15

Interpolation Results for Arrays with Length and MaxDiff

SILVIO GHILARDI, Universita degli Studi di Milano, Italy
ALESSANDRO GIANOLA, Free University of Bozen-Bolzano, Italy
DEEPAK KAPUR, University of New Mexico, USA

CHIARA NASQO, Universita degli Studi di Milano, Italy

In this paper, we enrich McCarthy’s theory of extensional arrays with a length and a maxdiff operation. As is
well-known, some diff operation (i.e. some kind of difference function showing where two unequal array differ) is
needed to keep interpolants quantifier-free in array theories; our maxdiff operation returns the max index where two
arrays differ and so it has a univocally determined semantics. The length function is a natural complement of such a
maxdiff operation and is needed to handle real arrays.

Obtaining interpolation results for such a rich theory is a surprisingly hard task. We get such results via a thorough
semantic analysis of the models of the theory and of their amalgamation and strong amalgamation properties. The
results are modular with respect to the index theory and we show how to convert them into concrete interpolation
algorithms via a hierarchical approach realizing a polynomial reduction to interpolation in linear arithmetics endowed

with free function symbols.

CCS Concepts: ® Theory of computation — Logic and verification; Automated reasoning; Verification

by model checking.
Additional Key Words and Phrases: SMT, interpolation, arrays, amalgamation

ACM Reference Format:
Silvio Ghilardi, Alessandro Gianola, Deepak Kapur, and Chiara Naso. 2022. Interpolation Results for Arrays with
Length and MaxDiff . 1, 1 (September 2022), 36 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Craig Interpolation Theorem [13] is a well-known result in first logic that, given an entailment between
two logical formulae « and 3, establishes the existence of a third formula ~ that shares its non-logical
symbols with both a and 8 and such that it is entailed by « and entails 8. Studying interpolation has a
long-standing tradition also in non-classical logics and in algebraic logic. Nevertheless, interpolation has been
obtaining an increasing attention in automated reasoning and formal verification: since McMillan’s seminal
papers [24, 25], interpolation has been successfully applied in software model checking, also in combination

with orthogonal techniques like PDR [37] or k-induction [22]. The reason why interpolation techniques are

Authors’ addresses: Silvio Ghilardi, Universita degli Studi di Milano, Milan, Italy, silvio.ghilardi@unimi.it; Alessandro Gianola,
Free University of Bozen-Bolzano, Bolzano, Italy, gianola@inf.unibz.it; Deepak Kapur, University of New Mexico, Albuquerque,
New Mexico, USA, kapur@cs.unm.edu; Chiara Naso, Universita degli Studi di Milano, Milan, Italy, chiaran97@Qgmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and /or a fee. Request permissions from permissions@acm.org.

(© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

63

66
67
68
69
70

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

2 Ghilardi and Gianola, et al.

so attractive is because they allow to discover in a completely automatic way new atoms (more precisely,
existing predicates with new arguments) that might contribute to the construction of invariants. In fact,
software model-checking problems are typically infinite state, so invariant synthesis may require introducing
formulae whose search is not finitely bounded. One way to discover them is to analyze spurious error traces;
for instance, if the system under examination (described by a transition formula Tr(x,z’)) cannot reach in
n-step an error configuration in U(z) starting from an initial configuration in In(z), this means that the
formula
In(zo) NTr(zg,z) A~ ATr(z, 1, 2,) ANU(z,,)

is inconsistent (modulo a suitable theory T"). From the inconsistency proof, by computing an interpolant,

say at the i-th iteration, one can produce a formula ¢(z) such that, modulo T', we have

In(zq) A /\ TT(gjflﬂlj) E é(z;) and ¢(z;) A /\ TT(@jfpﬁj) ANU(z,) = L. (1)
j=0 j=it+1
This formula (and the atoms it contains) can contribute to the refinement of the current candidate loop
invariant guaranteeing safety. This fact can be exploited in many different ways during invariant search,
depending on various techniques employed. It should be noticed however that interpolants are not unique
and that different interpolation algorithms may return interpolants of different quality: all interpolants
restrict search, but not all of them might be conclusive.

Model-checking applications usually require that such computed interpolants are not arbitrary but present
specific shapes so as to guarantee their concrete usability. Since in many cases studied in software verification
the underlying theories have a decidable quantifier-free fragment (but are undecidable or have prohibitive
complexity outside), the most natural choice is to consider quantifier-free interpolants. However, even in
case a and 3 are quantifier-free, Craig’s Theorem does not guarantee that an interpolant ~ is quantifier-free
too. Indeed, this property, called ’quantifier-free interpolation’, does not hold in general for arbitrary first
order theories. It is then a non-trivial (and, very often, challenging) problem to prove that useful theories
admit quantifier-free interpolation.

In this paper, we are interested in studying the problem of quantifier-free interpolation for an expressive
datatype theory that strictly extends the well-studied theory of arrays with extensionality. Such a theory
was introduced by McCarthy in [23]: the main operations considered are the write operation (i.e. the array
update) and the read operation (i.e., the access to the content of an array cell). As such, this theory is suitable
to formalize programs over arrays, like standard copying, comparing, searching, sorting, etc. functions;
verification problems of this kind are collected in the SV-COMP benchmarks category “ReachSafety-Arrays”?®,
where safety verification tasks involving arrays of finite but unknown length are considered.

By itself, the theory of arrays with extensionality does not have quantifier free interpolation [20].”
Moreover, although its quantifier-free fragment is decidable, it is well-known that this theory in its full
generality is undecidable as shown in [5]; nonetheless, in the same paper, the authors studied a significant
decidable fragment, the so-called ‘array property fragment’, which strictly extends the quantifier-free one.

The array property fragment is expressive enough to formalize several benchmarks; however, as proved

Lhttps://sv-comp.sosy-lab.org/2020/benchmarks.php
2This is the counterexample (due to R. Jhala): the formula & = wr(y,4,e) is inconsistent with the formula rd(z,j) #
rd(y,j) Ard(z, k) # rd(y, k) A j # k, but all possible interpolants require quantifiers to be written

Manuscript submitted to ACM

https://sv-comp.sosy-lab.org/2020/benchmarks.php

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

145

Interpolation Results for Arrays with Length and MaxDiff 3

int a[N];

int bN];

int I = 0; o In(a,b,]) = I=0Ala| =N —1A[b|=N—-1AN>0

while I < N do o Tr(a,b,I,a’,b/,I') = I<NAI'=I+1Ad =a ANV =
b[I] = a[I; wr(b, I,rd(a,I))
I++; e U(a,b) = a#bANI=N

end

assert(a = b);

Fig. 1. Strcpy function: code and associated transition system (with program counter missed in the latter for simplicity).
Loop invariant: a = bV (N > diff(a,b) Adiff(a,b) > I).

in [19], it is not closed under interpolation. Thus, a particularly challenging but interesting problem is that
of identifying expressive extensions of the quantifier-free fragment of arrays that are still decidable but also
enjoy interpolation: this is what we address in this paper.

A first attempt in this direction is in [7], where a variant of McCarthy’s theory was introduced by
Skolemizing the axioms of extensionality. This variant turned out to enjoy quantifier-free interpolation [7],[36].
However, this Skolem function diff is generic because its semantic interpretation is undetermined. Moreover,
all the array theories mentioned so far allow unlimited out-of-bound write operations and so cannot directly
express the notion of array length, which is fundamental when formalizing the real behavior of programs.
Length is essential for the faithful logical formalization of benchmarks coming from software verification,
such as C programs included in the SV-COMP competition [4].

These are the main reasons why in [17] the theory was further enriched. There, the semantics of diff,
called maxdiff, is uniquely determined in the models of the theory and is more informative: it returns the
biggest index where two different arrays differ. The effectiveness of quantifier-free interpolation in the theory
of arrays with maxdiff is exemplified in the simple example of Figure 1: the invariant certifying the assert
in line 7 of the Strcpy algorithm can be obtained taking a suitable quantifier-free interpolant out of the
spurious trace (1) already for n = 2.

In the theory considered in [17] a weak notion of length, called ‘weak length’ from now on, is also
introduced. The main contribution of [17] is to show that this enriched theory has quantifier-free interpolants
and its quantifier-free fragment is decidable. Still, some expressive limitations (shared with the previous
literature) persist: arrays are not forced to be completely defined inside their allocation interval (when an
array satisfies this property, we call it ‘contiguous’), because they might contain undefined values in some
location. Hence, the weak length defined there is is not powerful enough to represent the notion of length
used in practice and to adequately formalize real arrays occurring in computer programs. Moreover, although
in [17] a complete terminating procedure for computing interpolants is provided, a complexity upper bound
is given only in the simple basic case where indexes are just linear orders; for more complex arithmetical
theories of indexes, no complexity analysis is carried out and the algorithm becomes quite impractical (it
does not have even a primitive recursive bound for termination).

This paper is a substantially revised version and extension of the conference paper [17]: we overcome
here all the aforementioned limitations. For that purpose, we introduce the very expressive theory of
contiguous arrays with mazdiff CARD(T7) (parameterized over an index theory 77), which improves and

Manuscript submitted to ACM

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

4 Ghilardi and Gianola, et al.

strictly extends the theory presented in [17] by requiring arrays to be all contiguous. This makes the
theory more adequate to represent arrays used in common programming languages. Moreover, in contrast
to [17] where only amalgamation is shown, we prove here a strong amalgamation result, when CARD(Tr)
is enriched with ‘constant arrays’ of a fixed length with a default value in all their locations. Notably,
this not only yields that quantifier-free interpolants exist, but also that interpolation is preserved under
disjoint signatures combinations and holds in presence of free function symbols (see the definition of ‘general
interpolation’ below). This result is completely novel and particularly challenging to be proven, since it
requires a sophisticated model-theoretic machinery and a careful algebraic analysis of the class of all models.

We also radically re-design the interpolation algorithm, avoiding the use of unbounded loops and of
impractical full instantiation routines. Our new 3-Steps algorithm from Section 7 reduces the computation of
interpolants of a jointly unsatisfiable pair of constraints to a polynomial size instance of the same problem in
the underlying index theory enriched with unary function symbols. As such, the new algorithm becomes part
of the hierarchical interpolation algorithms family [32] and in particular somewhat resembles the algorithm
presented in [36] for array theory enriched with the basic diff symbol. We underline that one aspect making
our problems technically more challenging than similar problems investigated in the literature is the fact that
we handle a combination with very expressive index theories: such a combination is non-disjoint because the

total orderings on indexes enter into the specification of the maxdiff and length axioms for arrays.

1.1 Plan of the paper

In the following, we call EUF the theory of equality and uninterpreted symbols. We introduce two novel
theories in Section 3: CARD(Tr), i.e., the theory of contiguous arrays with maxdiff, and CARDC(T7), which
is an extension of CARD(T;) also containing ‘constant arrays’ of a fixed length with a default value (called
‘el’) in all locations. The main technical results are that, for every index theory Tr:
(i) CARDC(T7) has general quantifier-free interpolation;
(ii) CARD(T1) enjoys quantifier-free interpolation and such interpolants can be computed hierarchically
by relying on a black-box interpolation algorithm for the weaker theory T7 UEUF (which has quantifier
free interpolation because 17 is assumed to be strongly amalgamable, see Theorem 2.4).

Result (i) is proved semantically, i.e., we show the equivalent strong amalgamation property (see Section 2
for the definitions). The semantic proof requires dedicated constructions (Section 5), relying on some
important facts about models and their embeddings (Section 4).

The fact that CARD(T7) has interpolants follows from the results in Section 5 (where we prove that this
theory is amalgamable). Result (ii) is proved last (Section 7); we first need an investigation on the solvability
of the SMT(CARD(Tr)) problem (Section 6).

We supply here some intuitions about our interpolation algorithm from Section 7. The algorithm computes
an interpolant out of a pair of (suitably preprocessed) mutually unsatisfiable quantifier-free formulee A°, B°.
We call common the variables occurring in both A° and B°. The existence of quantifier-free interpolants
intuitively means that there are two reasoners, one for A® and one for B°, the first (the second, resp.)
of which operates on formulae involving only variables from Ao (Bo, resp.). The reasoners discover the
inconsistency of A° A B® by exchanging information on the common language, i.e., by communicating each
other only the entailed quantifier-free formulae over the common variables. The information exchange is

hierarchical, i.e., it is limited to 77 U EUF-formulee: literals from the richer language of CARD(T;) and
Manuscript submitted to ACM

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

237
238
239
240
241
242
243

246

Interpolation Results for Arrays with Length and MaxDiff 5

outside the language of 17 U EUF can contribute to the information exchange only via instantiation of
the universal quantifiers in suitable 77 U EUF-formulee given in Section 3: these formulae, as proved in
Lemmas 3.3 and 3.5, supply equivalent definitions of such literals. In contrast to [17], instantiations of
universal quantifiers is limited to variables and constants for efficiency.

The main problem is to show that the above limited information exchange is sufficient. This is the case
thanks to the fact that the the algorithm manipulates iterated diff operators [36],[17] (formally defined in
Section 3) and it gives names to all such operators when applied to common array variables. Both the
production of names for iterated diff-terms and the variable instantiations of the universal quantifiers in
the equivalent universal T7 U EUF-formulee need in principle to be repeated infinitely many times; what we
prove (this is the content of our main Theorem 7.4 below) is that a pre-determined polynomial size subset of
such manipulations is sufficient for the Tr U EUF-interpolation module to produce the interpolant we are
looking for. The reason why we produce such polize instance is due to the fact that our algorthm has a linear

bound on the iterated diff-terms that need to be introduced in Step 1 of our algorithm (see Section 7).

Related work. We already mentioned the related work on first-order theories axiomatizing arrays [7, 17, 20, 23],
which our theories of contiguous arrays strictly extend. Since we adopt a hierarchical approach, our method
is closely related to hierarchical interpolation, where interpolants are computed by reduction to a base theory
treated as black-box. A non-exhaustive summary of this literature is given by the approach in [29, 30] (where
in the context of linear arithmetic general interpolation is reduced to constraint solving), by the one based

on local extensions in [31-34] and by the one based on W-compatibility and finite instantiations of [35, 36].

2 FORMAL PRELIMINARIES

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, formula, and sentence) and
semantic (e.g., structure, sub-structure, truth) notions of first-order logic. The equality symbol “=" is in
all signatures. Notations like F(z) mean that the expression (term, literal, formula, etc.) E contains free
variables only from the tuple z. A ‘tuple of variables’ is a list of variables without repetitions and a ‘tuple of
terms’ is a list of terms (possibly with repetitions). These conventions are useful for substitutions: we use
them when denoting with ¢(¢/z) (or simply with ¢(¢)) the formula obtained from ¢(x) by simultaneous
replacement of the ‘tuple of variables’ z with the ‘tuple of terms’ t. A constraint is a conjunction of literals.
A formula is universal (existential) iff it is obtained from a quantifier-free formula by prefixing it with a

string of universal (existential, resp.) quantifiers.

Theories and satisfiability modulo theory. A theory T is a pair (3, Azr), where X is a signature and Azr
is a set of X-sentences, called the azioms of T (we shall sometimes write directly T for Azxr). The models
of T are those Y-structures in which all the sentences in Azt are true. A X-formula ¢ is T-satisfiable (or
T-consistent) if there exists a model M of T such that ¢ is true in M under a suitable assignment a to the
free variables of ¢ (in symbols, (M, a) = ¢); it is T-valid (in symbols, T'F ¢) if its negation is T-unsatisfiable
or, equivalently, ¢ is provable from the axioms of T in a complete calculus for first-order logic. A theory
T = (X, Azr) is universal iff all sentences in Azxr are universal. A formula @1 T-entails a formula s if

p1 — @2 is T-valid (in symbols, ¢1 Fr @2 or simply @1 b 2 when T is clear from the context). If I' is a

30ne could reformulate this fact using the W-separability framework from [36]; however, using this framework would not
sensibly modify the proof of Theorem 7.4, so we preferred for simplicity to supply proofs within standard direct terminology.

Manuscript submitted to ACM

261
262
263
264
265
266
267
268
269

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

289
290
291
292
293
294
295
296

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

6 Ghilardi and Gianola, et al.

set of formule and ¢ a formula, I' Fr ¢ means that there are v1,...,vn, € I' such that v1 A--- Ay, Fr .
The satisfiability modulo the theory T (SMT(T')) problem amounts to establishing the T-satisfiability of
quantifier-free Y-formulee (equivalently, the T-satisfiability of ¥-constraints). Some theories have special
names, which are becoming standard in SMT-literature, we shall recall some of them during the paper. As
already mentioned, we shall call EUF(X) (or just EUF) the pure equality theory in the signature X. A
theory T' admits quantifier-elimination iff for every formula ¢(z) there is a quantifier-free formula ¢’(z) such
that T F ¢ <> ¢'.

Embeddings and sub-structures. The support of a structure M is denoted with |M]|. For a (sort, constant,
function, relation) symbol o, we denote as ¢ the interpretation of o in M. Let M and N be two -
structures; a Y-embedding (or, simply, an embedding) p : M — A is an injective function from | M| into
|N] that preserves and reflects the interpretation of functions and relation symbols (see, e.g., [10] for the
formal definition). If such an embedding is a set-theoretical inclusion, we say that M is a substructure of N
or that N is a superstructure of M. As it is known, the truth of a universal (resp. existential) sentence is
preserved through substructures (resp. superstructures).

Given a signature ¥ and a X-structure M, we indicate with Ax (M) the diagram of M: this is the set of
sentences obtained by first expanding 3 with a fresh constant @ for every element a from | M| and then
taking the set of ground ¥ U | M|-literals which are true in M (under the natural expanded interpretation
mapping @ to a). An easy but nevertheless important basic result (to be frequently used in our proofs), called
Robinson Diagram Lemma [10], says that, given any Y-structure A/, there is an embedding p: M — N iff
N can be expanded to a ¥ U | M|-structure in such a way that it becomes a model of Ax(M).

Combinations of theories. A theory T is stably infinite iff every T-satisfiable quantifier-free formula (from
the signature of T') is satisfiable in an infinite model of T'. By compactness, it is possible to show that T is
stably infinite iff every model of T' embeds into an infinite one (see, e.g., [16]). Let T; be a stably-infinite
theory over the signature ¥, such that the SMT(T;) problem is decidable for i = 1,2 and 3; and 33 are
disjoint (i.e., the only shared symbol is equality). Under these assumptions, the Nelson-Oppen combination
result [27] says that the SMT problem for the combination 71 U T> of the theories 71 and T> is decidable.

Nelson-Oppen result trivially extends to many-sorted languages.

Interpolation properties. In the introduction, we roughly stated Craig’s interpolation theorem [10]. In this
paper, we are interested to specialize this result to the computation of quantifier-free interpolants modulo

(combinations of) theories.

Definition 2.1. [Quantifier-free interpolation] A theory T' admits quantifier-free interpolation iff for every
pair of quantifier-free formulae ¢, such that ¥ A ¢ is T-unsatisfiable, there exists a quantifier-free formula
0, called an interpolant, such that: (i) ¢ T-entails 6, (ii) 6 A ¢ is T-unsatisfiable, and (iii) only the variables

occurring in both ¥ and ¢ occur in 6.
In verification, the following extension of the above definition is considered more useful.

Definition 2.2. [General quantifier-free interpolation] Let T be a theory in a signature X; we say that
T has the general quantifier-free interpolation property iff for every signature X’ (disjoint from X) and for
Manuscript submitted to ACM

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

Interpolation Results for Arrays with Length and MaxDiff 7

every pair of ground ¥ U X'-formulze ¢, such that ¢ A ¢ is T-unsatisfiable,* there is a ground formula 6
such that: (i) ¢ T-entails 0; (ii) 6 A ¢ is T-unsatisfiable; (iv) all relations, constants and function symbols

from ¥’ occurring in 6 also occur in ¢ and 1.

By replacing free variables with free constants, it is easily seen that the general quantifier-free interpolation
property (Definition 2.2) implies the quantifier-free interpolation property (Definition 2.1); the converse
implication does not hold, however (a counterexample can be found in this paper too, see Example 5.2
below).

Amalgamation and strong amalgamation. Interpolation can be characterized semantically via amalgama-

tion.

Definition 2.3. A universal theory T has the amalgamation property iff, given models M; and Mz of T
and a common submodel A of them, there exists a further model M of T (called T-amalgam) endowed with
embeddings p1 : M1 — M and p2 : Ma — M whose restrictions to |.A| coincide.

A universal theory T has the strong amalgamation property [21] if the above embeddings p1, p2 and the
above model M can be chosen so to satisfy the following additional condition: if for some mq € |[M1|,m2 €

|Ma2| we have pi(mi1) = p2(ms2), then there exists an element a in |A| such that mi1 = a = mo.

The first point of the following theorem is an old result due to [3]; the second point is proved in [8] (where
it is also suitably reformulated for theories which are not universal):
THEOREM 2.4. Let T' be a universal theory. Then
(i) T has the amalgamation property iff it admits quantifier-free interpolants;

(ii) T has the strong amalgamation property iff it has the general quantifier-free interpolation property.

We underline that, in presence of stable infiniteness, strong amalgamation is a modular property (in the
sense that it transfers to signature-disjoint unions of theories), whereas amalgamation is not (see again [8]
for details). As a special case, since EUF has strong amalgamation and is stably infinite, the following result

follows:

THEOREM 2.5. If T is stably infinite and has strong amalgamation, so does T'U EUF.

3 ARRAYS WITH MAXDIFF
The McCarthy theory of arrays [23] has three sorts ARRAY,ELEM, INDEX (called “array”, “element”, and

“index” sort, respectively) and two function symbols rd (“read”) and wr (“write”) of appropriate arities; its

axioms are:
Yy, 1, e. rd(wr(y,i,e),i) =e
Yy, 1, j, e. 1 # j — rd(wr(y,i,e),7) = rd(y, j)-
Arrays with extensionality have the further axiom
Va,y.x £y — (. rd(x,i) # rd(y,i)), (2)

4By this (and similar notions) we mean that ¢ A ¢ is unsatisfiable in all ¥’-structures whose Z-reduct is a model of T'.

Manuscript submitted to ACM

365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

8 Ghilardi and Gianola, et al.

called the ‘extensionality’ axiom. This theory is not universal and does not have quantifier-free interpolants.
Here, we want to introduce a variant of this theory where Axiom (2) is skolemized via a function diff with
a precise semantic interpretation: it returns the biggest index where two different arrays differ. We first need

the notion of index theory.

Definition 8.1. [17] An index theory Tr is a mono-sorted theory (INDEX is its sort) satisfying the following
conditions:
- T7 is universal, stably infinite and has the general quantifier-free interpolation property (i.e., it is
strongly amalgamable, see Theorem 2.4);
- SMT(T7) is decidable;
- Tt extends the theory T'O of linear orderings with a distinguished element 0.

We recall that T'O is the theory whose only proper symbols (beside equality) are a binary predicate <
and a constant 0 subject to the axioms saying that < is reflexive, transitive, antisymmetric and total. Thus,
the signature of T contains at least the binary relation symbol < and the constant 0. In the paper, when
we speak of a Tr-term, Tr-atom, Ti-formula, etc. we mean a term, atom, formula in the signature of 7.
Below, we use the abbreviation i < j for ¢ < j Ai # j. The constant 0 is used to separate ‘positive’ indexes -
those satisfying 0 < i - from the remaining ‘negative’ ones.

Examples of index theories are T'O itself, integer difference logic ZDL, integer linear arithmetic £LZ.A,
and real linear arithmetics LR.A. In order to match the requirements of Definition 3.1, one need however to
make a careful choice of the language (see [8] for details): most importantly, notice that integer (resp., real)
division by all positive integers should be added to the language of LZA (resp. LR.A). For most applications,
IDL (which is the theory of integer numbers with 0, ordering, successor and predecessor) is sufficient as in
this theory one can model counters for scanning arrays.

Given an index theory T7, we can now introduce our contiguous array theory with mazdiff CARD(Tr)
(parameterized by T7) as follows. We still have three sorts ARRAY, ELEM, INDEX; the language includes the
symbols of T, the read and write operations wr, rd, a binary function diff of type ARRAY x ARRAY — INDEX,
a unary function |—| of type ARRAY — INDEX, as well as constant L, el of sort ELEM. The constant L models
an undefined value; the constant el models an element different from L (and so it ensures that the sort ELEM
is not ’practically empty’, i.e. that it is not reduced to the singleton of 1). The term diff(z,y) returns
the maximum index where z and y differ and returns 0 if 2 and y are equal. > The term |a| indicates the
length of a, meaning that a is allocated in the interval [0, |a|] and undefined outside. Formally, the axioms of
CARD(Tr) include, besides the axioms of T7, the following ones:

Vy,ise. lwr(y,i,e)| = ly| ®3)

Yy, i. wr(y,i, L) =y (4)

Vy,i,e. (e# LA 0<1i<ly|]) = rd(wr(y,i,e),i) =e (5)
VY, i, j,e. i # j = rd(wr(y,i,e), j) = rd(y, j) (6)
Vy,i. rd(y,i) # L < 0<i<|y| (7)

5Notice that it might well be the case that diff(z,y) = 0 for different z, y, but in that case 0 is the only index where z,y
differ.

Manuscript submitted to ACM

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
166
467
468

Interpolation Results for Arrays with Length and MaxDiff 9

vy. ly| =0 (8)

Vy.diff(y,y) =0 9)

Ve,y. ¢ #y — rd(x,diff(z,y)) # rd(y,diff(z,y)). (10)
Vz,y,i. diff(z,y) < i — rd(z,i) = rd(y,i). (11)

1 el (12)

Since an array a is fully allocated only in the interval [0, |a|], any reading or writing attempt outside that
interval produce some runtime error in a program; similarly, it is meaningless to overwrite L inside that
interval. In our declarative context, there is nothing like a ‘runtime error’, so we assume that such illegal
operations simply do not produce any effect (this is the combined effect of axioms (3),(4),(7)). However,
when applying our theory to produce code annotations, the verification conditions should include that no
memory violations like the above ones arise (that is, when, e.g., a term like rd(b,¢) occurs in a program, it
should be accompanied by the proviso annotation 0 < i < |al, etc.).

As we shall see the above theory enjoys amalgamation (i.e., plain quantifier-free interpolation) but not
strong amalgamation (i.e., it lacks the general quantifier-free interpolation). To restore it, it is sufficient to
add some (even limited) support for constant arrays: we call the related theory CARDC(T7). The extension
is interesting by itself, because it increases the expressivity of the language: in CARDC(T7), applying the wr
operation to terms Const(%), one can encode all finite lists (if 77 has a reduct to ZDL). Formally, CARDC(T7)

has an additional unary function Const : INDEX — ARRAY, constrained by the following axioms:
Vi.|Const(¢)| = max(¢,0). (13)
Vi,j. (0 < j A j < |Const(i)] — rd(Const(z),) = el). (14)
(we assume without loss of generality that max is a symbol of Tt - in fact it is definable in it). What
axioms (13)-(14) say is that Const(¢) (in the meaningful case where i > 0) represents the array of length i

having constant value el.

The following easy facts will be often used in our proofs:

LEMMA 3.2. The following formule are CARD(Tr)-valid
laf # |b| — ait£(a, b) = max(al, o] (15)
max(diff(a,b),diff(b,c)) > diff(a,c) . (16)
PRrROOF. The first fact (15) trivially follows from (7), (10), (11). We now give the proof of the ‘triangular
identity’ (16). Suppose for instance that we have diff(a,b) > diff(b,c); for k > diff(a,b) we have,
from (11), rd(a,k) = rd(b, k) = rd(c, k). Thus, since k > diff(a,b) implies rd(a, k) = rd(c, k), we have

diff(a,c) < diff(a,b) (otherwise if diff(a,c) > diff(a,b), then diff(a,c) would be such a k, implying
a = ¢ by axiom (10), hence 0 = diff(a,c) > diff(a,b), by axiom (11)).° O

The next lemma follows from the axioms of CARD(T7):

SNotice that diff(a, b) cannot be negative by the combination of axioms (7)-(10).
Manuscript submitted to ACM

470
471
472
473
474
475
476
477

479
480
481
482
483
484
485
486

488
489
490
491
492
493
494
495

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

= o e
oo W

(SIS TN B S B B I
[
o N O

9]
N =
o ©

10 Ghilardi and Gianola, et al.

LEMMA 3.3. An atom like a = b is equivalent (modulo CARD(TT)) to
diff(a,b) = 0Ard(a,0) = rd(b,0) . 17)
An atom like a = wr(b, i, e) is equivalent (modulo CARD) to the conjunction of the following formulae
(e#LA0<i<|b]) = rd(a,i) =€
(i<O0Vi>|b|Ve=_1)—rd(a,i)=rd,q) (18)
Vh. (h # i — rd(a, h) = rd(b, h)).
An atom of the kind |a| =1 is equivalent to:

i>0 A Vh (rd(a,h) # L <0< h<i). (19)

PRrROOF. That a = bimplies diff(a,b) = 0Ard(a,0) = rd(b,0) follows from axiom (9) and the substitutivity
of equality. For the converse, a # b and diff(a,b) = 0 A rd(a,0) = rd(b,0) contradict axiom (10).

Formulae (18) are implied by a = wr(b, 1, e) by axioms (3), (4), (5),(6), (7). The converse is true by the
extensionality axiom (2) (which holds in the strenghtened form (9) in our theory) and by (4), (5),(6), (7)
again.

Formula (19) is trivially equivalent to |a| = 4 thanks to axioms (7),(8). O

LEMMA 3.4. An atom like Const(i) = a is equivalent (modulo CARDC(Ty)) to

|a] = max(i,0) AVh. (0 < h < |a| = rd(a,h) =e€l) . (20)

PROOF. The equivalence between Formula (20) and Const (i) = a trivially follows from axioms (7),(13),(14)

and extensionality. O

Similarly to [36] and [17], we now introduce iterated diff operations, that will be used in our interpolation
algorithm. In fact, in addition to diff := diff; we need an operator diffs that returns the last-but-one
index where a, b differ (0 if a, b differ in at most one index), an operator diffs that returns the last-but-two
index where a,b differ (0 is they differ in at most two indexes), etc. Our language is already sufficiently
expressive for that. Indeed, given array variables a, b, we define by mutual recursion the sequence of array
terms b1,be,... and of index terms diffi(a,b),diffs(a,b),...:

b1 := b; diffi(a,b):= diff(a,b1);
br+1 = wr(bg,diffy(a,b),rd(a,diffy(a,b)));
diffiyi1(a,b) = diff(a,brt1);
A useful fact is that formulae like A;_, diff;(a,b) = k; can be eliminated in favor of universal clauses in

a language whose only symbol for array variables is rd. In detail:

LEMMA 3.5. A formula like

diffi(a,b) = ki A--e--- Adiff;(a,b) =k (21)

Manuscript submitted to ACM

521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

w N = O

o N O

[SL B, B B) S B S S B S
s A N

©

(S NS BC BNS, TG BN TS TN B S S, B B BN SRS, NS B S| B, SRS B B B S N B S
N O © 00 N DOk W N = O

Interpolation Results for Arrays with Length and MaxDiff 11

is equivalent modulo CARD(TT) to the conjunction of the following seven formulae:

ki >koNo .. ANKki_1 >k ANKk >0

N\ (ks > kjrn — rd(a, ky) # rd(b, k;))

g<l
Nal = [b| ARy =kj1) = k; =0
J<li
/\(rd(a, k;) = rd(b, k;) = k; = 0) (22)
J<li

Vh. (h > ki — rd(a,h) = rd(b,h) V h = k1 V ... V b = ki_1)
|a| > |b| — (kl =k Nk = ‘CLD
b > lal = (k1 = ki A Ky = |b]).

4 EMBEDDINGS

In this section we present some useful facts about embeddings that will be crucial in the proofs throughout
the paper.
We first introduce the third array theory ARext(T7), which is weaker than CARD(T7), lacks the diff

symbol and axiom (11) is replaced by the following extensionality axiom:

Va,y. x #y — (3, rd(z,i) # rd(y,i)). (23)

Notice that ARext(Tr) € CARD(Tr) C CARDC(Tr) (the inclusion holds both for signatures and for axioms).
To simplify the statements of some lemmas below, let us also introduce the theory CARCext(T7): this theory
is obtained from ARcxt(T7) by adding the function symbol Const to the signature and the sentences (13),(14)
to the axioms.
We now discuss the class of models of ARext(77) and we clarify the important features of embeddings
between such models. A model M of ARext(T7) is functional when the following conditions are satisfied:
(i) ARRAY™M is a subset of the set of all positive-support functions from INDEX*! to ELEM™ (a function a is
positive-support iff there exists an index |a| such that |a| > 0 and, for every j, a(j) # L iff j € [0, |a]]);

(ii) rd is function application;

(iii) wr is the point-wise update operation inside the interval [0, |a|] (i.e., function wr(a,i,e) returns the
same values as function a, except at the index ¢ and only in case i € [0, |a|]: in this case it returns the
element e);

(iv) if M is also a model of CARCext (1), then the set ARRAYM contains the positive-support functions
with value el’™ inside their support.

Because of the extensionality axiom (23), it can be shown that every model of AR cx(T7) or of CARCext(17)
is isomorphic to a functional one. For an array a € ARRAY™ in a functional model M and for i € INDEX™,
since a is a function, we interchangeably use the notations a(¢) and rd(a, 7).

Let a,b be elements of ARRAY in a model M. We say that a and b are cardinality equivalent iff |a| = |b]
and {i € INDEX™ | M |= rd(a,i) # rd(b,)} is finite. This relation in M is an equivalence, that we denote
as ~a or simply as ~. We also write M = a ~ b to say that a ~aq b holds.

Manuscript submitted to ACM

610

613
614
615
616
617
618
619
620
621
622
623
624

12 Ghilardi and Gianola, et al.

LEMMA 4.1. Let N', M be models of ARext (T1) such that M is a substructure of N. For every a,b €
ARRAYM | we have that

MEa~b iff NEa~b.

PROOF. The left-to-right side is trivial because if M |= a ~ b then a and b have equal length in M
and in N too because length is preserved; moreover, M = a = wr(b, I, E), where I = i1,...,i, is a list
of costants (naming elements of M) of sort INDEX, E = e1,...,e, is a list of costants (naming elements
of M) of sort ELEM, and wr(b, I, E) abbreviates the term wr(wr(---wr(b,i1,€1)---),in,en). Thus, also
N Ea=wr(b, I, E) because M is a substructure of N. Vice versa, suppose that M [~ a ~ b. This means
that either |a| # |b| or that there are infinitely many i € INDEX™ such that rd*(a,) # rd™(b,4). Since M

is a substructure of A/, these conditions holds in A too. O

In a functional model M of ARex(7T7), we say that diff(a,b) is defined iff there is a maximum index
where a, b differ (or if @ = b). If in the model M the index sort INDEX is interpreted as the set of the integers,
with standard ordering, then for any two positive-support functions a, b, we have that diff(a,b) is defined.
However, this will not be the case if the index sort INDEX is interpreted, e.g., in some non-standard model of
the integers. We must take into considerations these models too, since we want to prove amalgamation. For
this purpose, we need to build amalgams for all models of the theory (only in that case in fact, amalgamation
turns out to be equivalent to quantifier-free interpolation). Thus, we are forced to take into consideration
below also phenomena that might arise only in non-standard models.

An embedding p : M — N between ARexi(Tr)-models (or of CARCex(Tr)-models) is said to be
diff-faithful iff, whenever diff(a,b) is defined, so is diff(p(a), u(b)) and it is equal to p(diff(a,d)). Since
there might not be a maximum index where a, b differ, in principle it is not always possible to expand a
functional model of ARext(Tr) to a functional model of CARD(T7), if the set of indexes remains unchanged.
Indeed, in order to do that in a diff-faithful way, one needs to explicitly add to INDEX™ new indexes
including at least the ones representing the missing maximum indexes where two given array differ. This
idea leads to Theorem 4.4 below, which is the main result of the current section. We first need a couple of

lemmas.

LEMMA 4.2. Let M be a model of ARext(Tr) and let a,a’,b,b' € ARRAYM; if a ~aq a/, b ~pq b and
diffy(a’,b’) is defined for every k, then diff(a,b) is also defined.

PROOF. Notice first that, from a ~ a’ and b ~ V', it follows that |a| = |a’| and |b| = |V'|. In case |a| # |b],
we have that diff(a,b) = max{|al, |b|} (see Lemma 3.2), which implies that diff(a,b) is defined. Hence,
the relevant case is when we have | = |a| = |b] = |a’| = |b'| and a’ % b (if @’ ~ b, then we have also a ~ b
and the maximum of the finitely many indexes where a, b differ is diff(a,b)). Then for the infinitely many
indexes jr = diffy(a’,b’) we have a’(jir) # b (jr); for at least one of such jx we must also have a(jx) # b(jx)
because a ~ a’ and b ~ b’. Consider now the indexes in [j,[]: in this interval, the pair of arrays a, b differs
on at least one but at most finitely many indices (because a,a’ differs on finitely many indices there and so
do the pairs b,b’ and a’,b"), so the biggest one such index will be diff(a,b). O

Manuscript submitted to ACM

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

Interpolation Results for Arrays with Length and MaxDiff 13

LEMMA 4.3. Let M be a model of ARext(Tr). There exist a model N of ARext(Tr) and a diff-faithful
embedding p : M — N such that the restriction of u to the sort ELEM is not surjective. In addition, if M is
a model of CARCext(T1), CARD(Tr) or of CARDC(Ty), so is N.

PRrROOF. To build N it is sufficient to put:

o INDEX" = INDEX™M,

o ELEMY = ELEMM U {e} where e ¢ ELEMM,

o ARRAYV consists of the positive-support functions a : INDEXM — ELEMV for which there exist
a’ € ARRAYM such that a ~ a’.

Now notice that if diff is totally defined in M, so it is in A. In fact, this follows from the definition of
ARRAYV and Lemma 4.2: if a ~ a’, b ~ b’ and diff,(a’,b’) is defined for every k, then diff(a,b) is also
defined by the previous lemma. The claim is proved in the same way for all the above mentioned array

theories (notice that in case the signature includes the Const symbol, p trivially preserves it). O

THEOREM 4.4. For every index theory Tr, every model M of ARext(T1) (resp. of CARCext(17)) has a
diff-faithful embedding into a model of CARD(Tt) (resp. of CARDC(171)).

PROOF. It is sufficient to well-order the pairs a,b € ARRAYM such that diff(a, b) is not defined in M,
apply to each pair the construction of the next lemma (taking unions at limit ordinals), and then repeat the
whole construction w times, taking union again. In doing this, we make use of the fact that the models of
ARext (T7) (resp. of CARCext(T7)) are closed under unions of chains, since ARext(T7) (resp. CARCext(1T))
is a theory comprising only V*3* axioms (see [10] for this and other preservation results).

Formally, consider the set of all pairs (a,b) of arrays in M such that diff(a,b) is not defined in M. By
Zermelo’s Theorem, the set of such pairs (a,b) can be well-ordered: let {(as,b;)}ier be such a well-ordered
set of pairs, where I is some ordinal. By transfinite induction on this well-order, we define M, := M
and, for each i € I, M; := N as an extension of |J;_; M; such that (i) N is a model of ARex¢(T7) (of
CARCext(T1) if M is a model of CARCext(T7), resp.); (ii) U, ., M, has a diff-faithful embedding into N;
and (iii) diff" (a;,b;) is defined (this N exists thanks to the next lemma).

Now we take the chain union M?! := U;e; M- Thanks to this construction, we get that, for every pair
(@i, b;) with a;,b; € ARRAYM | diff(a,b) becomes defined in M?; however, this only guarantees that diff is
defined for every pair (as, b;) such that a;,b; are in ARRAYM, whereas nothing is said for the pairs a, b in
ARRAYM' \ARRAYM. Then, we iteratively repeat the chain construction above for these new (a,b). Indeed, it
is possible to construct, by an analogous chain argument, a model M? as done above, starting from M*
instead of M. Clearly, we get My := M C M! C M? by construction.

At this point, we iterate the same argument countably many times, so as to define a new chain of models

of ARext(Tr) (of CARC et (Tr)):
My:=MCM C..CcM"C..

Defining M’ := J,, M", we immediately obtain that M’ is a model of CARD(T}) (resp. of CARDC(T7)).
such that M C M’ . After w steps we are done, because every pair (a,b) appearing in M" occurs after

finitely many steps, and its corresponding diff(a,b) becomes defined in M***. O

Manuscript submitted to ACM

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

14 Ghilardi and Gianola, et al.

LEMMA 4.5. Let M be a model of ARext(T1) (resp. of CARCext(T1)) and let a,b € ARRAYM be such
that diffM(a, b) is not defined. Then there are a model N of ARext(Tr) (resp. of CARCext(Tr)) and a
diff-faithful embedding p: M — N such that diffN(a, b) is defined.

PROOF. Thanks to Lemma 4.3, we can assume that ELEM™ has at least an element e (different from
1M el™). Notice that we must have |a| = |b|, otherwise diff(a,b) is defined and it is max(|al, |b]) according
to Lemma 3.2.

Let I = {i € INDEX™ | a(3) # b(i)} be the set of indices without maximum element (hence infinite) where
they differ. Let | I := {j € INDEX™ | 3i € I, j <14} D I. Notice that the condition

(+) “DielVjel(j>i—a(j)=el)

cannot be satisfied both for x = a and = = b: indeed, if this were the case, assuming w.l.o.g. that i, < ip
(where i, and i, are the witnesses for the existentially quantified index i in (+) for x = a and = = b
respectively), we would have that a(j) = el’™ = b(j) for all j > i, j € I, which is a contradiction with the
definition of I. In case one of them satisfies it, we assume it is b.

Let A be the Robinson diagram of the Tr-reduct of M and let ko be a new constant; let us introduce the
set

A :=AU{i<ko|iel I} U{ko <il|ie INDEXM\ | I}.

By the compactness theorem for first order logic and since I is infinite, the set A’ turns out to be consistent.
In fact, if A’ were inconsistent, then there would exist a finite subset of it not admitting a model. However,
a finite subset of A’ can contain constraints only for a finite number of index constants d occurring in
A,iel I, i e INDEXM\ | I and ko. Such constraints can be verified inside the Tr-reduct of M itself: to
interpret the additional constant ko, it is sufficient to use the fact that I contains arbitrarily large indexes
and the fact that the definition of | I implies that

Viel I, Vje INDEXM\ | I, i< j.

By Robinson Diagram Lemma, there exists a model A of Tt extending the Tr-reduct of M; such A

contains in its support an element ko such that
Viell, i <ko,

Vi € INDEX™M\ | I, ko < i.

We now take ELEMY = ELEMM, INDEXVY = INDEX; we let also ARRAYY to be the set of all positive-support
functions from INDEX" into ELEMY (notice that this N is trivially also a model of CARCext(17)). We observe
that ko < |a|™ and recall that |a|™ = |b|™M.

Let us now define the embedding p : M — N at the level of the sorts INDEX and ELEM, we use inclusions.
For the ARRAY sort, we need to specify the value p(c)(k) for ¢ € ARRAY™ and k € INDEXV \ INDEX™ (for the
other indices we keep the old M-value to preserve the read operation). Our definition for p must preserve
the maxdiff index (whenever already defined in M) and must guarantee that diff™ (u(a), u(b)) = ko (by

construction, we have ko > 0). For a generic array ¢ € ARRAYM, we operate as follows:
(1) if |¢|™ < ko we put pu(c)(ko) = L™, otherwise:

(2) if |¢|™ > ko and the condition (%) below holds, we put u(c)(ko) = e,
Manuscript submitted to ACM

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

749

760

763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780

Interpolation Results for Arrays with Length and MaxDiff 15

(3) if |¢|™ > ko and the condition (x) below does not hold, we put u(c)(ko) = el™.

The condition (%) is specified as follows:

(%) there is ¢ € I such that for all j € I,j > i we have ¢(j) = a(j).
For all the remaining indexes k € INDEX" \ (INDEX™ U {ko}) we put

1M itk ¢ |0, |dM
() (k) = # 10, Jel™ (1)

e™, if k€ o,|cM]

Notice that we have p(a)(ko) = e # el™ = pu(b)(ko) (the last equality holds because I is infinite and does

not have maximum, hence condition (x) holds for a but not for b). In addition:

e for all ¢ € INDEX™ such that ko < i, we have i ¢ | I, according to the construction of ko and
consequently 7 ¢ I, that is a(i) = b(4);
o for all i € INDEX" \ (INDEX™ U {ko}) such that ko < i, since we have |a|* = [b|™, we get

p(a)(i) = LM (b)) = L™,
w(a) (i) = el™ iff pu(b)(i) = el™.
Hence, we can conclude that diff™ (u(a), u(b)) is defined and equal to ko.
We only need to check that our p preserves rd, |—|, wr, constant arrays and diff (whenever defined).
The operation rd is preserved because p acts as an inclusion for indexes and elements and because we
have u(c)(k) = c(k) if k € INDEXM.

Concerning length, we have |u(c)[Y = |¢[™ because of (4) and because of the above definition of u(c)(ko)

(recall that ko > 0).

Concerning write operation, we prove that for all ¢ € ARRAYM i € INDEXM N[0, |c|] and e’ € ELEM*\ { LM}
we have
wlwr(c,iye’)) = wr(ule),i,e’).

Remember that we have |wr(c,i,¢e')| = |¢| = |u(c)].

e For k # i in INDEX™
w(wr(c,i,e)) (k) = wr(c,i,e) (k) = c(k)
wr(p(c),i,e") (k) = p(c) (k) = c(k);

e For k=1
p(wr(c,i,e))(i) = wr(c,i,e) () =€
wr((e), i, €)(i) = ¢’
e For k = ko > |c| the claim follows immediately from the definition;

For k = ko < |c|, (%) holds for c iff it holds for wr(c,i,e"), because I is infinite. Hence we have
p(wr(c,i,€')) (ko) = e iff p(c)(ko) = e.

For k € INDEX" \ (INDEX™ U {ko}), the claim is clear from the definition and from the fact that wr

preserves length.

Manuscript submitted to ACM

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

16 Ghilardi and Gianola, et al.

For constant arrays, we must show only that u(Const(i))(ko) = el™ in case ko < 4: this is clear, because

a does not satisfy (+), hence (x) does not hold for Const(%).

Let us now finally consider the diff operation and let us prove that if diff™ (c1, ¢2) is defined, then
aiffV (u(er), p(e2)) is also defined and equal to it. Assume that diff™ (cy,¢2) is defined; since p preserve
length, the only relevant case, in view of Lemma 3.2, is when we have |c1| = |c2|; since the values of ¢1, c2
on indexes from M are preserved, taking in mind (4) (in particular, that for k € INDEX" \ (INDEX™ U {ko})
we have u(c1)(k) = p(e2)(k)), we only have to exclude that we have

aiffM(cr,c2) < ko and p(cr) (ko) # plca) (ko)

If this is the case, we have, e.g., u(c1)(ko) = e # el™ = u(c2)(ko) (ko < |c1| = |ca|), which implies that (x)
holds for ¢; but not for c¢2. However, it cannot be that (%) holds for only one among c1, c2. The reason for
this is as follows. Indeed, if 7 € I is the index that witnesses (%) for c1, then c¢1(j) = a(j) for all indexes
j € I such that 5 > i (which are infinitely many). Since [is infinite and without maximum and since
diff™(c1,c2) < ko, we must have diff™(ci,c2) €] I by the definition of A, so there must be infinitely
many indices in I bigger than diff™ (c1,c2) and arbitrarily large, which means in particular that there
exists an index i’ € I such that i’ > and i’ > diff(c1,c2). This i’ witnesses (x) for c2, as wanted. This

concludes the proof. O

5 STRONG AMALGAMATION FOR CARDC(Tr)

In this section, we prove that the most expressive theory of the paper CARDC(T7) has strong amalgamation.
However, we also show that this is not the case for CARD(17) (even if it is amalgamable). We recall that
strong amalgamation holds for models of T7 (see Definition 3.1): this observation is crucial for the following.

Strong amalgamation of CARDC(T7) will be proved in two steps. First, we provide the amalgam construc-
tion for CARDC(Tt), where we also notice that the same arguments can be used to prove that CARD(17)
has amalgamation too. Then, after exhibiting a counterexample showing that the strong amalgamation fails
for CARD(Tr), we check that the amalgam construction for CARDC(T) satisfies the condition for being a
CARDC(Ty)-strong amalgam.

5.1 Amalgam constructions

Let My and M3 be two models of CARDC(T7) (resp. of CARD(T7)); we want to amalgamate them over
their common substructure A and let f; be the embedding of A into M; (we assume that f; is just inclusion
for the INDEX and ELEM components). We can assume w.l.o.g. that our models are all functional and, by

applying renaming, that
(INDEX" \ INDEX*) N (INDEX™'? \ INDEX") = 0
(ELEMM* \ ELEM?) N (ELEM™? \ ELEM*) = 0.
We build the amalgamated model in two steps. We first embed M1 and Mo, via the embeddings u; (i=1,2),

into a model M of CARCext(T7) (resp., of ARext(T7)) in a diff-faithful way. Then M is embedded, via
another diff-faithful embedding ' into a model M of CARDC(T1) (vesp., of CARD(Tr)): p' is guaranteed

Manuscript submitted to ACM

833
834
835
836
837
838

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

Interpolation Results for Arrays with Length and MaxDiff 17

to exist by Theorem 4.4.
M
2N
A M y
\ V’
f2
Ma

Construction of p;

We build the model M and the two diff-faithful embeddings p; : M; — M such that 1 o fi = p2 o fo.
We let INDEX™ be a strong amalgam of INDEX™! and INDEX™? (T enjoys strong amalgamation), whereas
we let ELEM™ = ELEMM! UELEMM2. Let ARRAYM be the set of all positive-support functions from INDEX™™
into ELEMM.

The INDEX and ELEM components of the embeddings p; will be inclusions. The definition of the value of
wi(a)(k), for a € ARRAYM¢ and k € INDEX™, is given by cases as follows:

o if k € INDEX™¢, we put pi(a)(k) = a(k);

e if k € INDEX™3~¢ \ INDEX*: let (2%) be the relation’

"there exist ¢ € ARRAY, b € ARRAYM

st b~Mia, k> ait£™Mi(b, fi(e))”,

we put
fa—i(c)(k), if (2x) holds
wi(a)(k) = ¢ LM, if (2%) does not hold & k ¢ [0, |a|Mi]
elM, if (2x) does not hold & k € [0, |a]M:]
e if k ¢ INDEXM: U INDEXM3—i | we put

Mo if , |a|Mi
pa(@)) = {L bl

e™, if k €[0,|a]Mi].

Requirements check for the amalgamated model

The model M introduced above is in fact a CARDC(T)-amalgam (and also a CARD(T)-amalgam) for the

models M7 and M2 with the common substructure A:
THEOREM 5.1. CARD(T;) and CARDC(TT) enjoy the amalgamation property.

PROOF. We need to prove that the functions p;: (i) are well-defined, (ii) are injective, (iii) preserve |—|,
(iv) preserve rd and wr, (v) preserve diff, (vi) satisfy the condition p1 o fi = u2 o fa, (vii) preserve constant
arrays (for the statement about CARDC(Tr)).

(i) Since INDEX™ is a strong amalgam of INDEX™' and INDEX™'?2, the case distinctions we made for
defining p;(a)(k) are non-overlapping and exhaustive.
"When we write k > diff™i (b, f;(c)) we mean in fact that k > p;(dif£™i (b, f;(c))) (this relation is meant to hold in M).

Our simplified notation is justified by the fact that p; is inclusion for INDEX sort. The fact that the choice of the c satisfying
(2%) is immaterial is shown in the proof of Theorem 5.1, see the item (i) below.

Manuscript submitted to ACM

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

18

Ghilardi and Gianola, et al.

We now show that if, for ¢ = 1,2 and k € INDEXM3-: \ INDEX? and a € ARRAY™:, the relation
(2%) holds relatively to two different pairs of arrays (ci,b1), (c2,b2) from ARRAY* x ARRAY™M: | then
we nevertheless have fs_;(c1)(k) = fs—i(c2)(k) (this proves the consistency of the definition). For
symmetry, let us consider only the case ¢ = 1. Since the index ordering is total, let us suppose that we
have for instance

k> dift™M (b1, fi(c1)) > dif£™ (be, f1(c2)). (24)

By the transitivity of ~™1 b; and by differ on finitely many indices, hence we can consider the finite
sets
J = {j € INDEX™ | 01(5) # ba(4), 5 > dits™" (by, fi(er))}
E:={b(j)| jeJ} CELEM".

Let now pick ¢ := wr(cz, J, E); then ¢ ~* ¢c2. Since f2 is an embedding, we have fa(c)(k) = f2(c2)(k)
for all k € INDEX™2 \ INDEX*. Suppose we have also

aiff(cr, ¢) < dif£M(fi(cr), br). (25)
Then

diff?(cy,c) < diffM(fi(cr),b1) < k

and consequently also the desired equality

fa(er)(k) = f2(c) (k) = fa(c2)(F)

follows.

In order to prove (25), we consider j € INDEX* with j > diff™1(fi(c1),b1) and show that we have
c(§) = e1(j§) (in fact, if this is true, then (25) cannot fail because diff*(cy,c) would be such a j,
absurd). Suppose not, i.e. that ¢(j) # c1(j); then we cannot have j € J otherwise, by definition of ¢
and E, we would have c(j) = b1(j) = fi(c1)(4) = c1(j) (f1 is inclusion for indexes and J C INDEX*),
contradiction. Hence, we have j ¢ J, so ¢(j) = c2(j) and b1(j) = b2(j). Now remember that

3> ditt™M (b, fi(er)) > dif£™M (bo, f1(c2)),
hence
c1(g) = b1(4), c2(j) = b2(4)
c(j) = c2(j) = b2(J) = 01 (j) = a1 (4)

thus getting an absurdity.

(ii) Injectivity of p1 and pe is immediate.

(iii) In order to prove that |—| is preserved, it is sufficient to show that for every a € ARRAYM? and for all

k € INDEX™, we have
pi(a)(k) # L 0 <k <o
The only relevant case is when k& € INDEX™2 \ INDEX“* and (2%) holds. In such a case, we have two
possibilities:
[b|M1 = |c|”: in this case, since b ~™1 a, we have |a|M! = [b|M1 = |¢|* = |fa(c)|M2 (f2 is an

embedding), thus getting what we need for k;

Manuscript submitted to ACM

937
938
939
940
941
942
943
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

Interpolation Results for Arrays with Length and MaxDiff 19

[b|M1 #£ |c|A: in this case k > dif£M1 (b, f1(c)) = max{[b|M*,|c|*} by Lemma 3.2. Since a ~ b implies
la| = |b], the definition of u1 produces pi(a)(k) = f2(c)(k) = L (the last identity holds because
k> |c|[*), which is as desired because k > [b|™ = |a|™* too.

(iv) The fact that rd and wr operations are preserved is easy (notice in particular that, if (2%) holds for a
via the pair (¢, b), then the same pair guarantees (2%) for arrays of the kind wr(a,i,e)).

(v) Again we limit to the case of p; for symmetry. We need to show that for every a1, as € ARRAYM? | we
have p1(diffMt (a1, a2)) = diff™M (11 (a1), ui(az)). Notice that, if we call j the index diff(ay,az) €
INDEXM!, by definition of u; on array applied to indexes in INDEX™?!, we have that pui(a1)(j) =
a1(§) # aa(j) = pa(az2)(j). Hence, in order to conclude, it is sufficient to show that, given k € INDEX™
such that k > diff™1 (a1, a2), the equality pi(a1)(k) = pi(a2)(k) holds. Notice first that we can
always reduce to one of the following three cases

(a) |a1| < |az| = diff™1 (a1, az);
(b) dif£M1 (a1, a2) < |ai| = |azl;
(c) |a1| = |as| = dif£M1 (a1, as).
We now show that pi(a1)(k) = p1(az)(k).
e If k € INDEXM1:
pa(ar)(k) = ai(k) = az(k) = p1(az) (k).

o Ifk ¢ INDEX™! U INDEX™2, we analyze the three cases separately:

Case(a) : then k ¢ [0, |a;|] for i = 1,2. We have p1(a1)(k) = L = pi(az2)(k);

Case (b) : we have
pa(ar)(k) = L < pa(az)(k) = L
p(ar)(k) = el & pa(az)(k) = el;
Case (c) : similarly to (a), we have k ¢ [0, |a;|] for i =1, 2.

e If k € INDEX™2 \ INDEX* and (2%) does not hold neither for a; nor for az, the argument is the same
as in the previous case.

Otherwise, suppose that (2%) holds for, say, a1 as witnessed by the pair (c1,b1). Then we get
p1(ar)(k) = fa(c1)(k). We prove that (2%) holds for a2 too and that we have pi(a1)(k) = fo(c1)(k) =
i (az) (k).

Since b; and a; differ on finitely many indices inside M, we can consider the finite sets

I:= {i € INDEX" | b1(i) # a1(3), i > diff™ (a1, a2)},
E:={bi(i)| i€ I} C ELEM""
and the array b= wr(az, I, E); for this array, we obviously have a2 ~M1 b, If we also have
aif M (by, b) < diff™M (a1, a2) (26)
then we get: k > diff™1 (a1, a2) e k > diffM1 (b1, fi(c1)) (the latter is from (2x)). Hence:
k > max{dif " (a1, a2), dift£™M (b, fi(c1))} >

> max{dif £ (b, b), dif £ (b1, f1(c1))} >
> diff (b, fi(c1))

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

20 Ghilardi and Gianola, et al.

(the last disequality holds because of the ‘triangular disequality’ (16) of Lemma 3.2). Hence we
obtain (2x) for a2 via the pair given by ¢ := ¢; and b := b (because we have as ~M1 b and
k > diff(b, fi(c1))) and consequently p1(az)(k) = fa(c1)(k).
It remains to prove (26); to this aim, let us pick j € INDEX*"! such that j > diff (a1, a2) and let us
show that by (j) = b(5). If this is not the case, i.e., if by (j) # b(j), then according to the definition
of b we have b(j) = a2(j) and j ¢ I. Hence b(j) = a2(j) = a1(j) = bi(j) (the last identity holds
because j ¢ I and j > diff(a1,az)), absurd.
(vi) In order to prove p1 o fi = pg2 o f2, let us consider ¢ € ARRAY#; let us put a; = fi(c) for i = 1,2 and
let us check that
pa(ar)(k) = p2(az)(k)
holds for all k& € INDEX™.
e Case k € INDEX*: we have

pa(an)(k) = ax(k) = fi(e) (k) = c(k)
p2(az)(k) = az(k) = fa(c)(k) = c(k).
Case k € INDEXM1 \ INDEX*: clearly (2«) holds for az with ¢ := ¢ and b := as, consequently

p(ar)(k) = ai(k) = fi(e)(k)
p2(az)(k) = fi(c)(k).
Case k € INDEX™2 \ INDEX*: clearly (2) holds for a; with ¢ := ¢ and b := a1, consequently
p(ar)(k) = fa(c)(k)
p2(az) (k) = az(k) = fa(c)(k).
Case k ¢ (INDEX™! U INDEX™2) and k € [0, |c[]: we have
pi(ar)(k) = el = pa(a2) (k).

e se k ¢ (INDEX™! U INDEX™2) and k ¢ [0, |c|]: we have

pa(ar)(k) = L = pa(az)(k).

This completes our case analysis.

(vii) Here we assume that M, Ms are models of CARDC(T7); we need to show, e.g., that u1 (Const™* (3))(k)

el for every k such that 0 < k < i. Now, if ¢ € INDEX? this is obvious, because Const™1 (i) =
f1(Const™(i)). Hence suppose that 4 € INDEX*"1 \ INDEX; the only possibly problematic case is when
k € INDEX™2 \ INDEX* and (2%) applies, as witnessed by a pair (b, c) for Const™1 (i). But we have
|b| = |Const™1(i)| = i and |fi(c)| # i (because |fi(c)| = |¢| € INDEX*). Then, according to (2%)
and recalling Lemma 3.2, we have k > diff™i(b, fi(c)) = max{|b|,|fi(c)|} = max{i,|f1(c)|} > 4,

contradicting the choice of k.

Manuscript submitted to ACM

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

Interpolation Results for Arrays with Length and MaxDiff 21

5.2 The CARDC(Tr)-amalgam is strong

We now prove the main result of the section, i.e., strong amalgamation for CARDC(T7). Unfortunately,
this property does not hold for CARD(T7): as it is shown in the example below, we need constant arrays
in the language (recall that strong amalgamation is equivalent to general quantifier-free interpolation, see
Theorem 2.4(ii)).

Ezample 5.2. Consider the following two formulae (where P is a free predicate symbol):
(A) |a| =0Ard(a,0) =eA P(a)
(B) || =0A7rd(b,0)=eA-P(b).

The conjunction (A) A (B) is inconsistent because a and b are in fact the same array (because of Axioms 7
and 10). However, the only common variable is e; to get the interpolant, we can use P(wr(Const(0),0, e)),

but then it is clear that the language lacking constant arrays does not suffice.
To prove strong amalgamation for CARDC(Tr) we need a couple of lemmas.

LEMMA 5.3. Every model M of CARDC(Tt) can be embedded into a model N such that INDEXV is

infinite.

Proor. This is basically due to the fact that 77 is stably infinite. So let us first embed the T7-reduct
of M into an infinite model A of Tr. We define N as follows. We let ELEMY be equal to ELEMM™ and the
Ty-reduct of INDEX" be equal to A. We let ARRAYY be the set of positive support functions from INDEXV to
ELEM" (the model so built will then be embedded into a full model of CARDC(T) using Theorem 4.4). We
only need to define the embedding y : M — N. This embedding will be the identity for INDEX and ELEM
sorts; for arrays, we let u(a)(k) be equal to a(k) for k € INDEX™ and for k ¢ INDEX™, we put p(a)(k) equal
to el™ or L™ depending whether we have k € [0, |a|] or not. The proof that pu preserves all operations is

easy. 0

Let us call an element 7 € INDEX™ of a model M of CARDC(T}) finite iff the set {j € INDEXM | 0 < j < i}
is finite. Fin(M) denotes the set of finite elements of M.

LEMMA 5.4. Let A, M be models of CARDC(Tr) and let f : A — M be an embedding. Then there
exist a third model N of CARDC(Tt) and an embedding v : M — N, such that for every a € ARRAYV with
la/N € v(f(INDEX*)) one of the following conditions hold:

(1) there exists ¢ € ARRAYA such that v(f(c)) ~V a;

(2) there eists ko € INDEX" \ v(INDEX™) with a(k.) € v(f(ELEM?)) such that for every ¢ € ARRAY? we

have a(ka) # v(f(c))(ka)-

PROOF. Because of Lemma 5.3, we can freely assume that INDEX™ is infinite. If for all @ € ARRAY™ whose
length comes from A, there is ¢ € ARRAYA such that f(c) ~™ a then it is sufficient to take A” = M and the
identity as v. Otherwise, one take a well ordering of the arrays, apply the construction below by tranfinite

induction and repeat it w-times. The union of the chain so built will have the required properties.

Let a € ARRAYM be such that |a is from A (i.e. such that |a| = f(i) for some i € INDEX*) and such that

there does not exist ¢ € ARRAY* such that f(c) ~™ a. Then |a| is not finite, because otherwise we would
Manuscript submitted to ACM

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

22 Ghilardi and Gianola, et al.

have that a ~™ f(Const(i)).® Consider the diagram A of the Tr-reduct of M and let k, a fresh constant;

the set
A= AU{i <kq|i€ Fin(M)}u

U{i > ka | i € INDEX™ \ Fin(M)}.

is consistent. Suppose that A’ is inconsistent. By compactness, we would have that there exists a finite

(27)

subset Aj of A’ which is inconsistent too. A{ would involve finitely many finite indexes i; < --- < i, and
finitely many infinite indexes j1 < -+ < jm and a finite subset Ag of A.

If m = 0, since INDEX™ is infinite, there exist an element i’ € INDEX™ large enough, so as to get
i1 < -0 < iy < i in M. If m > 0, then already in INDEX™ there exists an element i’ such that
i1 < --- < ip < i and such that i’ < j1 < +++ < jm hold in M, otherwise ji would be a finite index. This
element i’ can interpret the constant k.. In both cases, we conclude that A{ would be consistent, which is a
contradiction.

By Robinson Diagram Lemma, A has a model B extending the T;-reduct of M.

We let now ELEMV = ELEM™, INDEX" = INDEX® and we let ARRAYY to be the set of positive-support
functions from INDEX" into ELEMY (then, in view of Theorem 4.4, A/ can be embedded into a full model of
CARDC(Tr)). This model contains an element k, such that for all i € INDEX™ we have that k, # i and
1 < kq iff i € Fin(M). In particular, kq < |a| (because |a| is infinite).

Thanks to Lemma 4.3, we can freely suppose that ELEMY = ELEMM has an element e not belonging to
f(ELEM?) (in particular e # f(el*) = el = el™). We build u as required by the statement of the lemma
(more precisely, the v required by the lemma will be a chain unions of the u’s built at each transfinite
step as shown below). The INDEX- and ELEM-components of y will be inclusions. We define p(b)(k) for all
b € ARRAYM. If k € INDEX™, we obviously put u(b)(k) = b(k); in the other cases, the definition is as follows:

(1) if b #™ a, then u(b)(k) = el™ or u(b)(k) = LV, depending on whether k € [0, |b|] or not;

(2) if b ~™ a and k # k,, then again u(b)(k) = el or u(b)(k) = L™, depending on whether k € [0, [b]]
or not;

(3) if b ~™ a and k = kq, then u(b)(k) = e.

We need to show that p preserves rd, wr, |—|, constant arrays and diff. Preservation of rd, wr, |—| are

M a, otherwise |a| = i, which

easy; constant arrays are preserved, because we cannot have Const™! (i) ~
cannot be because |a| is an element from INDEX” by hypothesis, so that we would have f(Const™(i)) =
Const™ (i) ~™ a, contradiction. For preservation of diff, the problematic case would be the case in which
we have kq > diff(by, bs), b1 ~ a and by £™ a. However, this is impossible because diff (b1, b2) € INDEX™
and the fact that we have kq > diff(b1,b2) implies that diff(by,bs) is finite, which would entail either
by ~™ by or |b1] # |bz2|: in the former case, we would have by ~M ¢ and in the latter k, > diff (b1, b2) =
max([ba], [ba]) = max(fal, [b2]) > |al.

We finally notice that k, satisfies the requirements of the lemma. First, k, ¢ u(INDEX™) and p(a)(ks) =
e & pu(f(ELEM*)) hold by construction. Moreover, since for every ¢ € ARRAY* we have pu(f(c))(ka) = el’V or

(f(e))(ka) = LN (depending whether ko € [0, |¢|] holds or not), in any case we see that u(f(c))(ka) #
a .

I
1(a)(ka) 0

8Notice that this is the only argument in the whole strong amalgamation proof requiring the fact that we have Const in the

language.

Manuscript submitted to ACM

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

Interpolation Results for Arrays with Length and MaxDiff 23

THEOREM 5.5. CARDC(TT) enjoys the strong amalgamation property.

PRrROOF. We keep the same notation and construction as in the proof of Theorem 5.1. However, thanks to
Lemma 5.4 we can now suppose (for ¢ = 1,2) that all arrays a € ARRAY*"" whose length belongs to INDEX4
are such that one of the following two conditions are satisfied:

(1) there exists ¢ € ARRAYA with fi(c) ~™i a;

(2) there exists ko, € INDEX™¢ \ INDEX* such that a(k) is an element from ELEM*i \ ELEM* different from

all the fi(c)(ka), varying ¢ € ARRAY*.

Let a; € ARRAYM? (i = 1,2) be such that Vk € INDEX™ we have

pi(ar)(k) = p2(az)(k) (28)

Notice that, since T has the strong amalgamation property and the u; preserve length, this can only happen
if |a1| = |az| belongs to INDEX*. We look for some ¢ € ARRAY* such that a1 = fi(c); since o is injective

this would entail as = fa2(c) because

pa(az) = pi(ar) = pi(fi(e)) = p2(f2(c)),

implying that Mis a strong amalgam, as requested.
We separate two cases: (i) one of the arrays a1, as satisfy the above condition 2; (ii) both arrays a1, a2

satisfy the above condition 1.

(i) We show that this case is impossible. Suppose, e.g., that a: satisfies condition 2 in M;. Then there
exists an index k,, in INDEX! \ INDEX* such that a(ke,) is an element from ELEM™! \ ELEM* which
is different from all the f1(c)(ka,), varying ¢ € ARRAY*. Since we must have ju1(a1)(kay) = pa(az)(ka,)
and g (a1)(ka,) does not belong to ELEM*?2 (recall that ELEM* N ELEMM2 = ELEM™), the value of
az for the index ko, (0 < ko, < |a1]| = |az|) is built according to the rule (2x), because otherwise

pa(az)(kq,) would be equal to some element in ELEM™2. Let (c,b) the pair such that
¢ € ARRAY, b € ARRAY™M2, b ~M2 4y, ko, > dif£M2(b, f2(c))

p2(az)(kay) = fi(c)(kay).
Then we have
p1(a1)(kay) = ar(kay) # fr(c)(kay) = p2(a2)(kay)
contradiction.

(ii) Hence we can have u1(a1) = p2(az2) only when both a1, a» satisfy condition 1 above. Let us call
c; € ARRAY# (i = 1,2) the arrays such that f;(c;) ~' a;. Then, the pair (c1, fi(c1)) witnesses (2x) for
a1 and for every positive ? index k € INDEX*! \ INDEX* (and similarly for as). We look for ¢ € ARRAY*
such that fi(c) = ai1. Let us consider the following relations coming from (28) and from the definition
of p;:

Vk € INDEX™, a1(k) = aa(k)

k) (29)

Vk € INDEX™! \ INDEX™, ai(k) = fi(c2)
Vk € INDEX™M2 \ INDEX*, fa(c1)(k) = as(k).

9Notice that if k € INDEX1 \ INDEX" is positive, then k > diff(f1(c), f1(c)) = 0.

Manuscript submitted to ACM

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

24 Ghilardi and Gianola, et al.

where we used that ps(a2)(k) = fi(c2)(k) if k& € INDEX™1 \ INDEXA, and pui(a1)(k) = fa(e1)(k) if
k € INDEX™2 \ INDEX*.

Let us now consider the sets (they are finite because f2(c2) ~2 as)
J ={j € INDEX" | ¢2(j) # a2(j)} C INDEX™

E ={a2(j)| j € J} CELEM",
and let us put ¢ = wr(cz, J, E); we check that ¢ is such that fi(c) = a.
o If k € INDEX:
F1 Q) = (k) = wrca, J, E)(k) = as(k) = aa (k)
because fi preserves rd, by the definition of J and because of the equalities (29);
e If k € INDEX" \ INDEX*:

Hi(©)(k) = fi(wr(ca, J, B)) (k) = wr(fi(c2), J, E)(k) = fi(c2)(k) = ax(k)

by the definition of ¢, the fact that fi is an embedding, because J C INDEX” (hence k ¢ J) and
because of the equalities (29).

O

Strong amalgamation corresponds to general quantifier-free interpolation (Theorem 2.4), hence we obtain
that:

COROLLARY 5.6. The theory CARDC(T1) has the general quantifier-free interpolation property.

6 SATISFIABILITY

We now address the problem of checking satisfiability of quantifier-free formule in CARD(T7) and
CARDC(Tr). Decidability of the SMT(CARD(Tr))- and SMT(CARDC(T))-problems, at least in the
relevant case where 77 is any fragment of Presburger arithmetics, can be solved by reduction to the satisfia-
bility problem for the so-called ‘array-property fragment’ of [5]: the reduction can be obtained by eliminating
the wr, |—|,diff and Const symbols in favor of universally quantified formulse belonging to that fragment
(see Lemmas 3.3,3.4,3.5). However, we now supply a direct decision procedure for quantifier-free formulse,
since this will be useful for the interpolation algorithm in Section 7.

A flat literal L is a formula of the kind o = f(z1,...,2n) or 1 # 22 or R(z1,...,2n) or " R(Z1,...,Zn),
where the z; are variables, R is a relation symbol, and f is a function symbol. If 7 is a set of Tr-terms, an

T-instance of a universal formula of the kind Vi ¢ is a formula ¢(¢/7) for some ¢ € Z.

Definition 6.1. A pair of sets of quantifier-free CARD(T7)-formulee ® = (1, Do) is a separated pair iff

(1) @1 contains equalities of the form |a| = 4,diff(a,b) =i and a = wr(b, i, e); moreover if it contains
the equality diffy(a,b) = 4, it must also contain an equality of the form diff;(a,b) = j for every
I < k; finally, if ®; U @5 contains occurrences of an array variable a, ®; must contain also an equality
of the form |a| = 3;

(2) P2 contains Boolean combinations of Tr-atoms and of atoms of the forms:

rd(a,i) = rd(b, j), rd(a,i) = e, e1 = ez, (30)
Manuscript submitted to ACM

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

Interpolation Results for Arrays with Length and MaxDiff 25

where a, b, 1, j, e, e1, e2 are variables or constants of the appropriate sorts.
® is said to be finite iff &; and ®5 are both finite.

Ezample 6.2. The pair ® = (®1, P2) given by
1 = {c1 =wr(ez,i,e), 1] = leysfea| = ey}, P2 = {le; #ley} (31)
fulfills the conditions for being a separated pair.

Notably, in a separated pair ® = (®1, ®2), if we introduce a unary function symbol f, for every array
variable a and rewrite rd(a, 1) as fa(7), it turns out that the formule from ®2 can be seen as formule of the
combined theory Tt U EUF. Tr U EUF is decidable in its quantifier-free fragment and admits quantifier-free
interpolation because 77 is an index theory (see Nelson-Oppen results [27] and Theorems 2.4,2.5): we adopt
a hierarchical approach (similarly to [32, 34]) and we rely on satisfiability and interpolation algorithms for
such a theory as black boxes.

In order to be able to apply such hierarchical approach to satisfiability problems, we first reduce to
satisfiability problems for separated pairs (Lemma 6.4 below). Then, given a separated pair ® = (®1, ®2),
we transfer to @, some information that is hidden in ®;: this is the information stored in the universally
quantified formulae (18),(19),(22). In principle, one should instantiate the universally quantified variable
appearing in those formulae with all possible ground terms that can be built up using the index variables
occurring in the current constraint. Unfortunately, there are infinitely many such terms; in the interpolation
algorithm of our previous paper [17], we devised incremental instantiations: first we instantiate with terms
of complexity 0, then with terms of complexity 1, then with terms of complexity 2, etc. (the complexity
of a term can be defined as the maximum nestings of function symbols occurring in it). We completely
avoid these incremental instantiations in the current paper, not only in the satisfiability algorithm, but
also in the interpolation algorithm of next Section (this is the substantial improvement over [17] from the

computational point of view). We first define our instantiations with respect to an arbitrary set of terms I:

Definition 6.3. Let T be a set of Tr-terms and let ® = (®1, ®2) be a separated pair; ®(Z) = (91(Z), P2(7))
is the smallest separated pair satisfying the following conditions:
- ®,(7) is equal to ®;'° and ®(Z) contains Po;
- if ®; contains the atom a = wr(b,,e) then ®2(Z) contains all the Z-instances of the formulae (18)
(with the terms |al, |b] replaced by the index constants i, j such that |a| = i, |b| = j € ®1, respectively);
- if ®; contains the atom |a| = 4, then ®2(Z) contains all the Z-instances of the formulae (19);
- if ®; contains the conjunction A'_, diff;(a,b) = ki, then ®»(Z) contains the formulae (22) (with the
terms |al, |b|] replaced by the index constants ¢, j such that |a| = i, |b] = j € @1, respectively).

A separated pair @ is 0-instantiated iff ® = ®(Z), where Z is the set of index variables occurring in ®.
We say that a separated pair ® = (®;, ®2) is is CARD(Tr)-satisfiable iff so it is the formula A &3 A A $2.**

LEMMA 6.4. Let ¢ be a quantifier-free formula; then it is possible to compute in linear time a finite
separation pair ® = (®1, P2) such that ¢ is CARD(Tr)-satisfiable iff © is satisfiable.

10This is because only ®2 needs to be instantiated.
M1n case ®4, P, are not finite, this means that all formulae in &1 U $5 are simultaneously satisfiable. Notice however that in
all our concrete applications, ®; and ®5 are always finite.

Manuscript submitted to ACM

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352

26 Ghilardi and Gianola, et al.

ProOOF. We first flatten all atoms from ¢ by repeatedly abstracting out subterms (to abstract out a
subterm ¢, we introduce a fresh variable z and update ¢ to z =t A ¢(x/t)); then we remove all atoms of the

kind a = b occurring in ¢ by replacing them by the equivalent formula (17), namely
diff(a,b) = 0 Ard(a,0) = rd(b,0) .

Then we abstract out all terms of the kind wr(b,,e),diff(a,b) and |a|, so that ¢ has now the form
D1 A D2, where @, does not contain wr,diff,|—|-symbols and ®; is a conjunction of atoms of the form
a =wr(b,i,e),i =diff(a,b),j = |a|. Finally, we add to ®; the missing atoms of the kind |a| = 7 required
by Definition 6.1.'2 |

Ezample 6.5. If we apply the procedure of Lemma 6.4 to the formula
c1 = wr(cz,i,e) A ler]| # |ez2|
we obtain the separated pair (31) of Example 6.2.
Next we show that O-instantiations suffice:

LEMMA 6.6. The following conditions are equivalent for a finite 0-instantiated separated pair ® = (P1, P2):
(i) @ is CARD(T1)-satisfiable;
(it) A\ D2 is Tr U EUF -satisfiable.

PrROOF. The meaning of the lemma is that the role of ®; is just that of contributing instances to
O-instantiation (such a role is exhausted when O-instantiation is done).

(7) = (41) is clear.
To prove (ii) = (i), let A be the model witnessing the satisfiability of A ®2 in T U EUF and let Z be the
set of all index variables occurring in ®; U ®5. According to the definition of a separated pair, for every

array variable a occurring in ®; U &5 there is an index variable l, such that:
AEfo()) # L+ 0<i<l,.

for all ¢ € Z (here f, is the unary function symbol replacing a in 771 U EUF, recall that formulae (19) have
been instantiated with index variables according to Definition 6.3).

The standardization A’ of A is the T1 U EUF-model obtained from A by modifying the values a(k) (for
all array variables a occurring in ®, and for all indexes k € INDEX different from the elements assigned in

A to the variables in) in such a way that we have
A Efak)=1Le (o <kVEk<O0),
A falk)=el <0<k <l, .

The standardization A" of A is still a model of A\ ®>. For instance, suppose that A ®» contains a literal of
the type rd(a,i) = e: since k is different from the elements assigned in A to the variables in Z, and 7 is in Z,
the changes above in the definition of f, introduced in A’ do not interfere with rd(a,i) = e, hence it is still
valid in A’. The other cases are analogous.

12The transformation of Lemma 6.4 does not introduce in ®; any formula of the kind diff,,(a,b) = k,, (for n > 1). These
formulee will however be introduced by the Step 1 of the interpolation algorithm of Section 7.

Manuscript submitted to ACM

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

Interpolation Results for Arrays with Length and MaxDiff 27

However, in A" now also the formulae (19), (22) and (18) hold: this is because the Z-instantiations of
the universal index quantifiers occurring in such formulae were taken care in A and their truth value is not
modified passing to A’, whereas the construction of A’ takes care of the instantiations outside Z.

Let us now define an CARD(T)-model M satisfying ®. We first build a structure N' where diff may
not be totally defined. We let INDEX" = INDEX* and ELEMV = ELEM?'; we take as ARRAY" the set of
all positive-support functions from INDEXY into ELEMV: this includes all functions of the form fa- In
addition, if /\ln:1 diff,(a1,a2) = kn, € ®1, then the related iterated maxdiff’s are defined in A" and we have
N E /\ln:1 diff,(a1,az2) = k, by the above construction. Thus ® holds in N and in order to obtain our
final M we only need to apply Theorem 4.4. O

From Lemmas 6.4 and 6.6, we get the following result:
THEOREM 6.7. The SMT(CARD(Tr)) problem is decidable for every index theory Tr.
FEzxzample 6.8. Let us show that
c1 = wr(cz,i,e) A ler]| # |e2| (32)
is not CARD(Ty)-satisfiable. This is obvious if one considers our axiom (3), however we want to obtain this

result from the above algorithm making a reduction to T7 U EU F-satisfiability. As we know from Example 6.5,

a separated pair ® = (®1, P2) equisatisfiable to (32) is the separated pair (31) of Example 6.2, namely:
D1 = {c1 = wr(ea,i,e), |c1]| =ley,|ea] =ley} P2 ={le; #£ley} -
For O-instantiations, we have to consider 3 index variables (namely 4, l.,,lc,). Thus, instantiating (18) gives
(e LAN0<i<l,)—rd(c,i)=ce

(t<0Vi>ly,Ve=_1)—rd(ci,i) =rd(cz,)

i #i—rd(er, i) =rd(cs,) (33)
le, #1—rd(ci,le,) =rd(ca,le,)
ley 1 —rd(ci,)ley =rd(c2,le,)
whereas instantiating (19) gives
ley >0 A (rd(ci,i) # L 0<i<le
ley 20 A (rd(ersle) # L 0< 1, <l
ley, 20 A (rd(ci,ley) # L 0<le, <l
(34)

)
)
)
ley >0 A (rd(c2,i) # L+ 0<1i<l,)
ley >0 A (rd(ca,le,) # L 50 < ey <loy)
ley >0 A (rd(ca,ley) # L 30 < loy < loy)

We can now see that formulae (33)-(34) are indeed T7 U EUF-inconsistent with I, # l., (a direct check is
slightly laborious, but an SMT-solver discharges instantaneously this proof obbligation).

Regarding complexity for the SMT(CARD(Tr)) problem, notice that the satisfiability of the quantifier-

free fragment of common index theories (like ZDL, LZA, LR.A) is decidable in NP; hence, for such index
Manuscript submitted to ACM

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

28 Ghilardi and Gianola, et al.

theories, an NP bound for our SMT(CARD(Tr))-problems is easily obtained, because 0-instantiation is
clearly finite and polynomial (all strings of universal quantifiers to be instantiated have length one).

The above decidability and complexity results apply also to CARDC(T7): one only simply has to allow
the ®1-component of a separation pair to contain also atoms of the form Const(i) = a and Definition 6.3 to

require that ®2(Z) contains all the Z-instances of the formulae (20) in case Const(i) = a € ;.

7 THE INTERPOLATION ALGORITHM

Since amalgamation is equivalent to quantifier-free interpolation for universal theories such as CARD(T7)
and CARDC(T7) (thanks to Theorem 2.4), Theorem 5.1 guarantees that CARD(T7) and CARDC (1) admit
quantifier-free interpolation. However, the proof of Theorem 5.1 is not constructive: hence, in order to
compute an interpolant for an unsatisfiable conjunction like ¥ (z,y) A ¢(y, 2), one needs in principle to
enumerate all quantifier-free formulee 6(y) that are consequences of ¢ and are inconsistent with 1. Since
the quantifier-free fragments of CARD(T;) and CARDC(T;) are decidable, this is an effective procedure
and, considering the fact that interpolants of jointly unsatisfiable pairs of formulae exist, it also terminates.
However, this type of algorithm is not practical. In this section, we provide a better and more practical
algorithm that relies on a hierarchical reduction to 77t U EUF. Our algorithm works for CARD(T7) only; for
CARDC(T7), we make some comments in Section 8.

Our problem is the following: given two quantifier-free formulae A° and B° such that A° A B° is not
satisfiable (modulo CARD(T7)), to compute a quantifier-free formula C such that

(i) CARD(T:) E A° — C;

(ii) CARD(T1) = C A B® — L;

(iii) C contains only the variables (of sort INDEX, ARRAY, ELEM) which occur both in A° and in B°.

Below, we work with ground formulae over signatures expanded with free constants instead of quantifier-
free formulae. We use letters A, B, ... for finite sets of ground formulae; the logical reading of a set of
formulae is the conjunction of its elements. For a signature 3 and a set A of formulae, ¥4 denotes the
signature X expanded with the free constants occurring in A. Let A and B be two finite sets of ground
formulae in the signatures ©4 and ©8, resp., and £¢ := 4 N 8. We ‘color’ a term, a literal, or a formula
© by calling it:

o AB-common iff it is defined over £¢;

o A-local (resp. B-local) if it is defined over 4 (resp. %5);

e A-strict (resp. B-strict) iff it is A-local (resp. B-local) but not AB-common;
e strict if it is either A-strict or B-strict.

There are a number of manipulations that can be freely applied to a jointly unsatisfiable pair A, B without
compromising the possibility of extracting an interpolant out of them. A list of such manipulations (called
‘metarules’) is supplied in [7], [8]. Here we need to introduce only some of them:

(i) we can add to A an A-local quantifier-free formula entailed by A (similarly we can add to B a B-local
quantifier-free formula entailed by B): the interpolant computed after such a transformation is trivially
an interpolant for the original pair too;

(ii) we can pick an A-local term ¢ and a fresh constant (to be considered A-strict from now on) and add
to A the equality x = t: again, the interpolant computed after such a transformation is trivially an

interpolant for the original pair too (the same observation extends to B);
Manuscript submitted to ACM

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

Interpolation Results for Arrays with Length and MaxDiff 29

(iii) we can pick an AB-common term t and a fresh constant x (to be considered AB-common from now
on) and add to both A and B the equality = = t: in this case, if 0 is the interpolant computed after
such a transformation, then 6(¢/z) is an interpolant for the original pair.

We shall often apply the above metarules (i)-(ii)-(iii) in the sequel.

7.1 The Algorithm

We reduce the problem of finding an interpolant of an unsatifiable pair (A°, B®) to an analogous polynomial
size problem in the weaker theory Tt U EUF.

Our unsatisfiable pair (A%, B®) needs to be preprocessed. Using the procedure in the proof of Lemma 6.4,
we can suppose that both A° and B° are given in the form of finite separated pairs. In fact, the procedure
of Lemma 6.4 just introduces constants in order to explicitly name terms, so that it fits within the above
explained remarks (see metarules (ii)-(iii)). The newly introduced constants are colored A-strict, B-strict or
AB-common depending on the color of the terms they name. Notice that because of this preprocessing, for
every A-strict (resp. B-strict, AB-common) array constant a, in A° (resp. Bo, A° N B°) there is an atom of
the kind |a| = l,.

To sum up, A is of the form A AY A A A and B? is of the form A BY A A\ B3, for separated pairs (A, A3)
and (BY, BY).

Our interpolation algorithm consists of three transformation steps (all of them fit our metarules (i)-(ii)-
(iii)). We let Na (resp. Ng) be the number of A-local (resp. B-local) index constants occurring within a wr
symbol in A° (resp. B°); we let also N be equal to 14 maz(Na, Ng).

Step 1. | This transformation must be applied for every pair of distinct AB-common ARRAY-constants ci, ca.
The transformation picks fresh INDEX constants ki, ...,kn (to be colored AB-common) and adds the atoms
diff,(c1,c2) =k, (foralln=1,...,N) to both sets A; and B;. This transformation fits metarule (iii).

Step 2.| We apply O-instantiation, that is we replace A with A(Za) and B with B(Zg), where Zy4 is
the set of A-local index constants and B is the set of B-local index constants (see Definition 6.3). This

transformation fits metarule (i).

Step 3. | As proved in Theorem 7.4 below, at this step Az A Be is Tr UEU F-inconsistent; since Tt UEUF has
quantifier-free interpolation by Theorem 2.5, we can compute an interpolant 6 of the jointly unsatisfiable pair
As, Bs. To get our desired CARD(T7)-interpolant, we only have to replace back in it the fresh AB-common

constants introduced by our trasformations by the AB-common terms they name.

Ezample 7.1. This is the classical example (due to R. Jhala) showing that ARext does not have quantifier-
free interpolation (one needs diff in the signature to recover it). Let A° be {¢1 = wr(ce,4,¢)} and B°
be {i1 # i2, rd(ci,i1) # rd(cz,i1), rd(c1,i2) # rd(ca,i2)}. Preprocessing adds the AB-common literals

lei| = ley, Je2| = ley to both A9 and BY. Step 1 introduces the AB-common atoms
diffl(cl,CQ) = k17 diff2(01, CQ) = ko

again to be added to both A} and BY. We now examine the O-instantiations A(Z4) and B(Zg) required
by Step 2. Such instantiations are finitely many, but their number is rather large, so we limit ourselves to
indicate a set of instantiations that is sufficient to produce an inconsistency in Step 3.

Manuscript submitted to ACM

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

30 Ghilardi and Gianola, et al.

Considering A(Z4), we add to the formulae (33),(34) from Example 6.8 also the folowing further instances

of (18)
k1 7é 7 — rd(cl, kl) = Td(C2, k)l)

ICQ 76 7 — rd(c1, kz) = T’d(CQ, k?g)
Considering B(Zg), we need the following instances of (19)

(35)

le;, >0 A (rd(cr,i1) L+ 0<141 <lg

)
>0 A TdCQ,h);ﬁJ_(—)OSilSch
)

)
(rd()
L >0 A (rd(eiyi2) 2 L+ 0<ix<l,) (36)
, >0 A (rd(ce,i2) # L <0<z <l,)
and also the following 6 instances of (22) (actually the first 4 formulas below can be added to A(Z4) too):
k1> ks >0
(rd(c1,k1) = (rd(c2, k1) = k1 =0
(rd(c1,k2) = (rd(c2, k2) = k2 =0

I, =

—~

s Nk1i=ko = k1 =0
i1 > ko — (Td(C1,i1) = (’r’d(CQ,’h) Vi =k
19 > ko — (Td(cl,iz) = (Td(CQ,iQ) Vie = k1.

The T7 U EUF-inconsistency of (33),(34),(35),(36),(37) with By is an easy problem for an SMT-solver (but
can also be checked manually with some effort).
Since we got the desired inconsistency, we can rely in Step 3 on a black-box interpolation algorithm for

Tr U EUF. Such algorithm for instance produces the formula
ko=0 A (k‘l =ko V rd(cl, ICQ) = ’I“d(CQ, kg)) (38)

which is TTUEU F-implied by A(Z4) and TrUEU F-inconsistent with B(Zg). To get an CARD(T7)-interpolant,
it is enough to replace ki1, k2 by diffi(c1,c2),diffa(c1, c2) respectively in (38).

Ezxample 7.2. We let
A° = {diff(a1,a2) = j,diff(ar, 1) = ji,diff(az, c2) = jo}
B°={j<l, j1 <l, ja<l, rd(c1,l) # rd(c2,1)}

In the preprocessing step, we must add the atoms |a1| = la;, |az| = la, to A and |c1| = ley, |ca| = le, to
both A9 and BY. Since N4 = Np =0, we have N = 1; Step 1 adds the AB-common atom diff(c1,c2) = k1
with fresh index variable k;. Step 2 makes the required 0-instantiations producing a 0-instantiated separated

pair, let us call it (A, B). From such instantiations, we get in Step 3 the T7 U EUF-interpolant

k1 < max(j1, ja, J)- (39)

Manuscript submitted to ACM

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

Interpolation Results for Arrays with Length and MaxDiff 31

This formula is in fact 77 U EUF-implied by A1 and T7 U EUF-inconsistent with By (notice that B contains,
in addition to j < I, j1 <, j2 <l,rd(c1,l) # rd(ce,l), also

k1 <l — rd(c1,l) = rd(ce, 1)

by (22)). Using the recover instruction of meta-rule (iii), we get form (39) the CARD(T1)-interpolant
diff(c1, c2) < max(ji, j2, j)-

FEzample 7.3. Let A° be
{diff(a,cl) = ’L'17df|.ff(b7 02) =1i1,a1 = wr(b,il,el), |ll| =k,
a= wr(a13i3763)7 |a‘1| = ka ‘b1| = k7 |cl| = k? |62| = k}

and let B® be {rd(ci,i1) # rd(ca,iz), i1 < iz, i2 < i3, i3 <k, |c1| =k, |c2| = k}.

We do not need any preprocessing here; since N = 3,'® Step 1 adds the AB-common atoms
diff1(01762) = ki1, diffz(cl,CQ) = ko, diff3(c1,02) =ks3 .

Step 2 produces a separated pair (A, B) such that As A Bs is Tr U EUF-inconsistent (inconsistency can be
tested via an SMT-solver like z3 [14] or MATHSAT [6]). The related T7 U EUF-interpolant (once k1, k2 and ks
are replaced by diffi(c1,c2),diffa(c1,c2) and diffz(c1, c2), respectively) gives our CARD(Tr)-interpolant.

THEOREM 7.4. The above 3-steps algorithm computes a quantifier-free interpolant for every CARD(T7)-

mutually unsatifiable pair A°, B® of quantifier-free formulae.

PrOOF. We only need to prove that Step 3 really applies.

Suppose not; let A = (A1, A2) and B = (B1, B2) be the separated pairs obtained after applications of
Steps 1 and 2. If Step 3 does not apply, then Az A Bz is Tr U EUF-consistent. We claim that (A, B) is
CARD(Tr)-consistent (contradicting that (A°, B®) C (A, B) was CARD(T)-inconsistent).

Let M be a Tr U EUF-model of Ay A Ba. M is a two-sorted structure (the sorts are INDEX and ELEM)
endowed for every array constant d occurring in A U B of a function d™ : INDEX* — ELEM™. In addition,
INDEX™ is a model of T7. We list the properties of M that comes from the fact that our Steps 1-2 have

been applied (below, we denote by k™M the element of INDEX™ assigned to an index constant k)14

(a) we have that M = A\ A1(Za) (where Z4 is the set of A-local constants) and M = A Bi(Zg) (where
g is the set of B-local constants): this is because (A1, A2) and (B1, B2) are O-instantiated by Step
915

(b) for AB-common array variables c1, c2, we have that A;NB; contains a literal of the kind diff,(c1,c2) =
kn for n < N; suppose that M E ., = I, 16 and that k is an index constant such that M Ek#I
for all AB-common index constant l; then, we can have M |= c¢1(k) # c2(k) only when M =k < kn:
this is because Step 1 has been applied and because of (a).

We expand M to an ARext(T7)-structure A and endow it with an assignment to our A-local and B-local
variables, in such a way that all diff operators mentioned in A;, B are defined and all formulae in A, B

3Recall that N is defined as 1 + max(Na, Ng), where N4 (resp. Ng) be the number of A-local (resp. B-local) index
constants occurring within a wr symbol in A° (resp. B).

M Thus if e.g. k,l are index constants, M |= k = [is the same as EM =
15The sets A1(Za), B1(Zp) are introduced in Definition 6.3.

16Recall that ley,ley are the AB-common constants such that the literals |c1| = lc;, |ca| = lc, belongs to A1 N By.

™.

Manuscript submitted to ACM

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

32 Ghilardi and Gianola, et al.

are true. In view of Theorem 4.4, this structure can be expanded to the desired full model of CARD(T7).
We take INDEX" and ELEMV to be equal to INDEX™ and ELEM™; the T;-reduct of A will be equal to the
Tr-reduct of M and we let 2N = 2™ for all index and element constants occurring in AU B. ARRAYY is the
set of all positive support functions from INDEX? into ELEMY. The interpretation of A-local and B-local
constants of sort ARRAY is more subtle. We need a détour to explain it.

Let k be an index constant such that M |= k # [for all A-local index constants I; we introduce an
equivalence relation = on the set of A-local array variables as follows: =y is the smallest equivalence relation
that contains all pairs (a1, a2) such that M = l,, = la, and moreover an atom of one of the following two
kinds belongs to AY: (I) a1 = wr(az,i,e); (II) diff(ai,a2) =1, for an [such that M =1 < k.

Claim1: for every A-local constants a1, az such that a; = a2, the number of the A-local constants j such
that M = k < j and a?'(j™) # a3? (™) is less or equal to Na < N.

Proof of Claim1. This is easily shown by induction on the length of the finite sequence witnessing a1 =g, as.
According to the definition of reflexive-symmetric-transitive closure, if a1 =i a2 holds then there are
do, . ..,dn such that do = ai1,d, = a2 and for each j < n, we have that either (d;,d;+1) or (dj+1,d;) satisfies
the above requirements: the induction is on such n. Notice that the statement is not entirely obvious because
the number of the A-local index constants is much bigger than N4 (for instance, it includes the AB-common
constants introduced in Step 1). However induction is easy: it goes through the atoms occurring in the input
set AY and uses (a). The required observations are the following: if d; = wr(d;+1,4,e) € A, then the only
A-local constant where df/l and dff,l_l can differ is 4; if diff(d;,dj41) =1 € A? and M =1 < k, then djw
and dﬁ_l cannot differ on any A-local constant above k™. Tterating these observations during induction, the

claim is clear: we can collect at most the set of the A-local constants occurring in A? within a wr symbol.

Claim2: if ¢1,ca are AB-common and ¢ =g cz2, then ¢ (k™) = 31 (k™).

Proof of Claim2. We apply Claiml to the AB-common array variables c¢i1, c2 and let us consider the atoms
diffi(c1,c2) = k1,...,diffn(c1,c2) = kn € Ay. Now ki, ..., kn are all AB-common (hence also A-local)
constants, moreover N > N4 and the number of the A-local constants above k™ where c1, co differ is
at most Na. According to (b) above, if for absurdity ¢{'(k™) = ¢1(k™) does not hold, then we have
M Ek < kn. Since M =k > 0 (otherwise ¢! (k™) = 31 (k™) follows), this means by Lemma 3.5 that

we have M = ki1 > -+ > kn > 0. However ki,...,kn are all A-local constants above k, their number is
bigger than Na, hence we must have M = ¢t (kM) = 31 (kM) for some i = 1,..., N; the latter implies
M= ki =---=kny =0 by Lemma 3.5, absurd. —

In order to interpret A-local constants of sort ARRAY, we assign to an A-local constant a of sort ARRAY the
function @’ defined as follows for every i € INDEX:

(1-i) if 7 is equal to k™, where k is an A-local constant, then a (i) := o™ (k™);

(f-ii) if ¢ is different from EM for every A-local constant k, but nevertherless ¢ is equal to & for some
(necessarily B-strict) index constant k and there is an AB-common array variable ¢ such that ¢ =y, q,
then oV (i) is equal to ¢™ (k™M)

(1-iii) in the remaining cases, aV (i) is equal to el or L™ depending whether M =0 < i A4 < I, holds or

I

not.

Notice that o’ (i) is univocally specified in case (1-ii) because of the above Claim2. We now show that

Manuscript submitted to ACM

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716

Interpolation Results for Arrays with Length and MaxDiff 33

(*) all a are positive-support functions and all formule from A1 U Az are true in N.

Recall in fact that formulee in A; are Boolean combinations of A-local atoms of the kind (30): these are
Tr U EUF-atoms and, due to their shape, each of them is true in M iff it is true in A (this is because rd
functions are applied only to A-local index constants, so that the modifications we introduced for passing
from a™ to o’V does not affect truth of these atoms). Concerning formulee in Ai, these are all wr,diff
and |—|-atoms.'” The reason why they are true in A/ is the O-instantiation performed by Step 2 (see (a)
above). For example, consider an atom of the kind |a| = I, appearing in A;: since formulae (19) have
been instantiated with all the A-local index constants via Step 2, for all A-local index constant h, we have
M = rd(a,h) # L iff M |=0 < h <i. Now, thanks to definition (1), for all the elements h € INDEX" we
have an analogous result: in case h is equal to k™ for some A-local constant k, we employ definition (7-1),
otherwise we use ({-ii) or (f-iii) (for ({-ii), notice that a = ¢ implies that M = [, = l. and O-instantiation
guarantees that ¢ (k™) is equal to L™ or to el depending whether M = 0 < k Ak < I. holds or
not). Hence we get that A satisfies formula (19), since the universal quantifier has been instantiated in all
possible ways. Thus A |= |a| = lo, by Lemma 3.3. The other cases are similar: notice in particular that
if a = wr(a’,i,e) € Ay then a = o'. If diff(a,a’) = i € Ai, the relevant case is when M =i < k and
M = lo; = la,, but in this case we have a = a’ too.

The assignments to the B-local array variables b are defined analogously, so that
(*) all WV are positive-support functions and all formule from By U Bz are true in N.

There is however one important point to notice: for all AB-common constants ¢ of sort ARRAY, our
specification of ¢™ does not depend on the fact that we use the above definition for A-local or for B-local
array variables: to see this, we only have to notice that ¢ = ¢ holds in case ({-ii) is applied. This remark

concludes our proof. O

It is not difficult to see that the quantifier-free T U EU F-interpolation problem generated by our algorithm

is of polynomial size, thus a polysize reduction obtains.

8 FURTHER RELATED WORK AND CONCLUSIONS

We introduced two theories of arrays, namely the theory CARD(T7) of contiguous arrays with maxdiff and
its extension CARDC(Tr) that also supports ‘constant’ arrays’. These theories are strictly more expressive
than McCarthy’s theory and the other variants studied in the literature: notably, strong length of arrays
is definable, and inside it arrays are fully defined in every memory location. We proved that CARDC(Tr)
admits general interpolation by showing that its models are strongly amalgamable; the existence of amalgams
also implies that CARD(T7) has interpolants. We also studied the SMT problem for CARD(T7) and showed
through instantiations techniques that it is decidable. Finally, we provided a general algorithm for computing
CARD(Tr) quantifier-free interpolants that relies on a polynomial reduction to the problem of computing
general interpolants for the index theory. Differently from the previous algorithm in [17], this procedure

avoids full instantiation of terms.

7In addition, we have diff,-atoms for n > 1, but these are all AB-common atoms that were not part of the initial pair
A® BO. In fact they are also true in N, but strictly speaking we do not need to check this fact to get the absurdity that
A° A BY is CARD(Ty)-consistent.

Manuscript submitted to ACM

1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

34 Ghilardi and Gianola, et al.

One future research direction regards the implementation of this procedure, which is still missing. In
the last decade, some implemented approaches have been introduced to compute interpolants for different
theories, by relying on different techniques. For complex theories, in [26] McMillan proposed an interpolating
proof calculus to compute interpolants via refutational proofs obtained from the z3 SMT-solver. It is worth
mentioning his approach because it takes advantages from the flexibility of the z3 solver to deal with several
theories and their combination: it makes use of a secondary interpolation engine in order to ‘fill the gaps’ of
refutational proofs introduced by theory lemmas, which are specific formulee derived by the satellites theories
encoded in z3. This secondary engine only needs an interpolation algorithm for QF_UFLIA. This approach
can be used to compute interpolants for array theories, but since here theory lemmas use quantified formulze,
the method can generate quantified formulae.

Concerning in particular array theories, another notable approach for computing interpolants is due to
the authors of [18], which exploited the proof tree preserving interpolation scheme from [12] to construct
interpolants via a resolution proof. This method supports the use of the diff operation between arrays in
order to compute quantifier-free interpolants, but the semantic interpretation of diff is undetermined as
in [7].

In [9], the authors presented AXDInterpolator [1], an implementation of the interpolation algorithm
from [17], which allows the user to choose z3, MATHSAT, or SMTINTERPOL ([11]) as the underlying
interpolation engines. In order to show its feasibility, it was tested against a benchmark based on C programs
from the ReachSafety-Arrays and MemSafety-Arrays tracks of SV-COMP [4]. Since many C programs
from [4] require the usage of array length (and, in particular, strong length) we plan to develop a tool that
implements the new algorithm for contiguous arrays presented in this paper.

There is still a question concerning our interpolation algorithm that needs to be investigated: extending
the algorithm to the theory CARDC(T) (with constant arrays in the language). In order to handle constant
arrays, the construction of Theorem 7.4 is still appropriate, except for the fact that condition (f-ii) should
not be applied to define Const(i)" when i is an A-strict constant such that i’ is equal to j* for some AB-
common j. To avoid this, one could introduce right after Step 1 some form of guessing for equalities between
index constants: however, such a guessing (based on colorings) would create branches and consequently
would not produce a polynomial instance of a T7 U EUF-interpolation problem in Step 3. This issue needs
further analysis.

Finally, although quite challenging, it would be interesting to extend our interpolation results also to

array theories combined with cardinality constraints, similar to those introduced, e.g., in [2],[28].

REFERENCES

[1] 2021. AXDInterpolator. https://github.com/typesAreSpaces/AXDInterpolator Accessed: 2021-10-12.

[2] Francesco Alberti, Silvio Ghilardi, and Elena Pagani. 2017. Cardinality constraints for arrays (decidability results and
applications). Formal Methods Syst. Des. 51, 3 (2017), 545-574. https://doi.org/10.1007/s10703-017-0279-6

[3] Paul D. Bacsich. 1975. Amalgamation properties and interpolation theorems for equational theories. Algebra Universalis
5 (1975), 45-55.

[4] Dirk Beyer. 2021. Software Verification: 10th Comparative Evaluation (SV-COMP 2021). In Proc. of TACAS 2021
(LNCS, Vol. 12652). Springer, Berlin, Heidelberg, 401-422. https://doi.org/10.1007/978-3-030-72013-1_-24

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable About Arrays?. In Proc. of VMCAI
2006 (LNCS, Vol. 3855). Springer, Berlin, Heidelberg, 427-442. https://doi.org/10.1007/11609773_28

[6] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebastiani. 2008. The
MathSAT 4 SMT Solver. In Proc. of CAV 2008 (LNCS, Vol. 5123). Springer, Berlin, Heidelberg, 299-303. https:

Manuscript submitted to ACM

https://github.com/typesAreSpaces/AXDInterpolator
https://doi.org/10.1007/s10703-017-0279-6
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-70545-1_28

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820

Interpolation Results for Arrays with Length and MaxDiff 35

(7]

[8

[9

(10]
(11]

2]
3]
[14]
[15]
[16]

(17]

(18]
(19]
[20]

[21]

(22]

(23]
(24]
(25]

(26]
(27]

(28]
(29]
(30]
(31]

(32]

//doi.org/10.1007/978-3-540-70545-1_28
Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. 2012. Quantifier-Free Interpolation of a Theory of Arrays. Log.
Methods Comput. Sci. 8, 2 (2012). https://doi.org/10.2168/LMCS-8(2:4)2012
Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. 2014. Quantifier-free interpolation in combinations of equality
interpolating theories. ACM Trans. Comput. Log. 15, 1 (2014), 5:1-5:34. https://doi.org/10.1145/2490253
José Abel Castellanos Joo, Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur. 2021. AXDInterpolator: A Tool for
Computing Interpolants for Arrays with MaxDiff. In Proc. of SMT 2021, Vol. 2908. CEUR Workshop Proceedings,
40-52. http://ceur-ws.org/Vol-2908/paperl5.pdf
C. C. Chang and H. Jerome Keisler. 1990. Model Theory (third ed.). North-Holland, Amsterdam-London.
Jirgen Christ, Jochen Hoenicke, and Alexander Nutz. 2012. SMTInterpol: An Interpolating SMT Solver. In Proc. of
SPIN 2012 (LNCS, Vol. 7385). Springer, Berlin, Heidelberg, 248-254.
Jiirgen Christ, Jochen Hoenicke, and Alexander Nutz. 2013. Proof Tree Preserving Interpolation. In Proc. of TACAS
2018 (LNCS, Vol. 7795). Springer, Berlin, Heidelberg, 124-138. https://doi.org/10.1007/978-3-642-36742-7_9
William Craig. 1957. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J.
Symbolic Logic 22 (1957), 269-285.
Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT Solver. In Proc. of the TACAS 2008 (LNCS,
Vol. 4963). Springer, Berlin, Heidelberg, 337-340. https://doi.org/10.1007/978-3-540-78800-3_24
Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, and Cesare Tinelli. 2012. Ground interpolation for the theory of
equality. Log. Methods Comput. Sci. 8, 1 (2012). https://doi.org/10.2168/LMCS-8(1:6)2012
Silvio Ghilardi. 2004. Model Theoretic Methods in Combined Constraint Satisfiability. J. Autom. Reasoning 33, 3-4
(2004), 221-249.
Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur. 2021. Interpolation and Amalgamation for Arrays with MaxDiff.
In Proc. of FOSSACS 2021 (LNCS, Vol. 12650). Springer, Berlin, Heidelberg, 268-288. https://doi.org/10.1007/978-
3-030-71995-1_14
Jochen Hoenicke and Tanja Schindler. 2018. Efficient Interpolation for the Theory of Arrays. In Proc. of IJCAR 2018
(LNCS, Vol. 10900). Springer, Berlin, Heidelberg, 549-565. https://doi.org/10.1007/978-3-319-94205-6_36
Jochen Hoenicke and Tanja Schindler. 2019. Interpolation and the Array Property Fragment. CoRR abs/1904.11381
(2019). arXiv:1904.11381 http://arxiv.org/abs/1904.11381
Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. 2006. Interpolation for Data Structures. In Proc. of
SIGSOFT/FSE 2006. ACM, 105-116.
Emil W. Kiss, Lészl6 Marki, Péter Prohle, and Walter Tholen. 1982. Categorical algebraic properties. A compendium
on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity. Studia Sci. Math. Hungar.
18, 1 (1982), 79-140.
Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh, and Arie Gurfinkel. 2019. Interpolating Strong Induction.
In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.).
Springer, 367-385. https://doi.org/10.1007/978-3-030-25543-5_21
John McCarthy. 1962. Towards a Mathematical Science of Computation. In Proc. of IFIP Congress 1962. North-Holland,
21-28.
Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Proc. of CAV 2003 (LNCS, Vol. 2725).
Springer, Berlin, Heidelberg, 1-13. https://doi.org/10.1007/978-3-540-45069-6_1
Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proc. of CAV 2006 (LNCS, Vol. 4144). Springer,
Berlin, Heidelberg, 123-136.
Kenneth L. McMillan. 2011. Interpolants from Z3 proofs. In Proc. of FMCAD 2011. FMCAD Inc., 19-27.
Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating Decision Procedures. ACM Trans. Program.
Lang. Syst. 1, 2 (1979), 245-257.
Rodrigo Raya and Viktor Kunkak. 2022. NP Satisfiability for Arrays as Powers. In Proc. of VMCAI 2022 (LNCS,
Vol. 13182). Springer, Berlin, Heidelberg, 301-318. https://doi.org/10.1007/978-3-030-94583-1_15
Andrey Rybalchenko and Viorica Sofronie-Stokkermans. 2007. Constraint Solving for Interpolation. In Proc. of VM CAI
2007 (LNCS, Vol. 4349). Springer, Berlin, Heidelberg, 346-362. https://doi.org/10.1007/978-3-540-69738-1_25
Andrey Rybalchenko and Viorica Sofronie-Stokkermans. 2010. Constraint solving for interpolation. J. Symb. Comput.
45, 11 (2010), 1212-1233. https://doi.org/10.1016/j.jsc.2010.06.005
Viorica Sofronie-Stokkermans. 2006. Interpolation in Local Theory Extensions. In Proc. of IJCAR 2006 (LNCS,
Vol. 4130). Springer, Berlin, Heidelberg, 235-250. https://doi.org/10.1007/11814771_21
Viorica Sofronie-Stokkermans. 2008. Interpolation in Local Theory Extensions. Log. Methods Comput. Sci. 4, 4 (2008).
https://doi.org/10.2168 /LMCS-4(4:1)2008

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.2168/LMCS-8(2:4)2012
https://doi.org/10.1145/2490253
http://ceur-ws.org/Vol-2908/paper15.pdf
https://doi.org/10.1007/978-3-642-36742-7_9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.2168/LMCS-8(1:6)2012
https://doi.org/10.1007/978-3-030-71995-1_14
https://doi.org/10.1007/978-3-030-71995-1_14
https://doi.org/10.1007/978-3-319-94205-6_36
https://arxiv.org/abs/1904.11381
http://arxiv.org/abs/1904.11381
https://doi.org/10.1007/978-3-030-25543-5_21
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-540-69738-1_25
https://doi.org/10.1016/j.jsc.2010.06.005
https://doi.org/10.1007/11814771_21
https://doi.org/10.2168/LMCS-4(4:1)2008

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

36

[33]
[34]
[35]
[36]

(37]

Ghilardi and Gianola, et al.

Viorica Sofronie-Stokkermans. 2016. On Interpolation and Symbol Elimination in Theory Extensions. In Proc. of IJCAR
2016 (LNCS, Vol. 9706). Springer, Berlin, Heidelberg, 273-289. https://doi.org/10.1007/978-3-319-40229-1_19
Viorica Sofronie-Stokkermans. 2018. On Interpolation and Symbol Elimination in Theory Extensions. Log. Methods
Comput. Sci. 14, 3 (2018). https://doi.org/10.23638 /LM CS-14(3:23)2018

Nishant Totla and Thomas Wies. 2013. Complete instantiation-based interpolation. In Proc. of POPL 2013. ACM,
537-548. https://doi.org/10.1145/2429069.2429132

Nishant Totla and Thomas Wies. 2016. Complete Instantiation-Based Interpolation. J. Autom. Reasoning 57, 1 (2016),
37-65. https://doi.org/10.1007/s10817-016-9371-7

Yakir Vizel and Arie Gurfinkel. 2014. Interpolating Property Directed Reachability. In Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings. 260-276. https://doi.org/10.1007/978-3-319-08867-9-17

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.23638/LMCS-14(3:23)2018
https://doi.org/10.1145/2429069.2429132
https://doi.org/10.1007/s10817-016-9371-7
https://doi.org/10.1007/978-3-319-08867-9_17

	Abstract
	1 Introduction
	1.1 Plan of the paper

	2 Formal Preliminaries
	3 Arrays with MaxDiff
	4 Embeddings
	5 Strong Amalgamation for CARDC(TI)
	5.1 Amalgam constructions
	5.2 The CARDC(TI)-amalgam is strong

	6 Satisfiability
	7 The interpolation algorithm
	7.1 The Algorithm

	8 Further Related Work and Conclusions
	References

