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Abstract:

Rivers and streams contribute to global carbon cycling by decomposing immense quantities of
terrestrial plant matter. However, decomposition rates are highly variable, and large-scale
patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to
reflect the primary constituent of plant detritus, we generated a predictive model (81% variance
explained) for cellulose-decomposition rates across 514 globally distributed streams. A large
number of variables were important for predicting decomposition, highlighting the complexity of
this process at the global scale. Predicted cellulose-decomposition rates, when combined with
genus-level litter-quality attributes, explain published leaf-litter-decomposition rates with

impressive accuracy (70% variance explained). Our global map provides estimates of rates
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across vast understudied areas of Earth, and reveals rapid decomposition across continental-scale

areas dominated by human activities.

One-Sentence Summary: By integrating big data and a global experiment, we predict organic-

matter decomposition in rivers worldwide.

Main Text:

Earth’s terrestrial ecosystems produce over 100 billion tons of plant detritus annually (/, 2), and
the fates of this organic matter — for example, long-term storage, mineralization to greenhouse
gasses, or incorporation into stream food webs — depend on the rate at which it is decomposed.
River ecosystems are carbon-processing hotspots (3, 4), receiving 0.72 billion tons of terrestrial
carbon per year (2), an amount that is disproportionately important relative to the small fraction
of non-glaciated land area (0.58%) rivers occupy (3). Rivers connect terrestrial ecosystems with
aquatic storage compartments including floodplains, lakes and oceans, playing vital roles in the
global carbon cycle, and functioning both as organic-matter conduits and reactors. Despite the
widely recognized importance of flowing waters in global carbon cycling (6-8), our
understanding of variation in organic-matter-decomposition rates and their drivers at large spatial

scales is still limited (2).

Large-scale spatial variation in organic-matter decomposition in rivers and streams has been
estimated by comparing leaf-litter-decomposition rates from studies conducted in regions with
contrasting climates (9, /0), conducting literature reviews of local field studies (/7), developing
conceptual models (/2, 13) and performing meta-analyses (/4, 15). Coordinated, distributed
experiments (/6—20) have been particularly insightful by generating directly comparable data

across broad geographic areas and identifying coarse-resolution explanatory variables of
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decomposition rates in rivers, including differences in decomposer communities and biomes.
Still, we lack a comprehensive understanding of how drivers such as climate, geology,
vegetation, water quality, and soils interact to govern organic-matter decomposition at large
scales. Such knowledge gaps are particularly evident across the tropics and in lower-income
economies — ecologically important areas where rivers are grossly understudied relative to those
in northern temperate zones. Quantifying patterns and controls of decomposition in these areas is
critical, however, because much of Earth’s terrestrial plant matter is annually produced in
tropical forests (net primary production 16.0-23.1 billion tons of carbon) (27, 22), and tropical

rivers deliver 48-64% of the carbon moving from rivers to the ocean (23).

Effectively modeling carbon dynamics at the global scale — including areas where field data are
scarce — requires a more mechanistic and process-based understanding of the many
environmental and biotic factors that drive organic-matter decomposition. Accurate estimates
generated by combining existing empirical measurements with fine-scale geospatial and
environmental data can provide multiple benefits. They can reduce the need for data collection
from remote or difficult-to-access regions, subsequently generating baseline estimates for
decomposition in understudied areas of the world. Global-scale predictions also contribute to a
finer-scale understanding of decomposition and support efforts to model planetary carbon
dynamics. Models that can accurately predict current in-situ decomposition rates across space are
particularly valuable, enabling manipulation of environmental drivers in silico to predict impacts

under scenarios of future global environmental change.

Here, we present a predictive model fitted with global data from CELLDEX (Cellulose

Decomposition Experiment), a coordinated, distributed experiment on cellulose decomposition
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in rivers designed to reveal previously undocumented patterns in decomposition rates and the
key factors driving this fundamental ecosystem-level process. Decomposition of cellulose — the
most abundant organic polymer on the planet and a main constituent of plant litter — was
quantified by over 150 investigators by using a common and well-established cellulose-
decomposition assay (24). The ‘cotton-strip assay’ is a standardized approach for measuring
decomposition by using a readily available woven cotton fabric (Artist’s canvas) that is
comprised of 95% cellulose. The loss of tensile strength of the fabric is measured, a process that
is strongly correlated with the microbial catabolism of cellulose (25). We performed the assay in
514 flowing-water ecosystems at georeferenced field sites on all seven continents, spanning 135°
of latitude and each of Earth’s major terrestrial biomes (19, 20). We used high-resolution (15
arcsecond) climate, soil, geology, vegetation, and physicochemical data (101 explanatory
variables total) in a boosted-regression tree (BRT) algorithm to develop the first global, high-
resolution predictive model of organic-matter decomposition in rivers. We then tested the utility
of the cellulose model by using predicted cellulose-decomposition rates and genus-level leaf-
litter chemistry traits to explain 895 leaf-litter decomposition estimates from studies conducted at
559 unique locations across the globe. We found that cellulose-decomposition rates are an
excellent proxy for litter-decomposition rates. Further, our models indicate the physicochemical

factors at river and watershed scales interact with characteristics of the organic matter being
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decomposed (e.g., leaf-litter chemistry) to create heterogenous spatial patterns in riverine

decomposition across the planet.

Climate, geology, soils, and water quality explain cellulose decomposition rates.

Climate, geology, soil, and water-quality variables explain 81% of variance in field
measurements of in-situ cellulose decomposition. Because a standardized cellulose substrate was
used at all field sites, observed variation in decomposition rates can be attributed unequivocally
to the activity of microbial communities and environmental drivers. Prior efforts have explained
broad variation in decomposition rates across riverine ecosystems as a function of exogenous
factors such as temperature (/4, /9) and concentrations of dissolved nutrients (/7, 20, 26), as
well as litter traits (15, 27, 28). Our model supports those findings and shows that climatic and
water-quality parameters are among the most important explanatory variables of decomposition
rates (Fig. 1). However, a relatively large number of explanatory variables (n=26) have
importance values greater than 1.0 (table s1), and no single variable contributes >15% to the
explanatory power of the model (table s1). This result reveals the complexity of the many drivers

that influence organic-matter decomposition at the global scale.

Top explanatory variables of cellulose decomposition include expected attributes like mean daily
water temperature (importance value [IV]=14.0; Fig. 1A), nitrogen and phosphorus availability
(IV=6.7 and 4.9, respectively; Fig. 1C & D), and mean annual air temperature (IV=2.5; Fig. 1F).
Our data and approach also highlight watershed-level characteristics that have been given little
attention previously, such as sub-watershed lake area (limnicity) (IV=6.9; Fig. 1B), actual
evapotranspiration in the watershed (IV=4.4; Fig. 1E), and the chemical and physical properties
of soil (table s1). Subwatershed lake area was a high-ranking variable, and its negative
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relationship with decomposition rates may be explained by the disproportionately greater
abundance of lakes at high northern latitudes where water temperatures are low (Fig. 1B).
Alternatively, lower nutrient concentrations and suppressed hydrological variability may have
also contributed to the negative influence of limnicity on decomposition. Although our study
sites were selected to have minimal human impacts relative to their region of study (/9),
variables associated with anthropogenic development, such as dissolved-nutrient yields, crop-
land extent (IV=2.0), population count (IV=1.3), and river regulation (IV=1.3), still emerge as
important (table s1). Notably, relationships between explanatory variables and decomposition
rates are frequently non-linear, revealing thresholds beyond which there are abrupt changes in
decomposition rates (e.g., Fig. 1B, D, & E). Water temperature has a strong positive effect on
cellulose decomposition (Fig. 1A), and there is an optimal range (5-13 °C) of annual air

temperature with estimated lower rates in both cooler and warmer watersheds (Fig. 1F).

Extrapolating to global patterns of decomposition rates

Our model and map of riverine cellulose decomposition reveals pronounced, large-scale spatial
patterns of organic-matter processing (Fig. 2). Rates generally increase with decreasing latitude,
with rapid rates in tropical regions (e.g., Central America, Amazon basin, Western Africa, Indo-
Pacific) and areas characterized by volcanic activity and young soils, an effect previously
documented only at more local scales (29). Importantly, fluvial ecosystems in these regions are
among the least studied on the planet (Fig. 2, inset), yet they have high rates of terrestrial
primary production (22) and carbon export to the ocean (23). Vast areas in middle latitudes with
ubiquitous human impacts — central Europe, eastern China, central North America, southeastern

South America, and Japan — also support elevated decomposition rates, strongly suggesting

6
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continental-scale human impacts on carbon cycling in rivers. In contrast, areas of boreal forests,
characterized by short growing seasons, low temperatures, and peaty, acidic, water-logged soils,
exhibit slower rates of organic-matter decomposition, especially in northern Asia, eastern

Scandinavia, and northeastern Canada.

Validating predicted cellulose-decomposition rates with leaf-litter-decomposition rates
Recognizing that the substrate used in our standardized decomposition assay (cellulose as cotton
fabric) lacks the chemical complexity of organic matter that naturally enters running waters, we
also tested how accurately our modeling approach could explain variation in the decomposition
rates of terrestrial leaf litter in rivers reported by ecologists worldwide. To this end we
independently validated model forecasts using 895 unique litter-decomposition rates from 559
locations and representing 35 genera of terrestrial plants (27). We also used leaf- and litter-trait
data at the genus level (30, 37) and experimental conditions (/4, 27) as explanatory variables to
account for variation among decomposition estimates resulting from differences in leaf-litter
quality (e.g., lignin, hemicellulose, tannin, nutrient content) and the feeding activity of
invertebrates (Figure 3A, table s2). Our cellulose-decomposition model predictions coupled with
litter traits account for 70% of the variation in leaf-litter decomposition. Importantly, the
explanatory power of this model is overwhelmingly driven by predicted rates of cellulose
decomposition (IV=39.5), despite the stark differences in quality between the cellulose substrate

and natural litter (Fig 3A, table S2). These results provide strong support for the critical
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influence that environmental drivers have in regulating riverine litter decomposition, including

the drivers impacted by anthropogenic activities.

Prior research at large scales has stressed the importance of litter quality as the predominant
control of decomposition rates in rivers (/35). Our results demonstrate that in addition to leaf-
litter traits, environmental factors, such as temperature and nutrient availability, are critically
important in regulating decomposition rates at larger spatial scales. Our validation model also
reveals that invertebrate access to leaves, as assessed by experimentally manipulating litter-bag
mesh size, greatly increase the rate of decomposition in all but the fastest decomposing leaves
(Fig. 3A). Finally, litter chemistry contributes to the explanatory power of the model in expected
ways, with plant genera that are characterized by high lignin content (IV=11.9; Fig. 3B) and low
litter-nitrogen content (C:N, IV=5.45 and N, IV=5.23; Fig. 3C & D) decomposing more slowly.
Other litter traits (e.g., P content, cellulose) provide little additional explanatory power and no
leaf traits explain more variation than expected by chance (table s2). It is well recognized that
leaf-litter chemistry can vary among individuals within a species (32, 33) and even individual
leaves from a single tree (34); thus, our model may underestimate the importance of individual-
level variation in leaf and litter chemistry in driving decomposition. Greater measurement and
reporting of litter chemistry, especially nitrogen and lignin content will improve understanding

of endogenous controls at global scales. Despite limitations in available data, we show that
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cellulose decomposition can be an excellent proxy for litter decomposition, and our composite

model of environmental drivers makes reliable estimates of litter decomposition at a global scale.

Forecasting decomposition under global environmental change

The high explanatory power of our cellulose and leaf-litter decomposition models enables
forecasting of decomposition rates under altered climate, land cover, soil conditions, and
nutrient-loading scenarios. These predictions can identify locations across the globe where
decomposition may be particularly susceptible or resistant to global change, thereby informing
freshwater-conservation efforts. As proof of concept, we examined potential changes in
predicted litter-decomposition rates associated with changes in pine-oak forest composition in
Mexican watersheds invaded by pine bark beetle (Dendroctonus mexicanus) (35). This invasion
is expected to be particularly severe in the watershed of the Rio Grande de Santiago, a major
conduit of organic matter to the Pacific Ocean in Mexico (Fig. 4). Our forecasts predict that
insect-induced canopy replacement from pine to oak would cause decomposition rates to
increase and become more variable (2.5- to 3.8-fold increase) with larger increases in
decomposition associated with watersheds with greater evapotranspiration and drier soils (fig.
s1). To promote the use of our models for forecasting, we created an easy-to-use, open-source
online application where users can estimate both cotton-strip and leaf-litter decomposition rates

for any river across the globe (https://shiny-bsci.kent.edu/CELLDEX).

Conclusions and implications

By pairing a distributed field experiment with publicly available environmental data, we created

the first high-resolution map and predictions of organic-matter decomposition rates in flowing

9
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waters worldwide. Our model demonstrates that cellulose-decomposition results from diverse,
interacting, and non-linear environmental forcings that can best be described with complex, data-
rich models. Although the standard cotton fabric used lacks the biochemical complexity of leaf
litter, our relatively simple organic-matter substrate is an excellent proxy for leaf litter in
decomposition studies, as demonstrated by our model predictions. Simplification of the leaf-
litter-bag assay allowed us to both achieve standardized results and fill extensive geographic
gaps in remote and low-resourced areas, demonstrating the power of coordinated, distributed
experiments (36). Although our datasets were large when compared against other studies of
organic-matter decomposition, the field data used were relatively limited in both space and time,
which makes our strong explanatory power all the more striking. Thus, this work also
underscores the power of machine-learning algorithms and large geographic databases of
environmental data (e.g., HydroBASINS (37, 38)) plus the critical value of temporally and
geographically extensive data from simple but standardized coordinated experiments (e.g.,

CELLDEX).

Given the pressing information needs of measuring ecosystem functions for biomonitoring and
bioassessment (39, 40), our globally distributed experiment provides a template for matching
observational data with model predictions. This approach provided baseline data for estimated
decomposition rates across immense, unstudied areas of the planet, and supports the
development of biomonitoring networks in areas where they are most needed (47). To further
advance large-scale monitoring and assessment we have made these modelling approaches

accessible through an open-source online mapping tool. Application of the models to current and

10
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future environmental threats will enable scientists and natural-resource managers to forecast

changes in the functioning of river networks at a planetary scale.

Cellulose decomposition is strongly influenced by multiple interacting environmental drivers that
continue to be impacted by anthropogenic activities. Undoubtedly, climate change, increased
nutrient loading, intensified land-use modification, and changes in vegetation cover will continue
to alter organic-matter processing in rivers and streams. Notably, key human-influenced drivers
of cellulose decomposition — especially nutrient loading and temperature — are positively related
to decomposition rates. A critical implication is that, in the presence of continued environmental
change, organic-matter decomposition rates will likely increase in rivers, resulting in declines in
shorter-term carbon storage (42) and reductions in carbon transfer to longer-term storage

compartments, such as reservoirs, floodplains, and oceans.
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Fig. 1. Partial-dependence plots (black lines) of the top variables that explain and predict
cellulose-decomposition rates (K«). Background maps show global distributions of explanatory
variables in Mollweide projection. The boosted-regression tree model explains 81% of the
variance in decomposition rates across the 514 streams used in our study. Most top variables
relate to climate and water quality and effects exhibit non-linear threshold responses. Black ticks
above the x-axis indicate decile breaks.

Fig. 2. Predicted mean annual cellulose-decomposition rates (Kz) revealing broad spatial patterns
in decomposition rates. We did not predict Ka for sub-watersheds with <10 ha of sub-basin area,
nor for Antarctica, for which we did not have values for most predictor variables. Inset shows
study sites for cellulose (light-filled circles) and leaf-litter (dark-filled circles) decomposition
measurements. Map and insert are Mollweide projection.

Fig. 3. Partial-dependence plots of the top variables that explain leaf-litter-decomposition rates
(Ka). The boosted-regression-tree model explains 70% of the variance in rates across 895
published values of leaf-litter decomposition and leaf quality (27). Top explanatory variables
included our modeled cellulose-decomposition rates, invertebrate access to the leaf material, and
attributes related to litter quality. Smooth fits (GAM) show the relationship between cellulose-
decomposition rate and litter decomposition for the two different common litter-bag mesh sizes
that allow or exclude invertebrates (A). The smooth fits capture the general environmental
effects on decomposition, whereas the partial dependency plots (thin lines) are noisier due to
covariation in leaf quality and environmental conditions (i.e., certain leaf types are used in
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certain regions). Black ticks above x-axis indicate decile breaks. Note the change in y-axis
between panel A and B-C.

Fig. 4. Distribution of temperate-coniferous forests in Mexico (all points) and locations (orange)
where there is a moderate-to-high risk of pine bark beetle (Dendroctonus mexicanus) invasion
(adapted from (35)) that drives a shift from coniferous to deciduous forest. Inset shows the
density distribution of predicted litter-decomposition rates for streams in areas of moderate-to-
high invasion risk both for pine litter (green solid line) and oak litter (orange dashed line). Our
model predicts that full canopy replacement from pine to oak would increase leaf-litter
decomposition rates 2.5- to 3.8-fold with a greater increase predicted in watersheds with greater
evapotranspiration and drier soils. Base from U.S. Geological Survey, The National Map, 2023;
Web Mercator projection; created in the R package leaflet 2.2.1 (44).
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Fig. 1. Partial dependence plots (black lines) of the top variables that explain and predict cellulose decomposition rates (Kg). Background maps show
global distributions of explanatory variables in a Mollweide projection. The boosted regression tree model explains 81% of the variance in decomposition rates across
the 514 streams used in our study. Most top variables relate to climate and water quality and effects exhibit nonlinear threshold responses. Black ticks above the
x-axis indicate decile breaks.
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Fig. 2. Predicted mean annual cellulose decomposition rates (K4) revealing broad spatial patterns in decomposition rates. We did not predict Ky for sub
watersheds with =10 ha of sub basin area, nor for Antarctica, for which we did not have values for most predictor variables. Inset shows study sites for cellulose (light
filled circles) and leaf litter (dark filled circles) decomposition measurements. Map and insert are Mollweide projection.
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Fig. 3. Partial dependence plots of the top variables that explain leaf litter decomposition rates (Kg).
The boosted regression tree model explaing 70% of the variance in rates across 895 published values of
leaf litter decomposition and leaf quality (27). Top explamatory variables included our modeled cellulose
decomposition rates, invertebrate access to the leaf material, and attributes related to litter guality. Smooth
fitz (GAM) show the relationship between cellulose decomposition rate and litter decomposition for the
two different common litter bag mesh sizes that allow or exclude invertebrates (A). The smooth fits capture
the general environmental effects on decomposition, whereas the partial dependency plots (thin lines) are
noisier due to covariation in leaf quality and environmental conditions (i.e., certain leal types are used in
certain regions). Black ticks above x axis indicate decile breaks. Note the change iny axis between

panel & and B C.
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Fig. 4. Distribution of temperate coniferous forests in Mexico (all points) and locations (orange)
where there is a moderate to high risk of pine bark beetle (Dendroctonus mexicanus) invasion
(adapted from (35)) that drives a shift from coniferous to deciduous forest. Inset shows the density
distribution of pradicted litter decomposition rates for streams in areas of moderate to high invasion risk both
for pine litter (green solid line) and oak litter (orange dashed line). Our mode] predicts that full canopy
replacement from pine to cak would increase leaf litter decomposition rates 2.5 to 3.8 fold with a greater
increase predicted in watersheds with greater evapotranspiration and drier soils. Base from U.S. Geological
Survey, The National Map, 2023Web Mercator projection; created in the R pachage leaflet 2.2.1 (44).
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Materials and Methods

Cellulose decomposition

We used a global dataset of cellulose-decomposition rates generated by a coordinated field
experiment (Cellulose Decomposition Experiment [CELLDEX]) (/9). Cotton strips were
incubated in 514 flowing waters spanning 135 degrees of latitude by a consortium of over 150
peer-sourced researchers. Cotton strips are composed of cellulose, the primary constituent of
most terrestrially derived leaf litter and the most abundant organic polymer on Earth; as such,
cellulose is a plant polymer that is highly relevant for global biogeochemical cycles. The cotton-
strip assay is an integrative measure of the activity of heterotrophic microbes and is highly
sensitive to an array of environmental factors including nutrient concentrations, temperature, and
pollutants (24). As used in our study the assay is not believed to be directly influenced by the
feeding activity of macroinvertebrates. Cotton strips were deployed in 2015-2016 during periods
of peak organic-matter inputs to flowing waters (e.g., autumn in temperate zones, dry season in
tropical deciduous forests) at sites relatively free of major anthropogenic impacts. We typically
chose stream orders 1-3 (45) and had sites located in each of Earth’s major terrestrial biomes
(19), and the cellulose-decomposition rate at each river was summarized as the exponential
decay rate (Ka) of tensile-strength loss:

K—=-In(T#T;)/t

where 77 is the final tensile strength of each cotton strip after incubation in the field, 7: is an
average tensile-strength value of control strips not incubated in the field to establish initial tensile
strength, and ¢ the field incubation time in days (usually 21-30 days). The loss of tensile strength
corresponds to the decomposition of the cotton fabric and is driven predominantly by the activity
of microbes. Field and laboratory methods are detailed in (79, 24).

Environmental data sources

For data on environmental variables other than in-situ water temperature, we relied on
publicly available datasets with global coverage: 1) (46) for estimates of river yields of dissolved
reactive phosphorus (kg DRP-P ha™! yr!) and nitrate+nitrite (kg NOx-N ha™' yr'!); 2) (47) for
estimates of nitrogen (N) deposition; 3) (48) and (49) for estimates of phosphorus (P) deposition
that we then interpolated; and 4) (38) for data on 96 variables summarized at the 12-digit
hydrological scale or for the area upstream (HydroRIVERS: River ATLAS v10 lev12;
HydroBASINS: BasinATLAS v10 lev12) for either river reaches or corresponding sub-
watersheds, though all variables were not populated for all sub-watersheds. We excluded
variables from HydroBASINS that were composite measures where we already included
confounded variables (e.g., biome, human development index, and human footprint). We
recorded temperature data with loggers for a subset (n=360) of the 514 rivers to determine the
mean daily temperature of the river water during the cotton-strip incubation period.

Litter decomposition data

We used a global dataset of 3,216 unique estimates of litter-decomposition rates (as Ka
using the equation above except that mass rather than tensile strength was used) for 125 plant
genera and multiple experimental conditions (27) to independently validate whether our
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cellulose-decomposition model could explain rates of litter decomposition. These data are an
expanded version of the data published by LeRoy et al. (2020) (see data repository for complete
data)(27). For each unique river reach sampled in the dataset, we averaged K+ estimates by each
unique combination of leaf condition (i.e., leaves picked from the trees while still living or
collected from the ground after senescence), plant genus, and direct feeding by detritivorous
invertebrates (i.e., coarse-mesh which included invertebrates or fine-mesh litter bags which
excluded invertebrates). We excluded any data for which we had 3 or fewer measurements of
decomposition for a genus. The final dataset included 895 unique observations of 35 genera from
559 river reaches. All but 7 estimates of litter decomposition also included mean temperature
during deployment, which we included as a predictor variable.

Leaf- and litter-trait data sources

We downloaded 384,252 records from 21,100 plant species and 4,557 genera of leaf traits
related to nutrient, micronutrient, and structural compounds for leaves from the TRY plant-trait
database (37). After filtering for traits describing the chemical constituency of plant leaves that
we felt were most relevant for decomposition, the resulting database included average values for
7 traits representing 64 genera. Litter traits were assembled from 114 studies comprising 602
litter deployments of 172 genera in rivers (43). These trait values were joined by genus to the
aforementioned empirical data on leaf litter. All genera for which we had litter-decomposition
rates had data regarding either leaf or litter traits, and most included complete values for both.
Details on filtering, aggregating, and variable selection as well as full datasets can be found in
the data repository (43).

Data Analysis

Environmental data processing

At each river sampling location in the CELLDEX dataset, we combined temperature
recorded during the experiment, extracted values from nutrient yield and deposition rasters, and
attributes from HydroBASINS summarized by upstream watershed as well as the containing sub-
watershed. For HydroBASINS fields that were additionally available as monthly summaries
(e.g., air temperature, potential evapotranspiration, snow coverage), we used both annual
summaries and those from the month of deployment at each site as predictors in the BRT model.
Variables from HydroBASINS were back-transformed into original units, and predictors with
log-normal distributions were logio transformed. In total, we had 101 predictor variables for our
cellulose-decomposition model.

Boosted-regression tree models

The choice between boosted regression tree (BRT) and other modeling techniques, such
as Generalized Additive Models (GAMs) or neural networks depends on the specific
characteristics of the data and the goals of the analysis. For our purposes, BRTs were an
appropriate tool to answer our questions while addressing some of the complexity in our data.
BRTs are recognized for their predictive accuracy, particularly in managing nonlinear
relationships and interactions among predictors. The method is appropriate for handling missing
data and outliers and processing large datasets. As the BRT constructs trees, it selects the most
informative variables at each step, and assigns lower importance to the variables that contribute

(98]
\9}
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less to predictive performance. BRT is also resilient to irrelevant variables, as the boosting
process assigns diminished weights to less informative variables and reduces their impact on the
final model. BRTs can also capture interactions between variables and because the boosting
process is adaptive, it allows the algorithm to focus on the most important variables and their
interactions. Therefore, it reduces the risk of overfitting and improves the generalization of the
model when challenged with new data. The learning rate of the BRT imposes a penalty on over-
fitting. Learning rates are often set to between 0.01 and 0.1, and ours was set to 0.001. Smaller
learning rates put a penalty on the contribution of each tree, a technique that prevents the model
from fitting the training data too closely.

In BRTs, “importance” refers to the degree of influence each predictor variable has on the
predictive performance of the model and is normalized so the sum of all explanatory variable
importance is 100. Variable importance in BRT is calculated based on how often a given
variable is selected for: 1) splitting across all the trees, and 2) how much it contributes to the
reduction in the model's loss function. Variables that are frequently chosen and contribute to
improving model performance are considered more important. Higher importance values
indicate features that have a greater impact on making accurate predictions. Detailed descriptions
of the BRT approach are found in (50).

We used the gbm package in R (version 4.3.2) to build BRT models (51, 52) for cellulose
decomposition and leaf-litter decomposition. Both BRT models were fitted with Gaussian
distributions, learning rates of 0.001, and an interaction depth of 5. We initially used 20,000 trees
in the cellulose model and the cross-validation determined the optional number of trees was
9,497. For the litter model, we initially ran 50,000 trees, and the optimal number was identified
as 40,853. While BRT models handle variables with broad ranges, we In-transformed Kato
facilitate the interpretation of results. The cellulose model used 101 explanatory variables (table
s1) and the leaf-litter model used 17 explanatory variables (table s2). We assessed model
explanatory power by calculating a pseudo-R’ for each model and determined variable
importance via permutation tests (53) (table 1). Explanatory variables with importance values
greater than 1/nvariable™ 100 (nvariable = total number of explanatory variables in the model) were
included in trees more than would be expected from random chance and identified for further
discussion (54). The importance threshold was 0.99 for the cellulose model and 5.88 for the leaf-
litter decomposition model. For the leaf litter model, two highly correlated explanatory variables
(litter C:N and litter N content) fell just below the importance threshold but were discussed
further because they each exceeded the threshold in other model runs and are well known to
correlate with litter decomposition rates.

Output rasters of predicted cellulose-decomposition rates

Using the BRT models and data from the assembled spatial data layers, we predicted river
K at the extent and at the resolution of the WorldClim rasters (global with 30 arc-second
resolution; https://www.worldclim.org) using the raster package in R (55). In these output
rasters, we did not predict K« for sub-watersheds with <10 ha of sub-basin area, nor for
Antarctica, which is not included in HydroATLAS. Importantly, we predicted Kz using a BRT
model that included variables measured at each site in the original CELLDEX experiment (i.e.,
water temperatures and month of deployment), but those variables were not included in the
generation of the global K4 map.

W
W
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Validation of cellulose and leaf-litter BRT models

The spatial structure of the cellulose and leaf-litter datasets are quite different; therefore, we
used different validation approaches for the cellulose and leaf-litter models. Because of the
smaller dataset and hierarchical spatial structure of the cellulose-decomposition data (i.e.,
multiple streams measured by each partner), we performed a "leave-one-out" validation of the
BRT by running 131 iterations of the model, each excluding one partner from the dataset. The
goal was to assess the model's ability to predict the data of the omitted partner, measured through
the calculation of root mean square error (RMSE). The average RMSE for the leave-one-out
partner analysis was 1.08; in comparison, the BRT's cross-validation, which optimizes the
number of trees directly in the code, yielded an RMSE of 0.93. The range of cellulose
decomposition rates was 5.1 natural log units (K« range 0.0012—0.20 d'). This analysis indicates
that the model can predict cellulose decomposition rate with an accuracy of approximately +/- 1
natural log unit and predictions in unsampled locations have similar accuracy to the model with
all data included. For the larger, leaf-litter dataset compiled from published literature (n=895
decomposition rates), we randomly selected 80% of the data and used that to train the model, and
we tested the model with the remaining 20% of the data. The average RMSE for the 80/20
analysis was 0.75 (n=20 random splits). In comparison, the BRT's cross-validation, which
optimizes the number of trees directly in the code, yielded an RMSE of 0.76. The range of leaf
litter decomposition rates was 5.9 natural log units (K« range 0.005-0.18), which is much greater
than the RMSE, indicating that the model is sufficiently accurate to make predictions of litter
decomposition.

Data. All data and code for analyses and figures are available on GitHub (43).

Supplemental Acknowledgements: Any use of trade, firm, or product names is for descriptive
purposes only and does not imply endorsement by the U.S. Government.
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Boosted-regression tree model importance values for cellulose decomposition rates (In[Kq4])),
their description and the source of data. Importance values greater than 0.99 indicate that the
variable was selected more than expected from random chance. The detailed information from

the predictor variables derived from HydroBASINS can be found on their website. Variables that
have similar names are typically referring to differences in the spatial or temporal characteristics

of the variable. For example, air temperature tmp_dc_uyr is the annual average temperature for

the total watershed upstream of sub-basin pour point, whereas tmp_dc_smx is the annual average

temperature at the sub-basins pour point. If data were log transformed, “log”, is written before
the predictor variable text. The “Source” column denotes the origin of the data.

Boosted-regression tree - explaining cotton decomposition rate (In[Ka])

upstream of sub-basin pour point;
Dimensions = {av} average

R? 0.81
Relative
Predictor variable | importan | Description Source
ce
gqnelzn_mean_dally_t 14.02 mean_mean_daily temp CELLDEX (19)
Limnicity (Percent Lake Area):
Category = Hydrology; Spatial
loglOlka pc sse 6.94 Extent = {s} at sub-basin pour point: HydroBASINS
Dimensions = {se} spatial extent (%)
. McDowell et al.
loglONO3c 6.7 NO3 yield 2021 (46)
. McDowell et al.
loglODRPc 4.89 DRP yield 2021 (46)
AETmonth 4.4 AET month of deployment HydroBASINS
Air Temperature: Category =
Climate; Spatial Extent = {u} in total
tmp_dc uyr 2.48 watershed upstream of sub-basin HydroBASINS
pour point; Dimensions = {yr}
annual average
snowmonth 2.26 Snow cover month of deployment HydroBASINS
Air Temperature: Category =
tmp_dc_smx 2.25 Chrpate; Sp aqal'Ex'tent =.{s} 'it sub- HydroBASINS
- = basin pour point; Dimensions =
{mx} annual maximum
Organic Carbon Content in Soil:
Category = Soils & Geology; Spatial
soc_th uav 2.16 Extent = {u} in total watershed HydroBASINS
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Land Surface Runoff: Category =
Hydrology; Spatial Extent = {s} at

fun_mm_syr 21 sub-basin pour point; Dimensions = HydroBASINS
{yr} annual average
Cropland Extent: Category =
Landcover; Spatial Extent = {s} at

“Ip_pc_sse 2.03 sub-basin poulz* point; Dimens{io}ns _ | HydroBASINS
{se} spatial extent (%)
Natural Discharge: Category =

. Hydrology; Spatial Extent = at

logl0dis m3 pmn | 1.94 Su%;_basiﬁ-‘%ouﬁ boint. Dimens{f(’)is " | HydroBASINS
{mn} annual minimum
Gross Domestic Product: Category =
Anthropogenic; Spatial Extent = {s

gdp_ud_sav L7 at sub-‘tli)asgin pour goint; Dimensic;{ni HydroBASINS
= {av} average
Terrain Slope: Category =

slp_dg_sav 1.54 Physiography; Spatial Extent = {s} at | yy 4 pASINS
sub-basin pour point; Dimensions =
{av} average
Potential Evapotranspiration:
Category = Climate; Spatial Extent =

pet mm_uyr 1.44 {u} in total watershed upstream of HydroBASINS
sub-basin pour point; Dimensions =
{yr} annual average
Stream Gradient: Category =

loglOsgr dk sav 1.3 Physiography; Spe'ltis‘d Extent N {s}_at HydroBASINS
sub-basin pour point; Dimensions =
{av} average
Degree of Regulation: Category =
Hydrology; Spatial Extent = at

logl0Odor_pc_pva 1.29 su}l;-basirgli)ouri point; Dimensj{il:())};ls _ | HydroBASINS
{va} value
Population Count: Category =
Anthropogenic; Spatial Extent = {u}

log10pop_ct_usu 1.29 in total watershed upstream of sub- HydroBASINS
basin pour point; Dimensions = {su}
sum

tempmonth 1.28 Air temp month of deployment HydroBASINS
Air Temperature: Category =
Climate; Spatial Extent = {s} at sub-

tmp_dc_syr 1.28 basin pourrf))oint; Dimensi({)n}s = {yr} HydroBASINS
annual average

orp. pe_use 124 Cropland Extent: Category = HydroBASINS

Landcover; Spatial Extent = {u} in
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total watershed upstream of sub-
basin pour point; Dimensions = {se}
spatial extent (%)

ele mt smx

1.22

Elevation: Category = Physiography;
Spatial Extent = {s} at sub-basin
pour point; Dimensions = {mx}
maximum

HydroBASINS

logl0dis m3 pyr

1.09

Natural Discharge: Category =
Hydrology; Spatial Extent = {p} at
sub-basin pour point; Dimensions =
{yr} annual average

HydroBASINS

snd_pc uav

1.09

Sand Fraction in Soil: Category =
Soils & Geology; Spatial Extent =
{u} in total watershed upstream of
sub-basin pour point; Dimensions =
{av} average

HydroBASINS

log10rdd mk uav

1.07

Road Density: Category =
Anthropogenic; Spatial Extent = {u}
in total watershed upstream of sub-
basin pour point; Dimensions = {av}
average

HydroBASINS

tmp _dc_smn

1.01

Air Temperature: Category =
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions =
{mn} annual minimum

HydroBASINS

TNdep

0.95

TN deposition

Ackerman et al.
2019 (47)

pac_pc_sse

0.9

Protected Area Extent: Category =
Landcover; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{se} spatial extent (%)

HydroBASINS

pre_mm_uyr

0.89

Precipitation: Category = Climate;
Spatial Extent = {u} in total
watershed upstream of sub-basin
pour point; Dimensions = {yr}
annual average

HydroBASINS

aet mm_uyr

0.88

Actual Evapotranspiration: Category
= Climate; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {yr}
annual average

HydroBASINS

logl0gdp ud usu

0.88

Gross Domestic Product: Category =
Anthropogenic; Spatial Extent = {u}
in total watershed upstream of sub-

HydroBASINS
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basin pour point; Dimensions = {su}
sum

logl10lkv_mc_usu

0.85

Lake Volume: Category =
Hydrology; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {su}
sum

HydroBASINS

pre_mm_syr

0.85

Precipitation: Category = Climate;
Spatial Extent = {s} at sub-basin
pour point; Dimensions = {yr}
annual average

HydroBASINS

TPdep

0.79

TP deposition

Brahney et al.
2015 (48) &
Mahowald 2008
(49)

logl0ppd_pk uav

0.78

Population Density: Category =
Anthropogenic; Spatial Extent = {u}
in total watershed upstream of sub-
basin pour point; Dimensions = {av}
average

HydroBASINS

cly pc_sav

0.77

Clay Fraction in Soil: Category =
Soils & Geology; Spatial Extent =
{s} at sub-basin pour point;
Dimensions = {av} average

HydroBASINS

moist_indexmonth

0.77

moist_indexmonth

HydroBASINS

nli_ix_sav

0.7

Nighttime Lights: Category =
Anthropogenic; Spatial Extent = {s}
at sub-basin pour point; Dimensions
= {av} average

HydroBASINS

ele mt sav

0.68

Elevation: Category = Physiography;
Spatial Extent = {s} at sub-basin
pour point; Dimensions = {av}
average

HydroBASINS

ari_ix_uav

0.67

Global Aridity Index: Category =
Climate; Spatial Extent = {u} in total
watershed upstream of sub-basin
pour point; Dimensions = {av}
average

HydroBASINS

soc_th sav

0.66

Organic Carbon Content in Soil:
Category = Soils & Geology; Spatial
Extent = {s} at sub-basin pour point;
Dimensions = {av} average

HydroBASINS

SOW_pc_uyr

0.65

Snow Cover Extent: Category =
Climate; Spatial Extent = {u} in total
watershed upstream of sub-basin

HydroBASINS
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pour point; Dimensions = {yr}
annual average

Reservoir Volume: Category =
Hydrology; Spatial Extent = {u} in

loglOrev_mc_usu 0.63 total watershed upstream of sub- HydroBASINS
basin pour point; Dimensions = {su}
sum
Gross Domestic Product: Category =
Anthropogenic; Spatial Extent = {s

log10gdp_ud_ssu 0.62 at sub-gas%n pour I[))oint; Dimensi(;{ni HydroBASINS
= {su} sum

PETmonth 0.61 PET month of deployment HydroBASINS
Road Density: Category =

loglOrdd mk sav | 0.59 Anthropogenic; Spatial Extent = {s} | yyo 4 5 ASINS
at sub-basin pour point; Dimensions
= {av} average
Silt Fraction in Soil: Category =
Soils & Geology; Spatial Extent =

slt pc_sav 0.59 (s} at sub-basiiypofr point: HydroBASINS
Dimensions = {av} average
Protected Area Extent: Category =
Landcover; Spatial Extent = {u} in

pac_pc use 0.58 total watershed upstream of sub- HydroBASINS
basin pour point; Dimensions = {se}
spatial extent (%)
Terrain Slope: Category =
Physiography; Spatial Extent = {u}

slp_dg uav 0.57 in total watershed upstream of sub- HydroBASINS
basin pour point; Dimensions = {av}
average
Forest Cover Extent: Category =
Landcover; Spatial Extent = {u} in

for pc_use 0.56 total watershed upstream of sub- HydroBASINS
basin pour point; Dimensions = {se}
spatial extent (%)
Groundwater Table Depth: Category

gwt cm_sav 0.55 N Hydrqlogy; Sp a"[ial' E)‘<tent - ts} _at HydroBASINS
sub-basin pour point; Dimensions =
{av} average
Inundation Extent: Category =
Hydrology; Spatial Extent = {u} in

logl0inu_pc_ult 0.55 total watershed upstream of sub- HydroBASINS

basin pour point; Dimensions = {It}
long-term maximum
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ele mt uav

0.52

Elevation: Category = Physiography;
Spatial Extent = {u} in total
watershed upstream of sub-basin
pour point; Dimensions = {av}
average

HydroBASINS

cly pc uav

0.51

Clay Fraction in Soil: Category =
Soils & Geology; Spatial Extent =
{u} in total watershed upstream of
sub-basin pour point; Dimensions =
{av} average

HydroBASINS

for pc_sse

0.5

Forest Cover Extent: Category =
Landcover; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{se} spatial extent (%)

HydroBASINS

loglOria_ha ssu

0.5

River Area: Category = Hydrology;
Spatial Extent = {s} at sub-basin
pour point; Dimensions = {su} sum

HydroBASINS

precipmonth

0.48

Precipitation month of deployment

HydroBASINS

pst_pc_use

0.47

Pasture Extent: Category =
Landcover; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {se}
spatial extent (%)

HydroBASINS

snd_pc_sav

0.47

Sand Fraction in Soil: Category =
Soils & Geology; Spatial Extent =
{s} at sub-basin pour point;
Dimensions = {av} average

HydroBASINS

log10pop ct ssu

0.45

Population Count: Category =
Anthropogenic; Spatial Extent = {s}
at sub-basin pour point; Dimensions
= {su} sum

HydroBASINS

aet mm_Syr

0.43

Actual Evapotranspiration: Category
= Climate; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{yr} annual average

HydroBASINS

SOW_pc_smx

0.43

Snow Cover Extent: Category =
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions =
{mx} annual maximum

HydroBASINS

loglOero_kh sav

0.38

Soil Erosion: Category = Soils &
Geology; Spatial Extent = {s} at sub-
basin pour point; Dimensions = {av}
average

HydroBASINS

ari_ix_sav

0.36

Global Aridity Index: Category =
Climate; Spatial Extent = {s} at sub-

HydroBASINS
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basin pour point; Dimensions = {av}
average

loglOero_kh uav

0.35

Soil Erosion: Category = Soils &
Geology; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {av}
average

HydroBASINS

SWC_pC_syr

0.35

Soil Water Content: Category = Soils
& Geology; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{yr} annual average

HydroBASINS

logl0dis_ m3 pmx

0.33

Natural Discharge: Category =
Hydrology; Spatial Extent = {p} at
sub-basin pour point; Dimensions =
{mx} annual maximum

HydroBASINS

cmi_ix_uyr

0.32

Climate Moisture Index: Category =
Climate; Spatial Extent = {u} in total
watershed upstream of sub-basin
pour point; Dimensions = {yr}
annual average

HydroBASINS

slt pc_uav

0.32

Silt Fraction in Soil: Category =
Soils & Geology; Spatial Extent =
{u} in total watershed upstream of
sub-basin pour point; Dimensions =
{av} average

HydroBASINS

loglOppd _pk sav

0.31

Population Density: Category =
Anthropogenic; Spatial Extent = {s}
at sub-basin pour point; Dimensions
= {av} average

HydroBASINS

ele mt smn

0.3

Elevation: Category = Physiography;
Spatial Extent = {s} at sub-basin
pour point; Dimensions = {mn}
minimum

HydroBASINS

pet mm_syr

0.29

Potential Evapotranspiration:
Category = Climate; Spatial Extent =
{s} at sub-basin pour point;
Dimensions = {yr} annual average

HydroBASINS

loglOlka pc use

0.26

Limnicity (Percent Lake Area):
Category = Hydrology; Spatial
Extent = {u} in total watershed
upstream of sub-basin pour point;
Dimensions = {se} spatial extent (%)

HydroBASINS

log10riv_tc_usu

0.26

River Volume: Category =
Hydrology; Spatial Extent = {u} in
total watershed upstream of sub-

HydroBASINS
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basin pour point; Dimensions = {su}
sum

soilwatermonth

0.26

Soil water % month of deployment

HydroBASINS

loglOria_ha usu

0.21

River Area: Category = Hydrology;
Spatial Extent = {u} in total
watershed upstream of sub-basin
pour point; Dimensions = {su} sum

HydroBASINS

log10riv_tc ssu

0.2

River Volume: Category =
Hydrology; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{su} sum

HydroBASINS

nli_ix_uav

0.18

Nighttime Lights: Category =
Anthropogenic; Spatial Extent = {u}
in total watershed upstream of sub-
basin pour point; Dimensions = {av}
average

HydroBASINS

kar pc sse

0.17

Karst Area Extent: Category = Soils
& Geology; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{se} spatial extent (%)

HydroBASINS

pst_pc_sse

0.17

Pasture Extent: Category =
Landcover; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{se} spatial extent (%)

HydroBASINS

logl0inu_pc_umx

0.16

Inundation Extent: Category =
Hydrology; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions =
{mx} annual maximum

HydroBASINS

urb_pc sse

0.16

Urban Extent: Category =
Anthropogenic; Spatial Extent = {s}
in reach catchment; Dimensions =
{se} spatial extent (%)

HydroBASINS

logl0inu_pc_smx

0.14

Inundation Extent: Category =
Hydrology; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{mx} annual maximum

HydroBASINS

SOW_pc_syr

0.14

Snow Cover Extent: Category =
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = {yr}
annual average

HydroBASINS

ire_pc_sse

0.12

Irrigated Area Extent (Equipped):
Category = Landcover; Spatial
Extent = {s} at sub-basin pour point;
Dimensions = {se} spatial extent (%)

HydroBASINS
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kar pc_use

0.12

Karst Area Extent: Category = Soils
& Geology; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {se}
spatial extent (%)

HydroBASINS

SWC_pc_uyr

0.12

Soil Water Content: Category = Soils
& Geology; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {yr}
annual average

HydroBASINS

cmi_ix_Ssyr

0.1

Climate Moisture Index: Category =
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = {yr}
annual average

HydroBASINS

ire_pc_use

0.1

Irrigated Area Extent (Equipped):
Category = Landcover; Spatial
Extent = {u} in total watershed
upstream of sub-basin pour point;
Dimensions = {se} spatial extent (%)

HydroBASINS

log10inu_pc_slt

0.1

Inundation Extent: Category =
Hydrology; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{1t} long-term maximum

HydroBASINS

wet pc_ugl

0.1

Wetland Extent: Category =
Landcover; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {gl}
Wetland class grouping; see
https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database

HydroBASINS

urb_pc use

0.08

Urban Extent: Category =
Anthropogenic; Spatial Extent = {u}
in total watershed upstream of sub-
basin pour point; Dimensions = {se}
spatial extent (%)

HydroBASINS

logl0inu_pc_umn

0.07

Inundation Extent: Category =
Hydrology; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions =
{mn} annual minimum

HydroBASINS

wet_pc_ug?2

0.07

Wetland Extent: Category =
Landcover; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {g2}
Wetland class grouping; see

HydroBASINS
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https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database

logl0inu_pc_smn

0.06

Inundation Extent: Category =
Hydrology; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{mn} annual minimum

HydroBASINS

wet pc sgl

0.05

Wetland Extent: Category =
Landcover; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{gl1} Wetland class grouping; see
https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database

HydroBASINS

prm_pc_use

0.02

Permafrost Extent: Category =
Landcover; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {se}
spatial extent (%)

HydroBASINS

wet_pc_sg2

0.01

Wetland Extent: Category =
Landcover; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{g2} Wetland class grouping; see
https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database

HydroBASINS

gla pc_sse

Glacier Extent: Category =
Landcover; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{se} spatial extent (%)

HydroBASINS

gla_pc_use

Glacier Extent: Category =
Landcover; Spatial Extent = {u} in
total watershed upstream of sub-
basin pour point; Dimensions = {se}
spatial extent (%)

HydroBASINS

prm_pc_sse

Permafrost Extent: Category =
Landcover; Spatial Extent = {s} at
sub-basin pour point; Dimensions =
{se} spatial extent (%)

HydroBASINS
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Boosted-regression tree model importance values for leaf-litter decomposition rates (In[Kd]),
their description and the source of data. Importance values greater than 5.88 indicate that the
variable was selected more than expected from random chance. Additional information about
plant traits can be found in the data repository (43) in the file "Litter trait review.csv'" and more
details about the TRY database are contained in (317).

Boosted-regression tree - explaining leaf litter decomposition rate (In[Ka])

R? 0.70
Predictor variable Relative Description Source
importance
In pred kda 39.47 Model predicted cotton kd This study
Mesh.size Mesh size LeRoy et al.
20.84 2020 (27)
Lignin Litter Mn Litter lignin content Literature
11.96 values (43)
CtoN_Litter Mn Litter C:N Literature
5.45 values (43)
N_Litter Mn Litter N content Literature
5.23 values (43)
Literature
P Litter Mn 3.59 Litter P content values (43)
Literature
C Litter Mn 2.37 Litter C content values (43)
Literature
Cellulose Litter Mn 2.20 Litter cellulose content values (43)
Ca Leaf Mn 2.03 Leaf Ca content TRY database
NtoP Leaf Mn 1.19 Leaf N:P TRY database
Thick Mn 1.04 Leaf thickness TRY database
Leaf.condition 1.03 Leaf condition TRY database
Literature
NtoP Litter Mn 0.95 Litter N:P values (43)
P Leaf Mn 0.76 Leaf P content TRY database
CtoN Leaf Mn 0.69 Leaf C:N TRY database
C Leaf Mn 0.66 Leaf C content TRY database
N Leaf Mn 0.53 Leaf N content TRY database
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Fig. S1.

Correlation plots of the relationship between the magnitude of predicted change in litter-
decomposition rates in pine-dominated forests invaded by the pine bark beetle and watershed soil
water content (A) and AET (B). Greater values indicate a higher magnitude increase in litter
decomposition upon canopy replacement. Our forecasts predict insect-induced canopy
replacement from pine to oak would approximately double mean decomposition rates (see main
text). Though the relationships are highly variable, the associations between the predicted
magnitude of change in decomposition and soil water and AET indicate drier subwatersheds are
expected to have a larger change in decay rates than wetter sites.

References in Supplemental Files Only: References 45—55 are referenced only in the
Supplemental Materials.
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