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Abstract:

The shape of the Fermi surface, and the cyclotron effective mass of the kagome magnet GdVesSne
charge carriers are investigated using de Haas van Alphen (dHvA) oscillations measurements and
electronic band structure calculations. The temperature and angle-dependent torque magnetometry
measurements revealed at least nine different frequencies ranging from ~10 T up to ~9000 T. These
frequencies correspond to extremal areas of the Fermi surface ranging from ~0.2 % up to 50% of
the first Brillouin zone, qualitatively consistent with the electronic band structure calculations. The
angle dependent dHVA oscillation frequencies indicate that the smaller pockets of the Fermi
surface have almost 3D character whereas the bigger pockets of the Fermi surface are mostly two-
dimensional. We also find evidence of the presence of light (0.28(1) mo) as well as heavy (2.37(18)
mo) charge carriers through the analysis of the temperature dependence of dominant frequencies.
The comparison of the observed frequencies with the electronic band structure calculations
indicates that the heavy masses correspond to saddle-point-like features of electronic band
structure at the M point. The observation of the multiple low frequencies and the calculated
contributions from various bands to such low frequencies prevent the estimation of topological
nature of bands containing lighter fermions. In conclusion, our work reveals the features of a Fermi
surface containing enhanced mass fermions originated from saddle points in the electronic band

structure at the M point, which is inherent to kagome lattices.



Introduction:

The kagome lattice, a two-dimensional network of corner-sharing triangles of metal ions, is known
to be a source of a variety of novel correlated electronic states [1-5]. The flat bands representing
the correlated electronic states, the Dirac fermions featuring topological electronic states, and the
saddle-point derived van Hove singularities causing novel electronic instabilities are typical
features of kagome lattice materials [4]. Chiral charge density waves [6], Chern topological
magnetism [7], and topological superconductivity [2,3,5] are some of the new electronic phases

that have been observed in materials with kagome lattice structures.

The list of kagome metals includes chemically diverse compounds such as MnsSn [8],
FesSno [9,10], Co3Sm2S2 [11-13], CoSn [14], FeSn[14], AV3Sbs (A=Rb, Cs, K)[14], RMeXs
(R=Li/Mg/Yb/Sm/Gd/Ho/Tb/Y, M=Fe/Cr/Co/Ni/V, and X=Ge/Sn/Si) [7,15-22]. Such chemical
diversity combined with layered crystal structures allows for fine tuning of intra- and inter-kagome
layer interactions to realize novel electronic and magnetic phases. The family that draws particular
attention is RMeXe. The RM¢Xe structure contains two-dimensional parallel kagome layers of M
ions coordinated by X ions and separated by the triangular planes of R ions. One advantage of such
structure is that the inter kagome layer distances can be tuned by changing the size of R ions
whereas the magnetic interactions can be varied by choosing the magnetic and non-magnetic R
and M ions. Furthermore, the intrinsic physics associated with the kagome layer can be separated
from the spacer layers by suitable choice of elements. The work presented in this manuscript is
focused on the study of GdVeSne, in which the non-magnetic V3Snz kagome layers are separated

by magnetic GdSn triangular planes and Sn atoms as shown in Fig. 1.

Previous studies on GdVeSne indicate a non-collinear magnetic ground state (Tn~ 5 K) arising
from the f~orbitals of Gd ions along with a high mobility multiband electrical transport originating
from the correlated electrons in the kagome layers [18-23]. The electronic band structure
calculations as well as photoemission experiments indicate the presence of chemically-tunable
Dirac surface states (DSS) [21,23], flat bands, and van Hove singularities featuring the intrinsic
physics of kagome lattice [21-23]. Despite such studies, a detailed experimental investigation of
the shape of the bulk Fermi surface, cyclotron effective mass of carriers, and observables featuring
the topologically non-trivial bands and the saddle points causing van Hove singularity are still

missing. Such experimental investigations can be carried out using de Haas van Alphen (dHvA)



oscillations or Shubnikov- de Haas (SdH) oscillations. One previous study [19] of GdVeSne uses
SdH oscillations measurement of electrical resistivity. That previous study reports observations of
two small frequencies 150 T and 200 T accounting for small Fermi pockets occupying about 2.5
% of the area of the first Brillouin zone. However, no other features revealing the relativistic nature
of Dirac fermions and the saddle points in the electronic band structures were reported. In this
work, we have used high field torque magnetometry measurements to study the dHvA oscillations.
One advantage of the dHVA oscillations measurement is that the magnetization oscillation directly
originates from the oscillations of the free electrons’ energy and doesn’t rely on scattering
probabilities. By using a single crystalline sample of residual resistivity ratio (RRR ~ 12), we are
able to observe dHVA oscillations on top of a magnetic background of ~ 7 us. We have extracted
several oscillation frequencies ranging from 10 T- 9000 T indicating the presence of small and big
pockets of the Fermi surfaces, consistent with the multiband nature of electrical transport and the
calculated electronic band structure. The angular dependence of the oscillation frequencies
indicates the presence of mostly 3D small pockets and quasi-2D type big pockets of the Fermi
surfaces. The temperature dependence of the oscillation amplitudes indicates the presence of both
light electrons (0.28 mo) as well as heavier electrons (2.37 mo). Some bands cross the Fermi level
more than one time giving different effective masses. The observation of multiple low frequencies
(<500 T), the calculated contributions from various bands, and crossing of the Fermi level by same
band more than one time, prevent the estimation of the Berry curvature associated to topologically
non-trivial bands. However, we are able to clearly observe and resolve other features associated
with enhanced mass fermions that characterize kagome materials such as the saddle points in the

proximity of the M-point in the Brillouin zone.
Experimental Details:

Single crystals of GdVeSns were synthesized via a flux-based technique. Gd (pieces, 99.9%), V
(pieces, 99.7%), Sn (shot, 99.99%) were loaded inside an alumina crucible with the molar ratio of
1:6:20 and then heated at 1125 °C for 12 hours. Then, the mixture was cooled at a rate of 2 “C/h.
The single crystals were separated from the flux via centrifuging at 780 °C. Crystals grown via this
method were generally a few millimeters long and <1 mm in thickness. The separated single
crystals were subsequently cleaned with dilute HCI to remove any flux contamination. Crystals

were then transferred into a small jar of mercury to further remove additional tin contamination to



the crystals. Single-crystal x-ray diffraction measurements were carried out on a Kappa-Apex II
single crystal diffractometer with a charge coupled device (CCD) detector and a Mo source. The
low field magnetization measurements were carried out using a Quantum Design Magnetic
Properties Measurement Systems (MPMS-3). The resistivity was measured using four probe
methods employing the electrical transport option (ETO) of the Quantum Design Dynacool

Physical Properties Measurement System.

Figure 1:Crystal structure of GdVsSne. (a) Crystal structure showing different layers of Gd, Sn and V atoms. (b)
Crystal structure viewed along the c-axis showing the kagome network of V atoms. The colored spheres indicate
different atoms.

High-field measurements were carried out at the National High Magnetic Field Laboratory
(NHMFL), Tallahassee, Florida, with the maximum applied fields of 18 T (Superconducting
magnet), and 35 T (dc resistive water-cooled magnet). In both experiments the lowest temperature
of 0.35 K was achieved using a top-loaded *He insert. The magnetic torque was measured using a
miniature piezoresistive cantilever. A tiny GdVeSns crystal was selected and then fixed to the
cantilever arm with vacuum grease. The cantilever was subsequently mounted on the rotating
platform of a special probe designed at NHMFL. The probe was then slowly cooled down to the
base temperature of 0.35 K. Two resistive elements on the cantilever were incorporated with two
other room-temperature resistors to form a Wheatstone bridge, which was balanced at base
temperature before taking field dependent data. The angle-dependent torque data were obtained
by rotating the sample in situ with the applied field. Magnetic fields were swept at each fixed

temperature at a rate of 2.7 T/min (up) and 4.2 T/min (down).



Computational methods:

The electronic band structure calculations were done using the Vienna Ab Initio Simulation
Package (VASP) [24-26]. The electron-electron non-classical exchange-correlation interactions
were modeled using the generalized gradient approximation under the PBE parametrization [27].
Projected augmented wave potentials [25,28]were used with an optimized cutoff energy of 520 eV.
An energy and force criteria were applied to reach structural relaxation, where the energy and
norms of all forces must be less than 10% eV and 0.01 eV/A, respectively. A discrete equally spaced
mesh [29] of 10x10x6 k-points was used to evaluate the electronic states during the
ionic relaxation process. For the electronic band structure analysis, the convergence criterion was
taken as the condition where the total energy change between two successive iterations in the self-
consistent loop became smaller than 10 eV. For the converged calculations, a k-point mesh of
15%15x12 was used. Since we are treating atoms with large atomic mass -where relativistic effects
take importance- spin-orbit coupling interactions are mandatory, we also included it in the
relaxation and electronic properties of the GdVeSne structure. Also, f~orbitals of the Gd atom with
highly localized electrons must be accounted for. To do so, we included the Hubbard interaction
in the simplified approach proposed by Dudarev et al. [30], with an on-site Coulomb parameter U=
6 eV for the Gd atom. To calculate the Fermi energy in a dense k-mesh (121x121x123), we have
used the Hamiltonian based on the Wannier functions obtained using the Wannier90 code [31]. We
modeled the GdVeSne material considering the hexagonal P6/mmm space group in its
ferromagnetic structure. The dHVA frequencies and their angular dependencies were calculated via

the skeaf code [32]

Results:

The room temperature X-ray diffraction pattern from the flat surface of a single crystal of GdVesSne
is presented in Fig. 2a. The peaks can be indexed with hexagonal structure with space group
P6/mmm. The diffraction pattern contains only peaks corresponding to Miller indices (00/, I=1,2,
3..) indicating that the flat surface is perpendicular to crystalline c-axis. The magnetic
susceptibility of a single crystal under a field of 1 £kOe applied along the c-axis is presented in Fig.
2b. The susceptibility follows a typical Curie-Weiss behavior at higher temperatures; however, it

enters a long-range magnetic phase around 7v= 5 K. The inset in Fig. 2b displays the fitting to

C
T-6¢

Curie-Weiss behavior %= Xo + (T >20 K) with the Curie-constant (C), a Curie-Weiss



temperature (6. ), and a small background term (x,). The fitting yields C=7.307(2) emu mol™!' O¢"
'K, 8, =7.96 (2) K and y, = 0.002(1) emu mol! Oe! K. This gives effective moment pefr =
7.7(2) us/f.u consistent with the expected full moment from Gd*" ion (7.94 pg). The positive Curie-
Weiss temperature indicates the dominant ferromagnetic interactions along the c-axis. Figure 2¢
presents the zero-field electrical resistivity as a function of temperature for a GdVeSne single
crystal with current within the ab-plane. The resistivity exhibits typical metallic behavior with a
small downturn at the magnetic transition (5 K), indicating the interaction between 3d-itinerant
electrons in the kagome layer and the Gd spins in the spacer layer. The residual resistivity ratio
(RRR = 12) allows the measurement of the dHVA oscillations in the presence of uniform magnetic
background. A more detailed investigation of the structural, electrical, and magnetic properties of
GdVeSne indicating the onset of long-range magnetic order with a large, saturated moment (~7
uB), consistent with both our computational findings (7.07 us per Gd ion) and the multiband

behavior observed in previous electrical transport studies [22].
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Figure 2: Single crystal characterization of GdVsSns. (a) X- ray diffraction pattern observed from the flat surface of
a single crystal (shown in inset) of GdVeSne. The presence of only sharp (00/) type reflections indicate high quality
single domain crystal with the c-axis perpendicular to the flat surface. (b) Magnetic susceptibility, ¥, as a function of

temperature measured at 1 kOe field applied parallel to the c-axis. The inset shows Curie Weiss law fitting for 7> 20
K. (c) Zero field electrical resistivity, p, with current within the ab plane.
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Figure 3: Magnetic torque measurements (a) The magnetic torque () as a function of magnetic field (H) taken using
the 18 T (blue) and the 35 T (red) magnet at given angles. The inset figure shows the schematic of the magnetic field
direction relative to crystal axes. (b) The polynomial background subtracted signal (At) as a function of the inverse
magnetic field (1/H) (c) The fast Fourier transform (FFT) spectra (amplitude vs frequency) at 6 = 0°, T=0.35 K, for
FFT range of 6 T-18 T, 18 T- 35 T, 33 T- 35 T. The x-axis is plotted in logarithmic scale to highlight features at low
frequencies. The frequencies F;, F», F3, Fy, Fs, Fs, F7, Fs, Fo in Fig. (c) represent dominant frequencies. The symbols
(o, 3,v,0) represent possible bands contributing to those frequencies as indicated by shaded regions.



The results of typical magnetic torque measurements are presented in Fig. 3. Fig. 3a presents the
magnetic torque (t) as a function of magnetic field (H) at # =-10° and + 7° measured using the 18
T superconducting magnet and the 35 T resistive magnets respectively. Here, 6 is the angle
between the magnetic field and the c-axis of the crystal as shown in inset of Fig. 3a and the sign
of @ represents the sense of rotation of the magnetic field with respect to the ¢ axis of the crystal.
Fig. 3b displays the third order polynomial background subtracted signal (At) as function of
inverse magnetic field (1/H) at given angles indicating quantum oscillations that are periodic in
1/H. Fig. 3c displays the Fourier transformation of background subtracted signals at 8= 0°, 7=
0.35 K for different Fast Fourier Transformation (FFT) ranges.

The x-axis of Fig. 3c is displayed in a logarithmic scale to highlight the low frequencies. At 8=
0°, we observed 9 dominant frequencies, Fi=(13+7) T, F2=32+10) T, F3=(95+ 10) T, F4 =
(176 £6) T, Fs= (200 + 10) T, Fs = (850 £ 20)T, F7= (1470 + 30 )T, Fs= (8440 = 50) T, Fo= (8850
+ 60) T, that are consistent with the electronic band structure calculations. These frequencies
correspond to four different bands (a., B, v, and 0) present at the Fermi level. We also observed
frequencies having weak amplitudes around 55 T, 290 T, 390 T, 1040 T, and 1370 T. However,
due to the presence of nearby frequencies with strong amplitudes, we are unable to track down the
temperature and angle dependence of all frequencies. We therefore focus on the analysis of 6
frequencies (F1, F3, Fe, F7, Fs, Fo) mentioned above and displayed in Fig. 3c. After identifying the
frequencies at = 0°, the angle-dependent torque measurements are performed to understand the
shape of the Fermi surface. Figure 4 displays the results of angle-dependent measurements at 7 =
0.35 K. For the analysis of low frequencies (F <500 T), FFT range of 6 T- 18 T is used whereas
for frequencies F > 500 T, the FFT range of 18 T- 35 T is used. As is clear from Fig. 3c and Fig.
4, we observed many frequencies below 500 T making it difficult to follow the angle dependence
of every frequency. The low frequencies F1, F2, F3, F4, Fs survive at all angles between (0 to -90)
with some angle dependence. The frequencies F¢ and F7 appear only between 8= 0° to = -10°
and disappear quickly. The high frequencies Fs, F9 disappear above €= -50°. This indicates that
the Fermi surface contains small pockets of mostly 3D shape and bigger pockets of 2D shapes. It
is important to note that out of these frequencies observed in this work, only two nearby

frequencies of 150 T and 200 T were reported in the previous work [19] using SdH oscillations.
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Figure 4: Angle dependence of dHVA oscillation frequencies at T = 0.35 K. (a) & (b) Frequencies obtained with
FFT range of 6 T- 18 T. (c) & (d) Frequencies obtained with FFT range of 18 T -35 T.

The observed frequencies are compared to those expected from electronic band structure

calculations. The results are summarized in Fig. 5. The electronic-structure-calculated frequencies

from the different bands are plotted as colored symbols (A,V,® €whereas the observed

frequencies are plotted as (®). The calculated frequencies for the four bands (., B, v, and 8) closely

match those observed experimentally. The next step is to study the temperature dependence of

these frequencies. By suitably choosing the FFT range and the angle, the temperature dependence

of F1, F3, Fe, F7, Fs and Fy are studied in this work. The temperature dependence of Fi, F3, Fs and

Fo are studied using data taken at 6 = -10° whereas the temperature dependence of Fs and F7 are



studied using data taken at § = 0°. We used an FFT range of 6 T -18 T to study the temperature
variations of Fi, F3 and Fs whereas we used FFT range of 14 T - 18 T to study the temperature
variation of F¢ and F7. The variation of normalized FFT amplitudes with temperature for Fi1, F3,
Fs, F7, Fs, and Fo are presented in Figure 6. These variations can be described by the damping part
of the Lifshitz-Kosevich (LK) formula [33,34] (solid lines in Figure 6). Fitting with the LK formula
gives six different effective masses m1*= 0.28(1) mo, m3*= 0.36(1) mo, me¢*= 1.20(6) mo, and m7*=

0.79(5) mo, ms*= 2.25(15) mo, and mo*= 2.37(18) mo. The details of the LK fitting are presented

in Appendix B.
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Figure 5: (a) Angle dependence of clectronic band structure calculated frequencies (o, 3, y, 8) and observed
frequencies (®). The observed frequencies are taken at 7=0.35 K. Different colors of calculated frequencies represent
different bands. (a) Observed and calculated frequencies below 2000 T. The shaded region in (a) contains at least two
frequencies (F¢ and F7) related to two orbits containing 3-band. The other frequencies in (a) contain contributions from
at least 3 different orbits associated to a, 3, and y bands. (b) All observed and calculated frequencies. The frequencies
above 5000 T in (b) correspond to y and & bands (Fs, Fo) respectively.

Along with the determination of the effective mass (m*) using the LK formula, the different areas
associated with different sections of the Fermi surface are estimated using the Onsager
relation [34]. We then calculated the Dingle temperature 7p (an additional temperature factor that
accounts for the damping of oscillations amplitude with inverse field). The estimation of Dingle
temperature is presented in Appendix B. After calculating the extremal area (Sf), Fermi wave
vector (kr), effective mass (m*), and Dingle temperature (7b), we have estimated the Fermi velocity
(vf), quantum scattering time (zs), mean free path (/p), and the quantum mobility (x). We define u
as quantum mobility to distinguish from the classical mobility arising from the Drude model that
can be present without magnetic field. In this case, mobility is related to the cyclotron motion of

carriers. These quantities are presented in Table I.



Table I: Results of dHVA oscillations showing observed frequencies (F), extremal orbit area (5y), Fermi wave vector
(k), effective mass (m*), Fermi velocity (vf), Dingle temperature (7p), quantum scattering time (zs), mean free path
(Ip), and quantum mobility («). The numbers on bracket indicate the errors.

F(T) St P I v i 05y | I P
(AD) (A™Y (10*ms™) | (K) (nm) | (cm?®V's?h)
95(10) | 0.009(1) | 0.053(2) | 0.36(1) | 17(1) 13.12) | 092(1) | 16(1) | 453(14)
850 (20) | 0.081(1) | 0.161(1) | 1.211) | 15.3(2) 1023) | 1.193) | 18(1) 1735)
1470 30) | 0.1412) | 02112) | 0.79G) | 312) 2 0552) | 170) 1239)
8440 (50) | 0.802(4) | 0.506(1) | 2.25(15) | 26(2) 412) | 290D 774 | 231(19)

After establishing the presence of multiple pockets of the Fermi surface, the next conventional step

in such analysis would be the estimation of Berry phase (¢s) by analyzing the oscillatory part of

the LK formula [34,35]: sin [277(# + (5—5 — ; + 6,)] where, the factor §,, depends upon the
dimensionality of the Fermi pocket and takes value (+1/8) for the minimal and (-1/8) for maximal
cross sections of 3 dimensional Fermi surface. The factor of 2 comes from Maslov correction and

applies to the case where the orbits are compressible to circles [36].

12 ' ' " [ @ F1=13T, m*=0.28 () mg
@ F3=95T,m"=0.36(1) my
v 1.0F ® F6=850 T, m"=1.20(6)mg
g ® F7=1490 T, m* =0.79(5) mg
= 0.8 @ F8=8350 T, m* =2.25(15)mp
E_ ' i & F9=8770T, m"=2.3?(18]m0
£
T 0.6} i
©
N
: 0-4 - -
£
- L -
o 0-2
= RN
OID ™ - -
_0'2 1 1 1 1 L 1
0 1 2 3 4 5 6
T (K)

Figure 6: Temperature dependence of amplitudes of dominant frequencies. Data for Fs and F7 were taken from 6 =0
measurements while the rest data were taken from 0 = -10° The solid lines fit to the damping part of LK formula
described in Appendix B.



It has been suggested in recent works [35,37,38] that the precise estimation of Berry phase requires
understanding the details of crystalline and magnetic symmetries of materials. Therefore, a phase
of 7 should not be taken as smoking gun proof of non-trivial topology. In our experimental study,
we encountered a notable complication stemming from the presence of numerous closely spaced
frequencies, all falling below the 500 T threshold. This intricate frequency landscape presents a
significant challenge, rendering the precise estimation of the Berry phase inconclusive. However,
unlike the Berry phase that could be blurred by multiple close frequencies, the mass enhancement
associated to the saddle points in electronic band structure are clearly observed and reproduced by
electronic band structure calculations.

Discussion and conclusions: Our dHvA-based analysis of GdVeSns revealed several important
features revealing this kagome material's Fermi surface properties. We observed 9 dominant
frequencies [Fi=(13£7) T,F2=32+10) T, F3=(95+ 10) T, F4= (176 £ 6) T, Fs= (200 £+ 10)
T, F6=(850+20)T, F7= (1470 £ 30 )T, Fs= (8440 £ 50) T, Fo= (8850 + 60) T |, when the magnetic
field is applied perpendicular to the kagome plane (0 = 0°). These frequencies are consistent with
electronic band structure calculations. In addition, we observed frequencies with weak amplitudes
around 55 T, 290 T, 390 T, 1040 T, and 1370 T. However, due to the presence of nearby strong
amplitude frequencies, we are unable to follow the temperature and angle dependence of all
frequencies. The lowest frequency Fi correspond to less than 2 periods of oscillation in the FFT
range of 6 T-18 T, but it shows a discernible temperature dependence close to the calculated
frequencies from o, and y bands. The comparison of the observed frequencies with the calculated
frequencies indicates that the frequencies F1 and F4are most likely related to orbits orbit originating
from the a band, F2 and Fs related to orbits originating from the y band, F3, Fs, Fe, and F7 from the
[ band and Fo from the 6 band. Furthermore, the angle dependence of dHvVA frequencies indicates
that the low (F < 500 T) frequencies survive when the magnetic field is rotated 6 = 0° to 6 = 90°,
indicating small Fermi pockets of mostly 3D shape. We also observed large pockets of the Fermi
surface. The two frequencies related to such large Fermi pockets disappear at high angles
indicating their quasi-2D nature. These facts are also supported by the calculated frequencies from
electronic band structure calculation (Fig.5 and Fig.7) and the projected Fermi surface presented
in Fig. 7b. Notably, o and B bands exhibit hole-like characteristics, while the y and & bands

predominantly demonstrate electron-like behavior. Regarding the Fermi surface shapes, the oo and



B bands exhibit irregular lobes or pockets along the M-L high symmetry path whereas, the bands
v and & display barrel-like shapes with prominent and open regions along the same M-L high
symmetry path, as illustrated in Figure 7a and 7b. It is to be noted that the FFT range for angle
dependence presented here is (6 T-18 T) for low frequencies (F<500 T) and (18 T-35 T) for high
frequencies (F > 500 T). While changing the FFT window, we are also able to observe (not
presented here) the second harmonics at some angles especially for high frequencies (F>500 T).

Furthermore, from the temperature dependence of amplitudes of dominant frequencies, we have
estimated the cyclotron effective masses [mi*= 0.28(1) mo, m3*= 0.36(1) mo, me*= 1.20(6) mo,
and m7*= 0.79(5) mo, ms*= 2.25(15) mo, and mo*= 2.37(18) mo]. The light masses correspond to
o and B bands whereas the heavy masses (ms, and mo) correspond to relatively flat bands (y and
d) near saddle point around the M point. Notably, these enhanced mass fermions correspond to
vanadium d-orbitals near van Hove singularity (VHS2) that is clear from the density of states plot
presented in Figure 8 b. It is also observed that the calculated quantum mobilities are relatively
small compared to other non-magnetic kagome materials such as CsV3Sbs [39,40]. This is most

likely caused by the scattering of electrons from the magnetic background.

a

Energy-Er (eV)

Figure 7: (a) The electronic band structure of GdVeSng in the ferromagnetic state; (b) Fermi surface representation
illustrating distinct pockets. The four electronic bands (a, B, y, and ) crossing the Fermi level are depicted in distinct

colors.

Finally, the electronic band structure presented in the current work (Fig. 7 and Fig. 8) is in the

ferromagnetic state, but it remains largely unchanged in the vicinity of Fermi level when compared



to electronic band structure calculated in the paramagnetic state of TbVeSne [41] and
GdVsSns [22].

This stability is attributed to the f-orbitals, crucial for the material's magnetism, being located away
from the Fermi level. Moreover, the topological features and saddle points around the Fermi level

are dominated by the kagome layer of V atoms.

(V)

Energy - E
d
&

15 20
DOS (states/eV)

Figure 8. Band structure of ferromagnetic GdVsSng including SOC and projected density of states for the Gd-f orbitals
(yellow), Sn-p orbitals (gray) and V-d orbitals (blue). Fermi level is set to zero energy. Dashed lines indicate the energy
appearance of the Van Hove Singularities (VHS).

In summary, our work reveals the Fermi surface of kagome magnet GdV¢Sne with small and big
pockets of the Fermi surface consistent with the multiband nature of electrical transport
measurements [22]. We found the existence of both lighter (0.28 mo) and heavier (2.37 mo)
fermions. While the topological nature of bands contributing to light mass is uncertain, we found
clear evidence of enhanced mass fermions originating from saddle point like feature of electronic
band structure at the proximity of the M point that led to VHS in the density of states at the Fermi
level. The appearance of such saddle point and corresponding VHS (VHS2) in the proximity of
Fermi level implies that this system is susceptible to various electronic instabilities.

Note: After this manuscript was submitted for review, we became aware of the similar Fermi
surfaces with light and heavy fermions in sister material YVeSne [42] reflecting the features of
topological non-trivial bands and saddle points like features of electronic band structure of kagome
materials.
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Appendix A: Angle dependence around 0 = 0°

The angle dependencies of FFT frequencies around 0 = 0° are presented in Fig. 9a and Fig.9b. The

data was collected using 18 T superconducting magnets at intervals of 6 = 3° to 6°.
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Figure 9: Small steps angle dependence around 6=0° at T= 0.35 K (a) Angle dependence of FFT amplitudes for
frequency range 0-500 T (b) angle dependence of FFT amplitudes for frequency range 500-2000 T. The angle (0) is
expressed in degrees (°).


https://nsf.gov/awardsearch/showAward?AWD_ID=2128556&HistoricalAwards=false
https://nsf.gov/awardsearch/showAward?AWD_ID=2128556&HistoricalAwards=false

Appendix B: Lifshitz- Kosevich (LK) formula, Dingle temperature (Tp), Onsager relation,
Fermi velocity (vy), scattering rate (1s), mean free path (Ip), and quantum mobility ()

The oscillatory part of torque is given by [34,43,44]

M) N 1
Ao \mo/<H> o o —
At < H it (A )@) xp{ A( )<H>} cos (ng 0) 51n[21't( St V)], where

A(m*) T )
mg/<H> m T . . ] .
——— ———1s thermal dam fact —A —D the Dinele d factor, T

sinh (A(T) ) is thermal damping factor, exp{ (mo) <H>} is the Dingle damping factor, Ty is

the Dingle temperature, cos (ng zrfn
0

*

) is spin reduction factor, g is Lande “g” factor, m* is effective

mass of electrons (holes), mo is mass of free electron, and the exponent A ~ 0 for 2D Fermi surface,
2
27X Mo 14,69 T/K. Here

1 1
)
(Hmin Hmax

) . .. : . 1
< H > is the harmonic mean of minimum and maximum field used in FFT. [<H> = > ].

and A ~ ' for 3D Fermi surface [34]. The constant A is given by: A =

The phase factor y is given by y = ((p - %).The factor ¢ is given by @ = g—f[ + 8. Here Qg is the
Berry phase and 6, is 0 for 2D and £1/8 for 3D Fermi surfaces with minimal and maximal cross
sections respectively [44]. The effective mass (m*) is calculated by fitting the normalized

A
s (A(Z)

Tb is obtained by fitting the Dingle damping factor term [exp {—A (m—) <TH>}] In practice this is

amplitude of oscillations to thermal damping factor term . The Dingle temperature

done by finding the slope of In [At H*® sinh (A ( ) K)] vs 1/H plot and dividing the slope by
A (m—) factor (Figure 10). For the calculation of extremal area of Fermi surface, we have used the
0

Onsager relation: F = (%) S¢, here o= 2mth/e, is the flux quantum, and S¢ = 1k is the extremal
area of Fermi surface normal to the magnetic field. Here kr is Fermi wavevector. The Fermi

o . hk . . .
velocity is calculated using vy = m—: The scattering rate (ts) is calculated from Dingle temperature

using the relation: tg = the mean free path is given by Ip = vrtg, and the mobility is

h
ZﬂkBTD,
. . eT
calculated using relation p = —
*
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Figure 10: Dingle temperature calculation for (a) Frequency F3 (b) F¢ (c) F7, and (d) Fs.
Appendix C: Electronic band structure calculation

We modeled the GdVeSne material considering the hexagonal Pe¢/mmm space group in its
ferromagnetic structure. The optimized lattice parameters a = 5.518 A and ¢ = 9.265 A that are
close to the experimental values a = 5.5348(7), ¢ = 9.1797(11) A [22]. The obtained magnetic
moments in the V-d and Gd-f orbitals are -0.147 ug and -6.928 ug, respectively. This indicates that

the Gd-f states dominate the ferromagnetic state in this material.

After optimization of the structure, we calculate the eclectronic band structure through band
structure and projected density of states. Figure 11a depicts the band structure at the high symmetry
points in the irreducible Brillouin zone. The band structure depicts the well-known flat bands
induced by the kagome structure (~0.35 eV), mainly due to the Vanadium-d orbitals [22]. Near the
Fermi level, Dirac-like dispersion relations are observed at the K symmetry point due to the
hexagonal symmetry of the Kagome lattice. We also note that bands have some linear dispersion
at the M point and in the I'-K path. The band structure evidences an apparent metallic anisotropic
behavior with a large band gap energy at the I'-A path but conduction states along the L-M (Figure
11b) and H-K paths.



0.1 —\
005 o =
d 3
e B— &
) 0 m
& Y— g
65—
005 ] 005 }
-0.1
r A L H AILMIH K -0.1

L M

Figure 11. (a) Band structure of ferromagnetic GdV¢Sne and (b) Band structure along L-M line of the Brillouin zone,
zoomed in from +100meV to -100meV. The four electronic bands (a., B3, v, and 8) crossing the Fermi level are depicted
in distinct colors.

In Figure 8, we plot the band structure and the projected density of states to evidence the
appearance of multiple Van Hove Singularities (VHS) near the Fermi level. In the density of states,
VHSs appear as sharp changes like peaks, valleys, or cusp-like structures, while in the band
structure, they appear as local extrema such as saddle points, points with large curvature, or band
edges. Both characteristics coincide in energy, as shown in Figure 8. Previous DFT calculations
without including spin-orbit calculations evidenced the appearance of four VHSs which were
labeled as VHS1, VHS2, VHS3, and VHS4 [21], in agreement with our findings, in which we have
included the SOC effect and considered the Ferromagnetic phase. As expected, the SOC effect
generates band splitting and a potential change in the VHS form, energy of appearance, and
quantity. For example, we also observed one more VHSs and potentially another at -0.5 eV. All
these points appear at the M high symmetry point. Our SOC calculations evidence that the VHSs

are mainly formed by the d-orbitals of the vanadium kagome lattice.

Appendix D: Fermi surface

We have obtained the Fermi Surface through first-principles calculation, employing the optimized
Ferromagnetic structure. In this analysis, we have discerned four distinct electronic bands: a, B, y, and d.
The Fermi surfaces have been projected at the Fermi energy, indicating that all observed bands intersect
with this critical energy level. Notably, Band-o and Band-f exhibit hole-like characteristics, while Band-y
and Band- predominantly demonstrate electron-like behavior. Regarding the Fermi surface shapes, Bands
o and B exhibit irregular lobes or pockets along the M-L high symmetry direction (see Band Structure of
Figure 7a, 10a). Conversely, Bands y and & display barrel-like shapes with prominent and open regions

along the same M-L high symmetry direction, as illustrated in Figure 12.



Figure 12. Projection of the Fermi surfaces of ferromagnetic GdVSng at the Fermi energy: (a) Band-«, (b) Band-S,
(c) Band-y, (d) Band-§, and (e) all Fermi surface pockets. In (e) is depicted the high symmetry path followed to plot
the band structure. All bands are depicted in different colors.
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