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Abstract: 

The shape of the Fermi surface, and the cyclotron effective mass of the kagome magnet GdV6Sn6 

charge carriers are investigated using de Haas van Alphen (dHvA) oscillations measurements and 

electronic band structure calculations. The temperature and angle-dependent torque magnetometry 

measurements revealed at least nine different frequencies ranging from ~10 T up to ~9000 T. These 

frequencies correspond to extremal areas of the Fermi surface ranging from ~0.2 % up to 50% of 

the first Brillouin zone, qualitatively consistent with the electronic band structure calculations. The 

angle dependent dHvA oscillation frequencies indicate that the smaller pockets of the Fermi 

surface have almost 3D character whereas the bigger pockets of the Fermi surface are mostly two-

dimensional. We also find evidence of the presence of light (0.28(1) m0) as well as heavy (2.37(18) 

m0) charge carriers through the analysis of the temperature dependence of dominant frequencies. 

The comparison of the observed frequencies with the electronic band structure calculations 

indicates that the heavy masses correspond to saddle-point-like features of electronic band 

structure at the M point. The observation of the multiple low frequencies and the calculated 

contributions from various bands to such low frequencies prevent the estimation of topological 

nature of bands containing lighter fermions. In conclusion, our work reveals the features of a Fermi 

surface containing enhanced mass fermions originated from saddle points in the electronic band 

structure at the M point, which is inherent to kagome lattices. 

 



 
  

Introduction: 

The kagome lattice, a two-dimensional network of corner-sharing triangles of metal ions, is known 

to be a source of a variety of novel correlated electronic states  [1–5]. The flat bands representing 

the correlated electronic states, the Dirac fermions featuring topological electronic states, and the 

saddle-point derived van Hove singularities causing novel electronic instabilities are typical 

features of kagome lattice materials [4]. Chiral charge density waves [6], Chern topological 

magnetism [7], and topological superconductivity [2,3,5] are some of the new electronic phases 

that have been observed in materials with kagome lattice structures. 

The list of kagome metals includes chemically diverse compounds such as Mn3Sn [8], 

Fe3Sn2 [9,10], Co3Sn2S2 [11–13], CoSn [14], FeSn [14], AV3Sb5 (A=Rb, Cs, K) [14], RM6X6 

(R=Li/Mg/Yb/Sm/Gd/Ho/Tb/Y, M=Fe/Cr/Co/Ni/V, and X=Ge/Sn/Si) [7,15–22]. Such chemical 

diversity combined with layered crystal structures allows for fine tuning of intra- and inter-kagome 

layer interactions to realize novel electronic and magnetic phases. The family that draws particular 

attention is RM6X6. The RM6X6 structure contains two-dimensional parallel kagome layers of M 

ions coordinated by X ions and separated by the triangular planes of R ions. One advantage of such 

structure is that the inter kagome layer distances can be tuned by changing the size of R ions 

whereas the magnetic interactions can be varied by choosing the magnetic and non-magnetic R 

and M ions. Furthermore, the intrinsic physics associated with the kagome layer can be separated 

from the spacer layers by suitable choice of elements. The work presented in this manuscript is 

focused on the study of GdV6Sn6, in which the non-magnetic V3Sn2 kagome layers are separated 

by magnetic GdSn triangular planes and Sn atoms as shown in Fig. 1.  

Previous studies on GdV6Sn6 indicate a non-collinear magnetic ground state (TN ~ 5 K) arising 

from the f-orbitals of Gd ions along with a high mobility multiband electrical transport originating 

from the correlated electrons in the kagome layers [18–23] . The electronic band structure 

calculations as well as photoemission experiments indicate the presence of chemically-tunable 

Dirac surface states (DSS) [21,23], flat bands, and van Hove singularities featuring the intrinsic 

physics of kagome lattice [21–23]. Despite such studies, a detailed experimental investigation of 

the shape of the bulk Fermi surface, cyclotron effective mass of carriers, and observables featuring 

the topologically non-trivial bands and the saddle points causing van Hove singularity are still 

missing. Such experimental investigations can be carried out using de Haas van Alphen (dHvA) 



 
  

oscillations or Shubnikov- de Haas (SdH) oscillations. One previous study [19] of GdV6Sn6 uses 

SdH oscillations measurement of electrical resistivity. That previous study reports observations of 

two small frequencies 150 T and 200 T accounting for small Fermi pockets occupying about 2.5 

% of the area of the first Brillouin zone. However, no other features revealing the relativistic nature 

of Dirac fermions and the saddle points in the electronic band structures were reported. In this 

work, we have used high field torque magnetometry measurements to study the dHvA oscillations. 

One advantage of the dHvA oscillations measurement is that the magnetization oscillation directly 

originates from the oscillations of the free electrons’ energy and doesn’t rely on scattering 

probabilities. By using a single crystalline sample of residual resistivity ratio (RRR ~ 12), we are 

able to observe dHvA oscillations on top of a magnetic background of ~ 7 μB. We have extracted 

several oscillation frequencies ranging from 10 T- 9000 T indicating the presence of small and big 

pockets of the Fermi surfaces, consistent with the multiband nature of electrical transport and the 

calculated electronic band structure. The angular dependence of the oscillation frequencies 

indicates the presence of mostly 3D small pockets and quasi-2D type big pockets of the Fermi 

surfaces. The temperature dependence of the oscillation amplitudes indicates the presence of both 

light electrons (0.28 m0) as well as heavier electrons (2.37 m0). Some bands cross the Fermi level 

more than one time giving different effective masses. The observation of multiple low frequencies 

(<500 T), the calculated contributions from various bands, and crossing of the Fermi level by same 

band more than one time, prevent the estimation of the Berry curvature associated to topologically 

non-trivial bands. However, we are able to clearly observe and resolve other features associated 

with enhanced mass fermions that characterize kagome materials such as the saddle points in the 

proximity of the M-point in the Brillouin zone.   

Experimental Details: 

Single crystals of GdV6Sn6 were synthesized via a flux-based technique.   Gd (pieces, 99.9%), V 

(pieces, 99.7%), Sn (shot, 99.99%) were loaded inside an alumina crucible with the molar ratio of 

1:6:20 and then heated at 1125 C for 12 hours. Then, the mixture was cooled at a rate of 2 C/h.   

The single crystals were separated from the flux via centrifuging at 780 oC. Crystals grown via this 

method were generally a few millimeters long and <1 mm in thickness.  The separated single 

crystals were subsequently cleaned with dilute HCl to remove any flux contamination. Crystals 

were then transferred into a small jar of mercury to further remove additional tin contamination to 



 
  

the crystals. Single-crystal x-ray diffraction measurements were carried out on a Kappa-Apex II 

single crystal diffractometer with a charge coupled device (CCD) detector  and  a Mo source. The 

low field magnetization measurements were carried out using a Quantum Design Magnetic 

Properties Measurement Systems (MPMS-3).  The resistivity was measured using four probe 

methods employing the electrical transport option (ETO) of the Quantum Design Dynacool 

Physical Properties Measurement System.  

 

Figure 1:Crystal structure of GdV6Sn6. (a) Crystal structure showing different layers of Gd, Sn and V atoms. (b) 

Crystal structure viewed along the c-axis showing the kagome network of V atoms. The colored spheres indicate 

different atoms. 

High-field measurements were carried out at the National High Magnetic Field Laboratory 

(NHMFL), Tallahassee, Florida, with the maximum applied fields of 18 T (Superconducting 

magnet), and 35 T (dc resistive water-cooled magnet). In both experiments the lowest temperature 

of 0.35 K was achieved using a top-loaded 3He insert. The magnetic torque was measured using a 

miniature piezoresistive cantilever. A tiny GdV6Sn6 crystal was selected and then fixed to the 

cantilever arm with vacuum grease. The cantilever was subsequently mounted on the rotating 

platform of a special probe designed at NHMFL. The probe was then slowly cooled down to the 

base temperature of 0.35 K. Two resistive elements on the cantilever were incorporated with two 

other room-temperature resistors to form a Wheatstone bridge, which was balanced at base 

temperature before taking field dependent data. The angle-dependent torque data were obtained 

by rotating the sample in situ with the applied field. Magnetic fields were swept at each fixed 

temperature at a rate of 2.7 T/min (up) and 4.2 T/min (down). 

 

 



 
  

Computational methods: 

The electronic band structure calculations were done using the Vienna Ab Initio Simulation 

Package (VASP) [24–26]. The electron-electron non-classical exchange-correlation interactions 

were modeled using the generalized gradient approximation under the PBE parametrization [27]. 

Projected augmented wave potentials [25,28]were used with an optimized cutoff energy of 520 eV. 

An energy and force criteria were applied to reach structural relaxation, where the energy and 

norms of all forces must be less than 10-6 eV and 0.01 eV/Å, respectively. A discrete equally spaced 

mesh [29] of 10×10×6 k-points was used to evaluate the electronic states during the 

ionic relaxation process. For the electronic band structure analysis, the convergence criterion was 

taken as the condition where the total energy change between two successive iterations in the self-

consistent loop became smaller than 10-8 eV. For the converged calculations, a k-point mesh of 

15×15×12 was used. Since we are treating atoms with large atomic mass -where relativistic effects 

take importance- spin-orbit coupling interactions are mandatory, we also included it in the 

relaxation and electronic properties of the GdV6Sn6 structure. Also, f-orbitals of the Gd atom with 

highly localized electrons must be accounted for. To do so, we included the Hubbard interaction 

in the simplified approach proposed by Dudarev et al. [30], with an on-site Coulomb parameter U= 

6 eV for the Gd atom. To calculate the Fermi energy in a dense k-mesh (121×121×123), we have 

used the Hamiltonian based on the Wannier functions obtained using the Wannier90 code [31]. We 

modeled the GdV6Sn6 material considering the hexagonal P6/mmm space group in its 

ferromagnetic structure. The dHvA frequencies and their angular dependencies were calculated via 

the skeaf code  [32] 

Results: 

The room temperature X-ray diffraction pattern from the flat surface of a single crystal of GdV6Sn6 

is presented in Fig. 2a. The peaks can be indexed with hexagonal structure with space group 

P6/mmm. The diffraction pattern contains only peaks corresponding to Miller indices (00l, l=1,2, 

3..) indicating that the flat surface is perpendicular to crystalline c-axis. The magnetic 

susceptibility of a single crystal under a field of 1 kOe applied along the c-axis is presented in Fig. 

2b. The susceptibility follows a typical Curie-Weiss behavior at higher temperatures; however, it 

enters a long-range magnetic phase around TN ≈ 5 K. The inset in Fig. 2b displays the fitting to 

Curie-Weiss behavior 
1

𝜒
= 𝜒0 +

𝐶

𝑇−𝜃𝐶
 (T >20 K) with the Curie-constant (C), a Curie-Weiss 



 
  

temperature (𝜃𝐶 ), and a small background term (𝜒0). The fitting yields C=7.307(2) emu mol-1 Oe-

1 K, 𝜃𝐶   = 7.96 (2) K and 𝜒0 = 0.002(1) emu mol-1 Oe-1 K. This gives effective moment eff = 

7.7(2) B/f.u consistent with the expected full moment from Gd3+ ion (7.94 B). The positive Curie-

Weiss temperature indicates the dominant ferromagnetic interactions along the c-axis. Figure 2c 

presents the zero-field electrical resistivity as a function of temperature for a GdV6Sn6 single 

crystal with current within the ab-plane. The resistivity exhibits typical metallic behavior with a 

small downturn at the magnetic transition (5 K), indicating the interaction between 3d-itinerant 

electrons in the kagome layer and the Gd spins in the spacer layer. The residual resistivity ratio 

(RRR ≈ 12) allows the measurement of the dHvA oscillations in the presence of uniform magnetic 

background. A more detailed investigation of the structural, electrical, and magnetic properties of 

GdV6Sn6 indicating the onset of long-range magnetic order with a large, saturated moment (~7 

μB), consistent with both our computational findings (7.07 B per Gd ion) and the multiband 

behavior observed in previous electrical transport studies [22].  

 

Figure 2: Single crystal characterization of GdV6Sn6. (a) X- ray diffraction pattern observed from the flat surface of 

a single crystal (shown in inset) of GdV6Sn6. The presence of only sharp (00l) type reflections indicate high quality 

single domain crystal with the c-axis perpendicular to the flat surface. (b) Magnetic susceptibility, χ, as a function of 

temperature measured at 1 kOe field applied parallel to the c-axis. The inset shows Curie Weiss law fitting for T > 20 

K. (c) Zero field electrical resistivity, ρ, with current within the ab plane.  



 
  

 

Figure 3: Magnetic torque measurements (a) The magnetic torque () as a function of magnetic field (H) taken using 

the 18 T (blue) and the 35 T (red) magnet at given angles. The inset figure shows the schematic of the magnetic field 

direction relative to crystal axes. (b) The polynomial background subtracted signal () as a function of the inverse 

magnetic field (1/H) (c) The fast Fourier transform (FFT) spectra (amplitude vs frequency) at  = 0°, T= 0.35 K, for 

FFT range of 6 T-18 T, 18 T- 35 T, 33 T- 35 T. The x-axis is plotted in logarithmic scale to highlight features at low 

frequencies. The frequencies F1, F2, F3, F4, F5, F6, F7, F8, F9 in Fig. (c) represent dominant frequencies. The symbols 

(,,,) represent possible bands contributing to those frequencies as indicated by shaded regions.  



 
  

 

The results of typical magnetic torque measurements are presented in Fig. 3. Fig. 3a presents the 

magnetic torque (τ) as a function of magnetic field (H) at θ = -10° and + 7° measured using the 18 

T superconducting magnet and the 35 T resistive magnets respectively. Here, θ is the angle 

between the magnetic field and the c-axis of the crystal as shown in inset of Fig. 3a and the sign 

of θ represents the sense of rotation of the magnetic field with respect to the c axis of the crystal. 

Fig. 3b displays the third order polynomial background subtracted signal () as function of 

inverse magnetic field (1/H) at given angles indicating quantum oscillations that are periodic in 

1/H. Fig. 3c displays the Fourier transformation of background subtracted signals at  = 0°, T= 

0.35 K for different Fast Fourier Transformation (FFT) ranges.  

The x-axis of Fig. 3c is displayed in a logarithmic scale to highlight the low frequencies. At  = 

0°, we observed 9 dominant frequencies, F1= (13 ± 7) T, F2 = (32 ± 10) T, F3 = (95 ± 10) T, F4 = 

(176 ± 6) T, F5= (200 ± 10) T, F6 = (850 ± 20)T, F7= (1470 ± 30 )T, F8 = (8440 ± 50) T, F9= (8850 

± 60) T, that are consistent with the electronic band structure calculations. These frequencies 

correspond to four different bands (, , , and ) present at the Fermi level. We also observed 

frequencies having weak amplitudes around 55 T, 290 T, 390 T, 1040 T, and 1370 T. However, 

due to the presence of nearby frequencies with strong amplitudes, we are unable to track down the 

temperature and angle dependence of all frequencies. We therefore focus on the analysis of 6 

frequencies (F1, F3, F6, F7, F8, F9) mentioned above and displayed in Fig. 3c. After identifying the 

frequencies at  = 0°, the angle-dependent torque measurements are performed to understand the 

shape of the Fermi surface. Figure 4 displays the results of angle-dependent measurements at T = 

0.35 K.  For the analysis of low frequencies (F < 500 T), FFT range of 6 T- 18 T is used whereas 

for frequencies F > 500 T, the FFT range of 18 T- 35 T is used. As is clear from Fig. 3c and Fig. 

4, we observed many frequencies below 500 T making it difficult to follow the angle dependence 

of every frequency. The low frequencies F1, F2, F3, F4, F5 survive at all angles between (0 to -90) 

with some angle dependence. The frequencies F6 and F7 appear only between  = 0° to  = -10° 

and disappear quickly. The high frequencies F8, F9 disappear above  = -50°. This indicates that 

the Fermi surface contains small pockets of mostly 3D shape and bigger pockets of 2D shapes. It 

is important to note that out of these frequencies observed in this work, only two nearby 

frequencies of 150 T and 200 T were reported in the previous work [19] using SdH oscillations. 

 



 
  

 

Figure 4: Angle dependence of dHvA oscillation frequencies at T = 0.35 K. (a) & (b) Frequencies obtained with 

FFT range of 6 T- 18 T. (c) & (d) Frequencies obtained with FFT range of 18 T -35 T. 

 

The observed frequencies are compared to those expected from electronic band structure 

calculations. The results are summarized in Fig. 5. The electronic-structure-calculated frequencies 

from the different bands are plotted as colored symbols (,,,)whereas the observed 

frequencies are plotted as (•). The calculated frequencies for the four bands (, , , and ) closely 

match those observed experimentally. The next step is to study the temperature dependence of 

these frequencies. By suitably choosing the FFT range and the angle, the temperature dependence 

of F1, F3, F6, F7, F8 and F9 are studied in this work. The temperature dependence of F1, F3, F8 and 

F9 are studied using data taken at θ = -10 whereas the temperature dependence of F6 and F7 are 



 
  

studied using data taken at θ = 0. We used an FFT range of 6 T -18 T to study the temperature 

variations of F1, F3 and F5 whereas we used FFT range of 14 T - 18 T to study the temperature 

variation of F6 and F7. The variation of normalized FFT amplitudes with temperature for F1, F3, 

F6, F7, F8, and F9 are presented in Figure 6. These variations can be described by the damping part 

of the Lifshitz-Kosevich (LK) formula [33,34]  (solid lines in Figure 6). Fitting with the LK formula 

gives six different effective masses m1*= 0.28(1) m0, m3*= 0.36(1) m0, m6*= 1.20(6) m0, and m7*= 

0.79(5) m0, m8*= 2.25(15) m0, and m9*= 2.37(18) m0.  The details of the LK fitting are presented 

in Appendix B. 

 

Figure 5: (a) Angle dependence of electronic band structure calculated frequencies (, , , ) and observed 

frequencies (•). The observed frequencies are taken at T=0.35 K. Different colors of calculated frequencies represent 

different bands. (a) Observed and calculated frequencies below 2000 T. The shaded region in (a) contains at least two 

frequencies (F6 and F7) related to two orbits containing -band. The other frequencies in (a) contain contributions from 

at least 3 different orbits associated to , , and  bands. (b) All observed and calculated frequencies. The frequencies 

above 5000 T in (b) correspond to  and  bands (F8, F9) respectively.   

Along with the determination of the effective mass (m*) using the LK formula, the different areas 

associated with different sections of the Fermi surface are estimated using the Onsager 

relation  [34]. We then calculated the Dingle temperature TD (an additional temperature factor that 

accounts for the damping of oscillations amplitude with inverse field). The estimation of Dingle 

temperature is presented in Appendix B. After calculating the extremal area (Sf), Fermi wave 

vector (kf), effective mass (m*), and Dingle temperature (TD), we have estimated the Fermi velocity 

(vf), quantum scattering time (τs), mean free path (lD), and the quantum mobility (μ). We define μ 

as quantum mobility to distinguish from the classical mobility arising from the Drude model that 

can be present without magnetic field.  In this case, mobility is related to the cyclotron motion of 

carriers. These quantities are presented in Table I.  



 
  

Table I: Results of dHvA oscillations showing observed frequencies (F), extremal orbit area (Sf), Fermi wave vector 

(kf), effective mass (m*), Fermi velocity (vf), Dingle temperature (TD), quantum scattering time (τs), mean free path 

(lD), and quantum mobility (μ). The numbers on bracket indicate the errors. 

 

F (T) Sf 

(Å-2) 

kf 

(Å-1) 

m*/m0 

 

vf 

(104 ms-1) 

TD 

(K) 

τs (l0-13 s) lD  

(nm) 

μ 

(cm2 V-1 s-1) 

95 (10) 0.009(1) 0.053(2) 0.36(1) 17(1) 13.1(2) 0.92(1) 16(1) 453(14) 

850 (20) 0.081(1) 0.161(1) 1.21(1) 15.3(2) 10.2(3) 1.19(3) 18(1) 173(5) 

1470 (30)  0.141(2) 0.211(2) 0.79(5) 31(2) 22(1) 0.55(2) 17(1) 123(9) 

8440 (50) 0.802(4) 0.506(1) 2.25(15) 26(2) 4.1(2) 2.9(1) 77(4) 231(19) 

 

After establishing the presence of multiple pockets of the Fermi surface, the next conventional step 

in such analysis would be the estimation of Berry phase (B) by analyzing the oscillatory part of 

the LK formula [34,35]: sin [ 2𝜋(
𝐹

<𝐻>
+

𝜑𝐵

2𝜋
−

1

2
+ 𝛿𝑝)] where, the factor 𝛿𝑝 depends upon the 

dimensionality of the Fermi pocket and takes value (+1/8) for the minimal  and (-1/8) for maximal 

cross sections of 3 dimensional Fermi surface. The factor of ½ comes from Maslov correction and 

applies to the case where the orbits are compressible to circles [36].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Temperature dependence of amplitudes of dominant frequencies. Data for F6 and F7 were taken from  = 0 

measurements while the rest data were taken from  = -100
.  The solid lines fit to the damping part of LK formula 

described in Appendix B. 



 
  

 

It has been suggested in recent works  [35,37,38] that the precise estimation of Berry phase requires 

understanding the details of crystalline and magnetic symmetries of materials. Therefore, a phase 

of  should not be taken as smoking gun proof of non-trivial topology.  In our experimental study, 

we encountered a notable complication stemming from the presence of numerous closely spaced 

frequencies, all falling below the 500 T threshold. This intricate frequency landscape presents a 

significant challenge, rendering the precise estimation of the Berry phase inconclusive. However, 

unlike the Berry phase that could be blurred by multiple close frequencies, the mass enhancement 

associated to the saddle points in electronic band structure are clearly observed and reproduced by 

electronic band structure calculations. 

Discussion and conclusions: Our dHvA-based analysis of GdV6Sn6 revealed several important 

features revealing this kagome material's Fermi surface properties. We observed 9 dominant 

frequencies [F1= (13 ± 7) T, F2 = (32 ± 10) T, F3 = (95 ± 10) T, F4 = (176 ± 6) T, F5= (200 ± 10) 

T, F6 = (850 ± 20)T, F7= (1470 ± 30 )T, F8 = (8440 ± 50) T, F9= (8850 ± 60) T ], when the magnetic 

field is applied perpendicular to the kagome plane ( = 0°). These frequencies are consistent with 

electronic band structure calculations. In addition, we observed frequencies with weak amplitudes 

around 55 T, 290 T, 390 T, 1040 T, and 1370 T. However, due to the presence of nearby strong 

amplitude frequencies, we are unable to follow the temperature and angle dependence of all 

frequencies. The lowest frequency F1 correspond to less than 2 periods of oscillation in the FFT 

range of 6 T-18 T, but it shows a discernible temperature dependence close to the calculated 

frequencies from , and  bands. The comparison of the observed frequencies with the calculated 

frequencies indicates that the frequencies F1 and F4 are most likely related to orbits orbit originating 

from the  band, F2 and F8 related to orbits originating from the  band, F3, F5, F6, and F7 from the 

 band and F9 from the  band. Furthermore, the angle dependence of dHvA frequencies indicates 

that the low (F < 500 T) frequencies survive when the magnetic field is rotated  = 0° to  = 90°, 

indicating small Fermi pockets of mostly 3D shape. We also observed large pockets of the Fermi 

surface. The two frequencies related to such large Fermi pockets disappear at high angles 

indicating their quasi-2D nature. These facts are also supported by the calculated frequencies from 

electronic band structure calculation (Fig.5 and Fig.7) and the projected Fermi surface presented 

in Fig. 7b. Notably,  and  bands exhibit hole-like characteristics, while the  and  bands 

predominantly demonstrate electron-like behavior.  Regarding the Fermi surface shapes, the  and 



 
  

 bands exhibit irregular lobes or pockets along the M-L high symmetry path whereas, the bands 

 and  display barrel-like shapes with prominent and open regions along the same M-L high 

symmetry path, as illustrated in Figure 7a and 7b. It is to be noted that the FFT range for angle 

dependence presented here is (6 T-18 T) for low frequencies (F<500 T) and (18 T-35 T) for high 

frequencies (F > 500 T). While changing the FFT window, we are also able to observe (not 

presented here) the second harmonics at some angles especially for high frequencies (F>500 T). 

Furthermore, from the temperature dependence of amplitudes of dominant frequencies, we have 

estimated the cyclotron effective masses [m1*= 0.28(1) m0, m3*= 0.36(1) m0, m6*= 1.20(6) m0, 

and m7*= 0.79(5) m0, m8*= 2.25(15) m0, and m9*= 2.37(18) m0]. The light masses correspond to 

 and   bands whereas the heavy masses (m8, and m9) correspond to relatively flat bands ( and 

)  near saddle point around the M point. Notably, these enhanced mass fermions correspond to 

vanadium d-orbitals near van Hove singularity (VHS2) that is clear from the density of states plot 

presented in Figure 8 b. It is also observed that the calculated quantum mobilities are relatively 

small compared to other non-magnetic kagome materials such as CsV3Sb5  [39,40]. This is most 

likely caused by the scattering of electrons from the magnetic background. 

 

Figure 7: (a) The electronic band structure of GdV6Sn6 in the ferromagnetic state; (b) Fermi surface representation 

illustrating distinct pockets. The four electronic bands (, , , and ) crossing the Fermi level are depicted in distinct 

colors. 

 

Finally, the electronic band structure presented in the current work (Fig. 7 and Fig. 8) is in the 

ferromagnetic state, but it remains largely unchanged in the vicinity of Fermi level when compared 



 
  

to electronic band structure calculated in the paramagnetic state of TbV6Sn6  [41] and 

GdV6Sn6  [22].  

This stability is attributed to the f-orbitals, crucial for the material's magnetism, being located away 

from the Fermi level. Moreover, the topological features and saddle points around the Fermi level 

are dominated by the kagome layer of V atoms. 

 

 

Figure 8. Band structure of ferromagnetic GdV6Sn6 including SOC and projected density of states for the Gd-f orbitals 

(yellow), Sn-p orbitals (gray) and V-d orbitals (blue). Fermi level is set to zero energy. Dashed lines indicate the energy 

appearance of the Van Hove Singularities (VHS).  

 

In summary, our work reveals the Fermi surface of kagome magnet GdV6Sn6 with small and big 

pockets of the Fermi surface consistent with the multiband nature of electrical transport 

measurements  [22]. We found the existence of both lighter (0.28 mo) and heavier (2.37 mo) 

fermions. While the topological nature of bands contributing to light mass is uncertain, we found 

clear evidence of enhanced mass fermions originating from saddle point like feature of electronic 

band structure at the proximity of the M point that led to VHS in the density of states at the Fermi 

level. The appearance of such saddle point and corresponding VHS (VHS2) in the proximity of 

Fermi level implies that this system is susceptible to various electronic instabilities. 

Note: After this manuscript was submitted for review, we became aware of the similar Fermi 

surfaces with light and heavy fermions in sister material YV6Sn6  [42] reflecting the features of 

topological non-trivial bands and saddle points like features of electronic band structure of kagome 

materials. 
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Appendix A: Angle dependence around  = 0° 

The angle dependencies of FFT frequencies around  = 0° are presented in Fig. 9a and Fig.9b. The 

data was collected using 18 T superconducting magnets at intervals of  = 3° to 6°. 

 

Figure 9: Small steps angle dependence around =0° at T= 0.35 K (a) Angle dependence of FFT amplitudes for 

frequency range 0-500 T (b) angle dependence of FFT amplitudes for frequency range 500-2000 T.  The angle () is 

expressed in degrees (°). 
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Appendix B: Lifshitz- Kosevich (LK) formula, Dingle temperature (TD), Onsager relation, 

Fermi velocity (vf), scattering rate (τs), mean free path (lD), and quantum mobility (μ) 

The oscillatory part of torque is given by [34,43,44]  

∆τ ∝ H  
A(

m∗

m0
)

T 

<H>

sinh ( A(
m∗

m0
)

T 

<H>
)

exp {−A (
m∗

m0
)

TD

<H>
} cos (πg

m∗

2m0
) sin[2π(

F

<H>
+ )], where 

A(
m∗

m0
)

T 

<H>

sinh ( A(
m∗

m0
)

T 

<H>
)
 is thermal damping factor, exp {−A (

m∗

m0
)

TD

<H>
} is the Dingle damping factor, TD is 

the Dingle temperature, cos (πg
m∗

2m0
)  is spin reduction factor, g is Lande “g” factor, m∗ is effective 

mass of electrons (holes), m0 is mass of free electron, and the exponent  ~ 0 for 2D Fermi surface, 

and  ~ ½ for 3D Fermi surface  [34]. The constant A is given by: A =  
2π2 kB m0

eħ
 =14.69 T/K. Here 

< H > is the harmonic mean of minimum and maximum field used in FFT. [
1

<H>
 =

(
1

Hmin 
+ 

1

Hmax
)

2
]. 

The phase factor  is given by  = (φ −
1

2
).The factor φ is given by φ =

∅B

2π
+ δp. Here ∅B is the 

Berry phase and p is 0 for 2D and ±1/8 for 3D Fermi surfaces with minimal and maximal cross 

sections respectively  [44]. The effective mass (m*) is calculated by fitting the normalized 

amplitude of oscillations to thermal damping factor term  
A(

m∗

m0
)

T 

<H>

sinh ( A(
m∗

m0
)

T 

<H>
)
  . The Dingle temperature 

TD is obtained by fitting the Dingle damping factor term [exp {−A (
m∗

m0
)

TD

<H>
}]. In practice this is 

done by finding the slope of ln [∆τ H0.5 sinh ( A (
m∗

m0
)

T 

<H>
)] vs 1/H plot and dividing the slope by 

A (
m∗

m0
) factor (Figure 10).  For the calculation of extremal area of Fermi surface, we have used the 

Onsager relation: F = (
∅0

2π2) Sf, here ∅0= 2πħ/e, is the flux quantum, and Sf = πkf
2 is the extremal 

area of Fermi surface normal to the magnetic field. Here kf is Fermi wavevector. The Fermi 

velocity is calculated using vf =
ℏkf

m∗
. The scattering rate (τs) is calculated from Dingle temperature 

using the relation: τS =
ℏ

2πkBTD
, the mean free path is given by lD = vf τS, and the mobility is 

calculated using relation μ =
eτ

m∗
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Figure 10: Dingle temperature calculation for (a) Frequency F3 (b) F6 (c) F7, and (d) F8. 

Appendix C: Electronic band structure calculation 

We modeled the GdV6Sn6 material considering the hexagonal P6/mmm space group in its 

ferromagnetic structure. The optimized lattice parameters a = 5.518 Å and c = 9.265 Å that are 

close to the experimental values a = 5.5348(7), c = 9.1797(11) Å [22]. The obtained magnetic 

moments in the V-d and Gd-f orbitals are -0.147 μB and -6.928 μB, respectively. This indicates that 

the Gd-f states dominate the ferromagnetic state in this material.  

After optimization of the structure, we calculate the electronic band structure through band 

structure and projected density of states. Figure 11a depicts the band structure at the high symmetry 

points in the irreducible Brillouin zone. The band structure depicts the well-known flat bands 

induced by the kagome structure (~0.35 eV), mainly due to the Vanadium-d orbitals  [22]. Near the 

Fermi level, Dirac-like dispersion relations are observed at the K symmetry point due to the 

hexagonal symmetry of the Kagome lattice.  We also note that bands have some linear dispersion 

at the M point and in the Γ-K path. The band structure evidences an apparent metallic anisotropic 

behavior with a large band gap energy at the Γ-A path but conduction states along the L-M (Figure 

11b) and H-K paths.  



 
  

 

 

Figure 11. (a) Band structure of ferromagnetic GdV6Sn6 and (b) Band structure along L-M line of the Brillouin zone, 

zoomed in from +100meV to -100meV. The four electronic bands (, , , and ) crossing the Fermi level are depicted 

in distinct colors. 

 

In Figure 8, we plot the band structure and the projected density of states to evidence the 

appearance of multiple Van Hove Singularities (VHS) near the Fermi level. In the density of states, 

VHSs appear as sharp changes like peaks, valleys, or cusp-like structures, while in the band 

structure, they appear as local extrema such as saddle points, points with large curvature, or band 

edges. Both characteristics coincide in energy, as shown in Figure 8. Previous DFT calculations 

without including spin-orbit calculations evidenced the appearance of four VHSs which were 

labeled as VHS1, VHS2, VHS3, and VHS4  [21], in agreement with our findings, in which we have 

included the SOC effect and considered the Ferromagnetic phase. As expected, the SOC effect 

generates band splitting and a potential change in the VHS form, energy of appearance, and 

quantity. For example, we also observed one more VHS5 and potentially another at -0.5 eV. All 

these points appear at the M high symmetry point. Our SOC calculations evidence that the VHSs 

are mainly formed by the d-orbitals of the vanadium kagome lattice. 

 

Appendix D: Fermi surface  

We have obtained the Fermi Surface through first-principles calculation, employing the optimized 

Ferromagnetic structure. In this analysis, we have discerned four distinct electronic bands: , , , and . 

The Fermi surfaces have been projected at the Fermi energy, indicating that all observed bands intersect 

with this critical energy level. Notably, Band- and Band- exhibit hole-like characteristics, while Band- 

and Band- predominantly demonstrate electron-like behavior.  Regarding the Fermi surface shapes, Bands 

 and  exhibit irregular lobes or pockets along the M-L high symmetry direction (see Band Structure of 

Figure 7a, 10a). Conversely, Bands  and  display barrel-like shapes with prominent and open regions 

along the same M-L high symmetry direction, as illustrated in Figure 12. 



 
  

 

 

Figure 12. Projection of the Fermi surfaces of ferromagnetic GdV6Sn6 at the Fermi energy: (a) Band-𝛼, (b) Band-𝛽, 

(c) Band-𝛾, (d) Band-𝛿, and (e) all Fermi surface pockets. In (e) is depicted the high symmetry path followed to plot 

the band structure. All bands are depicted in different colors. 
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