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Abstract

Fairness is becoming a rising concern in machine learning.
Recent research has discovered that state-of-the-art models
are amplifying social bias by making biased prediction to-
wards some population groups (characterized by sensitive
features like race or gender). Such unfair prediction among
groups renders trust issues and ethical concerns in machine
learning, especially for sensitive fields such as employment,
criminal justice, and trust score assessment. In this paper,
we introduce a new framework to improve machine learn-
ing fairness. The goal of our model is to minimize the influ-
ence of sensitive feature from the perspectives of both data
input and predictive model. To achieve this goal, we reformu-
late the data input by eliminating the sensitive information
and strengthen model fairness by minimizing the marginal
contribution of the sensitive feature. We propose to learn the
sensitive-irrelevant input via sampling among features and
design an adversarial network to minimize the dependence
between the reformulated input and the sensitive information.
Empirical results validate that our model achieves compara-
ble or better results than related state-of-the-art methods w.r.t.
both fairness metrics and prediction performance.

Introduction

In recent years, machine learning has achieved unparalleled
success in various fields, from image classification, speech
recognition, to autonomous driving. Despite the rapid devel-
opment, the discrimination and bias that exist in machine
learning models are attracting increasing attention. Recent
models have been found to be biased towards some popula-
tion groups. Hendricks et al. (Hendricks et al. 2018) iden-
tified prediction bias towards gender in image captioning
model, where the generation of caption is actually based on
contextual information (e.g., location and scenes) but not
the visual evidence related with the person in the image.
In addition, ProPublica (J. Angwin and Kirchner 2016) an-
alyzed a widely used criminal risk assessment tool for fu-
ture crime prediction and discovered discrimination among
different races. For defendants that do not commit a future
crime, Black people are more likely to be mistaken by the
model as potential future criminals than white people (i.e., a
higher false positive rate in Black people than white people).
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A model with merely good prediction performance is not
convincing enough when we harness the power of machine
learning. It is critical to guarantee that the prediction is based
on appropriate information, and is not biased towards cer-
tain groups of the population characterized by sensitive fea-
tures like race and gender. To improve model fairness, re-
cent works propose strategies from different perspectives.
For example, there are efforts on eliminating data bias by
reweighing the samples (Kamiran and Calders 2012; Nam
et al. 2020; Jang and Wang 2023; Chai and Wang 2022),
generating fair data (Jang, Zheng, and Wang 2021; Sattigeri
et al. 2019), or removing the disparity among groups (Feld-
man et al. 2015). While in-processing methods train a fair
model by constraining the prediction not to base on sensi-
tive information (Zhang, Lemoine, and Mitchell 2018; Mary,
Calauzenes, and El Karoui 2019; Baharlouei et al. 2019;
Cho, Hwang, and Suh 2020; Wang, Wang, and Liu 2022;
Balunovic¢, Ruoss, and Vechev 2022). Adel et al. (Adel et al.
2019) also propose an adversarial network that minimizes
the influence of sensitive features on the prediction by char-
acterizing the relevance between the latent data representa-
tion and the sensitive feature.

Fairness in machine learning is categorized based on dif-
ferent perspectives: group fairness and individual fairness.
Group fairness (Li et al. 2021; Celis et al. 2021) guarantees
that different groups of the population have equalized oppor-
tunity of achieving a favorable prediction result. Whereas
for individual fairness (Dwork et al. 2012; Friedler, Schei-
degger, and Venkatasubramanian 2016), the goal is to guar-
antee that similar individuals get similar prediction output.
Following the mainstream of the literature, we here focus on
mitigating bias in terms of group fairness in this work.

To improve fairness, previous works usually take either
the data perspective or model perspective, i.e., modifying
input to reduce data bias or optimizing model to reduce pre-
diction bias. These strategies may not guarantee the learned
input to be optimal for the model or the designed model to be
optimal for the data, such that a fairness constraint usually
introduces deterioration in prediction performance.

In contrast, we propose a novel adversarial network to
reduce the bias simultaneously from both the data and the
model perspective to improve fairness while maintaining
the predictive performance. Specifically, we train a selector
module to sample input features that do not propagate bias
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while preserving predictive information. The selector refor-
mulates the input with features that contain only sensitive-
irrelevant information. To further strengthen the robustness
towards the sensitive feature, we minimize the marginal con-
tribution of the sensitive feature so that adding sensitive in-
formation will not affect the prediction results. The coupled
optimization strategy from both the data and the model as-
pects improves fairness as well as prediction performance.
To the best of our knowledge, we are the first to introduce
an end-to-end method that fuses fair feature selection and
fair representation learning. Our model is different from ex-
isting fair pre/in-processing methods in three major perspec-
tives. Firstly, our model eliminates data bias in the original
data space, which preserves the natural meaning of features.
This makes the reformulated fair data easier to be under-
stood and interpreted by practitioners or end users — which
is important in real-world applications. Secondly, our model
requires a single classifier to address both fairness and per-
formance objectives. Unlike many fair representation learn-
ing methods that require an auxiliary adversary classifier to
predict the sensitive attribute, we do not need a separate sen-
sitive attribute predictor, which can benefit in training effi-
ciency and model complexity. Lastly, we focus on improv-
ing fairness in both data and model aspects. Specifically, we
screen the data with the features that get the most impacted
by the addition of the sensitive feature and build the predic-
tive model to be the least affected by the sensitive feature.

Problem Definition

For a given dataset [x(V), x(?) , X(R)J
n samples from the input space X C R
x(1) = [;vgl), :vg), cey xf;)]—r is characterized by d features.
The sensitive feature characterizes the groups of population
for which predictions should remain unbiased. Common ex-
amples include race, gender, and age. The choice of such
features depends on the specific prediction problem. Mean-
while, sensitive-relevant features are those that are not re-
garded as sensitive features, but carry information pertinent
to the sensitive feature.

In terms of prediction bias in classification tasks, dis-
parate treatment (Barocas and Selbst 2016) occurs when the
model makes different predictions when merely the sensi-
tive feature is altered while all other features were held con-
sistent. Moreover, disparate impact arises when seemingly
neutral decisions result in different merits to different de-
mographics possibly by inference through sensitive-relevant
features. One straightforward idea to improve fairness is
fairness through blindness, i.e., simply exclude the sensi-
tive feature from the input data. However, this cannot elim-
inate the prediction bias, as the sensitive-relevant features
still provide sensitive information in the input data.

To address the problem, we propose to reduce the predic-
tion bias from two aspects: reformulating the input data and
strengthening the model fairness. We achieve the goal by si-
multaneously learning selective features X from the original
data x and training f ¢ . X — Y, where ) is the output
space, such that 1) the dependency between X and the sen-
sitive information is minimized; 2) the influence of the sen-
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sitive information to the prediction of f¢ is minimized. By
improving bias from both directions, the model prediction is
based on the sensitive-irrelevant information and earns en-
hanced robustness towards the sensitive feature.

Adversarial Fairness Network

As discussed above, the simple strategy of fairness through
blindness cannot take the existence of sensitive-relevant fea-
tures into account. In order to reduce the prediction bias, we
need to guarantee the prediction is not dependent on either
the sensitive feature or the sensitive-relevant features. How-
ever, this is challenging since we usually do not have prior
knowledge of what are the sensitive-relevant features. In this
section, we propose a new FAlrness through AdverSarial
network (FAIAS) model to efficiently filter out sensitive-
relevant features while maintaining predictive performance.

Proposed FAIAS Model Design

The goal of reducing the prediction bias from both the in-
put and model aspects can be formulated as two folds: 1)
from the perspective of input, we propose to learn the new
input X based on the original data x such that X contains only
sensitive-irrelevant information; 2) for the prediction model,
we minimize the marginal contribution of the sensitive fea-
ture such that adding the sensitive feature does not change
the model prediction too much.

We propose to learn the new input X by sampling the fea-
tures in the original data x, i.e., selecting features with a se-
lection function S : X — {0,1}%, such that the selected
features contain only sensitive-irrelevant information.

Given a data sample x = [zq, . ozl € X, de-
note corresponding label y = [y, . YT € Y, and
a selection set of dimension index s = {i | 1[S;(x) =
1]} < {1, 2, ..., d}, where S; indicates the output of

i-th dimension the selection function S. Also, we denote
f2(x,s) = f®([xs,, Ts,, ---, Ts,]) as the output of func-
tion f® when only the selected features designated by index
vector s = {1,892, -, S, } are utilized among the entire
input features space (the values of not selected features are
filtered out by masking with 0). For ¢ ¢ s, the marginal con-
tribution to the prediction f? of the ¢-th feature of the sam-
ple x can be denoted as L£( f(x,s), f¢(x,s U{t})), i.e., the
change in the output when adding the ¢-th feature, where £
is a distance to describe the difference between f?(x,s) and
o(x,s U{L}).

Let us denote the sensitive feature as z;' for k €
{1, ..., d}, the goal of FAIAS is to minimize the distance
between the distribution py (§|x$s) and py (y|xPsU{k}) for
the label §) predicted by f¢, where the operator A & B is de-
fined as the selection of the features of A per the index vec-
tor B. In order to achieve this goal, we propose to minimize
L(f?(x,s), f*(x,8U{k})), where s represents the selection
set produced by the selection function S', which only selects
features containing sensitive-irrelevant information. It is no-

"For simplicity, here we only consider one sensitive feature.
Our FAIAS model can easily extend to the case involving multi-
ple sensitive features.
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table that reformulating the input with the selection function
S has several advantages:

* Compared with learning a non-interpretable representa-
tion, the selection of features maintains interpretation of
the input, since the natural meaning of features is kept;

The selection function can be data-dependent, which
maintains the flexibility such that we learn different
sensitive-relevant features for different samples;

Removing the sensitive-relevant features in the original
data space is theoretically supported (Kusner et al. 2017),
such that learning the observable non-descendants of sen-
sitive feature (i.e., sensitive-irrelevant features in our pa-
per) only needs partial causal ordering without further
causal assumptions.

We introduce a probabilistic selector function g? : X —
[0, 1]¢ with parameter # which approximates the discrete se-
lection function S. Given the feature vector as the input,
the selector function outputs a continuous probability vector
p = [p1, p2, ..., pa] € R?, which represents the proba-
bility of sampling each feature to formulate the input. The
probability of getting a joint selection vector s € {0,1}¢
is determined by the individual feature probabilities p with
approximation by Bernoulli sampling as:

W&(X,S) = H?Zl(gg(x))s;‘ (1 . gje(x))(lfsj).

From here, the selection set s refers to the approximated
selection set sampled by 7y unless otherwise specified.

Objective Functions of FAIAS

To quantify the influence of the sensitive feature in the pre-
diction, we formulate the sensitivity 10ss lsens (6, @) as:

lsens (97 ¢) =

1
= E
|A] 7 x9)~Da smo(x)

ey
I8 (r ()10 (x5 U (kD) .

where JS(-||-) denotes Jensen-Shannon divergence that
measures the similarity between two distributions f?(x,s)
and h®(x,s U {k}). Here, D, denotes a sample distribution
with sensitive feature a for a € A, and A is a set of all
possible sensitive attributes. h? (x,sU {k}) is a strengthened
predicted confidence by sharpening the probability distribu-
tion f¢(x,s U {k}) as

exp (v -7 (x,s U {k}))
> exp (v- 25 (x,s U{k}))’

where 7 is a sharpening hyperparameter and zf denotes the
output of j-th class of the classifier before softmax, i.e.,
fe(x,s U {k}) = softmaz(z®(x,s U {k})). The function
h®(-) is employed to approximate the second input of .JS as
one-hot vector. Here, we empirically set v = 10, which is a
design choice by the domain.

The sensitive 10ss lses(6, @) characterizes the marginal
contribution of sensitive feature x; to model prediction
given features selected by s. To optimize g7 to approximate
the selection function S and assign higher probability to only

hi(x,sU{k}) = @)
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sensitive-irrelevant features, we propose an adversarial game
between the selector g? and the predictor f¢.

The goal of the prediction function f? is to minimize the
sensitivity loss in (1) to ensure that adding the sensitive fea-
ture does not influence the prediction. In contrast, we op-
timize the selector function g? to maximize the sensitivity
loss in (1), so as to select the subset of features that can be
influenced the most by adding the sensitive feature. This al-
lows the selector function ¢? can find the features that are
not intrinsically relevant to the sensitive feature. If the se-
lected subset includes the sensitive-relevant features, adding
the sensitive feature will not bring significant change since
the sensitive information is already inferred by the sensitive-
relevant features. When updating the selector function ¢ to
maximize the sensitivity loss, ge learns to exclude the sen-
sitive information by assigning lower sampling probability
to sensitive-relevant features and capturing the input on the
basis of only sensitive-irrelevant information.

This setting enjoys the theoretical properties in Theorem
1 as follows. The theorem shows that minimizing the predic-
tor f¢ W.rt. lyens (0, ¢) provides a guarantee on the fairness
of f¢ since lsens upper-bounds the fairness violation. The
proof of Theorem 1 is shown in supplementary material.

Theorem 1. Consider a predictor f : R? — R¢ and a
selected feature index s € [d]. Denote f(x) = f(x,s),
ht(x) h(x,s U {k}), and the sensitive loss lsens =
i CueaEwnyon, [Pas(F@)IAT ()], where h() is
the sharpened predicted probability of f(-) as in (2). The
fairness violation of the predictor f measured by equalized

odds difference (Hardt, Price, and Srebro 2016) expressed
as

S |E[PU@) =ylY =y, 4=0)]

yey

~E[P(/&) =Y =y, 4 =1)]|

is upper bounded by lsens.

Moreover, we optimize the predictor f¢ and ¢° to maxi-
mize the utility to maintain the performance. We adopt gen-
eralized cross entropy (GCE) (Zhang and Sabuncu 2018)
and cross entropy (CE) as the classification losses. Specif-
ically, we minimize the following loss, 1956(97 ¢) and

lee(0, 0):

_ 1— f2(x,sU {k})?
lyeel0)= B E [ p ]
lee(0,6) = E | —logfixs)],

(XY~ XY s~og (x,7)

which both measure the performance of the prediction given
the features selected by s. Here, fj’ denotes the probability
assigned to correct label y € {1,--- ,c} and ¢ € (0,1] is a
hyperparameter.

We train f? to minimize GCE loss w.r.t samples with sen-
sitive attribute, i.e., (x,s U {k}) and Jensen-Shannon diver-
gence between their counterpart without sensitive attribute,
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Figure 1: Illustration of the FATAS model. FAIAS consists of a selector g and a predictor f¢. The selector g7 takes the feature
vector as an input and predict the probability for each feature to be selected, based on which we randomly sample the features.
The predictor f% gets two inputs, one (shown in the upper dot product) is the reformulated input using the sampled features,
the other (shown in the bottom dot product) is by adding the sensitive feature to the sampled features. The difference between
the output of f w.r.t. the two inputs is the sensitivity loss Isens,» which shows the marginal contribution of the sensitive feature
to the input. Two classification loss Zce and [, gce takes samples features 7o and 4j; respectively to maximize the utility.

i.e., (x,s). This enforces the classifier f® to focus more on
high confidence samples while minimizing the effect of the
sensitive attribute. On the other hand, the selector ga tries
to maximize the difference of the prediction by whether the
sensitive attribute is included or not. To ensure the selec-
tor retains the discriminative power, we minimize the cross
entropy loss w.r.t. features without sensitive attribute, i.e.,
(x,s). Eventually, the selector would explore features that
are useful for the task while the prediction is not vulnerable
to the sensitive attribute, i.e., sensitive-irrelevant features. To
summarize, our objective can be written as the following:

lce (07 (b) - lsens(oa ¢)a
lgCG (03 ¢) + >\SC7LSZSE7LS (07 ¢)7

min
0

min
¢

where Agens i a hypterparameter to weight the sensitive
loss. We illustrate the overview of FAIAS model in Figure

1, where [ indicates the empirical loss.

Note that GCE was mainly employed to train a biased
model as a reference to training a fair model (Nam et al.
2020; Liu et al. 2021) due to the nature of its focus on easy
samples. It has been reported that GCE loss amplifies the
bias by weighing more on the samples with high confidence
as its gradient is the same as cross entropy except scaled
with confidence. Unlike the convention that the literature
had, interestingly, we found that GCE can be used to train
a fair model. We discuss the contribution of GCE to train
fair model later in the experiments.

In Algorithm 1, we summarize the optimization steps of
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FAIAS model. According to the update rules w.r.t. the gradi-
ents, the time complexity of our FAIAS model is linear w.r.t.
the number of samples 7, the number of parameters in 6 and
¢, as well as the number of iterations 7.

Experiments

In this section, we conduct extensive experiments to vali-
date the performance of our FAIAS model. The experiments
evaluate: 1) whether FAIAS improves the prediction fairness
among different groups w.r.t. sensitive features; 2) how will
the prediction performance get affected by including fair-
ness constraints in the FAIAS model.

Experimental Setup

Notably, our FAIAS model is proposed for group fairness in
both the pre-processing and in-processing steps. Thus, we
compare our model with recent methods for group fairness
in pre-processing, in-processing, and post-processing ap-
proaches including AdvDeb (Zhang, Lemoine, and Mitchell
2018), CEOP (Pleiss et al. 2017), LAFTR (Madras et al.
2018), LfF (Nam et al. 2020), and baseline with the same
structure as f¢ of FAIAS, but takes entire features.

To evaluate the models, we employ three fairness bench-
mark datasets. Adult (Kohavi 1996); COMPAS?; CelebA
(Quadrianto, Sharmanska, and Thomas 2019). To evaluate
fairness, we adopt equalized odds difference (EOD) (Hardt,
Price, and Srebro 2016). This metric considers both TPR

*https://github.com/propublica/compas-analysis
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Algorithm 1: Optimization Algorithm of FAIAS Model

Input dataset Z2 = (X x V) = {(x;,y;)},, where
x € RY, k-th index of i-th sample x; j, indicates sensitive
information, and y is one-hot vector. Learning rate aig and
s, batch size n,, and sensitive attribute A = {2, 1}.
Output selector ¢ and predictor f¢.
Initialize parameter 6 to one vector and ¢ randomly.
while not converge do
for (x;,,y,,) in the ¢-th mini-batch Z; do
1. Calculate the selection probability vector
ge(xti) = [p%p piv ERE) pi]
2. Sample the selection vector s;, € R? with

pi.)s

J

s;, ~ Bernoulli( forj=1,,2, ..., d.

3. Calculate

le (XtLaStHYt

Z Yt llngl Xt,,St; ),
Zsens (Xti ) Sti)
= JS(f¢(Xti,S

= Z 1(zy, 1 = a),

end for
4. Update the parameter 6 with gradient ascent

Z leens Xt”stl) (-rtqy,k - Cl)

aE.A i

1 .
- n7b Z lee(Xt,, 8¢, Y, )> Vo log mo(X¢,,S¢,)-

ti) |f¢(xti7sti U {k}))

fora € A.

9<—9+O¢9~(

5. Update the parameter ¢ with gradient descent

1 ~
(b — d) - a¢V¢ (Tl,b Zlgce(xtiasti U {k}’Yt,)

sens Z leens X, St; ) ( Ttk = a))

aG.A %

end while

(equal opportunity) difference and FPR (False Positive Rate)
difference. Refer to supplementary material for the details of
the experimental setup.

Quantitative Comparison on Tabular Benchmarks

We compare the model performance and summarize the re-
sults in Figure 2. We plot the Pareto frontier of each method
to evaluate the accuracy-fairness trade-off by varying the hy-
perparameter for fair regularizer for the methods. GSTAR
Fareto frontier (Jang, Shi, and Wang 2022) depicts the best
achievable trade-offs in a model-specific manner, i.e., post-
processing of the outcome of the baseline.

The experimental results demonstrate that our approach,
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Figure 2: The fairness-accuracy trade-off comparison.
GSTAR Pareto illustrates the best achievable trade-off in a
model-specific manner and upper right region is desired. The
result shows that FAIAS achieves the best trade-off.

which incorporates both data and model fairness effectively
mitigates the fairness violation while preserving compara-
ble accuracy. Specifically, FAIAS achieves the least fairness
violation at a similar accuracy level among the comparing
methods. Notably, when compared to the baseline that has
the same structure with f¢ but utilizes the entire input space,
we achieve significant improvement in the fairness viola-
tion. This validates the effectiveness of fair feature selection
of FAIAS that the adversarial network for feature sampling
conducted by selector g?. By successfully eliminating the
sensitive information, FAIAS ensures the prediction perfor-
mance is equalized across different groups of the population.

It is notable that even though the removal of sensitive-
relevant features sometimes harms the performance because
sensitive-relevant features can also be target-relevant, it is
beneficial for fairness as demonstrated by the significant im-
provement in fairness achieved by FAIAS compared to the
Baseline in Figure 2. Besides, FAIAS is designed to be able
to select a set of features to improve fairness (by eliminating
the sensitive-relevant features) while minimizing compro-
mise in discriminative power (by optimizing the predictor
using the sensitive-irrelevant information). We show more
results in the supplementary material.
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outperforms a naive combination of state-of-the-art methods (LfF + AdvDeb).
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Figure 4: Comparison of the fairness-accuracy trade-off on CelebA dataset. We use the pre-trained models (VGG19 and
ResNet50) to extract 1024 latent features. The sensitive feature is sex. GSTAR Pareto illustrates the best achievable trade-off in
a model-specific manner and upper right region is desired. The result shows that FATIAS achieves the best trade-off.
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Figure 5: Comparison of employing GCE or CE as a classification loss for f?. The result shows that GCE helps to train a fair
model, which contradicts the previous belief.
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Ablation Studies

Since FAIAS can be viewed as a two-step method: 1) filter
out sensitive-relevant features; 2) learn a fair classifier based
on the input, one might think that the combination of other
pre-processing and in-processing methods can act similarly
to the combination of our selector-predictor structure. Thus,
we explore the contribution of each module of FAIAS, i.e.,
selector g? and predictor f¢.

To this end, we compare FAIAS with state-of-the-art pre-
processing and in-processing methods, LfF and AdvDeb, re-
spectively. LfF (Nam et al. 2020) reweighs sample loss of
fair classifier based on the prediction of a biased vanilla clas-
sifier. AdvDeb (Zhang, Lemoine, and Mitchell 2018) debi-
ases the gradient update by removing the conflicting direc-
tion of the performance loss to the fairness loss. For a fair
comparison, we use the same structure as predictor f¢ for
the classifier of AdvDeb.

In Figure 3, we depict the fairness-accuracy trade-offs of
the methods. There are three combinations of the two-step
methods: 1) LfF + AdvDeb; 2) FAIAS (selector) + AdvDeb;
3) FAIAS. In the case of FAIAS (selector), the FAIAS model
is pre-trained, and it is not trained when delivering filtered
features to train AdvDeb.

In the experiment, we observe that naively combining
two fair methods (LfF + AdvDeb, triangle) harms per-
formance significantly despite improved fairness compared
with AdvDeb (diamond). However, interestingly, when fil-
tering sensitive-relevant features with FAIAS (selector), not
only is fairness improved but sometimes even the accuracy
is improved (circle). For example in COMPAS dataset, FA-
IAS (selector) + AdvDeb improves both fairness and accu-
racy compared to AdvDeb which takes the entire features
of the data. This validates that the selector successfully re-
moves features that could harm fairness while preserving
target-related information. With the final structure of FA-
IAS (square), i.e., the combination of our selector g‘9 and
predictor f¢, we achieve the best fairness at the comparable
accuracy level and vice-versa, since they were trained in an
end-to-end fashion.

Another advantage of FAIAS is that a pre-trained selec-
tor is applicable to any method because it adopts the orig-
inal feature space. Given the selector, we can efficiently
exclude the sensitive-relevant features that can infer sensi-
tive attributes while maintaining the target-related features
to minimize performance degradation.

Image Classification with FAIAS

We further investigate the performance of FAIAS for the
image classification task on CelebA dataset. Here, we con-
duct attractiveness classification and consider sex as the
sensitive attribute. To evaluate the performance, we extract
1024 features from pre-trained vanilla models (VGG19 and
ResNet50). To explicitly provide the sensitive information,
we concatenate the sensitive feature to the latent space and
train all methods on the 1025 features.

In Figure 4, we compare the fairness-accuracy trade-off
of the methods on CelebA dataset. The results demonstrate
that FAIAS achieves the best trade-off similar to the tabu-
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lar benchmarks. It is interesting to note that we could sig-
nificantly improve the fairness violation from the baseline
while improving the performance. For example in VGG19,
we could reduce the fairness violation by almost 50%, while
improving the accuracy from the baseline. This reveals that
FAIAS is able to enhance both fairness and prediction per-
formance in vision tasks, the attractiveness classification.

Validation of GCE as Fair Loss

To optimize f¢, we study the role of GCE loss in our ap-
proach. In the previous works, GCE (Zhang and Sabuncu
2018) was commonly considered as a loss function to train
a biased model as it concentrates more on the samples with
stronger agreement (Nam et al. 2020; Liu et al. 2021; Roh
et al. 2020). However, interestingly, we empirically found
that GCE could help to train a fair model instead. In Figure 5,
we compare FAIAS model with different classification loss
for training f®. As we proposed, the model that adopts GCE
(red points) achieves both better fairness and accuracy.

We believe that this result is due to the two-step structure
of our model. To begin with, our approach takes the min-
max optimization on Jensen-Shannon divergence, which en-
sures that the selector filters out the biased features and the
classifier learns fair prediction. Additionally, even though
we focus on easier samples with GCE, we minimize the
Jensen-Shannon divergence on the cross entropy. This in-
dicates that instead of the behavior of amplifying the bias,
GCE cooperates to focus on simpler features from the out-
put of the selector that could help the generalization and per-
formance boost. These two factors worked synergistically to
yield improved performance with less fairness violation.

Conclusion

In this paper, we propose FAIAS, a novel adversarial net-
work approach for fairness that combines both the data and
model perspectives to achieve fair feature selection and clas-
sification. Our model comprises two primary components:
a selector function and a prediction function. The selector
function is optimized from the data perspective to select
only those features that contain sensitive-irrelevant informa-
tion. The prediction function, on the other hand, is optimized
from the model perspective to minimize the marginal contri-
bution of the sensitive feature and improve prediction per-
formance.

Our experiments demonstrate that the FAIAS model
achieves comparable or superior results to existing meth-
ods for both prediction performance and fairness metrics in
various datasets. Furthermore, the fair feature selection pro-
cedure provides valuable insights into the original feature
space with regard to sensitive information and target labels.
By accurately filtering out sensitive-relevant features, we ob-
tain a better understanding of the feature space and eliminate
sources of bias in classification.

While our FAIAS model is proposed for the supervised
learning scenario, our future work will explore the extension
to unsupervised learning. Specifically, we aim to learn a set
of meaningful and interpretable features that preserve data
structure for unsupervised learning tasks such as clustering
while eliminating bias in the selected features.
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