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Abstract 
Protein language models (pLMs) trained on a large corpus of protein sequences ha v e sho wn unprecedented scalability and broad generaliz- 
ability in a wide range of predictive modeling tasks, but their po w er has not yet been harnessed for predicting protein–nucleic acid binding 
sites, critical for characterizing the interactions between proteins and nucleic acids. Here, we present EquiPNA S , a new pLM-informed E(3) 
equivariant deep graph neural network framework for improved protein–nucleic acid binding site prediction. By combining the strengths of pLM 
and symmetry -a w are deep graph learning, EquiPNAS consistently outperforms the state-of-the-art methods for both protein–DNA and protein–
RNA binding site prediction on multiple datasets across a diverse set of predictive modeling scenarios ranging from using experimental input 
to AlphaFold2 predictions. Our ablation study re v eals that the pLM embeddings used in EquiPNAS are suf!ciently po w erful to dramatically re- 
duce the dependence on the a v ailability of e v olutionary inf ormation without compromising on accuracy, and that the symmetry -a w are nature of 
the E(3) equivariant graph-based neural architecture offers remarkable robustness and performance resilience. EquiPNAS is freely a v ailable at 
https:// github.com/ Bhattacharya-Lab/ EquiPNAS . 
Gr aphical abstr act 

Introduction 
Interaction of protein with deoxyribonucleic acid (DNA) and 
ribonucleic acid (RNA) underpins a wide range of cellular and 
evolutionary processes such as gene expression, regulation, 
and signal transduction ( 1–4 ). The identi!cation of the inter- 
action sites between proteins and nucleic acids (i.e. binding 
sites) is important for determining protein functions ( 5 ) and 
novel drug design ( 6 ). A number of computational methods 
for predicting protein–DNA and protein–RNA binding sites 
have been developed to overcome the challenges of lengthy 
and expensive nature of experimental characterization of 
protein–nucleic acid binding sites. Such computational meth- 
ods can be broadly categorized into two categories: sequence- 
based and structure-aware methods. Sequence-based methods 
such as SVMnuc ( 7 ), NCBRPred ( 8 ), DNAPred ( 9 ), DNA- 
genie ( 10 ), RNABindRPlus ( 11 ), ConSurf ( 12 ), TargetDNA 
( 13 ), SCRIBER ( 3 ) and TargetS ( 14 ) exploit readily available 

and abundant protein sequence information to predict bind- 
ing sites. However, these methods lack structural information, 
which can limit their prediction accuracy. To overcome the 
challenge, structure-aware methods such as COACH-D ( 15 ), 
NucBind ( 7 ), DNABind ( 16 ), DeepSite ( 17 ), aaRNA ( 18 ), Nu- 
cleicNet ( 19 ), GraphBind ( 20 ), and GraphSite ( 21 ) integrate 
available structural information for binding site prediction. 
While structure-aware methods usually achieve higher predic- 
tion accuracy than sequence-based methods, a vast majority 
of structure-aware methods rely on known structural infor- 
mation from the Protein Data Bank (PDB) ( 22 ) that are not as 
abundant as sequence information, limiting their large-scale 
applicability. 

Promisingly, the recent breakthrough of AlphaFold2 
( 23 ,24 ) has enabled highly accurate prediction of single- 
chain protein structures from sequence information, provid- 
ing new opportunities for replacing the experimentally solved 
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Figure 1. Illustration of the EquiPNAS method for protein–nucleic acid binding site prediction. ( A ) A set of node and edge features are generated from 
the input protein monomer. ( B ) E(3)-equivariant graph convolutions are employed on the featurized graph representation of the input. ( C ) Graph node 
classi!cation is performed for residue-level binding site prediction. 
structures with AlphaFold2-predicted structural models as 
input for binding site prediction at scale, without compro- 
mising on accuracy. While a recent protein–DNA binding 
site prediction method, GraphSite ( 21 ), has successfully used 
AlphaFold2-predicted protein structural models, effective uti- 
lization of predicted structures from AlphaFold2 for protein–
RNA binding site prediction is yet to be explored. Along- 
side the AlphaFold2 breakthrough, a signi!cant advancement 
has been made in pre-trained protein language models (pLM) 
( 25–30 ) powered by attention-based transformers networks 
( 31 ). pLMs have proven highly successful in various predictive 
modeling tasks including protein structure prediction ( 28 ,30 ), 
protein function prediction ( 26 ,29 ), and protein engineering 
( 27 , 32 , 33 ). Despite their usefulness, the potential of pLMs in 
protein–DNA and protein–RNA binding site prediction tasks 
remains to be unlocked. Given the recent progress, a natural 
question arises: can we develop a generalizable computational 
framework that can harness the power of pLMs while lever- 
aging the predicted structural information by AlphaFold2 for 
accurate prediction of protein–DNA and protein–RNA bind- 
ing sites at scale? 

Here, we present EquiPNAS, a new pLM-informed equiv- 
ariant deep graph neural network framework for accurate 
protein–nucleic acid binding site prediction. EquiPNAS effec- 
tively leverages the pLM embeddings derived from the ESM- 
2 model ( 30 ) for improved protein–DNA and protein–RNA 
binding site prediction. The core of EquiPNAS consists of an 
E(3) equivariant graph neural network architecture ( 34 ), em- 
ploying symmetry-aware graph convolutions that transform 
equivariantly with translation, rotation, and re"ection in 3D 
space. Such an architecture has recently been shown to of- 
fer substantial accuracy gain while exhibiting remarkable ro- 
bustness and performance resilience in our work on protein–
protein interaction site prediction ( 35 ). Inspired by the notable 
successes of pLMs ( 32 ,36–38 ), here we integrate pLM embed- 
dings from the encoder-only transformer architecture of ESM- 
2 to re!ne our sequence-based node features using the E(3) 
equivariant graph-based framework. By doing this, we are 
able to signi!cantly reduce the dependence on the availabil- 
ity of evolutionary information which is not always abundant 
such as with orphan proteins or rapidly evolving proteins, thus 
enabling us to build generalizable and scalable models. In ad- 
dition, our translation-, rotation-, and re"ection-equivariant 

deep graph learning architecture provides richer representa- 
tions for molecular data compared to invariant convolutions, 
offering robustness for graph structured data and particularly 
suitable when predicted protein structures are used as input 
( 35 ). 

Our method, EquiPNAS, consistently outperforms the 
state-of-the-art methods in several widely used benchmark- 
ing datasets for both protein–DNA and protein–RNA binding 
site prediction tasks. EquiPNAS exhibits remarkable robust- 
ness with only a minor performance decline when switching 
from experimental structures to AlphaFold2 predicted struc- 
tural models as input, enabling accurate prediction of protein–
DNA and protein–RNA binding sites at scale. The pLM em- 
beddings used in EquiPNAS are suf!ciently powerful that can 
dramatically reduce the dependence on the availability of evo- 
lutionary information, leading to a generalizable framework. 
In addition, the symmetry-aware nature of the E(3) equivari- 
ant graph-based neural architecture of EquiPNAS offers re- 
markable robustness and performance resilience, as veri!ed 
directly through our ablation study. An open-source software 
implementation of EquiPNAS, licensed under the GNU Gen- 
eral Public License v3, is freely available at https://github.com/ 
Bhattacharya-Lab/EquiPNAS . 
Materials and methods 
Overview of EquiPNAS framework 
Figure 1 illustrates our EquiPNAS method for protein–nucleic 
acid binding site prediction consisting of graph representa- 
tion and featurization, E(3) equivariant graph neural network 
leveraging the coordinate information extracted from the in- 
put monomer together with sequence- and structure-based 
node and edge features as well as pLM embeddings from the 
ESM-2 model, and performing graph node classi!cation to 
predict the probability of every residue in the input monomer 
to be a protein–nucleic acid binding site. 
Graph representation and feature generation 
Input protein graph representation 
We represent the input protein monomer as a graph G = 
( V, E ) , where each node v ∈ V represents a residue, and each 
edge e ∈ E represents an interacting residue pair. We consider 
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Table 1. Sequence-based node features 
Features [shape] Description 
aa [L, 20] One-hot encodings of 20 amino acid residue 

types. 
PSSM [L, 20] Normalized position speci!c scoring matrix 

(PSSM). 
MSA [L, 256] Multiple sequence alignment (MSA) 

representation distilled through ColabFold’s 
EvoFormer blocks. 

pLM [L, 5120] pLM embeddings from ESM-2 with 15B 
parameters. 

The shape of the corresponding type for a protein with L residues is shown 
next to each feature. 
a residue pair to be interacting if their C α–C α Euclidean dis- 
tance is within 14Å for protein–DNA binding site prediction 
and 15Å for protein–RNA binding site prediction. The spe- 
ci!c distance cut-offs are chosen through independent cross- 
validations for the protein–DNA and protein–RNA binding 
site tasks ( Supplementary Tables 1 and 2 ). We additionally 
use a minimum sequence separation of 6 for the interacting 
residue pairs to focus on longer-range interactions. 
Feature generation 
We use a number of standard sequence-derived node features 
including amino acid residue type, position speci!c scoring 
matrix (PSSM), multiple sequence alignment (MSA) and com- 
bine them with protein language model-based features from 
ESM-2 pLM. Additionally, we extract structure-derived node 
features from the input protein monomer, using either the ex- 
perimentally solved structure or AlphaFold2-predicted struc- 
tural model, including secondary structure (SS), relative sol- 
vent accessibility (R S A), local geometry, residue orientations, 
relative residue positioning, residue virtual area and contact 
count. 
Sequence-based node features 
An overview of sequence-based node features and the corre- 
sponding shape can be found in Table 1 . We use one-hot en- 
coding to represent each of the 20 amino acid residue types 
(aa) as a binary vector with 20 entries. We run PSI-BLAST ( 39 ) 
on UniRef90 database ( 40 ) to obtain position speci!c scoring 
matrix (PSSM). We then extract the !rst 20 columns of the 
PSSM and normalize the values using the sigmoidal function. 
We additionally generate multiple sequence alignment (MSA) 
from the input amino acid sequence by running ColabFold 
( 41 ) pipeline, which uses MMseq2 ( 42 ) for MSA generation. 
The generated MSA is then fed to the EvoFormer blocks of 
AlphaFold2 as implemented in the ColabFold pipeline, result- 
ing in a distilled MSA representation encoded as a dictionary. 
We extract the !rst row of the distilled MSA representation 
(‘msa_!rst_row’ from the dictionary) to be used as our MSA 
feature. We also use protein language model-based features 
from the pretrained ESM-2 model, having 15B parameters 
( 30 ). Speci!cally, we use the ‘representations’ embeddings as 
pLM features by supplying the amino acid sequence to the 
ESM-2 model. 
Structure-based node features 
Our structure-based node features and the corresponding 
shape can be found in Table 2 . We use one-hot encoding 
to represent both 3-state and 8-state secondary structures 

Table 2. Str uct ures-based node feat ures 
Features [shape] Description 
SS [L, 11] One-hot encodings of 3- and 8-state 

secondary structure. 
R S A [L, 10] One-hot encodings of 2- and 8-state 

relevant solvent accessibility. 
Local geometry 
[L, 11] Cosine angle between the C = O of 

consecutive residues, normalized values of 
virtual bond and torsion angles, and 
normalized peptide backbone torsion 
angles. 

Residue orientation 
[L, 9] Unit vectors pointing towards the 

directions of C α ( i +1) −C α i , C α ( i −1) −C α i 
and C β i −C α i . 

Relative residue 
positioning [L, 2] Two types of relative positional features 

for the i th residue: (i) inverse of i 
representing the relative sequence position, 
and (ii) inverse of the Euclidean distance of 
C α atom from the centroid representing 
the relative spatial positioning. 

Residue virtual 
surface area [L, 1] Virtual surface area of the conceptual 

convex hull constructed by the atoms in a 
residue. 

Contact count [L, 1] The number of spatial neighbors of each 
residue. 

The shape of the corresponding type for a protein with L residues is shown 
next to each feature. 
(SS). Additionally, we use one-hot-encodings to represent both 
2-state relative solvent accessibility (R S A) features using an 
R S A cut-off of 50 and !ner-grained 8-state R S A features 
by discretizing the R S A value into 8 bins with the follow- 
ing ranges: 0–30, 30–60, 60–90, 90–120, 120–150, 150–180, 
180–210 and > 210. We also extract local geometric features 
directly from the input protein monomer. These include the 
cosine angle between the C = O of consecutive residues, nor- 
malized virtual bond and torsion angles formed between con- 
secutive C α atoms, and normalized backbone torsion angles 
of the polypeptide chain. Inspired by the recent GVP-GNN 
study ( 43 ), we adopt two types of residue orientation features 
in our study: (i) unit vectors pointing towards C α ( i +1) −C α i and 
C α ( i −1) −C α i , and (ii) unit vectors indicating the imputed di- 
rection of C βi −C α i , which is computed assuming tetrahedral 
geometries and normalization. We use two types of relative 
residue positioning features for the i th residue of the input 
protein monomer: (i) the relative sequence position captured 
by the inverse of i , and (ii) the relative spatial positioning cap- 
tured by the inverse of the Euclidean distance between the cen- 
troid of the input protein monomer and the C α atom of the i th 
residue. We additionally conceptualize an amino acid residue 
as a virtual convex hull that is constructed by its constituent 
atoms and quantify the virtual surface area of the convex hull 
and calculate its inverse to use as a feature. Finally, we include 
the normalized contact count as a structure-driven feature, de- 
!ned as the number of spatial neighbors of each residue (i.e. 
residues that are in contact) where two residues are consid- 
ered to be in contact if the Euclidean distance between their 
C β atoms is < 8 Å. 
Edge features 
As the edge feature for the graph G = ( V, E ) , we use the ratio 
of the logarithm of the absolute difference between the indices 
of the two residues ( log | i − j | ) in the primary sequence and 
their Euclidean distance. The numerator of the ratio measures 
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how far apart the two residues are in the primary sequence, 
while the denominator measures their spatial distance in 
3D space. 
Coordinate features 
We obtain coordinate features from the Euclidean coordinates 
( x , y and z ) of the C α atoms in input protein monomers. 
Network architecture 
Our network architecture consists of deep E(3)-equivariant 
graph neural networks (EGNNs) ( 34 ), independently trained 
for protein–DNA and protein–RNA binding site prediction 
tasks. The input to the EGNNs includes the node and edge 
features described above as well as coordinate features based 
on the Cartesian coordinates of the C α atoms in the input pro- 
tein monomer. The EGNN architecture consists of a stack of 
equivariant graph convolution layers (EGCL), performing a 
series of transformations of its input by updating the coordi- 
nate and node embeddings using the edge information and the 
coordinate and node embeddings from the previous layer. A 
linear transformation is !rst applied to the input node features 
( h 0 i ), which results in a transformed set of node embeddings 
( h l i ). These embeddings, along with input coordinates ( x 0 i ) and 
edge information ( a i j ) are passed to the subsequent EGCL lay- 
ers. Formally, each EGCL performs a coordinate and node em- 
beddings update, such that x l+1 

i , h l+1 
i = EGCL [ x l i , h l i ] , which 

is de!ned below: 
m i j = φe (h l i , h l j , ‖ x l i − x l j ‖ 2 , a i j )

x l+1 
i = x l i + C ∑ 

j $ = i 
(
x l i − x l j )φx (m i j )

m i = ∑ 
j $ = i m i j 

h l+1 
i = φh (h l i , m i )

where, h l i and h l j are the node embeddings of node i and j at 
layer l , respectively; a i j denotes the edge attributes; x l i and x l j 
are the coordinates of node i and j at layer l , respectively; 
‖ x l i − x l j ‖ 2 is the squared distance between node i and j at 
layer l ; φe , φx , and φh are non-linear operations, implemented 
using multilayer perceptrons (MLP); and C is a constant fac- 
tor chosen as 1 / ( M − 1), where M is the number of nodes. 
The EGCL operation attains equivariance by incorporating 
the coordinate update during message passing, wherein for 
each node i , ∑ 

j $ = i ( x l i − x l j ) is the sum of its relative coordinate 
difference with all the other nodes, are taken into account for 
updating the coordinate x l+1 

i of node i at layer l + 1. We also 
use an attention mechanism ˜ e i j = φin f ( m i ) to infer a soft es- 
timation of edges. Finally, a linear transformation is applied 
to squeeze the hidden dimension of the last EGCL for con- 
densing the learned information into a single scalar value, fol- 
lowed by a sigmoidal function to obtain the node-level classi- 
!cation to predict the likelihood of every residue in the input 
monomer to be a protein–nucleic acid binding site. The ar- 
chitecture of our EGNN consists of 12 EGCL layers with hid- 
den dimensions of 768. The size of hidden dimensions and the 
number of layers are selected through 5-fold cross-validation 

(see Supplementary Table 1 , 2 ). To mitigate the risk of over!t- 
ting, we apply dropout regularization to the node embeddings 
of each EGCL layer with a dropout rate of 0.1, determined 
through 5-fold cross validation (see Supplementary Table 1 , 
2 ). Our EquiPNAS models are implemented using PyTorch 
1.12.0 ( 44 ) and the Deep Graph Library (DGL) 0.9.0 ( 45 ). 
During training, we use the binary cross-entropy loss function 
and a cosine annealing scheduler from the Stochastic Gradient 
Descent with Warm Restarts (SGDR) algorithm ( 46 ). We also 
utilize the ADAM optimizer ( 47 ), with a learning rate of 1e-4 
and a weight decay of 1e-16. The training process consists of 
at most 40 epochs on an NVIDIA A40 GPU. In addition to the 
full-"edged version of EquiPNAS, we train baseline models for 
both protein–DNA and protein–RNA binding site prediction 
using the same hyperparameters and features as EquiPNAS, 
but without equivariant updates, that is, invariant baseline 
networks with the coordinate updates of the EGCL turned 
off, enabling us to verify the importance of equivariance used 
in our model. 
Datasets and performance evaluation 
For a fair performance comparison of our method against 
the state-of-the-art methods for protein–DNA and protein–
RNA binding site prediction, we use widely recognized public 
datasets as follows. 
Protein–DNA benchmarking dataset 
To evaluate the performance of protein–DNA binding site pre- 
diction method, we use train (Train_573) and test (Test_129) 
datasets from the published work of GraphBind ( 20 ), which 
contain a total of 573 and 129 protein chains, respectively. 
Additionally, we use another test set consisting of 181 pro- 
tein chains (Test_181) from the published work of Graph- 
Site ( 21 ). These datasets are originally curated from the pub- 
lic BioLiP database ( 48 ) that contains precomputed protein–
DNA and protein–RNA binding sites from known protein–
DNA and protein–RNA complexes after !ltering out protein 
chains with > 30% sequence similarity among the datasets, 
by applying CD-Hit ( 49 ) to ensure non-redundancy. The 
training dataset (Train_573) was released before 6 January 
2016 whereas the Test_129 set was released between 6 Jan- 
uary 2016 to 5 December 2018, and Test_181 was more re- 
cently released between 6 December 2018 to August 2021. 
The binding (and non-binding) residue count for Train_573, 
Test_129 and Test_181 are 14 479 (and 145 404), 2240 (and 
35 275) and 3208 (and 72 050), respectively. 
Protein–RNA benchmarking dataset 
To evaluate the performance of protein–RNA binding site pre- 
diction method, we use the Train_495 set for training and 
the Test_117 set for testing, also from the published work 
of GraphBind ( 20 ), which contain a total of 495 and 117 
protein chains, respectively. These datasets are also extracted 
from the BioLiP database ( 48 ) and pre-processed to ensure 
non-redundancy between the train and test sets, using CD-Hit 
( 49 ) to !lter out protein chains with > 30% sequence similar- 
ity. The Train_495 set contains 14 609, and 122 290 binding, 
and non-binding residues, respectively, while in the Test_117 
set, 2031 and 35 314 residues are binding, and non-binding 
residues, respectively. 
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Table 3. Protein-DNA and protein–RNA binding site prediction performance of EquiPNAS against the top-performing methods on the test datasets using 
AlphaFold2 predicted str uct ural models as input. Values in bold represent the best performance 

Datasets Methods R OC-A UC PR-AUC 
Protein–DNA Test_129 GraphBind* 0.916 0.497 

GraphSite* 0.934 0.544 
EquiPNAS 0.940 0.569 

Test_181 GraphBind* 0.893 0.317 
GraphSite* 0.917 0.369 
EquiPNAS 0.918 0.384 

Protein–RNA Test_117 GraphBind 0.793 0.204 
EquiPNAS 0.886 0.320 

Note: * Results are obtained directly from the published work of GraphSite. 
Evaluation metrics and competing methods 
We assess the performance of our method using two widely 
recognized metrics: the area under the Receiver Operating 
Characteristic curve (ROC-AUC) and the area under the 
Precision-Recall curve (PR -A UC) scores. Both ROC-A UC and 
PR -A UC are threshold-independent metrics, thereby provid- 
ing a comprehensive and robust view of the performance 
of a model across the full range of possible classi!cation 
thresholds. 

We compare our protein–DNA interaction site prediction 
method against eight existing methods. Three of the methods, 
SVMnuc ( 7 ), NCBRPred ( 8 ), and DNAPred ( 9 ), are sequence- 
based methods, while the other !ve methods, COACH-D ( 15 ), 
NucBind ( 7 ), DNABind ( 16 ), GraphBind ( 20 ) and GraphSite 
( 21 ) are structure-aware methods. SVMnuc is a support vec- 
tor machine (SVM)-based method that utilizes features from 
PSI-BLAST ( 39 ), PSIPRED ( 50 ) and HHblits ( 51 ). NCBR- 
Pred employs bidirectional Gated Recurrent Units (BiGRU) 
( 52 ) with multi-label sequence labeling. DNAPred is a two- 
stage ensembled hyperplane-distance-based support vector 
machine (E-HDSVM) ( 9 ) for predicting protein–DNA binding 
sites. COACH-D is a consensus-based approach incorporat- 
ing four different template-based and one template-free pre- 
diction methods. NucBind integrates the ab initio SVMnuc 
and template-based COACH-D for higher accuracy predic- 
tion. DNABind is a hybrid method combining machine learn- 
ing with template-based predictions. GraphBind proposes hi- 
erarchical graph neural networks, while GraphSite employs 
graph transformer neural networks. Among these competing 
methods, GraphBind and GraphSite are the most recent and 
represent the state-of-the-art for protein–DNA binding site 
prediction. 

We compare our protein–RNA binding site prediction 
method with seven existing methods. Two of the methods RN- 
ABindRPlus ( 11 ) and SVMnuc ( 7 ) are sequence-based meth- 
ods, while the other !ve methods, COACH-D ( 15 ), NucBind 
( 7 ), aaRNA ( 18 ), NucleicNet ( 19 ) and GraphBind ( 20 ) are 
structure-aware methods. SVMnuc, CO ACH-D , NucBind and 
GraphBind are the methods we also compared against on 
protein–DNA binding tasks, as discussed earlier. RNABindR- 
Plus is a hybrid method that combines sequence-homologs 
and support vector machine (SVM)-based predictions. aaRNA 
is a both sequence- and structure-based method that utilizes 
homology modeling to extract structural features along with 
various sequence-based features. NucleicNet is a deep learn- 
ing framework that extracts physiochemical characteristics of 
the protein surface by quantifying it with grid points. Among 
these methods, GraphBind is currently the top-performing 
method for protein–RNA binding site prediction. 

Results 
Test set performance 
Table 3 shows the performance of EquiPNAS for protein–
DNA (on Test_129 and Test_181 sets) and protein–RNA (on 
Test_117) binding site prediction tasks using AlphaFold2 pre- 
dicted structural models as input compared to two closest 
competing methods: hierarchical graph neural network-based 
method GraphBind for protein–DNA and protein–RNA bind- 
ing site prediction ( 20 ) and graph transformer-based method 
GraphSite for protein–DNA binding site prediction ( 21 ) (see 
Supplementary Table 3 and Supplementary Table 4 for com- 
prehensive performance comparison against all competing 
methods). The results demonstrate that EquiPNAS attains 
the highest scores in all three test datasets. The performance 
gain of EquiPNAS over the state-of-the-art methods is par- 
ticularly noteworthy considering PR -A UC, a stringent and 
rigorous evaluation metric. For example, EquiPNAS yields 
56.9% relative PR -A UC gain over GraphBind for protein–
RNA binding site prediction; and 14.5%-21.1% relative PR- 
AUC gains over GraphBind and 4.1–4.6% relative PR -A UC 
gains over GraphSite for protein–DNA binding site predic- 
tion. In summary, EquiPNAS improves upon the state-of-the- 
art accuracy of both protein–DNA and protein–RNA binding 
site prediction using AlphaFold2 predicted structural models 
by consistently attaining better performance than the existing 
approaches. 

To investigate whether the performance attained by EquiP- 
NAS is signi!cantly better than the closest competing methods 
GraphSite and GraphBind, we conduct statistical signi!cance 
tests by randomly sampling 70% of the targets for each of the 
test sets (T est_129, T est_181, and T est_117) and calculating 
the ROC-A UC and PR -A UC for the EquiPNAS as well as the 
other competing methods. This sampling process is repeated 
10 times, yielding a set of 10 scores for EquiPNAS, GraphSite, 
and GraphBind for protein–DNA binding site prediction for 
both Test_129 and Test_181 sets, and a set of 10 scores for 
EquiPNAS and GraphBind for protein–RNA binding site pre- 
diction for Test_117 set. If the measurement is normal, deter- 
mined by the Anderson-Darling test ( 53 ), then paired t-test is 
used to calculate signi!cance of the measurement. If the mea- 
surement is not normal, then we use the Wilcoxon rank sum 
test ( 54 ). The results presented in Table 4 demonstrate that 
EquiPNAS is statistically signi!cantly better than the compet- 
ing methods at 95% con!dence level with p -values < 0.05 
for both ROC-A UC and PR -A UC metrics across all test 
sets. 

Figure 2 presents nine representative examples from the test 
datasets comparing the protein–DNA and protein–RNA bind- 
ing site predictions using EquiPNAS against the second-best 
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Table 4. Statistical signi!cance test between EquiPNAS and the top-performing methods using AlphaFold2 predicted str uct ural models as input on the 
test datasets by randomly sampling 70% of the targets for each of the test sets and repeating the sampling process 10 times 

Datasets Methods R OC-A UC PR-AUC 
Protein–DNA Test_129 GraphBind 0.9128 ± 0.008929352 0.492 ± 0.031184042 

P -value 2.22591E-06 7.07626E-10 
GraphSite 0.9219 ± 0.005363457 0.5165 ± 0.022122136 
P -value 1.3961E-09 7.92445E-08 
EquiPNAS 0.9387 ± 0.004877385 0.569 ± 0.0264281 

Test_181 GraphBind 0.8916 ± 0.006003703 0.3102 ± 0.017706245 
P -value 8.63327E-08 7.16361E-09 
GraphSite 0.8964 ± 0.006292853 0.3286 ± 0.018124262 
P -value 2.25585E-07 7.9832E-07 
EquiPNAS 0.9159 ± 0.00395671 0.3717 ± 0.018372987 

Protein–RNA Test_117 GraphBind 0.7942 ± 0.006250333 0.2019 ± 0.009573691 
P -value 2.3402E-11 1.44E-10 
EquiPNAS 0.8856 ± 0.006221825 0.3118 ± 0.013003 

The means and the standard deviations of ROC-AUC and PR-AUC are reported. Values in bold represent the best performance in terms of means. 
predictors: three from protein–DNA Test_129 (Figure 2 A), 
three from protein–DNA Test_181 (Figure 2 B) and three from 
protein–RNA Test_117 (Figure 2 C). The !rst two examples 
represent two human protein–DNA interactions: Transcrip- 
tion of Homo sapiens, Mus musculus (PDB ID: 5nj8, chain 
A), and Hydrolase / DNA of Homo sapiens, DNA launch vec- 
tor pDE-GFP2 (PDB ID: 5t4i, chain B) as shown in Figure 
2 A. GraphSite fails to predict the vast majority of protein–
DNA binding sites as re"ected in its low F1-score, Matthew’s 
Correlation Coef!cient (MCC) and PR -A UC in these two tar- 
gets. In contrast, EquiPNAS achieves reasonably accurate pre- 
diction, with a remarkable gain of 0.506 and 0.417 points 
in F1-score, 0.458 and 0.357 points in MCC, and 0.381 
and 0.381 points in PR -A UC, respectively. The third exam- 
ple, Splicing of Caenorhabditis elegans, synthetic construct 
(PDB ID: 5tkz, chain A) shows inaccurate binding site pre- 
diction by GraphSite, resulting in predicting !ve (out of total 
89 residues), which is noticeably high compared to the size of 
the protein. EquiPNAS accurately predicts these binding sites, 
with only one (out of total 89 residues) false positive. Graph- 
Site also generates inaccurate predictions for DNA binding 
protein / DNA in Escherichia coli (PDB ID: 6nua, chain A), 
with 28 (out of total 227 residues) false positives; whereas 
EquiPNAS achieves a much better overall prediction perfor- 
mance with only three (out of total 227 residues) false posi- 
tives. Interestingly, EquiPNAS attains perfect prediction with 
both ROC-AUC and PR-AUC values of 1.0, as well as an F1- 
score and MCC of approximately 0.93 for a smaller target 
(73 residues), a transcription protein in Mycobacterium tu- 
berculosis (PDB ID: 7kuf chain A). In contrast, GraphSite’s 
prediction is contaminated by several false positives, result- 
ing in F1-score and MCC values of less than 0.65. Addi- 
tionally, for an RNA binding protein / DNA in Homo sapi- 
ens (PDB ID: 7csz, chain A), our method still outperforms 
GraphSite, with a performance gain of 0.27 points in PR- 
AUC, 0.187 points in F1-score, and 0.216 points in MCC, 
whereas GraphSite fails to identify majority of binding site 
residues, particularly for DNA chain C, resulting in a high 
number of false negatives. The RNA binding protein exam- 
ple in Danio rerio and Caenorhabditis elegans (PDB ID: 6fq3, 
chain A) provides a remarkable demonstration of the supe- 
rior performance of EquiPNAS in predicting protein–RNA 
binding sites, as compared to the closest competing method 
GraphBind. While GraphBind fails to accurately detect any 

binding site, with PR -A UC, F1-score and MCC of 0.024, 0 
and −0.017, respectively, EquiPNAS performs reasonably ac- 
curate predictions with much better PR -A UC, F1-score, and 
MCC of 0.732, 0.545 and 0.555, respectively. Furthermore, 
EquiPNAS shows highly accurate prediction for the transcrip- 
tion factor in Saccharomyces cerevisiae (PDB ID: 5o1y, chain 
A), exceeding GraphBind by 0.351 points in F1-score, 0.382 
points in MCC and 0.303 points in PR -A UC. Additionally, 
in comparison to EquiPNAS, GraphBind exhibits suboptimal 
performance due to both false positive and false negative pre- 
dictions for the binding sites of OXIDOREDUCTASE / RNA 
in Escherichia coli (PDB ID: 5hr7, chain B). 

In the above experiments, all methods use AlphaFold2 
predicted structural models as input with EquiPNAS con- 
sistently delivering improved performance for both protein–
DNA and protein–RNA binding site prediction tasks. How- 
ever, structure-aware protein–nucleic acid binding site pre- 
diction methods traditionally rely on experimentally solved 
structures as input. Intuitively, using experimental structures 
as input, whenever available, should lead to better perfor- 
mance than using predicted structural models as input. Conse- 
quently, a natural question to ask is: How much performance 
decline do these methods suffer from when switching from 
experimental input to prediction? Not surprisingly, as shown 
in Supplementary Tables 3 and 4 , using experimental input 
leads to better accuracy in almost all cases. Promisingly, the 
performance decline of EquiPNAS when switching from ex- 
perimental input to AlphaFold2 prediction is much smaller 
compared to other methods. For instance, EquiPNAS loses 
only ∼2.3% of PR -A UC points when using AlphaFold2 pre- 
dictions as input instead of experimental ones for protein–
DNA binding site prediction, whereas GraphBind experiences 
a higher PR -A UC drop of 4.4–6.9% PR -A UC points. EquiP- 
NAS also demonstrates robustness in protein–RNA binding 
site prediction with a negligible drop in ROC-AUC (0.1%) 
when using AlphaFold2 predictions as input, whereas Graph- 
Bind shows a much higher ROC-AUC drop (7.7%). That is, 
EquiPNAS exhibits a minor performance decline when switch- 
ing from experimental input to prediction while outperform- 
ing both GraphBind and GraphSite regardless of the use of 
predicted or experimental structures, demonstrating its ro- 
bustness and generalizability and enabling accurate prediction 
of protein–DNA and protein–RNA binding sites at scale using 
AlphaFold2 predicted structural models. 
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Figure 2. R epresentativ e e xamples of protein–DNA and protein–RNA binding site predictions using EquiPNAS and the closest competing methods 
compared to the experimental observation. For targets from the Test_129 ( A ) and Test_181 ( B ) sets, protein–DNA binding site prediction using 
GraphSite versus EquiPNAS are shown. For targets from the T est_1 17 set ( C ), protein–RNA binding site prediction using GraphBind versus EquiPNAS 
are shown. True Positive (TP), False Positive (FP), and False Negative (FN) binding sites are represented in green, red, and yellow, respectively. 
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Figure 3. Feature ablation study. For protein–DNA binding site prediction, bar charts representing the performance of the ablated variants in terms of ( A ) 
ROC-AUC and ( B ) PR-AUC obtained using 5-fold cross validation are shown. For protein–RNA binding site prediction, bar charts representing the 
performance of the ablated variants in terms of ( C ) ROC-AUC and ( D ) PR-AUC obtained using 5-fold cross validation are shown. 

In the context of large-scale protein–nucleic acid binding 
site prediction using AlphaFold2 predicted structural models, 
a related question is: Is there any relationship between the self- 
estimated accuracy of AlphaFold2 predicted structural mod- 
els and the accuracy of EquiPNAS binding site prediction? 
We examine the self-estimated accuracy of AlphaFold2 pre- 
dicted structural models using the AlphaFold2 predicted local 
distance difference test (pLDDT) and the ROC-AUC and PR- 
AUC of EquiPNAS binding site prediction resulting from the 
predicted structure. Using a pLDDT threshold of 0.85, we di- 
vide the targets in the test sets into two roughly equal groups: 
moderate con!dence predictions with pLDDT values ≤0.85 
and high con!dence predictions with pLDDT values > 0.85. 
Supplementary Figure 1 shows the ROC-AUC and PR-AUC 
distributions for the two groups. Across the test datasets, high 
con!dence predictions lead to better ROC-AUC and PR-AUC 
values compared to moderate con!dence predictions, with the 
ROC-A UC and PR -A UC distributions resulting from the high 
con!dence predictions skewed towards higher accuracy bind- 
ing site prediction. Furthermore, we observe a noticeable dif- 
ference in binding site prediction accuracy in terms of mean 
ROC-A UC and PR -A UC values resulting from the moderate 
con!dence predictions versus the high con!dence predictions 
(see Supplementary Table 5 ), indicating that the self-estimated 
accuracy of AlphaFold2 predicted structural models can in- 
form the accuracy of EquiPNAS binding site prediction in the 
absence of any experimental information in that highly con!- 
dent AlphaFold2 predictions tend to yield more accurate bind- 
ing site prediction. 
Ablation study 
Contribution of the pLM embeddings 
EquiPNAS utilizes pLM embeddings from the pretrained 
ESM-2 model ( 30 ) as part of the sequence-based features. 

To evaluate the relative contribution of the protein language 
model-based features compared to the evolutionary features 
such as PSSM and MSA, we conduct a feature ablation study 
by excluding protein language model-based features or the 
evolutionary features from the full-"edged EquiPNAS feature 
set. Figure 3 displays the 5-fold cross-validation performance 
of the ablated variants of EquiPNAS in terms of ROC-AUC 
and PR -A UC values for protein–DNA and protein–RNA bind- 
ing site prediction. The results demonstrate that excluding pre- 
trained protein language model-based features (no pLM) re- 
sults in the worst performance with a relative PR -A UC drop of 
18.5% (Figure 3 B) and 15.4% (Figure 3 D) for protein–DNA 
and protein–RNA binding site predictions, respectively. Such 
a signi!cant performance drop highlights the importance of 
using pLM embeddings for our prediction. In contrast, we ob- 
serve only minor performance drops when one or both evo- 
lutionary features were discarded. Even discarding both the 
evolutionary features (no (PSSM + MSA)) results in a relative 
PR -A UC drop of only 2.8% and 2% for protein–DNA and 
protein–RNA binding site predictions, respectively. Overall, 
compared to the relatively minor but positive contribution of 
evolutionary features, protein language model-based features 
have a major contribution to the improved performance of the 
new EquiPNAS model. 

The ESM-2 offers a range of pretrained pLMs with varying 
scale ranging from 8 million to 15 billion parameters in- 
cluding esm2_t6_8M_UR50D , esm2_t12_35M_UR50D , 
esm2_t30_150M_UR50D , esm2_t33_650M_UR50D , 
esm2_t36_3B_UR50D and esm2_t48_15B_UR50D-trained. 
The largest pLM esm2_t48_15B_UR50D with 15 billion 
parameters serves as the default choice for the pLM embed- 
dings in our EquiPNAS method. To assess the impact of the 
scale of pretrained pLMs on performance, we retrain !ve 
separate protein–DNA and protein–RNA binding site predic- 
tion models on the full training set after replacing the pLM 
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Table 5. Protein-DNA and protein–RNA binding site prediction performance using different ESM-2 pLMs with lower number of parameters 
(esm2_t6_8M_UR50D , esm2_t1 2_35M_UR50D , esm2_t30_1 50M_UR50D , esm2_t33_650M_UR50D and esm2_t36_3B_UR50D) compared to the default 
choice of the pLM used in EquiPNAS (esm2_t48_15B_UR50D) with 15 billion parameters 

Datasets Models R OC-A UC PR-AUC 
Protein–DNA Test_129 esm2_t6_8M_UR50D 0.921 0.504 

esm2_t12_35M_UR50D 0.923 0.507 
esm2_t30_150M_UR50D 0.928 0.539 
esm2_t33_650M_UR50D 0.933 0.543 
esm2_t36_3B_UR50D 0.935 0.531 
EquiPNAS (esm2_t48_15B_UR50D) 0.940 0.569 

Test_181 esm2_t6_8M_UR50D 0.897 0.332 
esm2_t12_35M_UR50D 0.901 0.339 
esm2_t30_150M_UR50D 0.910 0.359 
esm2_t33_650M_UR50D 0.912 0.362 
esm2_t36_3B_UR50D 0.908 0.352 
EquiPNAS (esm2_t48_15B_UR50D) 0.918 0.384 

Protein–RNA Test_117 esm2_t6_8M_UR50D 0.856 0.285 
esm2_t12_35M_UR50D 0.862 0.299 
esm2_t30_150M_UR50D 0.863 0.297 
esm2_t33_650M_UR50D 0.869 0.309 
esm2_t36_3B_UR50D 0.874 0.303 
EquiPNAS (esm2_t48_15B_UR50D) 0.886 0.320 

Values in bold represent the best performance. 
Table 6. Protein–DNA and protein–RNA binding site prediction performance of EquiPNAS variant trained without an y e v olutionary inf ormation (w / o 
MSA + PSSM) against the top-performing methods on the test datasets using AlphaFold2 predicted structural models as input 

Datasets Methods R OC-A UC PR-AUC 
Protein–DNA Test_129 GraphBind* 0.916 0.497 

GraphSite* 0.934 0.544 
EquiPNAS w / o (MSA + PSSM) 0.936 0.544 

Test_181 GraphBind* 0.893 0.317 
GraphSite* 0.917 0.369 
EquiPNAS w / o (MSA + PSSM) 0.917 0.364 

Protein–RNA Test_117 GraphBind 0.793 0.204 
EquiPNAS w / o (MSA + PSSM) 0.877 0.299 

Note: * Results are obtained directly from the published work of GraphSite. 
Values in bold represent the best performance. 
embeddings from the default esm2_t48_15B_UR50D choice 
with other ESM-2 pLMs with lower number of parameters 
including esm2_t6_8M_UR50D , esm2_t12_35M_UR50D , 
esm2_t30_150M_UR50D , esm2_t33_650M_UR50D , and 
esm2_t36_3B_UR50D models. Table 5 reports the per- 
formance of these alternative models in comparison to 
EquiPNAS (utilizing esm2_t48_15B_UR50D) for both 
protein–DNA and protein–RNA test sets. The results demon- 
strate that models trained with the pLM having the lowest 
number of parameters (esm2_t6_8M_UR50D) perform the 
poorest in both protein–DNA and protein–RNA binding site 
prediction tasks, with a 12.2–15.7% lower PR -A UC values 
compared to EquiPNAS in the test datasets. With the increase 
in number of parameters of the ESM-2 pLMs, test set per- 
formance tends to improve. EquiPNAS leveraging the largest 
pLM esm2_t48_15B_UR50D with 15 billion parameters 
consistently achieves the best performance across all test sets, 
justifying our choice of the ESM-2 pLM. A recent method 
called GeoBind ( 55 ), which exploits protein molecular sur- 
faces for protein–nucleic acid binding site prediction using 
geometric deep learning, attains state-of-the-art performance 
by extracting molecular surfaces computed from experimen- 
tal structures coupled with evolutionary information in the 
form of MSA or pLM embeddings to replace MSA. The 
published work of GeoBind, trained on the same training set 

used in our method, reports its performance for protein–DNA 
(on Test_129) and protein–RNA (on Test_117) binding site 
prediction tasks using experimental structures as input. In 
a head-to-head comparison with GeoBind on the identical 
set of test targets, our method EquiPNAS consistently out- 
performs GeoBind in both protein–DNA and protein–RNA 
binding site prediction tasks (see Supplementary Table 6 ). For 
example, EquiPNAS using experimental structures as input 
attains higher ROC-AUC of 0.943 (and 0.887) than GeoBind 
having an ROC-AUC of 0.940 (and 0.874) for protein–DNA 
(and protein–RNA) binding site prediction tasks. Once again, 
EquiPNAS exhibits remarkable robustness by attaining com- 
parable or even better accuracy with predicted structural 
models from AlphaFold2 than what GeoBind can achieve 
even with experimental structures. That is, EquiPNAS is 
robust and more accurate compared to GeoBind. 

Recognizing the major contribution of pLM features com- 
pared to the relatively minor impact of the evolutionary fea- 
tures, we investigate the performance of our method utiliz- 
ing the pLM embeddings, but without using any evolutionary 
information. Speci!cally, we discard the PSSM and MSA fea- 
tures and retrain our method on the full training set, and eval- 
uate the performance on the test sets for both protein–DNA 
and protein–RNA binding site prediction tasks. As reported in 
Table 6 , We !nd that for protein–DNA binding site prediction, 
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Figure 4. The running time of the full-"edged version of EquiPNAS and its variant trained without any evolutionary information on ( A ) protein–DNA 
(Test_129) and ( B ) protein–RNA (Test_117) binding site prediction. For each target, input protein length versus runtime (in seconds) are shown. 
EquiPNAS without PSSM or MSA (denoted by ‘EquiPNAS 
w / o (PSSM + MSA)’) outperforms GraphBind, and performs 
comparably to GraphSite; with only a slight performance 
decline compared to the full-"edged version of EquiPNAS. 
For example, in Test_129, EquiPNAS w / o (PSSM + MSA) 
achieves a ROC-AUC of 0.936 and a PR -A UC of 0.544, 
which is comparable to GraphSite (ROC-AUC of 0.934 and 
PR -A UC of 0.544) and much higher than GraphBind (ROC- 
AUC of 0.916 and PR-AUC of 0.497). We observed a simi- 
lar trend in Test_181. In contrast, the state-of-the-art Graph- 
Site experiences a noticeable performance drop without us- 
ing any evolutionary features. As reported in the published 
work of GraphSite, PR -A UC drops from 0.544 down to 0.452 
without using its MSA-derived features (-AF2 Single). For 
protein–RNA binding site prediction (Test_117), EquiPNAS 
w / o (PSSM + MSA) achieves a ROC-AUC of 0.877 and a 
PR -A UC of 0.299, which is noticeably better than Graph- 
Bind (ROC-AUC of 0.793 and PR-AUC of 0.204). Collec- 
tively, the results demonstrate the robustness of EquiPNAS 
over the state-of-the-art methods in that EquiPNAS is able to 
signi!cantly reduce the dependence on the availability of evo- 
lutionary information which is not always abundant such as 
with orphan proteins or rapidly evolving proteins. Even with- 
out using any evolutionary information, and thus at a much 
lower computational overhead required for MSA and PSSM 
feature generation, our method performs comparably (in the 
case of protein–DNA), even superior (in the case of protein–
RNA) to the full-"edged state-of-the-art protein–DNA and 
protein–RNA binding site prediction methods. In summary, 
EquiPNAS enables us to build generalizable and scalable 
models. 

We further analyze the running time of the full-"edged 
version of EquiPNAS against its variant, ‘EquiPNAS w / o 
(PSSM + MSA)’, that utilizes the pLM embeddings but with- 
out any evolutionary information. As shown in Figure 4 , the 
running time of EquiPNAS is clearly dependent on the length 
of the input protein, whereas the variant trained without any 
evolutionary information w / o (PSSM + MSA) exhibits no 
such trend and yields a near-constant running time regard- 
less of the protein length. With an average running time of 
approximately 110 s, EquiPNAS w / o (PSSM + MSA) attains 
a speed boost of around 3–4 times compared to the full- 

"edged EquiPNAS version. That is, bypassing the evolution- 
ary features leads to orders of magnitude speedup in running 
time. 
Contribution of equivariance 
EquiPNAS delivers robust and improved performance across 
various datasets and predictive modeling scenarios. In order 
to understand the reasons behind such improved performance 
and verify that it is connected to the equivariant nature of 
the model, we perform an ablation study by isolating the ef- 
fect of the equivariant graph convolutions used in EquiPNAS. 
In particular, we train a family of baseline graph neural net- 
works for protein–DNA and protein–RNA binding site pre- 
diction tasks after turning off the coordinate updates of the 
equivariant graph convolution layers, thus making it an in- 
variant network. Both the equivariant (the full-"edged version 
of EquiPNAS) and invariant counterparts are trained on the 
same training datasets using the same set of input features and 
hyperparameters as the full-"edged version of EquiPNAS. Fig- 
ure 5 shows the performance of the equivariant and invariant 
networks using both experimentally determined (native) and 
AlphaFold2 predicted structures. The results demonstrate that 
equivariant networks used in the full-"edged version of EquiP- 
NAS consistently outperform the invariant baseline networks 
regardless of the use of predicted or native structures as in- 
put. Strikingly, the invariant baseline models even using the 
native structures perform worse than the equivariant mod- 
els using the AlphaFold2 predicted structures, let alone the 
equivariant models using the experimental structures. For in- 
stance, in the Test_129 set, the baseline invariant model attains 
ROC-A UC (and PR -A UC) of 0.938 (and 0.565) using the na- 
tive structures, whereas the equivariant model attains ROC- 
A UC (and PR -A UC) of 0.940 (and 0.569) using AlphaFold2 
predicted structures, and 0.943 (0.582) using native struc- 
tures. A similar trend is also overserved in test sets Test_181 
and Test_117. Overall, the results highlight the performance 
contribution and remarkable robustness of the equivariant 
networks used in EquiPNAS, attaining better accuracy with 
AlphaFold2 predicted structural models than what an invari- 
ant counterpart can achieve even with experimental structures 
for both protein–DNA and protein–RNA binding site predic- 
tion tasks. 
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Figure 5. T he perf ormance of equiv ariant netw orks used in the full-"edged v ersion of EquiPNAS compared against the in v ariant baseline netw orks using 
both experimental (native) and AlphaFold2 predicted str uct ures as input. ROC-AUC and PR-AUC for protein–DNA test set Test_129 are presented in ( A, 
B ); ROC-AUC and PR-AUC for protein–DNA test set Test_181 are presented in ( C, D ); ROC-AUC and PR-AUC for protein–RNA test set T est_1 17 are 
presented in ( E, F ). 
Discussion 
This work presents EquiPNAS, a new pLM-informed equiv- 
ariant deep graph neural network framework for accurate 
protein–nucleic acid binding site prediction. We demonstrate 
that EquiPNAS consistently outperforms the state-of-the-art 
methods on both protein–DNA and protein–RNA binding 
site prediction tasks. A major contribution of our work is 
the successful utilization of protein language model (pLM) 
embeddings, a previously unexplored avenue in the context 
of protein–DNA and protein–RNA binding site predictions. 
Our ablation study reveals that the pLM embeddings are suf!- 
ciently powerful that can dramatically reduce the dependence 
on the availability of evolutionary information which is not al- 
ways abundant such as with orphan proteins or rapidly evolv- 

ing proteins, enabling us to build generalizable models. More- 
over, despite being trained on experimental structures as in- 
put, our method exhibits remarkable robustness and perfor- 
mance resilience by attaining high predictive accuracy even 
when AlphaFold2 predicted structural models are used as in- 
put, dramatically enhancing the scalability of protein–nucleic 
acid binding site prediction without compromising on accu- 
racy. Through controlled experiments, we directly verify that 
the symmetry-aware nature of the E(3) equivariant graph- 
based framework is a major driving force behind the improved 
performance of EquiPNAS, particularly when predicted struc- 
tures are used as input. 

While this work focuses on partner-independent protein–
nucleic acid binding site prediction, that is, predicting the 
binding sites based only upon the surface of an isolated 
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protein without any prior knowledge about the interacting 
nucleic acid partner; incorporating additional information re- 
garding the DNA or RNA molecules interacting with the pro- 
tein may lead even more accurate binding sites prediction. Be- 
yond the realm of binding site prediction, a promising direc- 
tion for future work is to develop accurate, robust, and scal- 
able computational approaches for protein–DNA or protein–
RNA complex structure modeling, capturing protein–DNA 
and protein–RNA interactions at the atomic level. In this re- 
gard, the predicted protein–nucleic acid binding sites can serve 
as additional restraints, alongside physics- and / or knowledge- 
guided force !elds, to facilitate more ef!cient and accurate 
protein–DNA or protein–RNA complex structure modeling. 
The predicted binding site information can complement and 
supplement the existing force !elds as an additional scoring 
term to ef!ciently navigate the conformational space acces- 
sible to protein–nucleic acid complexes, leading to improved 
predictive modeling. 
Data availability 
The raw data used in this study, including the datasets for 
train, test and validation are collected from publicly avail- 
able sources and freely available at http://www.csbio.sjtu. 
edu.cn/ bioinf/ GraphBind/ and https:// github.com/ biomed-AI/ 
GraphSite . 

Code availability . An open-source software implementation 
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5. Konc, J. , Hodošček, M. , Ogrizek, M. , Trykowska Konc, J. and 
Janeži ̌c,D. (2013) Structure-based function prediction of 
uncharacterized protein using binding sites comparison. PLoS 
Comput. Biol., 9 , e1003341.

6. Schmidtke, P. and Barril, X. (2010) Understanding and predicting 
druggability. A high-throughput method for detection of drug 
binding sites. J. Med. Chem., 53 , 5858–5867.

7. Su, H. , Liu, M. , Sun, S. , Peng, Z. and Yang, J. (2019) Improving the 
prediction of protein–nucleic acids binding residues via multiple 
sequence pro!les and the consensus of complementary methods. 
Bioinformatics , 35 , 930–936.

8. Zhang, J. , Chen, Q. and Liu, B. (2021) NCBRPred: predicting 
nucleic acid binding residues in proteins based on multilabel 
learning. Brie!ngs Bioinf., 22 , bbaa397.

9. Zhu, Y.-H. , Hu, J. , Song, X.-N. and Yu, D.-J. (2019) DNAPred: 
accurate identi!cation of DNA-binding sites from protein 
sequence by ensembled hyperplane-distance-based support vector 
machines. J. Chem. Inf. Model., 59 , 3057–3071.

10. Zhang, J. , Ghadermarzi, S. , Katuwawala, A. and Kurgan, L. (2021) 
DNAgenie: accurate prediction of DNA-type-speci!c binding 
residues in protein sequences. Brie!ngs Bioinf. , 22 , bbab336. 

11. Walia, R.R. , Xue, L.C. , Wilkins, K. , El-Manzalawy, Y. , Dobbs, D. and 
Honavar,V. (2014) RNABindRPlus: A predictor that combines 
machine learning and sequence homology-based methods to 
improve the reliability of predicted RNA-binding residues in 
proteins. PLoS One , 9 , e97725.

12. Armon, A. , Graur, D. and Ben-Tal, N. (2001) ConSurf: an 
algorithmic tool for the identi!cation of functional regions in 
proteins by surface mapping of phylogenetic information. J. Mol. 
Biol., 307 , 447–463.

13. Hu, J. , Li, Y. , Zhang, M. , Yang, X. , Shen, H.-B. and Yu, D.-J. (2016) 
Predicting protein–DNA binding residues by weightedly 
combining sequence-based features and boosting multiple SVMs. 
IEEE / ACM Trans. Comput. Biol. Bioinf., 14 , 1389–1398.

14. Yu, D.-J. , Hu, J. , Yang, J. , Shen, H.-B. , Tang, J. and Yang, J.-Y. (2013) 
Designing template-free predictor for targeting protein-ligand 
binding sites with classi!er ensemble and spatial clustering. 
IEEE / ACM Trans. Comput. Biol. Bioinf., 10 , 994–1008.

15. Wu, Q. , Peng, Z. , Zhang, Y. and Yang, J. (2018) COA CH-D: 
improved protein–ligand binding sites prediction with re!ned 
ligand-binding poses through molecular docking. Nucleic Acids 
Res., 46 , W438–W442.

16. Liu, R. and Hu, J. (2013) DNABind: a hybrid algorithm for 
structure-based prediction of DNA-binding residues by combining 
machine learning-and template-based approaches. Proteins Struct. 
Funct. Bioinf., 81 , 1885–1899.

17. Jiménez, J. , Doerr, S. , Martínez-Rosell, G. , Rose, A.S. and De 
Fabritiis,G. (2017) DeepSite: protein-binding site predictor using 
3D-convolutional neural networks. Bioinformatics , 33 , 
3036–3042.

18. Li, S. , Yamashita, K. , Amada, K.M. and Standley, D.M. (2014) 
Quantifying sequence and structural features of protein–RNA 
interactions. Nucleic Acids Res. , 42 , 10086–10098. 

19. Lam, J.H. , Li, Y. , Zhu, L. , Umarov, R. , Jiang, H. , Héliou, A. , 
Sheong, F.K. , Liu, T. , Long, Y. , Li, Y. , et al. (2019) A deep learning 
framework to predict binding preference of RNA constituents on 
protein surface. Nat. Commun., 10 , 4941.

20. Xia, Y. , Xia, C.-Q. , Pan, X. and Shen, H.-B. (2021) GraphBind: 
protein structural context embedded rules learned by hierarchical 
graph neural networks for recognizing nucleic-acid-binding 
residues. Nucleic Acids Res. , 49 , e51. 

21. Yuan, Q. , Chen, S. , Rao, J. , Zheng, S. , Zhao, H. and Yang, Y. (2022) 
AlphaFold2-aware protein–DNA binding site prediction using 
graph transformer. Brie!ngs Bioinf. , 23 , bbab564. 

22. Berman, H.M. , Westbrook, J. , Feng, Z. , Gilliland, G. , Bhat, T.N. , 
Weissig, H. , Shindyalov, I.N. and Bourne, P.E. (2000) The Protein 
Data Bank. Nucleic Acids Res. , 28 , 235–242. 

23. Jumper, J. , Evans, R. , Pritzel, A. , Green, T. , Figurnov, M. , 
Ronneberger, O. , Tunyasuvunakool, K. , Bates, R. , Žídek, A. , 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/5/e27/7590918 by guest on 21 July 2024

http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/
https://github.com/biomed-AI/GraphSite
https://github.com/Bhattacharya-Lab/EquiPNAS
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data


Nucleic Acids Research , 2024, Vol. 52, No. 5, e27 PAGE 13 OF 13 
Potapenko, A. , et al. (2021) Highly accurate protein structure 
prediction with AlphaFold. Nature , 596 , 583–589.

24. Varadi, M. , Anyango, S. , Deshpande, M. , Nair, S. , Natassia, C. , 
Yordanova, G. , Yuan, D. , Stroe, O. , Wood, G. , Laydon, A. , et al. 
(2021) AlphaFold Protein Structure Database: massively 
expanding the structural coverage of protein-sequence space with 
high-accuracy models. Nucleic Acids Res. , 50 , D439–D444. 

25. Elnaggar, A. , Heinzinger, M. , Dallago, C. , Rihawi, G. , Wang, Y. , 
Jones, L. , Gibbs, T. , Feher, T. , Angerer, C. , Steinegger, M. , et al. (2020) 
ProtTrans: towards cracking the language of life’s code through 
self-supervised deep learning and high performance computing. 
arXiv doi: https:// arxiv.org/ abs/ 2007.06225 , 04 May 2021, 
preprint: not peer reviewed.

26. Brandes, N. , Ofer, D. , Peleg, Y. , Rappoport, N. and Linial, M. (2022) 
ProteinBERT: a universal deep-learning model of protein sequence 
and function. Bioinformatics , 38 , 2102–2110.

27. Ferruz, N. , Schmidt, S. and Höcker, B. (2022) ProtGPT2 is a deep 
unsupervised language model for protein design. Nat. Commun., 
13 , 4348.

28. Chowdhury, R. , Bouatta, N. , Biswas, S. , Floristean, C. , Kharkar, A. , 
Roy, K. , Rochereau, C. , Ahdritz, G. , Zhang, J. , Church, G.M. , et al. 
(2022) Single-sequence protein structure prediction using a 
language model and deep learning. Nat. Biotechnol., 40 , 
1617–1623.

29. Rives, A. , Meier, J. , Sercu, T. , Goyal, S. , Lin, Z. , Liu, J. , Guo, D. , Ott, M. , 
Zitnick, C.L. , Ma, J. , et al. (2021) Biological structure and function 
emerge from scaling unsupervised learning to 250 million protein 
sequences. Proc. Natl. Acad. Sci. U.S.A., 118 , e2016239118.

30. Lin, Z. , Akin, H. , Rao, R. , Hie, B. , Zhu, Z. , Lu, W. , Smetanin, N. , 
Verkuil, R. , Kabeli, O. , Shmueli, Y. , et al. (2023) Evolutionary-scale 
prediction of atomic-level protein structure with a language model. 
Science , 379 , 1123–1130.

31. Vaswani, A. , Shazeer, N. , Parmar, N. , Uszkoreit, J. , Jones, L. , 
Gomez, A.N. , Kaiser, L. and Polosukhin, I. (2017) Attention is all 
you need. arXiv doi: https:// arxiv.org/ abs/ 1706.03762 , 02 August 
2023, preprint: not peer reviewed.

32. Madani, A. , Krause, B. , Greene, E.R. , Subramanian, S. , Mohr, B.P. , 
Holton, J.M. , Olmos, J.L. , Xiong, C. , Sun, Z.Z. , Socher, R. , et al. 
(2023) Large language models generate functional protein 
sequences across diverse families. Nat. Biotechnol., 41 , 
1099–1106.

33. Horne, J. and Shukla, D. (2022) Recent advances in machine 
learning variant effect prediction tools for protein engineering. 
Ind. Eng. Chem. Res., 61 , 6235–6245.

34. Garcia Satorras, V. , Hoogeboom, E. and Welling, M. (2021) E(n) 
equivariant graph neural networks. arXiv doi: 
https:// arxiv.org/ abs/ 2102.09844 , 16 February 2022, preprint: not 
peer reviewed.

35. Roche, R. , Moussad, B. , Shuvo, M.H. and Bhattacharya, D. (2023) E 
(3) equivariant graph neural networks for robust and accurate 
protein–protein interaction site prediction. PLoS Comput. Biol., 
19 , e1011435.

36. Moussad, B. , Roche, R. and Bhattacharya, D. (2023) The 
transformative power of transformers in protein structure 
prediction. Proc. Natl. Acad. Sci. U.S.A., 120 , e2303499120.

37. Hie, B.L. , Shanker, V.R. , Xu, D. , Bruun, T.U. , Weidenbacher, P.A. , 
Tang, S. , Wu, W. , Pak, J.E. and Kim, P.S. (2023) Ef!cient evolution of 
human antibodies from general protein language models. Nat. 
Biotechnol., https:// doi.org/ 10.1038/ s41587- 023- 01763- 2 .

38. Wu, F. , Wu, L. , Radev, D. , Xu, J. and Li, S.Z. (2023) Integration of 
pre-trained protein language models into geometric deep learning 
networks. Commun. Biol., 6 , 876.

39. Altschul, S.F. , Madden, T.L. , Schäffer, A.A. , Zhang, J. , Zhang, Z. , 
Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: 
a new generation of protein database search programs. Nucleic 
Acids Res., 25 , 3389–3402.

40. Suzek, B.E. , Wang, Y. , Huang, H. , McGarvey, P.B. , Wu, C.H. and 
the UniProt Consortium (2014) UniRef clusters: a comprehensive 
and scalable alternative for improving sequence similarity 
searches. Bioinformatics , 31 , 926–932.

41. Mirdita, M. , Schütze, K. , Moriwaki, Y. , Heo, L. , Ovchinnikov, S. and 
Steinegger,M. (2022) ColabFold: making protein folding accessible 
to all. Nat. Methods , 19 , 679–682.

42. Steinegger, M. and Söding, J. (2017) MMseqs2 enables sensitive 
protein sequence searching for the analysis of massive data sets. 
Nat. Biotechnol., 35 , 1026–1028.

43. Jing, B. , Eismann, S. , Suriana, P. , Townshend, R.J.L. and Dror, R. 
(2020) Learning from protein structure with geometric vector 
perceptrons. arXiv doi: https:// arxiv.org/ abs/ 2009.01411 , 16 May 
2021, preprint: not peer reviewed.

44. Paszke, A. , Gross, S. , Massa, F. , Lerer, A. , Bradbury, J. , Chanan, G. , 
Killeen, T. , Lin, Z. , Gimelshein, N. , Antiga, L. , et al. (2019) PyTorch: 
an imperative style, high-performance deep learning library. arXiv 
doi: https:// doi.org/ 10.48550/ arXiv.1912.01703 , 03 December 
2019, preprint: not peer reviewed.

45. Wang, M. , Zheng, D. , Ye, Z. , Gan, Q. , Li, M. , Song, X. , Zhou, J. , 
Ma, C. , Yu, L. , Gai, Y. , et al. (2019) Deep graph library: a 
graph-centric, highly-performant package for graph neural 
networks. arXiv doi: https:// doi.org/ 10.48550/ arXiv.1909.01315 , 
25 August 2020, preprint: not peer reviewed.

46. Loshchilov, I. and Hutter, F. (2016) SGDR: stochastic gradient 
descent with warm restarts. arXiv doi: 
https:// doi.org/ 10.48550/ arXiv.1608.03983 , 03 May 2017, 
preprint: not peer reviewed.

47. Kingma, D.P. and Ba, J. (2014) Adam: a method for stochastic 
optimization. arXiv doi: 
https:// doi.org/ 10.48550/ arXiv.1412.6980 , 30 January 2017, 
preprint: not peer reviewed.

48. Yang, J. , Roy, A. and Zhang, Y. (2012) BioLiP: a semi-manually 
curated database for biologically relevant ligand–protein 
interactions. Nucleic Acids Res. , 41 , D1096–D1103. 

49. Huang, Y. , Niu, B. , Gao, Y. , Fu, L. and Li, W. (2010) CD-HIT Suite: a 
web server for clustering and comparing biological sequences. 
Bioinformatics , 26 , 680–682.

50. McGuf!n, L.J. , Bryson, K. and Jones, D.T. (2000) The PSIPRED 
protein structure prediction server. Bioinformatics , 16 , 404–405.

51. Remmert, M. , Biegert, A. , Hauser, A. and Söding, J. (2012) HHblits: 
lightning-fast iterative protein sequence searching by 
HMM-HMM alignment. Nat. Methods , 9 , 173–175.

52. Cho, K. , van Merrienboer, B. , Gulcehre, C. , Bahdanau, D. , 
Bougares, F. , Schwenk, H. and Bengio, Y. (2014) Learning phrase 
representations using RNN encoder-decoder for statistical machine 
translation. arXiv doi: https:// doi.org/ 10.48550/ arXiv.1406.1078 , 
03 September 2014, preprint: not peer reviewed.

53. Anderson, T.W. and Darling, D.A. (1952) Asymptotic theory of 
certain “Goodness of Fit” criteria based on stochastic processes. 
Ann. Math. Stat., 23 , 193–212.

54. Wilcoxon,F. (1945) Individual comparisons by ranking methods. 
Biometrics Bull., 1 , 80–83.

55. Li, P. and Liu, Z.-P. (2023) GeoBind: segmentation of nucleic acid 
binding interface on protein surface with geometric deep learning. 
Nucleic Acids Res., 51 , e60.

Received: September 13, 2023. Revised: December 22, 2023. Editorial Decision: January 6, 2024. Accepted: January 11, 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(http: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/5/e27/7590918 by guest on 21 July 2024

https://arxiv.org/abs/2007.06225
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2102.09844
https://doi.org/10.1038/s41587-023-01763-2
https://arxiv.org/abs/2009.01411
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1909.01315
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1406.1078

	Graphical abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Data availability
	Supplementary data
	Funding
	Conflict of intereststatement
	References

