On Balls and Bins with Deletions,
Vol. 1518. 145–158. https://doi.org/10.1007/3-540-49543-6_12

[12] Richard Cole, Bruce M. Maggs, Friedhelm Meyer auf der Heide, Michael Mitzen-
macher, Andréa W. Richa, Klaus Schröder, Ramesh K. Sitaraman, and Berthold
Vöcking. 1998. Randomized Protocols for Low-Congestion Circuit Routing
in Multistage Interconnection Networks. In Proceedings of the Thirtieth An-
nual ACM Symposium on Theory of Computing (Dallas, Texas, USA) (STOC
’98). Association for Computing Machinery, New York, NY, USA, 378–388.
https://doi.org/10.1145/276698.276790

[13] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Prin-
ciples (Stevenson, Washington, USA) (SOSP ’07). Association for Computing Ma-
chinery, New York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

[15] Felix Garcia-Carballeira and Alejandro Calderon. 2017. Reducing Randomization
in the Power of Two Choices Load Balancing Algorithm. In 2017 International
Conference on High Performance Computing & Simulation (HPCS). 365–372. https:
//doi.org/10.1109/HPCS.2017.62

[16] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The Google �le
system. In Proceedings of the nineteenth ACM symposium on Operating systems
principles. 29–43.

[17] Antonie S. Godtschalk and Florin Ciucu. 2012. Stochastic bounds for randomized
load balancing. SIGMETRICS Perform. Eval. Rev. 40, 3 (jan 2012), 74–76. https:
//doi.org/10.1145/2425248.2425267

[18] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2009. More Robust Hash-
ing: Cuckoo Hashing with a Stash. SIAM J. Comput. 39 (01 2009), 1543–1561.
https://doi.org/10.1137/080728743

[19] Markus Klems, Adam Silberstein, Jianjun Chen, Masood Mortazavi, Sahaya An-
drews Albert, PPS Narayan, Adwait Tumbde, and Brian Cooper. 2012. The yahoo!
cloud datastore load balancer. In Proceedings of the fourth international workshop
on Cloud data management. 33–40.

[20] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (apr 2010), 35–40.
https://doi.org/10.1145/1773912.1773922

[21] Dimitrios Los and Thomas Sauerwald. 2023. Balanced Allocations in Batches: The
Tower of Two Choices. In Proceedings of the 35th ACM Symposium on Parallelism
in Algorithms and Architectures (Orlando, FL, USA) (SPAA ’23). Association for
Computing Machinery, New York, NY, USA, 51–61. https://doi.org/10.1145/
3558481.3591088

[22] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James Larus, and Albert Greenberg.
2011. Join-Idle-Queue: A Novel Load Balancing Algorithm for Dynamically
Scalable Web Services. Perform. Eval. 68, 1056–1071. https://doi.org/10.1016/j.
peva.2011.07.015

[23] M. Mitzenmacher. 1996. The power of two choices in randomized load balancing.
PhD thesis. University of California, Berkeley.

[24] Michael Mitzenmacher. 1999. On the analysis of randomized load balancing
schemes. Theory of Computing Systems 32, 3 (1999), 361–386.

[25] M. Mitzenmacher. 2001. The power of two choices in randomized load balancing.
IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001), 1094–1104.

SPAA ’24, June 17–21, 2024, Nantes, France Kunal Agrawal, William Kuszmaull, Zhe Wang, & Jinhao Zhao

https://doi.org/10.1109/71.963420
[26] Debankur Mukherjee, Sem C. Borst, Johan S. H. van Leeuwaarden, and Philip A.

Whiting. 2018. Universality of Power-of-d Load Balancing in Many-Server Sys-
tems. Stochastic Systems 8, 4 (2018), 265–292. https://doi.org/10.1287/stsy.2018.
0016 arXiv:https://doi.org/10.1287/stsy.2018.0016

[27] Anis Nasir, Gianmarco Morales, Nicolas Kourtellis, and Marco Sera�ni. 2015.
When Two Choices Are not Enough: Balancing at Scale in Distributed Stream
Processing.

[28] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, David García-
Soriano, Nicolas Kourtellis, and Marco Sera�ni. 2015. The power of both choices:
Practical load balancing for distributed stream processing engines. In 2015 IEEE
31st International Conference on Data Engineering. 137–148. https://doi.org/10.
1109/ICDE.2015.7113279

[29] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.12.002

[30] Andréa Richa, Michael Mitzenmacher, and Ramesh Sitaraman. 2000. The Power
of Two Random Choices: A Survey of Techniques and Results. https://doi.org/
10.1007/978-1-4615-0013-1_9

[31] Andrea W Richa, M Mitzenmacher, and R Sitaraman. 2001. The power of two
random choices: A survey of techniques and results. Combinatorial Optimization

9 (2001), 255–304.
[32] Mehul Nalin Vora. 2011. Hadoop-HBase for large-scale data. In Proceedings of

2011 International Conference on Computer Science and Network Technology, Vol. 1.
IEEE, 601–605.

[33] Berthold Vöcking. 2003. How asymmetry helps load balancing. J. ACM 50,
568–589. https://doi.org/10.1145/792538.792546

[34] Zhe Wang, Jinhao Zhao, Kunal Agrawal, He Liu, Meng Xu, and Jing Li. 2023.
Provably Good Randomized Strategies for Data Placement in Distributed Key-
Value Stores. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming (Montreal, QC, Canada) (PPoPP
’23). Association for Computing Machinery, New York, NY, USA, 27–38. https:
//doi.org/10.1145/3572848.3577501

[35] Y. Xing, S. Zdonik, and J.-H. Hwang. 2005. Dynamic load distribution in the
Borealis stream processor. In 21st International Conference on Data Engineering
(ICDE’05). 791–802. https://doi.org/10.1109/ICDE.2005.53

[36] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J Beamon, Rusty Sears, John Leach, et al.
2021. Foundationdb: A distributed unbundled transactional key value store. In
Proceedings of the 2021 International Conference on Management of Data. 2653–
2666.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Analysis of Greedy Algorithm
	4 Reducing Maximum Latency via Delayed Cuckoo Routing
	4.1 Delayed Cuckoo routing
	4.2 Bounding the rejection rate
	4.3 Analysis of Average Latency

	5 Lower bounds
	6 Related work
	References

