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Abstract:   

Rivers and streams contribute to global carbon cycling by decomposing immense quantities of 

terrestrial plant matter. However, decomposition rates are highly variable, and large-scale 

patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to 

reflect the primary constituent of plant detritus, we generated a predictive model (81% variance 5 

explained) for cellulose-decomposition rates across 514 globally distributed streams. A large 

number of variables were important for predicting decomposition, highlighting the complexity of 

this process at the global scale. Predicted cellulose-decomposition rates, when combined with 

genus-level litter-quality attributes, explain published leaf-litter-decomposition rates with 

impressive accuracy (70% variance explained). Our global map provides estimates of rates 10 
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across vast understudied areas of Earth, and reveals rapid decomposition across continental-scale 

areas dominated by human activities. 

One-Sentence Summary: By integrating big data and a global experiment, we predict organic-

matter decomposition in rivers worldwide. 

 5 

Main Text:  

Earth’s terrestrial ecosystems produce over 100 billion tons of plant detritus annually (1, 2), and 

the fates of this organic matter – for example, long-term storage, mineralization to greenhouse 

gasses, or incorporation into stream food webs – depend on the rate at which it is decomposed. 

River ecosystems are carbon-processing hotspots (3, 4), receiving 0.72 billion tons of terrestrial 10 

carbon per year (2), an amount that is disproportionately important relative to the small fraction 

of non-glaciated land area (0.58%) rivers occupy (5). Rivers connect terrestrial ecosystems with 

aquatic storage compartments including floodplains, lakes and oceans, playing vital roles in the 

global carbon cycle, and functioning both as organic-matter conduits and reactors. Despite the 

widely recognized importance of flowing waters in global carbon cycling (6–8), our 15 

understanding of variation in organic-matter-decomposition rates and their drivers at large spatial 

scales is still limited (2).  

Large-scale spatial variation in organic-matter decomposition in rivers and streams has been 

estimated by comparing leaf-litter-decomposition rates from studies conducted in regions with 

contrasting climates (9, 10), conducting literature reviews of local field studies (11), developing 20 

conceptual models (12, 13) and performing meta-analyses (14, 15). Coordinated, distributed 

experiments (16–20) have been particularly insightful by generating directly comparable data 

across broad geographic areas and identifying coarse-resolution explanatory variables of 
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decomposition rates in rivers, including differences in decomposer communities and biomes. 

Still, we lack a comprehensive understanding of how drivers such as climate, geology, 

vegetation, water quality, and soils interact to govern organic-matter decomposition at large 

scales. Such knowledge gaps are particularly evident across the tropics and in lower-income 

economies – ecologically important areas where rivers are grossly understudied relative to those 5 

in northern temperate zones. Quantifying patterns and controls of decomposition in these areas is 

critical, however, because much of Earth’s terrestrial plant matter is annually produced in 

tropical forests (net primary production 16.0–23.1 billion tons of carbon) (21, 22), and tropical 

rivers deliver 48-64% of the carbon moving from rivers to the ocean (23). 

Effectively modeling carbon dynamics at the global scale – including areas where field data are 10 

scarce – requires a more mechanistic and process-based understanding of the many 

environmental and biotic factors that drive organic-matter decomposition. Accurate estimates 

generated by combining existing empirical measurements with fine-scale geospatial and 

environmental data can provide multiple benefits. They can reduce the need for data collection 

from remote or difficult-to-access regions, subsequently generating baseline estimates for 15 

decomposition in understudied areas of the world. Global-scale predictions also contribute to a 

finer-scale understanding of decomposition and support efforts to model planetary carbon 

dynamics. Models that can accurately predict current in-situ decomposition rates across space are 

particularly valuable, enabling manipulation of environmental drivers in silico to predict impacts 

under scenarios of future global environmental change. 20 

Here, we present a predictive model fitted with global data from CELLDEX (Cellulose 

Decomposition Experiment), a coordinated, distributed experiment on cellulose decomposition 
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in rivers designed to reveal previously undocumented patterns in decomposition rates and the 

key factors driving this fundamental ecosystem-level process. Decomposition of cellulose – the 

most abundant organic polymer on the planet and a main constituent of plant litter – was 

quantified by over 150 investigators by using a common and well-established cellulose-

decomposition assay (24). The ‘cotton-strip assay’ is a standardized approach for measuring 5 

decomposition by using a readily available woven cotton fabric (Artist’s canvas) that is 

comprised of 95% cellulose. The loss of tensile strength of the fabric is measured, a process that 

is strongly correlated with the microbial catabolism of cellulose (25). We performed the assay in 

514 flowing-water ecosystems at georeferenced field sites on all seven continents, spanning 135º 

of latitude and each of Earth’s major terrestrial biomes (19, 20). We used high-resolution (15 10 

arcsecond) climate, soil, geology, vegetation, and physicochemical data (101 explanatory 

variables total) in a boosted-regression tree (BRT) algorithm to develop the first global, high-

resolution predictive model of organic-matter decomposition in rivers. We then tested the utility 

of the cellulose model by using predicted cellulose-decomposition rates and genus-level leaf-

litter chemistry traits to explain 895 leaf-litter decomposition estimates from studies conducted at 15 

559 unique locations across the globe. We found that cellulose-decomposition rates are an 

excellent proxy for litter-decomposition rates. Further, our models indicate the physicochemical 

factors at river and watershed scales interact with characteristics of the organic matter being 
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decomposed (e.g., leaf-litter chemistry) to create heterogenous spatial patterns in riverine 

decomposition across the planet.  

Climate, geology, soils, and water quality explain cellulose decomposition rates.  

Climate, geology, soil, and water-quality variables explain 81% of variance in field 

measurements of in-situ cellulose decomposition. Because a standardized cellulose substrate was 5 

used at all field sites, observed variation in decomposition rates can be attributed unequivocally 

to the activity of microbial communities and environmental drivers. Prior efforts have explained 

broad variation in decomposition rates across riverine ecosystems as a function of exogenous 

factors such as temperature (14, 19) and concentrations of dissolved nutrients (17, 20, 26), as 

well as litter traits (15, 27, 28). Our model supports those findings and shows that climatic and 10 

water-quality parameters are among the most important explanatory variables of decomposition 

rates (Fig. 1). However, a relatively large number of explanatory variables (n=26) have 

importance values greater than 1.0 (table s1), and no single variable contributes >15% to the 

explanatory power of the model (table s1). This result reveals the complexity of the many drivers 

that influence organic-matter decomposition at the global scale.  15 

Top explanatory variables of cellulose decomposition include expected attributes like mean daily 

water temperature (importance value [IV]=14.0; Fig. 1A), nitrogen and phosphorus availability 

(IV=6.7 and 4.9, respectively; Fig. 1C & D), and mean annual air temperature (IV=2.5; Fig. 1F). 

Our data and approach also highlight watershed-level characteristics that have been given little 

attention previously, such as sub-watershed lake area (limnicity) (IV=6.9; Fig. 1B), actual 20 

evapotranspiration in the watershed (IV=4.4; Fig. 1E), and the chemical and physical properties 

of soil (table s1). Subwatershed lake area was a high-ranking variable, and its negative 
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relationship with decomposition rates may be explained by the disproportionately greater 

abundance of lakes at high northern latitudes where water temperatures are low (Fig. 1B).  

Alternatively, lower nutrient concentrations and suppressed hydrological variability may have 

also contributed to the negative influence of limnicity on decomposition. Although our study 

sites were selected to have minimal human impacts relative to their region of study (19), 5 

variables associated with anthropogenic development, such as dissolved-nutrient yields, crop-

land extent (IV=2.0), population count (IV=1.3), and river regulation (IV=1.3), still emerge as 

important (table s1). Notably, relationships between explanatory variables and decomposition 

rates are frequently non-linear, revealing thresholds beyond which there are abrupt changes in 

decomposition rates (e.g., Fig. 1B, D, & E). Water temperature has a strong positive effect on 10 

cellulose decomposition (Fig. 1A), and there is an optimal range (5-13 °C) of annual air 

temperature with estimated lower rates in both cooler and warmer watersheds (Fig. 1F).  

Extrapolating to global patterns of decomposition rates 

Our model and map of riverine cellulose decomposition reveals pronounced, large-scale spatial 

patterns of organic-matter processing (Fig. 2). Rates generally increase with decreasing latitude, 15 

with rapid rates in tropical regions (e.g., Central America, Amazon basin, Western Africa, Indo-

Pacific) and areas characterized by volcanic activity and young soils, an effect previously 

documented only at more local scales (29). Importantly, fluvial ecosystems in these regions are 

among the least studied on the planet (Fig. 2, inset), yet they have high rates of terrestrial 

primary production (22) and carbon export to the ocean (23). Vast areas in middle latitudes with 20 

ubiquitous human impacts – central Europe, eastern China, central North America, southeastern 

South America, and Japan – also support elevated decomposition rates, strongly suggesting 
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continental-scale human impacts on carbon cycling in rivers. In contrast, areas of boreal forests, 

characterized by short growing seasons, low temperatures, and peaty, acidic, water-logged soils, 

exhibit slower rates of organic-matter decomposition, especially in northern Asia, eastern 

Scandinavia, and northeastern Canada.  

Validating predicted cellulose-decomposition rates with leaf-litter-decomposition rates 5 

Recognizing that the substrate used in our standardized decomposition assay (cellulose as cotton 

fabric) lacks the chemical complexity of organic matter that naturally enters running waters, we 

also tested how accurately our modeling approach could explain variation in the decomposition 

rates of terrestrial leaf litter in rivers reported by ecologists worldwide. To this end we 

independently validated model forecasts using 895 unique litter-decomposition rates from 559 10 

locations and representing 35 genera of terrestrial plants (27). We also used leaf- and litter-trait 

data at the genus level (30, 31) and experimental conditions (14, 27) as explanatory variables to 

account for variation among decomposition estimates resulting from differences in leaf-litter 

quality (e.g., lignin, hemicellulose, tannin, nutrient content) and the feeding activity of 

invertebrates (Figure 3A, table s2). Our cellulose-decomposition model predictions coupled with 15 

litter traits account for 70% of the variation in leaf-litter decomposition. Importantly, the 

explanatory power of this model is overwhelmingly driven by predicted rates of cellulose 

decomposition (IV=39.5), despite the stark differences in quality between the cellulose substrate 

and natural litter (Fig 3A, table S2). These results provide strong support for the critical 
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influence that environmental drivers have in regulating riverine litter decomposition, including 

the drivers impacted by anthropogenic activities.  

Prior research at large scales has stressed the importance of litter quality as the predominant 

control of decomposition rates in rivers (15). Our results demonstrate that in addition to leaf-

litter traits, environmental factors, such as temperature and nutrient availability, are critically 5 

important in regulating decomposition rates at larger spatial scales. Our validation model also 

reveals that invertebrate access to leaves, as assessed by experimentally manipulating litter-bag 

mesh size, greatly increase the rate of decomposition in all but the fastest decomposing leaves 

(Fig. 3A). Finally, litter chemistry contributes to the explanatory power of the model in expected 

ways, with plant genera that are characterized by high lignin content (IV=11.9; Fig. 3B) and low 10 

litter-nitrogen content (C:N, IV=5.45 and N, IV=5.23; Fig. 3C & D) decomposing more slowly. 

Other litter traits (e.g., P content, cellulose) provide little additional explanatory power and no 

leaf traits explain more variation than expected by chance (table s2). It is well recognized that 

leaf-litter chemistry can vary among individuals within a species (32, 33) and even individual 

leaves from a single tree (34); thus, our model may underestimate the importance of individual-15 

level variation in leaf and litter chemistry in driving decomposition. Greater measurement and 

reporting of litter chemistry, especially nitrogen and lignin content will improve understanding 

of endogenous controls at global scales. Despite limitations in available data, we show that 
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cellulose decomposition can be an excellent proxy for litter decomposition, and our composite 

model of environmental drivers makes reliable estimates of litter decomposition at a global scale.  

Forecasting decomposition under global environmental change  

The high explanatory power of our cellulose and leaf-litter decomposition models enables 

forecasting of decomposition rates under altered climate, land cover, soil conditions, and 5 

nutrient-loading scenarios. These predictions can identify locations across the globe where 

decomposition may be particularly susceptible or resistant to global change, thereby informing 

freshwater-conservation efforts. As proof of concept, we examined potential changes in 

predicted litter-decomposition rates associated with changes in pine-oak forest composition in 

Mexican watersheds invaded by pine bark beetle (Dendroctonus mexicanus) (35). This invasion 10 

is expected to be particularly severe in the watershed of the Rio Grande de Santiago, a major 

conduit of organic matter to the Pacific Ocean in Mexico (Fig. 4). Our forecasts predict that 

insect-induced canopy replacement from pine to oak would cause decomposition rates to 

increase and become more variable (2.5- to 3.8-fold increase) with larger increases in 

decomposition associated with watersheds with greater evapotranspiration and drier soils (fig. 15 

s1). To promote the use of our models for forecasting, we created an easy-to-use, open-source 

online application where users can estimate both cotton-strip and leaf-litter decomposition rates 

for any river across the globe (https://shiny-bsci.kent.edu/CELLDEX).  

Conclusions and implications  

By pairing a distributed field experiment with publicly available environmental data, we created 20 

the first high-resolution map and predictions of organic-matter decomposition rates in flowing 
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waters worldwide. Our model demonstrates that cellulose-decomposition results from diverse, 

interacting, and non-linear environmental forcings that can best be described with complex, data-

rich models. Although the standard cotton fabric used lacks the biochemical complexity of leaf 

litter, our relatively simple organic-matter substrate is an excellent proxy for leaf litter in 

decomposition studies, as demonstrated by our model predictions. Simplification of the leaf-5 

litter-bag assay allowed us to both achieve standardized results and fill extensive geographic 

gaps in remote and low-resourced areas, demonstrating the power of coordinated, distributed 

experiments (36). Although our datasets were large when compared against other studies of 

organic-matter decomposition, the field data used were relatively limited in both space and time, 

which makes our strong explanatory power all the more striking. Thus, this work also 10 

underscores the power of machine-learning algorithms and large geographic databases of 

environmental data (e.g., HydroBASINS (37, 38)) plus the critical value of temporally and 

geographically extensive data from simple but standardized coordinated experiments (e.g., 

CELLDEX).  

Given the pressing information needs of measuring ecosystem functions for biomonitoring and 15 

bioassessment (39, 40), our globally distributed experiment provides a template for matching 

observational data with model predictions. This approach provided baseline data for estimated 

decomposition rates across immense, unstudied areas of the planet, and supports the 

development of biomonitoring networks in areas where they are most needed (41). To further 

advance large-scale monitoring and assessment we have made these modelling approaches 20 

accessible through an open-source online mapping tool. Application of the models to current and 
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future environmental threats will enable scientists and natural-resource managers to forecast 

changes in the functioning of river networks at a planetary scale. 

Cellulose decomposition is strongly influenced by multiple interacting environmental drivers that 

continue to be impacted by anthropogenic activities. Undoubtedly, climate change, increased 

nutrient loading, intensified land-use modification, and changes in vegetation cover will continue 5 

to alter organic-matter processing in rivers and streams. Notably, key human-influenced drivers 

of cellulose decomposition – especially nutrient loading and temperature – are positively related 

to decomposition rates. A critical implication is that, in the presence of continued environmental 

change, organic-matter decomposition rates will likely increase in rivers, resulting in declines in 

shorter-term carbon storage (42) and reductions in carbon transfer to longer-term storage 10 

compartments, such as reservoirs, floodplains, and oceans.  
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Fig. 1. Partial-dependence plots (black lines) of the top variables that explain and predict 
cellulose-decomposition rates (Kd). Background maps show global distributions of explanatory 
variables in Mollweide projection. The boosted-regression tree model explains 81% of the 
variance in decomposition rates across the 514 streams used in our study. Most top variables 20 
relate to climate and water quality and effects exhibit non-linear threshold responses. Black ticks 
above the x-axis indicate decile breaks. 
 
Fig. 2. Predicted mean annual cellulose-decomposition rates (Kd) revealing broad spatial patterns 
in decomposition rates. We did not predict Kd for sub-watersheds with ≤10 ha of sub-basin area, 25 
nor for Antarctica, for which we did not have values for most predictor variables. Inset shows 
study sites for cellulose (light-filled circles) and leaf-litter (dark-filled circles) decomposition 
measurements. Map and insert are Mollweide projection.  
 
Fig. 3. Partial-dependence plots of the top variables that explain leaf-litter-decomposition rates 30 
(Kd). The boosted-regression-tree model explains 70% of the variance in rates across 895 
published values of leaf-litter decomposition and leaf quality (27). Top explanatory variables 
included our modeled cellulose-decomposition rates, invertebrate access to the leaf material, and 
attributes related to litter quality. Smooth fits (GAM) show the relationship between cellulose-
decomposition rate and litter decomposition for the two different common litter-bag mesh sizes 35 
that allow or exclude invertebrates (A). The smooth fits capture the general environmental 
effects on decomposition, whereas the partial dependency plots (thin lines) are noisier due to 
covariation in leaf quality and environmental conditions (i.e., certain leaf types are used in 
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certain regions). Black ticks above x-axis indicate decile breaks. Note the change in y-axis 
between panel A and B-C. 
 
Fig. 4. Distribution of temperate-coniferous forests in Mexico (all points) and locations (orange) 
where there is a moderate-to-high risk of pine bark beetle (Dendroctonus mexicanus) invasion 5 
(adapted from (35)) that drives a shift from coniferous to deciduous forest. Inset shows the 
density distribution of predicted litter-decomposition rates for streams in areas of moderate-to-
high invasion risk both for pine litter (green solid line) and oak litter (orange dashed line). Our 
model predicts that full canopy replacement from pine to oak would increase leaf-litter 
decomposition rates 2.5- to 3.8-fold with a greater increase predicted in watersheds with greater 10 
evapotranspiration and drier soils. Base from U.S. Geological Survey, The National Map, 2023; 
Web Mercator projection; created in the R package leaflet 2.2.1 (44). 
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Materials and Methods 
 
Cellulose decomposition 

We used a global dataset of cellulose-decomposition rates generated by a coordinated field 
experiment (Cellulose Decomposition Experiment [CELLDEX]) (19). Cotton strips were 5 
incubated in 514 flowing waters spanning 135 degrees of latitude by a consortium of over 150 
peer-sourced researchers. Cotton strips are composed of cellulose, the primary constituent of 
most terrestrially derived leaf litter and the most abundant organic polymer on Earth; as such, 
cellulose is a plant polymer that is highly relevant for global biogeochemical cycles. The cotton-
strip assay is an integrative measure of the activity of heterotrophic microbes and is highly 10 
sensitive to an array of environmental factors including nutrient concentrations, temperature, and 
pollutants (24). As used in our study the assay is not believed to be directly influenced by the 
feeding activity of macroinvertebrates. Cotton strips were deployed in 2015-2016 during periods 
of peak organic-matter inputs to flowing waters (e.g., autumn in temperate zones, dry season in 
tropical deciduous forests) at sites relatively free of major anthropogenic impacts. We typically 15 
chose stream orders 1-3 (45) and had sites located in each of Earth’s major terrestrial biomes 
(19), and the cellulose-decomposition rate at each river was summarized as the exponential 
decay rate (Kd) of tensile-strength loss: 

 
Kd=-ln(Tf/Ti)/t 20 
 
where Tf  is the final tensile strength of each cotton strip after incubation in the field, Ti is an 

average tensile-strength value of control strips not incubated in the field to establish initial tensile 
strength, and t the field incubation time in days (usually 21-30 days). The loss of tensile strength 
corresponds to the decomposition of the cotton fabric and is driven predominantly by the activity 25 
of microbes. Field and laboratory methods are detailed in (19, 24). 

 
Environmental data sources  

For data on environmental variables other than in-situ water temperature, we relied on 
publicly available datasets with global coverage: 1) (46) for estimates of river yields of dissolved 30 
reactive phosphorus (kg DRP-P ha-1 yr-1) and nitrate+nitrite (kg NOX-N ha-1 yr-1);  2) (47) for 
estimates of nitrogen (N) deposition; 3) (48) and (49) for estimates of phosphorus (P) deposition 
that we then interpolated; and 4) (38) for data on 96 variables summarized at the 12-digit 
hydrological scale or for the area upstream (HydroRIVERS: River ATLAS_v10_lev12; 
HydroBASINS: BasinATLAS_v10_lev12) for either river reaches or corresponding sub-35 
watersheds, though all variables were not populated for all sub-watersheds. We excluded 
variables from HydroBASINS that were composite measures where we already included 
confounded variables (e.g., biome, human development index, and human footprint). We 
recorded temperature data with loggers for a subset (n=360) of the 514 rivers to determine the 
mean daily temperature of the river water during the cotton-strip incubation period.  40 

 
Litter decomposition data 

We used a global dataset of 3,216 unique estimates of litter-decomposition rates (as Kd 

using the equation above except that mass rather than tensile strength was used) for 125 plant 
genera and multiple experimental conditions (27) to independently validate whether our 45 
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cellulose-decomposition model could explain rates of litter decomposition. These data are an 
expanded version of the data published by LeRoy et al. (2020) (see data repository for complete 
data)(27). For each unique river reach sampled in the dataset, we averaged Kd estimates by each 
unique combination of leaf condition (i.e., leaves picked from the trees while still living or 
collected from the ground after senescence), plant genus, and direct feeding by detritivorous 5 
invertebrates (i.e., coarse-mesh which included invertebrates or fine-mesh litter bags which 
excluded invertebrates). We excluded any data for which we had 3 or fewer measurements of 
decomposition for a genus. The final dataset included 895 unique observations of 35 genera from 
559 river reaches. All but 7 estimates of litter decomposition also included mean temperature 
during deployment, which we included as a predictor variable.  10 

 
Leaf- and litter-trait data sources 

We downloaded 384,252 records from 21,100 plant species and 4,557 genera of leaf traits 
related to nutrient, micronutrient, and structural compounds for leaves from the TRY plant-trait 
database (31). After filtering for traits describing the chemical constituency of plant leaves that 15 
we felt were most relevant for decomposition, the resulting database included average values for 
7 traits representing 64 genera. Litter traits were assembled from 114 studies comprising 602 
litter deployments of 172 genera in rivers (43). These trait values were joined by genus to the 
aforementioned empirical data on leaf litter. All genera for which we had litter-decomposition 
rates had data regarding either leaf or litter traits, and most included complete values for both. 20 
Details on filtering, aggregating, and variable selection as well as full datasets can be found in 
the data repository (43). 

 
Data Analysis 
 25 

Environmental data processing 
At each river sampling location in the CELLDEX dataset, we combined temperature 

recorded during the experiment, extracted values from nutrient yield and deposition rasters, and 
attributes from HydroBASINS summarized by upstream watershed as well as the containing sub-
watershed. For HydroBASINS fields that were additionally available as monthly summaries 30 
(e.g., air temperature, potential evapotranspiration, snow coverage), we used both annual 
summaries and those from the month of deployment at each site as predictors in the BRT model. 
Variables from HydroBASINS were back-transformed into original units, and predictors with 
log-normal distributions were log10 transformed. In total, we had 101 predictor variables for our 
cellulose-decomposition model. 35 

 
Boosted-regression tree models 

The choice between boosted regression tree (BRT) and other modeling techniques, such 
as Generalized Additive Models (GAMs) or neural networks depends on the specific 
characteristics of the data and the goals of the analysis. For our purposes, BRTs were an 40 
appropriate tool to answer our questions while addressing some of the complexity in our data. 
BRTs are recognized for their predictive accuracy, particularly in managing nonlinear 
relationships and interactions among predictors. The method is appropriate for handling missing 
data and outliers and processing large datasets. As the BRT constructs trees, it selects the most 
informative variables at each step, and assigns lower importance to the variables that contribute 45 
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less to predictive performance. BRT is also resilient to irrelevant variables, as the boosting 
process assigns diminished weights to less informative variables and reduces their impact on the 
final model. BRTs can also capture interactions between variables and because the boosting 
process is adaptive, it allows the algorithm to focus on the most important variables and their 
interactions. Therefore, it reduces the risk of overfitting and improves the generalization of the 5 
model when challenged with new data. The learning rate of the BRT imposes a penalty on over-
fitting. Learning rates are often set to between 0.01 and 0.1, and ours was set to 0.001. Smaller 
learning rates put a penalty on the contribution of each tree, a technique that prevents the model 
from fitting the training data too closely.  

In BRTs, “importance” refers to the degree of influence each predictor variable has on the 10 
predictive performance of the model and is normalized so the sum of all explanatory variable 
importance is 100. Variable importance in BRT is calculated based on how often a given 
variable is selected for: 1) splitting across all the trees, and 2) how much it contributes to the 
reduction in the model's loss function. Variables that are frequently chosen and contribute to 
improving model performance are considered more important. Higher importance values 15 
indicate features that have a greater impact on making accurate predictions. Detailed descriptions 
of the BRT approach are found in (50).  

We used the gbm package in R (version 4.3.2) to build BRT models (51, 52) for cellulose 
decomposition and leaf-litter decomposition. Both BRT models were fitted with Gaussian 
distributions, learning rates of 0.001, and an interaction depth of 5. We initially used 20,000 trees 20 
in the cellulose model and the cross-validation determined the optional number of trees was 
9,497. For the litter model, we initially ran 50,000 trees, and the optimal number was identified 
as 40,853. While BRT models handle variables with broad ranges, we ln-transformed Kd to 
facilitate the interpretation of results. The cellulose model used 101 explanatory variables (table 
s1) and the leaf-litter model used 17 explanatory variables (table s2). We assessed model 25 
explanatory power by calculating a pseudo-R2 for each model and determined variable 
importance via permutation tests (53) (table 1). Explanatory variables with importance values 
greater than 1/nvariable*100 (nvariable = total number of explanatory variables in the model) were 
included in trees more than would be expected from random chance and identified for further 
discussion (54). The importance threshold was 0.99 for the cellulose model and 5.88 for the leaf-30 
litter decomposition model. For the leaf litter model, two highly correlated explanatory variables 
(litter C:N and litter N content) fell just below the importance threshold but were discussed 
further because they each exceeded the threshold in other model runs and are well known to 
correlate with litter decomposition rates. 

 35 
Output rasters of predicted cellulose-decomposition rates  

Using the BRT models and data from the assembled spatial data layers, we predicted river 
Kd at the extent and at the resolution of the WorldClim rasters (global with 30 arc-second 
resolution; https://www.worldclim.org) using the raster package in R (55). In these output 
rasters, we did not predict Kd for sub-watersheds with ≤10 ha of sub-basin area, nor for 40 
Antarctica, which is not included in HydroATLAS. Importantly, we predicted Kd using a BRT 
model that included variables measured at each site in the original CELLDEX experiment (i.e., 
water temperatures and month of deployment), but those variables were not included in the 
generation of the global Kd map. 
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Validation of cellulose and leaf-litter BRT models 

The spatial structure of the cellulose and leaf-litter datasets are quite different; therefore, we 
used different validation approaches for the cellulose and leaf-litter models. Because of the 
smaller dataset and hierarchical spatial structure of the cellulose-decomposition data (i.e., 5 
multiple streams measured by each partner), we performed a "leave-one-out" validation of the 
BRT by running 131 iterations of the model, each excluding one partner from the dataset. The 
goal was to assess the model's ability to predict the data of the omitted partner, measured through 
the calculation of root mean square error (RMSE). The average RMSE for the leave-one-out 
partner analysis was 1.08; in comparison, the BRT's cross-validation, which optimizes the 10 
number of trees directly in the code, yielded an RMSE of 0.93. The range of cellulose 
decomposition rates was 5.1 natural log units (Kd range 0.0012–0.20 d-1). This analysis indicates 
that the model can predict cellulose decomposition rate with an accuracy of approximately +/- 1 
natural log unit and predictions in unsampled locations have similar accuracy to the model with 
all data included. For the larger, leaf-litter dataset compiled from published literature (n=895 15 
decomposition rates), we randomly selected 80% of the data and used that to train the model, and 
we tested the model with the remaining 20% of the data. The average RMSE for the 80/20 
analysis was 0.75 (n=20 random splits). In comparison, the BRT's cross-validation, which 
optimizes the number of trees directly in the code, yielded an RMSE of 0.76. The range of leaf 
litter decomposition rates was 5.9 natural log units (Kd range 0.005–0.18), which is much greater 20 
than the RMSE, indicating that the model is sufficiently accurate to make predictions of litter 
decomposition. 
 

Data. All data and code for analyses and figures are available on GitHub (43). 

 25 

Supplemental Acknowledgements: Any use of trade, firm, or product names is for descriptive 
purposes only and does not imply endorsement by the U.S. Government. 
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Table S1.  
Boosted-regression tree model importance values for cellulose decomposition rates (ln[Kd])), 
their description and the source of data. Importance values greater than 0.99 indicate that the 
variable was selected more than expected from random chance. The detailed information from 
the predictor variables derived from HydroBASINS can be found on their website. Variables that 5 
have similar names are typically referring to differences in the spatial or temporal characteristics 
of the variable. For example, air temperature tmp_dc_uyr is the annual average temperature for 
the total watershed upstream of sub-basin pour point, whereas tmp_dc_smx is the annual average 
temperature at the sub-basins pour point. If data were log transformed, “log”, is written before 
the predictor variable text. The “Source” column denotes the origin of the data. 10 
 
Boosted-regression tree - explaining cotton decomposition rate (ln[Kd]) 

 

R2 0.81 
  

    

Predictor variable 
Relative 
importan
ce 

Description Source 

mean_mean_daily_t
emp 14.02 mean_mean_daily_temp CELLDEX (19) 

log10lka_pc_sse 6.94 

Limnicity (Percent Lake Area): 
Category = Hydrology; Spatial 
Extent = {s} at sub-basin pour point; 
Dimensions = {se} spatial extent (%) 

HydroBASINS 

log10NO3c 6.7 NO3 yield McDowell et al.  
2021 (46) 

log10DRPc 4.89 DRP yield McDowell et al.  
2021 (46) 

AETmonth 4.4 AET month of deployment HydroBASINS 

tmp_dc_uyr 2.48 

Air Temperature: Category = 
Climate; Spatial Extent = {u} in total 
watershed upstream of sub-basin 
pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

snowmonth 2.26 Snow cover month of deployment HydroBASINS 

tmp_dc_smx 2.25 

Air Temperature: Category = 
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = 
{mx} annual maximum 

HydroBASINS 

soc_th_uav 2.16 

Organic Carbon Content in Soil: 
Category = Soils & Geology; Spatial 
Extent = {u} in total watershed 
upstream of sub-basin pour point; 
Dimensions = {av} average 

HydroBASINS 
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run_mm_syr 2.1 

Land Surface Runoff: Category = 
Hydrology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{yr} annual average 

HydroBASINS 

crp_pc_sse 2.03 

Cropland Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 

log10dis_m3_pmn 1.94 

Natural Discharge: Category = 
Hydrology; Spatial Extent = {p} at 
sub-basin pour point; Dimensions = 
{mn} annual minimum 

HydroBASINS 

gdp_ud_sav 1.71 

Gross Domestic Product: Category = 
Anthropogenic; Spatial Extent = {s} 
at sub-basin pour point; Dimensions 
= {av} average 

HydroBASINS 

slp_dg_sav 1.54 

Terrain Slope: Category = 
Physiography; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{av} average 

HydroBASINS 

pet_mm_uyr 1.44 

Potential Evapotranspiration: 
Category = Climate; Spatial Extent = 
{u} in total watershed upstream of 
sub-basin pour point; Dimensions = 
{yr} annual average 

HydroBASINS 

log10sgr_dk_sav 1.3 

Stream Gradient: Category = 
Physiography; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{av} average 

HydroBASINS 

log10dor_pc_pva 1.29 

Degree of Regulation: Category = 
Hydrology; Spatial Extent = {p} at 
sub-basin pour point; Dimensions = 
{va} value 

HydroBASINS 

log10pop_ct_usu 1.29 

Population Count: Category = 
Anthropogenic; Spatial Extent = {u} 
in total watershed upstream of sub-
basin pour point; Dimensions = {su} 
sum 

HydroBASINS 

tempmonth 1.28 Air temp month of deployment HydroBASINS 

tmp_dc_syr 1.28 

Air Temperature: Category = 
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

crp_pc_use 1.24 Cropland Extent: Category = 
Landcover; Spatial Extent = {u} in HydroBASINS 
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total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

ele_mt_smx 1.22 

Elevation: Category = Physiography; 
Spatial Extent = {s} at sub-basin 
pour point; Dimensions = {mx} 
maximum 

HydroBASINS 

log10dis_m3_pyr 1.09 

Natural Discharge: Category = 
Hydrology; Spatial Extent = {p} at 
sub-basin pour point; Dimensions = 
{yr} annual average 

HydroBASINS 

snd_pc_uav 1.09 

Sand Fraction in Soil: Category = 
Soils & Geology; Spatial Extent = 
{u} in total watershed upstream of 
sub-basin pour point; Dimensions = 
{av} average 

HydroBASINS 

log10rdd_mk_uav 1.07 

Road Density: Category = 
Anthropogenic; Spatial Extent = {u} 
in total watershed upstream of sub-
basin pour point; Dimensions = {av} 
average 

HydroBASINS 

tmp_dc_smn 1.01 

Air Temperature: Category = 
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = 
{mn} annual minimum 

HydroBASINS 

TNdep 0.95 TN deposition Ackerman et al. 
2019 (47) 

pac_pc_sse 0.9 

Protected Area Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 

pre_mm_uyr 0.89 

Precipitation: Category = Climate; 
Spatial Extent = {u} in total 
watershed upstream of sub-basin 
pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

aet_mm_uyr 0.88 

Actual Evapotranspiration: Category 
= Climate; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

log10gdp_ud_usu 0.88 
Gross Domestic Product: Category = 
Anthropogenic; Spatial Extent = {u} 
in total watershed upstream of sub-

HydroBASINS 
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basin pour point; Dimensions = {su} 
sum 

log10lkv_mc_usu 0.85 

Lake Volume: Category = 
Hydrology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {su} 
sum 

HydroBASINS 

pre_mm_syr 0.85 

Precipitation: Category = Climate; 
Spatial Extent = {s} at sub-basin 
pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

TPdep 0.79 TP deposition 

Brahney et al.  
2015 (48) & 
Mahowald 2008 
(49) 

log10ppd_pk_uav 0.78 

Population Density: Category = 
Anthropogenic; Spatial Extent = {u} 
in total watershed upstream of sub-
basin pour point; Dimensions = {av} 
average 

HydroBASINS 

cly_pc_sav 0.77 

Clay Fraction in Soil: Category = 
Soils & Geology; Spatial Extent = 
{s} at sub-basin pour point; 
Dimensions = {av} average 

HydroBASINS 

moist_indexmonth 0.77 moist_indexmonth HydroBASINS 

nli_ix_sav 0.7 

Nighttime Lights: Category = 
Anthropogenic; Spatial Extent = {s} 
at sub-basin pour point; Dimensions 
= {av} average 

HydroBASINS 

ele_mt_sav 0.68 

Elevation: Category = Physiography; 
Spatial Extent = {s} at sub-basin 
pour point; Dimensions = {av} 
average 

HydroBASINS 

ari_ix_uav 0.67 

Global Aridity Index: Category = 
Climate; Spatial Extent = {u} in total 
watershed upstream of sub-basin 
pour point; Dimensions = {av} 
average 

HydroBASINS 

soc_th_sav 0.66 

Organic Carbon Content in Soil: 
Category = Soils & Geology; Spatial 
Extent = {s} at sub-basin pour point; 
Dimensions = {av} average 

HydroBASINS 

snw_pc_uyr 0.65 
Snow Cover Extent: Category = 
Climate; Spatial Extent = {u} in total 
watershed upstream of sub-basin 

HydroBASINS 
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pour point; Dimensions = {yr} 
annual average 

log10rev_mc_usu 0.63 

Reservoir Volume: Category = 
Hydrology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {su} 
sum 

HydroBASINS 

log10gdp_ud_ssu 0.62 

Gross Domestic Product: Category = 
Anthropogenic; Spatial Extent = {s} 
at sub-basin pour point; Dimensions 
= {su} sum 

HydroBASINS 

PETmonth 0.61 PET month of deployment HydroBASINS 

log10rdd_mk_sav 0.59 

Road Density: Category = 
Anthropogenic; Spatial Extent = {s} 
at sub-basin pour point; Dimensions 
= {av} average 

HydroBASINS 

slt_pc_sav 0.59 

Silt Fraction in Soil: Category = 
Soils & Geology; Spatial Extent = 
{s} at sub-basin pour point; 
Dimensions = {av} average 

HydroBASINS 

pac_pc_use 0.58 

Protected Area Extent: Category = 
Landcover; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

HydroBASINS 

slp_dg_uav 0.57 

Terrain Slope: Category = 
Physiography; Spatial Extent = {u} 
in total watershed upstream of sub-
basin pour point; Dimensions = {av} 
average 

HydroBASINS 

for_pc_use 0.56 

Forest Cover Extent: Category = 
Landcover; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

HydroBASINS 

gwt_cm_sav 0.55 

Groundwater Table Depth: Category 
= Hydrology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{av} average 

HydroBASINS 

log10inu_pc_ult 0.55 

Inundation Extent: Category = 
Hydrology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {lt} 
long-term maximum 

HydroBASINS 
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ele_mt_uav 0.52 

Elevation: Category = Physiography; 
Spatial Extent = {u} in total 
watershed upstream of sub-basin 
pour point; Dimensions = {av} 
average 

HydroBASINS 

cly_pc_uav 0.51 

Clay Fraction in Soil: Category = 
Soils & Geology; Spatial Extent = 
{u} in total watershed upstream of 
sub-basin pour point; Dimensions = 
{av} average 

HydroBASINS 

for_pc_sse 0.5 

Forest Cover Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 

log10ria_ha_ssu 0.5 
River Area: Category = Hydrology; 
Spatial Extent = {s} at sub-basin 
pour point; Dimensions = {su} sum 

HydroBASINS 

precipmonth 0.48 Precipitation month of deployment HydroBASINS 

pst_pc_use 0.47 

Pasture Extent: Category = 
Landcover; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

HydroBASINS 

snd_pc_sav 0.47 

Sand Fraction in Soil: Category = 
Soils & Geology; Spatial Extent = 
{s} at sub-basin pour point; 
Dimensions = {av} average 

HydroBASINS 

log10pop_ct_ssu 0.45 

Population Count: Category = 
Anthropogenic; Spatial Extent = {s} 
at sub-basin pour point; Dimensions 
= {su} sum 

HydroBASINS 

aet_mm_syr 0.43 

Actual Evapotranspiration: Category 
= Climate; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{yr} annual average 

HydroBASINS 

snw_pc_smx 0.43 

Snow Cover Extent: Category = 
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = 
{mx} annual maximum 

HydroBASINS 

log10ero_kh_sav 0.38 

Soil Erosion: Category = Soils & 
Geology; Spatial Extent = {s} at sub-
basin pour point; Dimensions = {av} 
average 

HydroBASINS 

ari_ix_sav 0.36 Global Aridity Index: Category = 
Climate; Spatial Extent = {s} at sub- HydroBASINS 
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basin pour point; Dimensions = {av} 
average 

log10ero_kh_uav 0.35 

Soil Erosion: Category = Soils & 
Geology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {av} 
average 

HydroBASINS 

swc_pc_syr 0.35 

Soil Water Content: Category = Soils 
& Geology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{yr} annual average 

HydroBASINS 

log10dis_m3_pmx 0.33 

Natural Discharge: Category = 
Hydrology; Spatial Extent = {p} at 
sub-basin pour point; Dimensions = 
{mx} annual maximum 

HydroBASINS 

cmi_ix_uyr 0.32 

Climate Moisture Index: Category = 
Climate; Spatial Extent = {u} in total 
watershed upstream of sub-basin 
pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

slt_pc_uav 0.32 

Silt Fraction in Soil: Category = 
Soils & Geology; Spatial Extent = 
{u} in total watershed upstream of 
sub-basin pour point; Dimensions = 
{av} average 

HydroBASINS 

log10ppd_pk_sav 0.31 

Population Density: Category = 
Anthropogenic; Spatial Extent = {s} 
at sub-basin pour point; Dimensions 
= {av} average 

HydroBASINS 

ele_mt_smn 0.3 

Elevation: Category = Physiography; 
Spatial Extent = {s} at sub-basin 
pour point; Dimensions = {mn} 
minimum 

HydroBASINS 

pet_mm_syr 0.29 

Potential Evapotranspiration: 
Category = Climate; Spatial Extent = 
{s} at sub-basin pour point; 
Dimensions = {yr} annual average 

HydroBASINS 

log10lka_pc_use 0.26 

Limnicity (Percent Lake Area): 
Category = Hydrology; Spatial 
Extent = {u} in total watershed 
upstream of sub-basin pour point; 
Dimensions = {se} spatial extent (%) 

HydroBASINS 

log10riv_tc_usu 0.26 
River Volume: Category = 
Hydrology; Spatial Extent = {u} in 
total watershed upstream of sub-

HydroBASINS 
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basin pour point; Dimensions = {su} 
sum 

soilwatermonth 0.26 Soil water % month of deployment HydroBASINS 

log10ria_ha_usu 0.21 

River Area: Category = Hydrology; 
Spatial Extent = {u} in total 
watershed upstream of sub-basin 
pour point; Dimensions = {su} sum 

HydroBASINS 

log10riv_tc_ssu 0.2 

River Volume: Category = 
Hydrology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{su} sum 

HydroBASINS 

nli_ix_uav 0.18 

Nighttime Lights: Category = 
Anthropogenic; Spatial Extent = {u} 
in total watershed upstream of sub-
basin pour point; Dimensions = {av} 
average 

HydroBASINS 

kar_pc_sse 0.17 

Karst Area Extent: Category = Soils 
& Geology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 

pst_pc_sse 0.17 

Pasture Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 

log10inu_pc_umx 0.16 

Inundation Extent: Category = 
Hydrology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = 
{mx} annual maximum 

HydroBASINS 

urb_pc_sse 0.16 

Urban Extent: Category = 
Anthropogenic; Spatial Extent = {s} 
in reach catchment; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 

log10inu_pc_smx 0.14 

Inundation Extent: Category = 
Hydrology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{mx} annual maximum 

HydroBASINS 

snw_pc_syr 0.14 

Snow Cover Extent: Category = 
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

ire_pc_sse 0.12 

Irrigated Area Extent (Equipped): 
Category = Landcover; Spatial 
Extent = {s} at sub-basin pour point; 
Dimensions = {se} spatial extent (%) 

HydroBASINS 
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kar_pc_use 0.12 

Karst Area Extent: Category = Soils 
& Geology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

HydroBASINS 

swc_pc_uyr 0.12 

Soil Water Content: Category = Soils 
& Geology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

cmi_ix_syr 0.1 

Climate Moisture Index: Category = 
Climate; Spatial Extent = {s} at sub-
basin pour point; Dimensions = {yr} 
annual average 

HydroBASINS 

ire_pc_use 0.1 

Irrigated Area Extent (Equipped): 
Category = Landcover; Spatial 
Extent = {u} in total watershed 
upstream of sub-basin pour point; 
Dimensions = {se} spatial extent (%) 

HydroBASINS 

log10inu_pc_slt 0.1 

Inundation Extent: Category = 
Hydrology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{lt} long-term maximum 

HydroBASINS 

wet_pc_ug1 0.1 

Wetland Extent: Category = 
Landcover; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {g1} 
Wetland class grouping; see 
https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database 

HydroBASINS 

urb_pc_use 0.08 

Urban Extent: Category = 
Anthropogenic; Spatial Extent = {u} 
in total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

HydroBASINS 

log10inu_pc_umn 0.07 

Inundation Extent: Category = 
Hydrology; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = 
{mn} annual minimum 

HydroBASINS 

wet_pc_ug2 0.07 

Wetland Extent: Category = 
Landcover; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {g2} 
Wetland class grouping; see 

HydroBASINS 
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https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database 

log10inu_pc_smn 0.06 

Inundation Extent: Category = 
Hydrology; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{mn} annual minimum 

HydroBASINS 

wet_pc_sg1 0.05 

Wetland Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{g1} Wetland class grouping; see 
https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database 

HydroBASINS 

prm_pc_use 0.02 

Permafrost Extent: Category = 
Landcover; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

HydroBASINS 

wet_pc_sg2 0.01 

Wetland Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{g2} Wetland class grouping; see 
https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database 

HydroBASINS 

gla_pc_sse 0 

Glacier Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 

gla_pc_use 0 

Glacier Extent: Category = 
Landcover; Spatial Extent = {u} in 
total watershed upstream of sub-
basin pour point; Dimensions = {se} 
spatial extent (%) 

HydroBASINS 

prm_pc_sse 0 

Permafrost Extent: Category = 
Landcover; Spatial Extent = {s} at 
sub-basin pour point; Dimensions = 
{se} spatial extent (%) 

HydroBASINS 
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Table S2.  
Boosted-regression tree model importance values for leaf-litter decomposition rates (ln[Kd]), 
their description and the source of data.  Importance values greater than 5.88 indicate that the 
variable was selected more than expected from random chance.  Additional information about 
plant traits can be found in the data repository (43) in the file "Litter_trait_review.csv" and more 5 
details about the TRY database are contained in (31). 
 
Boosted-regression tree - explaining leaf litter decomposition rate (ln[Kd]) 
R2 0.70 

  
    

Predictor variable Relative 
importance 

Description Source 

ln_pred_kd 39.47 Model predicted cotton kd This study 
Mesh.size 

20.84 
Mesh size LeRoy et al. 

2020 (27) 
Lignin_Litter_Mn 

11.96 
Litter lignin content Literature 

values (43) 
CtoN_Litter_Mn 

5.45 
Litter C:N Literature 

values (43) 
N_Litter_Mn 

5.23 
Litter N content Literature 

values (43) 

P_Litter_Mn 3.59 Litter P content 
Literature 
values (43) 

C_Litter_Mn 2.37 Litter C content 
Literature 
values (43) 

Cellulose_Litter_Mn 2.20 Litter cellulose content 
Literature 
values (43) 

Ca_Leaf_Mn 2.03 Leaf Ca content TRY database 
NtoP_Leaf_Mn 1.19 Leaf N:P TRY database 
Thick_Mn 1.04 Leaf thickness TRY database 
Leaf.condition 1.03 Leaf condition TRY database 

NtoP_Litter_Mn 0.95 Litter N:P 
Literature 
values (43) 

P_Leaf_Mn 0.76 Leaf P content TRY database 
CtoN_Leaf_Mn 0.69 Leaf C:N TRY database 
C_Leaf_Mn 0.66 Leaf C content TRY database 
N_Leaf_Mn 0.53 Leaf N content TRY database 
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Fig. S1.   

Correlation plots of the relationship between the magnitude of predicted change in litter-5 
decomposition rates in pine-dominated forests invaded by the pine bark beetle and watershed soil 
water content (A) and AET (B). Greater values indicate a higher magnitude increase in litter 
decomposition upon canopy replacement. Our forecasts predict insect-induced canopy 
replacement from pine to oak would approximately double mean decomposition rates (see main 
text). Though the relationships are highly variable, the associations between the predicted 10 
magnitude of change in decomposition and soil water and AET indicate drier subwatersheds are 
expected to have a larger change in decay rates than wetter sites. 

 
References in Supplemental Files Only: References 45–55 are referenced only in the 
Supplemental Materials. 15 
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