
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Interpolation Results for Arrays with Length and MaxDiff

SILVIO GHILARDI, Università degli Studi di Milano, Italy

ALESSANDRO GIANOLA, Free University of Bozen-Bolzano, Italy

DEEPAK KAPUR, University of New Mexico, USA

CHIARA NASO, Università degli Studi di Milano, Italy

In this paper, we enrich McCarthy’s theory of extensional arrays with a length and a maxdiff operation. As is

well-known, some diff operation (i.e. some kind of difference function showing where two unequal array differ) is

needed to keep interpolants quantifier-free in array theories; our maxdiff operation returns the max index where two

arrays differ and so it has a univocally determined semantics. The length function is a natural complement of such a

maxdiff operation and is needed to handle real arrays.

Obtaining interpolation results for such a rich theory is a surprisingly hard task. We get such results via a thorough

semantic analysis of the models of the theory and of their amalgamation and strong amalgamation properties. The

results are modular with respect to the index theory and we show how to convert them into concrete interpolation

algorithms via a hierarchical approach realizing a polynomial reduction to interpolation in linear arithmetics endowed

with free function symbols.

CCS Concepts: � Theory of computation → Logic and verification; Automated reasoning; Verification

by model checking.

Additional Key Words and Phrases: SMT, interpolation, arrays, amalgamation

ACM Reference Format:

Silvio Ghilardi, Alessandro Gianola, Deepak Kapur, and Chiara Naso. 2022. Interpolation Results for Arrays with

Length and MaxDiff . 1, 1 (September 2022), 36 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Craig Interpolation Theorem [13] is a well-known result in first logic that, given an entailment between

two logical formulae 𝛼 and 𝛽, establishes the existence of a third formula 𝛾 that shares its non-logical

symbols with both 𝛼 and 𝛽 and such that it is entailed by 𝛼 and entails 𝛽. Studying interpolation has a

long-standing tradition also in non-classical logics and in algebraic logic. Nevertheless, interpolation has been

obtaining an increasing attention in automated reasoning and formal verification: since McMillan’s seminal

papers [24, 25], interpolation has been successfully applied in software model checking, also in combination

with orthogonal techniques like PDR [37] or 𝑘-induction [22]. The reason why interpolation techniques are

Authors’ addresses: Silvio Ghilardi, Università degli Studi di Milano, Milan, Italy, silvio.ghilardi@unimi.it; Alessandro Gianola,

Free University of Bozen-Bolzano, Bolzano, Italy, gianola@inf.unibz.it; Deepak Kapur, University of New Mexico, Albuquerque,

New Mexico, USA, kapur@cs.unm.edu; Chiara Naso, Università degli Studi di Milano, Milan, Italy, chiaran97@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Ghilardi and Gianola, et al.

so attractive is because they allow to discover in a completely automatic way new atoms (more precisely,

existing predicates with new arguments) that might contribute to the construction of invariants. In fact,

software model-checking problems are typically infinite state, so invariant synthesis may require introducing

formulae whose search is not finitely bounded. One way to discover them is to analyze spurious error traces;

for instance, if the system under examination (described by a transition formula 𝑇𝑟(𝑥, 𝑥′)) cannot reach in

𝑛-step an error configuration in 𝑈(𝑥) starting from an initial configuration in 𝐼𝑛(𝑥), this means that the

formula

𝐼𝑛(𝑥0) ∧ 𝑇𝑟(𝑥0, 𝑥1) ∧ · · · ∧ 𝑇𝑟(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑈(𝑥𝑛)

is inconsistent (modulo a suitable theory 𝑇). From the inconsistency proof, by computing an interpolant,

say at the 𝑖-th iteration, one can produce a formula 𝜑(𝑥) such that, modulo 𝑇 , we have

𝐼𝑛(𝑥0) ∧
𝑖⋀︁

𝑗=0

𝑇𝑟(𝑥𝑗−1, 𝑥𝑗) |= 𝜑(𝑥𝑖) and 𝜑(𝑥𝑖) ∧
𝑛⋀︁

𝑗=𝑖+1

𝑇𝑟(𝑥𝑗−1, 𝑥𝑗) ∧ 𝑈(𝑥𝑛) |= ⊥. (1)

This formula (and the atoms it contains) can contribute to the refinement of the current candidate loop

invariant guaranteeing safety. This fact can be exploited in many different ways during invariant search,

depending on various techniques employed. It should be noticed however that interpolants are not unique

and that different interpolation algorithms may return interpolants of different quality: all interpolants

restrict search, but not all of them might be conclusive.

Model-checking applications usually require that such computed interpolants are not arbitrary but present

specific shapes so as to guarantee their concrete usability. Since in many cases studied in software verification

the underlying theories have a decidable quantifier-free fragment (but are undecidable or have prohibitive

complexity outside), the most natural choice is to consider quantifier-free interpolants. However, even in

case 𝛼 and 𝛽 are quantifier-free, Craig’s Theorem does not guarantee that an interpolant 𝛾 is quantifier-free

too. Indeed, this property, called ’quantifier-free interpolation’, does not hold in general for arbitrary first

order theories. It is then a non-trivial (and, very often, challenging) problem to prove that useful theories

admit quantifier-free interpolation.

In this paper, we are interested in studying the problem of quantifier-free interpolation for an expressive

datatype theory that strictly extends the well-studied theory of arrays with extensionality. Such a theory

was introduced by McCarthy in [23]: the main operations considered are the write operation (i.e. the array

update) and the read operation (i.e., the access to the content of an array cell). As such, this theory is suitable

to formalize programs over arrays, like standard copying, comparing, searching, sorting, etc. functions;

verification problems of this kind are collected in the SV-COMP benchmarks category “ReachSafety-Arrays”1,

where safety verification tasks involving arrays of finite but unknown length are considered.

By itself, the theory of arrays with extensionality does not have quantifier free interpolation [20].2

Moreover, although its quantifier-free fragment is decidable, it is well-known that this theory in its full

generality is undecidable as shown in [5]; nonetheless, in the same paper, the authors studied a significant

decidable fragment, the so-called ‘array property fragment’, which strictly extends the quantifier-free one.

The array property fragment is expressive enough to formalize several benchmarks; however, as proved

1https://sv-comp.sosy-lab.org/2020/benchmarks.php
2This is the counterexample (due to R. Jhala): the formula 𝑥 = 𝑤𝑟(𝑦, 𝑖, 𝑒) is inconsistent with the formula 𝑟𝑑(𝑥, 𝑗) ̸=
𝑟𝑑(𝑦, 𝑗) ∧ 𝑟𝑑(𝑥, 𝑘) ̸= 𝑟𝑑(𝑦, 𝑘) ∧ 𝑗 ̸= 𝑘, but all possible interpolants require quantifiers to be written

Manuscript submitted to ACM

https://sv-comp.sosy-lab.org/2020/benchmarks.php

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Interpolation Results for Arrays with Length and MaxDiff 3

int a[N];
int b[N];
int I = 0;
while I < N do

b[I] = a[I];
I++;

end
assert(a = b);

∙ 𝐼𝑛(𝑎, 𝑏, 𝐼) ≡ 𝐼 = 0 ∧ |𝑎| = 𝑁 − 1 ∧ |𝑏| = 𝑁 − 1 ∧𝑁 > 0
∙ 𝑇𝑟(𝑎, 𝑏, 𝐼, 𝑎′, 𝑏′, 𝐼 ′) ≡ 𝐼 < 𝑁 ∧ 𝐼 ′ = 𝐼 + 1 ∧ 𝑎′ = 𝑎 ∧ 𝑏′ =
𝑤𝑟(𝑏, 𝐼, 𝑟𝑑(𝑎, 𝐼))

∙ 𝑈(𝑎, 𝑏) ≡ 𝑎 ̸= 𝑏 ∧ 𝐼 = 𝑁

Fig. 1. Strcpy function: code and associated transition system (with program counter missed in the latter for simplicity).
Loop invariant: 𝑎 = 𝑏 ∨ (𝑁 > diff(𝑎, 𝑏) ∧ diff(𝑎, 𝑏) ≥ 𝐼).

in [19], it is not closed under interpolation. Thus, a particularly challenging but interesting problem is that

of identifying expressive extensions of the quantifier-free fragment of arrays that are still decidable but also

enjoy interpolation: this is what we address in this paper.

A first attempt in this direction is in [7], where a variant of McCarthy’s theory was introduced by

Skolemizing the axioms of extensionality. This variant turned out to enjoy quantifier-free interpolation [7],[36].

However, this Skolem function diff is generic because its semantic interpretation is undetermined. Moreover,

all the array theories mentioned so far allow unlimited out-of-bound write operations and so cannot directly

express the notion of array length, which is fundamental when formalizing the real behavior of programs.

Length is essential for the faithful logical formalization of benchmarks coming from software verification,

such as C programs included in the SV-COMP competition [4].

These are the main reasons why in [17] the theory was further enriched. There, the semantics of diff,

called maxdiff, is uniquely determined in the models of the theory and is more informative: it returns the

biggest index where two different arrays differ. The effectiveness of quantifier-free interpolation in the theory

of arrays with maxdiff is exemplified in the simple example of Figure 1: the invariant certifying the assert

in line 7 of the Strcpy algorithm can be obtained taking a suitable quantifier-free interpolant out of the

spurious trace (1) already for 𝑛 = 2.

In the theory considered in [17] a weak notion of length, called ‘weak length’ from now on, is also

introduced. The main contribution of [17] is to show that this enriched theory has quantifier-free interpolants

and its quantifier-free fragment is decidable. Still, some expressive limitations (shared with the previous

literature) persist: arrays are not forced to be completely defined inside their allocation interval (when an

array satisfies this property, we call it ‘contiguous’), because they might contain undefined values in some

location. Hence, the weak length defined there is is not powerful enough to represent the notion of length

used in practice and to adequately formalize real arrays occurring in computer programs. Moreover, although

in [17] a complete terminating procedure for computing interpolants is provided, a complexity upper bound

is given only in the simple basic case where indexes are just linear orders; for more complex arithmetical

theories of indexes, no complexity analysis is carried out and the algorithm becomes quite impractical (it

does not have even a primitive recursive bound for termination).

This paper is a substantially revised version and extension of the conference paper [17]: we overcome

here all the aforementioned limitations. For that purpose, we introduce the very expressive theory of

contiguous arrays with maxdiff 𝒞𝒜ℛ𝒟(𝑇𝐼) (parameterized over an index theory 𝑇𝐼), which improves and

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Ghilardi and Gianola, et al.

strictly extends the theory presented in [17] by requiring arrays to be all contiguous. This makes the

theory more adequate to represent arrays used in common programming languages. Moreover, in contrast

to [17] where only amalgamation is shown, we prove here a strong amalgamation result, when 𝒞𝒜ℛ𝒟(𝑇𝐼)

is enriched with ‘constant arrays’ of a fixed length with a default value in all their locations. Notably,

this not only yields that quantifier-free interpolants exist, but also that interpolation is preserved under

disjoint signatures combinations and holds in presence of free function symbols (see the definition of ‘general

interpolation’ below). This result is completely novel and particularly challenging to be proven, since it

requires a sophisticated model-theoretic machinery and a careful algebraic analysis of the class of all models.

We also radically re-design the interpolation algorithm, avoiding the use of unbounded loops and of

impractical full instantiation routines. Our new 3-Steps algorithm from Section 7 reduces the computation of

interpolants of a jointly unsatisfiable pair of constraints to a polynomial size instance of the same problem in

the underlying index theory enriched with unary function symbols. As such, the new algorithm becomes part

of the hierarchical interpolation algorithms family [32] and in particular somewhat resembles the algorithm

presented in [36] for array theory enriched with the basic diff symbol. We underline that one aspect making

our problems technically more challenging than similar problems investigated in the literature is the fact that

we handle a combination with very expressive index theories: such a combination is non-disjoint because the

total orderings on indexes enter into the specification of the maxdiff and length axioms for arrays.

1.1 Plan of the paper

In the following, we call ℰ𝒰ℱ the theory of equality and uninterpreted symbols. We introduce two novel

theories in Section 3: 𝒞𝒜ℛ𝒟(𝑇𝐼), i.e., the theory of contiguous arrays with maxdiff, and 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼), which

is an extension of 𝒞𝒜ℛ𝒟(𝑇𝐼) also containing ‘constant arrays’ of a fixed length with a default value (called

‘𝑒𝑙’) in all locations. The main technical results are that, for every index theory 𝑇𝐼 :

(i) 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) has general quantifier-free interpolation;

(ii) 𝒞𝒜ℛ𝒟(𝑇𝐼) enjoys quantifier-free interpolation and such interpolants can be computed hierarchically

by relying on a black-box interpolation algorithm for the weaker theory 𝑇𝐼 ∪ℰ𝒰ℱ (which has quantifier

free interpolation because 𝑇𝐼 is assumed to be strongly amalgamable, see Theorem 2.4).

Result (i) is proved semantically, i.e., we show the equivalent strong amalgamation property (see Section 2

for the definitions). The semantic proof requires dedicated constructions (Section 5), relying on some

important facts about models and their embeddings (Section 4).

The fact that 𝒞𝒜ℛ𝒟(𝑇𝐼) has interpolants follows from the results in Section 5 (where we prove that this

theory is amalgamable). Result (ii) is proved last (Section 7); we first need an investigation on the solvability

of the 𝑆𝑀𝑇 (𝒞𝒜ℛ𝒟(𝑇𝐼)) problem (Section 6).

We supply here some intuitions about our interpolation algorithm from Section 7. The algorithm computes

an interpolant out of a pair of (suitably preprocessed) mutually unsatisfiable quantifier-free formulæ 𝐴0, 𝐵0.

We call common the variables occurring in both 𝐴0 and 𝐵0. The existence of quantifier-free interpolants

intuitively means that there are two reasoners, one for 𝐴0 and one for 𝐵0, the first (the second, resp.)

of which operates on formulae involving only variables from 𝐴0 (𝐵0, resp.). The reasoners discover the

inconsistency of 𝐴0 ∧𝐵0 by exchanging information on the common language, i.e., by communicating each

other only the entailed quantifier-free formulae over the common variables. The information exchange is

hierarchical, i.e., it is limited to 𝑇𝐼 ∪ ℰ𝒰ℱ-formulæ: literals from the richer language of 𝒞𝒜ℛ𝒟(𝑇𝐼) and

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Interpolation Results for Arrays with Length and MaxDiff 5

outside the language of 𝑇𝐼 ∪ ℰ𝒰ℱ can contribute to the information exchange only via instantiation of

the universal quantifiers in suitable 𝑇𝐼 ∪ ℰ𝒰ℱ-formulæ given in Section 3: these formulae, as proved in

Lemmas 3.3 and 3.5, supply equivalent definitions of such literals. In contrast to [17], instantiations of

universal quantifiers is limited to variables and constants for efficiency.

The main problem is to show that the above limited information exchange is sufficient. This is the case

thanks to the fact that the the algorithm manipulates iterated diff operators [36],[17] (formally defined in

Section 3) and it gives names to all such operators when applied to common array variables. Both the

production of names for iterated diff-terms and the variable instantiations of the universal quantifiers in

the equivalent universal 𝑇𝐼 ∪ ℰ𝒰ℱ-formulæ need in principle to be repeated infinitely many times; what we

prove (this is the content of our main Theorem 7.4 below) is that a pre-determined polynomial size subset of

such manipulations is sufficient for the 𝑇𝐼 ∪ ℰ𝒰ℱ-interpolation module to produce the interpolant we are

looking for. The reason why we produce such polize instance is due to the fact that our algorthm has a linear

bound on the iterated diff-terms that need to be introduced in Step 1 of our algorithm (see Section 7).3

Related work. We already mentioned the related work on first-order theories axiomatizing arrays [7, 17, 20, 23],

which our theories of contiguous arrays strictly extend. Since we adopt a hierarchical approach, our method

is closely related to hierarchical interpolation, where interpolants are computed by reduction to a base theory

treated as black-box. A non-exhaustive summary of this literature is given by the approach in [29, 30] (where

in the context of linear arithmetic general interpolation is reduced to constraint solving), by the one based

on local extensions in [31–34] and by the one based on 𝑊 -compatibility and finite instantiations of [35, 36].

2 FORMAL PRELIMINARIES

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, formula, and sentence) and

semantic (e.g., structure, sub-structure, truth) notions of first-order logic. The equality symbol “=” is in

all signatures. Notations like 𝐸(𝑥) mean that the expression (term, literal, formula, etc.) 𝐸 contains free

variables only from the tuple 𝑥. A ‘tuple of variables’ is a list of variables without repetitions and a ‘tuple of

terms’ is a list of terms (possibly with repetitions). These conventions are useful for substitutions: we use

them when denoting with 𝜑(𝑡/𝑥) (or simply with 𝜑(𝑡)) the formula obtained from 𝜑(𝑥) by simultaneous

replacement of the ‘tuple of variables’ 𝑥 with the ‘tuple of terms’ 𝑡. A constraint is a conjunction of literals.

A formula is universal (existential) iff it is obtained from a quantifier-free formula by prefixing it with a

string of universal (existential, resp.) quantifiers.

Theories and satisfiability modulo theory. A theory 𝑇 is a pair (Σ, 𝐴𝑥𝑇), where Σ is a signature and 𝐴𝑥𝑇

is a set of Σ-sentences, called the axioms of 𝑇 (we shall sometimes write directly 𝑇 for 𝐴𝑥𝑇). The models

of 𝑇 are those Σ-structures in which all the sentences in 𝐴𝑥𝑇 are true. A Σ-formula 𝜑 is 𝑇 -satisfiable (or

𝑇 -consistent) if there exists a model ℳ of 𝑇 such that 𝜑 is true in ℳ under a suitable assignment a to the

free variables of 𝜑 (in symbols, (ℳ, a) |= 𝜑); it is 𝑇 -valid (in symbols, 𝑇 ⊢ 𝜙) if its negation is 𝑇 -unsatisfiable

or, equivalently, 𝜙 is provable from the axioms of 𝑇 in a complete calculus for first-order logic. A theory

𝑇 = (Σ, 𝐴𝑥𝑇) is universal iff all sentences in 𝐴𝑥𝑇 are universal. A formula 𝜙1 𝑇 -entails a formula 𝜙2 if

𝜙1 → 𝜙2 is 𝑇 -valid (in symbols, 𝜙1 ⊢𝑇 𝜙2 or simply 𝜙1 ⊢ 𝜙2 when 𝑇 is clear from the context). If Γ is a

3One could reformulate this fact using the 𝑊 -separability framework from [36]; however, using this framework would not
sensibly modify the proof of Theorem 7.4, so we preferred for simplicity to supply proofs within standard direct terminology.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Ghilardi and Gianola, et al.

set of formulæ and 𝜑 a formula, Γ ⊢𝑇 𝜑 means that there are 𝛾1, . . . , 𝛾𝑛 ∈ Γ such that 𝛾1 ∧ · · · ∧ 𝛾𝑛 ⊢𝑇 𝜑.

The satisfiability modulo the theory 𝑇 (SMT(𝑇)) problem amounts to establishing the 𝑇 -satisfiability of

quantifier-free Σ-formulæ (equivalently, the 𝑇 -satisfiability of Σ-constraints). Some theories have special

names, which are becoming standard in SMT-literature, we shall recall some of them during the paper. As

already mentioned, we shall call ℰ𝒰ℱ(Σ) (or just ℰ𝒰ℱ) the pure equality theory in the signature Σ. A

theory 𝑇 admits quantifier-elimination iff for every formula 𝜑(𝑥) there is a quantifier-free formula 𝜑′(𝑥) such

that 𝑇 ⊢ 𝜑↔ 𝜑′.

Embeddings and sub-structures. The support of a structure ℳ is denoted with |ℳ|. For a (sort, constant,

function, relation) symbol 𝜎, we denote as 𝜎ℳ the interpretation of 𝜎 in ℳ. Let ℳ and 𝒩 be two Σ-

structures; a Σ-embedding (or, simply, an embedding) 𝜇 : ℳ −→ 𝒩 is an injective function from |ℳ| into
|𝒩 | that preserves and reflects the interpretation of functions and relation symbols (see, e.g., [10] for the

formal definition). If such an embedding is a set-theoretical inclusion, we say that ℳ is a substructure of 𝒩
or that 𝒩 is a superstructure of ℳ. As it is known, the truth of a universal (resp. existential) sentence is

preserved through substructures (resp. superstructures).

Given a signature Σ and a Σ-structure ℳ, we indicate with ∆Σ(ℳ) the diagram of ℳ: this is the set of

sentences obtained by first expanding Σ with a fresh constant 𝑎̄ for every element 𝑎 from |ℳ| and then

taking the set of ground Σ ∪ |ℳ|-literals which are true in ℳ (under the natural expanded interpretation

mapping 𝑎̄ to 𝑎). An easy but nevertheless important basic result (to be frequently used in our proofs), called

Robinson Diagram Lemma [10], says that, given any Σ-structure 𝒩 , there is an embedding 𝜇 : ℳ −→ 𝒩 iff

𝒩 can be expanded to a Σ ∪ |ℳ|-structure in such a way that it becomes a model of ∆Σ(ℳ).

Combinations of theories. A theory 𝑇 is stably infinite iff every 𝑇 -satisfiable quantifier-free formula (from

the signature of 𝑇) is satisfiable in an infinite model of 𝑇 . By compactness, it is possible to show that 𝑇 is

stably infinite iff every model of 𝑇 embeds into an infinite one (see, e.g., [16]). Let 𝑇𝑖 be a stably-infinite

theory over the signature Σ𝑖 such that the 𝑆𝑀𝑇 (𝑇𝑖) problem is decidable for 𝑖 = 1, 2 and Σ1 and Σ2 are

disjoint (i.e., the only shared symbol is equality). Under these assumptions, the Nelson-Oppen combination

result [27] says that the SMT problem for the combination 𝑇1 ∪ 𝑇2 of the theories 𝑇1 and 𝑇2 is decidable.

Nelson-Oppen result trivially extends to many-sorted languages.

Interpolation properties. In the introduction, we roughly stated Craig’s interpolation theorem [10]. In this

paper, we are interested to specialize this result to the computation of quantifier-free interpolants modulo

(combinations of) theories.

Definition 2.1. [Quantifier-free interpolation] A theory 𝑇 admits quantifier-free interpolation iff for every

pair of quantifier-free formulae 𝜑, 𝜓 such that 𝜓 ∧ 𝜑 is 𝑇 -unsatisfiable, there exists a quantifier-free formula

𝜃, called an interpolant, such that: (i) 𝜓 𝑇 -entails 𝜃, (ii) 𝜃 ∧ 𝜑 is 𝑇 -unsatisfiable, and (iii) only the variables

occurring in both 𝜓 and 𝜑 occur in 𝜃.

In verification, the following extension of the above definition is considered more useful.

Definition 2.2. [General quantifier-free interpolation] Let 𝑇 be a theory in a signature Σ; we say that

𝑇 has the general quantifier-free interpolation property iff for every signature Σ′ (disjoint from Σ) and for

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Interpolation Results for Arrays with Length and MaxDiff 7

every pair of ground Σ ∪ Σ′-formulæ 𝜑, 𝜓 such that 𝜑 ∧ 𝜓 is 𝑇 -unsatisfiable,4 there is a ground formula 𝜃

such that: (i) 𝜑 𝑇 -entails 𝜃; (ii) 𝜃 ∧ 𝜓 is 𝑇 -unsatisfiable; (iv) all relations, constants and function symbols

from Σ′ occurring in 𝜃 also occur in 𝜑 and 𝜓.

By replacing free variables with free constants, it is easily seen that the general quantifier-free interpolation

property (Definition 2.2) implies the quantifier-free interpolation property (Definition 2.1); the converse

implication does not hold, however (a counterexample can be found in this paper too, see Example 5.2

below).

Amalgamation and strong amalgamation. Interpolation can be characterized semantically via amalgama-

tion.

Definition 2.3. A universal theory 𝑇 has the amalgamation property iff, given models ℳ1 and ℳ2 of 𝑇

and a common submodel 𝒜 of them, there exists a further model ℳ of 𝑇 (called 𝑇 -amalgam) endowed with

embeddings 𝜇1 : ℳ1 −→ ℳ and 𝜇2 : ℳ2 −→ ℳ whose restrictions to |𝒜| coincide.
A universal theory 𝑇 has the strong amalgamation property [21] if the above embeddings 𝜇1, 𝜇2 and the

above model ℳ can be chosen so to satisfy the following additional condition: if for some 𝑚1 ∈ |ℳ1|,𝑚2 ∈
|ℳ2| we have 𝜇1(𝑚1) = 𝜇2(𝑚2), then there exists an element 𝑎 in |𝒜| such that 𝑚1 = 𝑎 = 𝑚2.

The first point of the following theorem is an old result due to [3]; the second point is proved in [8] (where

it is also suitably reformulated for theories which are not universal):

Theorem 2.4. Let 𝑇 be a universal theory. Then

(i) 𝑇 has the amalgamation property iff it admits quantifier-free interpolants;

(ii) 𝑇 has the strong amalgamation property iff it has the general quantifier-free interpolation property.

We underline that, in presence of stable infiniteness, strong amalgamation is a modular property (in the

sense that it transfers to signature-disjoint unions of theories), whereas amalgamation is not (see again [8]

for details). As a special case, since ℰ𝒰ℱ has strong amalgamation and is stably infinite, the following result

follows:

Theorem 2.5. If 𝑇 is stably infinite and has strong amalgamation, so does 𝑇 ∪ ℰ𝒰ℱ .

3 ARRAYS WITH MAXDIFF

The McCarthy theory of arrays [23] has three sorts ARRAY, ELEM, INDEX (called “array”, “element”, and

“index” sort, respectively) and two function symbols 𝑟𝑑 (“read”) and 𝑤𝑟 (“write”) of appropriate arities; its

axioms are:

∀𝑦, 𝑖, 𝑒. 𝑟𝑑(𝑤𝑟(𝑦, 𝑖, 𝑒), 𝑖) = 𝑒

∀𝑦, 𝑖, 𝑗, 𝑒. 𝑖 ̸= 𝑗 → 𝑟𝑑(𝑤𝑟(𝑦, 𝑖, 𝑒), 𝑗) = 𝑟𝑑(𝑦, 𝑗).

Arrays with extensionality have the further axiom

∀𝑥, 𝑦.𝑥 ̸= 𝑦 → (∃𝑖. 𝑟𝑑(𝑥, 𝑖) ̸= 𝑟𝑑(𝑦, 𝑖)), (2)

4By this (and similar notions) we mean that 𝜑 ∧ 𝜓 is unsatisfiable in all Σ′-structures whose Σ-reduct is a model of 𝑇 .

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Ghilardi and Gianola, et al.

called the ‘extensionality’ axiom. This theory is not universal and does not have quantifier-free interpolants.

Here, we want to introduce a variant of this theory where Axiom (2) is skolemized via a function diff with

a precise semantic interpretation: it returns the biggest index where two different arrays differ. We first need

the notion of index theory.

Definition 3.1. [17] An index theory 𝑇𝐼 is a mono-sorted theory (INDEX is its sort) satisfying the following

conditions:

- 𝑇𝐼 is universal, stably infinite and has the general quantifier-free interpolation property (i.e., it is

strongly amalgamable, see Theorem 2.4);

- 𝑆𝑀𝑇 (𝑇𝐼) is decidable;

- 𝑇𝐼 extends the theory 𝑇𝑂 of linear orderings with a distinguished element 0.

We recall that 𝑇𝑂 is the theory whose only proper symbols (beside equality) are a binary predicate ≤
and a constant 0 subject to the axioms saying that ≤ is reflexive, transitive, antisymmetric and total. Thus,

the signature of 𝑇𝐼 contains at least the binary relation symbol ≤ and the constant 0. In the paper, when

we speak of a 𝑇𝐼 -term, 𝑇𝐼 -atom, 𝑇𝐼 -formula, etc. we mean a term, atom, formula in the signature of 𝑇𝐼 .

Below, we use the abbreviation 𝑖 < 𝑗 for 𝑖 ≤ 𝑗 ∧ 𝑖 ̸= 𝑗. The constant 0 is used to separate ‘positive’ indexes -

those satisfying 0 ≤ 𝑖 - from the remaining ‘negative’ ones.

Examples of index theories are 𝑇𝑂 itself, integer difference logic ℐ𝒟ℒ, integer linear arithmetic ℒℐ𝒜,

and real linear arithmetics ℒℛ𝒜. In order to match the requirements of Definition 3.1, one need however to

make a careful choice of the language (see [8] for details): most importantly, notice that integer (resp., real)

division by all positive integers should be added to the language of ℒℐ𝒜 (resp. ℒℛ𝒜). For most applications,

ℐ𝒟ℒ (which is the theory of integer numbers with 0, ordering, successor and predecessor) is sufficient as in

this theory one can model counters for scanning arrays.

Given an index theory 𝑇𝐼 , we can now introduce our contiguous array theory with maxdiff 𝒞𝒜ℛ𝒟(𝑇𝐼)

(parameterized by 𝑇𝐼) as follows. We still have three sorts ARRAY, ELEM, INDEX; the language includes the

symbols of 𝑇𝐼 , the read and write operations 𝑤𝑟, 𝑟𝑑, a binary function diff of type ARRAY× ARRAY → INDEX,

a unary function |−| of type ARRAY → INDEX, as well as constant ⊥, 𝑒𝑙 of sort ELEM. The constant ⊥ models

an undefined value; the constant 𝑒𝑙 models an element different from ⊥ (and so it ensures that the sort ELEM

is not ’practically empty’, i.e. that it is not reduced to the singleton of ⊥). The term diff(𝑥, 𝑦) returns

the maximum index where 𝑥 and 𝑦 differ and returns 0 if 𝑥 and 𝑦 are equal. 5 The term |𝑎| indicates the
length of 𝑎, meaning that 𝑎 is allocated in the interval [0, |𝑎|] and undefined outside. Formally, the axioms of

𝒞𝒜ℛ𝒟(𝑇𝐼) include, besides the axioms of 𝑇𝐼 , the following ones:

∀𝑦, 𝑖, 𝑒. |𝑤𝑟(𝑦, 𝑖, 𝑒)| = |𝑦| (3)

∀𝑦, 𝑖. 𝑤𝑟(𝑦, 𝑖,⊥) = 𝑦 (4)

∀𝑦, 𝑖, 𝑒. (𝑒 ̸= ⊥ ∧ 0 ≤ 𝑖 ≤ |𝑦|) → 𝑟𝑑(𝑤𝑟(𝑦, 𝑖, 𝑒), 𝑖) = 𝑒 (5)

∀𝑦, 𝑖, 𝑗, 𝑒. 𝑖 ̸= 𝑗 → 𝑟𝑑(𝑤𝑟(𝑦, 𝑖, 𝑒), 𝑗) = 𝑟𝑑(𝑦, 𝑗) (6)

∀𝑦, 𝑖. 𝑟𝑑(𝑦, 𝑖) ̸= ⊥ ↔ 0 ≤ 𝑖 ≤ |𝑦| (7)

5Notice that it might well be the case that diff(𝑥, 𝑦) = 0 for different 𝑥, 𝑦, but in that case 0 is the only index where 𝑥, 𝑦
differ.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Interpolation Results for Arrays with Length and MaxDiff 9

∀𝑦. |𝑦| ≥ 0 (8)

∀𝑦.diff(𝑦, 𝑦) = 0 (9)

∀𝑥, 𝑦. 𝑥 ̸= 𝑦 → 𝑟𝑑(𝑥, diff(𝑥, 𝑦)) ̸= 𝑟𝑑(𝑦, diff(𝑥, 𝑦)). (10)

∀𝑥, 𝑦, 𝑖. diff(𝑥, 𝑦) < 𝑖→ 𝑟𝑑(𝑥, 𝑖) = 𝑟𝑑(𝑦, 𝑖). (11)

⊥ ̸= 𝑒𝑙. (12)

Since an array 𝑎 is fully allocated only in the interval [0, |𝑎|], any reading or writing attempt outside that

interval produce some runtime error in a program; similarly, it is meaningless to overwrite ⊥ inside that

interval. In our declarative context, there is nothing like a ‘runtime error’, so we assume that such illegal

operations simply do not produce any effect (this is the combined effect of axioms (3),(4),(7)). However,

when applying our theory to produce code annotations, the verification conditions should include that no

memory violations like the above ones arise (that is, when, e.g., a term like 𝑟𝑑(𝑏, 𝑖) occurs in a program, it

should be accompanied by the proviso annotation 0 ≤ 𝑖 ≤ |𝑎|, etc.).
As we shall see the above theory enjoys amalgamation (i.e., plain quantifier-free interpolation) but not

strong amalgamation (i.e., it lacks the general quantifier-free interpolation). To restore it, it is sufficient to

add some (even limited) support for constant arrays: we call the related theory 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼). The extension

is interesting by itself, because it increases the expressivity of the language: in 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼), applying the 𝑤𝑟

operation to terms Const(𝑖), one can encode all finite lists (if 𝑇𝐼 has a reduct to ℐ𝒟ℒ). Formally, 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)

has an additional unary function Const : INDEX → ARRAY, constrained by the following axioms:

∀𝑖.|Const(𝑖)| = max(𝑖, 0). (13)

∀𝑖, 𝑗. (0 ≤ 𝑗 ∧ 𝑗 ≤ |Const(𝑖)| → 𝑟𝑑(Const(𝑖), 𝑗) = 𝑒𝑙). (14)

(we assume without loss of generality that max is a symbol of 𝑇𝐼 - in fact it is definable in it). What

axioms (13)-(14) say is that Const(𝑖) (in the meaningful case where 𝑖 ≥ 0) represents the array of length 𝑖

having constant value 𝑒𝑙.

The following easy facts will be often used in our proofs:

Lemma 3.2. The following formulæ are 𝒞𝒜ℛ𝒟(𝑇𝐼)-valid

|𝑎| ̸= |𝑏| → diff(𝑎, 𝑏) = max(|𝑎|, |𝑏|) (15)

max(diff(𝑎, 𝑏), diff(𝑏, 𝑐)) ≥ diff(𝑎, 𝑐) . (16)

Proof. The first fact (15) trivially follows from (7), (10), (11). We now give the proof of the ‘triangular

identity’ (16). Suppose for instance that we have diff(𝑎, 𝑏) ≥ diff(𝑏, 𝑐); for 𝑘 > diff(𝑎, 𝑏) we have,

from (11), 𝑟𝑑(𝑎, 𝑘) = 𝑟𝑑(𝑏, 𝑘) = 𝑟𝑑(𝑐, 𝑘). Thus, since 𝑘 > diff(𝑎, 𝑏) implies 𝑟𝑑(𝑎, 𝑘) = 𝑟𝑑(𝑐, 𝑘), we have

diff(𝑎, 𝑐) ≤ diff(𝑎, 𝑏) (otherwise if diff(𝑎, 𝑐) > diff(𝑎, 𝑏), then diff(𝑎, 𝑐) would be such a 𝑘, implying

𝑎 = 𝑐 by axiom (10), hence 0 = diff(𝑎, 𝑐) > diff(𝑎, 𝑏), by axiom (11)).6 □

The next lemma follows from the axioms of 𝒞𝒜ℛ𝒟(𝑇𝐼):

6Notice that diff(𝑎, 𝑏) cannot be negative by the combination of axioms (7)-(10).

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Ghilardi and Gianola, et al.

Lemma 3.3. An atom like 𝑎 = 𝑏 is equivalent (modulo 𝒞𝒜ℛ𝒟(𝑇𝐼)) to

diff(𝑎, 𝑏) = 0 ∧ 𝑟𝑑(𝑎, 0) = 𝑟𝑑(𝑏, 0) . (17)

An atom like 𝑎 = 𝑤𝑟(𝑏, 𝑖, 𝑒) is equivalent (modulo 𝒞𝒜ℛ𝒟) to the conjunction of the following formulae

(𝑒 ̸= ⊥ ∧ 0 ≤ 𝑖 ≤ |𝑏|) → 𝑟𝑑(𝑎, 𝑖) = 𝑒

(𝑖 < 0 ∨ 𝑖 > |𝑏| ∨ 𝑒 = ⊥) → 𝑟𝑑(𝑎, 𝑖) = 𝑟𝑑(𝑏, 𝑖)

∀ℎ. (ℎ ̸= 𝑖→ 𝑟𝑑(𝑎, ℎ) = 𝑟𝑑(𝑏, ℎ)).

(18)

An atom of the kind |𝑎| = 𝑖 is equivalent to:

𝑖 ≥ 0 ∧ ∀ℎ. (𝑟𝑑(𝑎, ℎ) ̸= ⊥ ↔ 0 ≤ ℎ ≤ 𝑖). (19)

Proof. That 𝑎 = 𝑏 implies diff(𝑎, 𝑏) = 0∧𝑟𝑑(𝑎, 0) = 𝑟𝑑(𝑏, 0) follows from axiom (9) and the substitutivity

of equality. For the converse, 𝑎 ̸= 𝑏 and diff(𝑎, 𝑏) = 0 ∧ 𝑟𝑑(𝑎, 0) = 𝑟𝑑(𝑏, 0) contradict axiom (10).

Formulae (18) are implied by 𝑎 = 𝑤𝑟(𝑏, 𝑖, 𝑒) by axioms (3), (4), (5),(6), (7). The converse is true by the

extensionality axiom (2) (which holds in the strenghtened form (9) in our theory) and by (4), (5),(6), (7)

again.

Formula (19) is trivially equivalent to |𝑎| = 𝑖 thanks to axioms (7),(8). □

Lemma 3.4. An atom like Const(𝑖) = 𝑎 is equivalent (modulo 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)) to

|𝑎| = max(𝑖, 0) ∧ ∀ℎ. (0 ≤ ℎ ≤ |𝑎| → 𝑟𝑑(𝑎, ℎ) = 𝑒𝑙) . (20)

Proof. The equivalence between Formula (20) and Const(𝑖) = 𝑎 trivially follows from axioms (7),(13),(14)

and extensionality. □

Similarly to [36] and [17], we now introduce iterated diff operations, that will be used in our interpolation

algorithm. In fact, in addition to diff := diff1 we need an operator diff2 that returns the last-but-one

index where 𝑎, 𝑏 differ (0 if 𝑎, 𝑏 differ in at most one index), an operator diff3 that returns the last-but-two

index where 𝑎, 𝑏 differ (0 is they differ in at most two indexes), etc. Our language is already sufficiently

expressive for that. Indeed, given array variables 𝑎, 𝑏, we define by mutual recursion the sequence of array

terms 𝑏1, 𝑏2, . . . and of index terms diff1(𝑎, 𝑏), diff2(𝑎, 𝑏), . . . :

𝑏1 := 𝑏; diff1(𝑎, 𝑏) := diff(𝑎, 𝑏1);

𝑏𝑘+1 := 𝑤𝑟(𝑏𝑘, diff𝑘(𝑎, 𝑏), 𝑟𝑑(𝑎, diff𝑘(𝑎, 𝑏)));

diff𝑘+1(𝑎, 𝑏) := diff(𝑎, 𝑏𝑘+1);

A useful fact is that formulae like
⋀︀

𝑗<𝑙 diff𝑗(𝑎, 𝑏) = 𝑘𝑗 can be eliminated in favor of universal clauses in

a language whose only symbol for array variables is 𝑟𝑑. In detail:

Lemma 3.5. A formula like

diff1(𝑎, 𝑏) = 𝑘1 ∧ · · · · · · ∧ diff𝑙(𝑎, 𝑏) = 𝑘𝑙 (21)

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Interpolation Results for Arrays with Length and MaxDiff 11

is equivalent modulo 𝒞𝒜ℛ𝒟(𝑇𝐼) to the conjunction of the following seven formulae:

𝑘1 ≥ 𝑘2 ∧ ... ∧ 𝑘𝑙−1 ≥ 𝑘𝑙 ∧ 𝑘𝑙 ≥ 0⋀︁
𝑗<𝑙

(𝑘𝑗 > 𝑘𝑗+1 → 𝑟𝑑(𝑎, 𝑘𝑗) ̸= 𝑟𝑑(𝑏, 𝑘𝑗))

⋀︁
𝑗<𝑙

(|𝑎| = |𝑏| ∧ 𝑘𝑗 = 𝑘𝑗+1) → 𝑘𝑗 = 0

⋀︁
𝑗≤𝑙

(𝑟𝑑(𝑎, 𝑘𝑗) = 𝑟𝑑(𝑏, 𝑘𝑗) → 𝑘𝑗 = 0)

∀ℎ. (ℎ > 𝑘𝑙 → 𝑟𝑑(𝑎, ℎ) = 𝑟𝑑(𝑏, ℎ) ∨ ℎ = 𝑘1 ∨ ... ∨ ℎ = 𝑘𝑙−1)

|𝑎| > |𝑏| → (𝑘1 = 𝑘𝑙 ∧ 𝑘𝑙 = |𝑎|)

|𝑏| > |𝑎| → (𝑘1 = 𝑘𝑙 ∧ 𝑘𝑙 = |𝑏|).

(22)

4 EMBEDDINGS

In this section we present some useful facts about embeddings that will be crucial in the proofs throughout

the paper.

We first introduce the third array theory 𝒜ℛext(𝑇𝐼), which is weaker than 𝒞𝒜ℛ𝒟(𝑇𝐼), lacks the diff

symbol and axiom (11) is replaced by the following extensionality axiom:

∀𝑥, 𝑦. 𝑥 ̸= 𝑦 → (∃𝑖, 𝑟𝑑(𝑥, 𝑖) ̸= 𝑟𝑑(𝑦, 𝑖)). (23)

Notice that 𝒜ℛext(𝑇𝐼) ⊆ 𝒞𝒜ℛ𝒟(𝑇𝐼) ⊆ 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) (the inclusion holds both for signatures and for axioms).

To simplify the statements of some lemmas below, let us also introduce the theory 𝒞𝒜ℛ𝒞ext(𝑇𝐼): this theory

is obtained from 𝒜ℛext(𝑇𝐼) by adding the function symbol Const to the signature and the sentences (13),(14)

to the axioms.

We now discuss the class of models of 𝒜ℛext(𝑇𝐼) and we clarify the important features of embeddings

between such models. A model ℳ of 𝒜ℛext(𝑇𝐼) is functional when the following conditions are satisfied:

(i) ARRAYℳ is a subset of the set of all positive-support functions from INDEXℳ to ELEMℳ (a function 𝑎 is

positive-support iff there exists an index |𝑎| such that |𝑎| ≥ 0 and, for every 𝑗, 𝑎(𝑗) ̸= ⊥ iff 𝑗 ∈ [0, |𝑎|]);
(ii) 𝑟𝑑 is function application;

(iii) 𝑤𝑟 is the point-wise update operation inside the interval [0, |𝑎|] (i.e., function 𝑤𝑟(𝑎, 𝑖, 𝑒) returns the
same values as function 𝑎, except at the index 𝑖 and only in case 𝑖 ∈ [0, |𝑎|]: in this case it returns the

element 𝑒);

(iv) if ℳ is also a model of 𝒞𝒜ℛ𝒞ext(𝑇𝐼), then the set ARRAYℳ contains the positive-support functions

with value 𝑒𝑙ℳ inside their support.

Because of the extensionality axiom (23), it can be shown that every model of 𝒜ℛext(𝑇𝐼) or of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)

is isomorphic to a functional one. For an array 𝑎 ∈ ARRAYℳ in a functional model ℳ and for 𝑖 ∈ INDEXℳ,

since 𝑎 is a function, we interchangeably use the notations 𝑎(𝑖) and 𝑟𝑑(𝑎, 𝑖).

Let 𝑎, 𝑏 be elements of ARRAYℳ in a model ℳ. We say that 𝑎 and 𝑏 are cardinality equivalent iff |𝑎| = |𝑏|
and {𝑖 ∈ INDEXℳ | ℳ |= 𝑟𝑑(𝑎, 𝑖) ̸= 𝑟𝑑(𝑏, 𝑖)} is finite. This relation in ℳ is an equivalence, that we denote

as ∼ℳ or simply as ∼. We also write ℳ |= 𝑎 ∼ 𝑏 to say that 𝑎 ∼ℳ 𝑏 holds.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Ghilardi and Gianola, et al.

Lemma 4.1. Let 𝒩 , ℳ be models of 𝒜ℛext(𝑇𝐼) such that ℳ is a substructure of 𝒩 . For every 𝑎, 𝑏 ∈
ARRAYℳ, we have that

ℳ |= 𝑎 ∼ 𝑏 iff 𝒩 |= 𝑎 ∼ 𝑏.

Proof. The left-to-right side is trivial because if ℳ |= 𝑎 ∼ 𝑏 then 𝑎 and 𝑏 have equal length in ℳ
and in 𝒩 too because length is preserved; moreover, ℳ |= 𝑎 = 𝑤𝑟(𝑏, 𝐼, 𝐸), where 𝐼 ≡ 𝑖1, . . . , 𝑖𝑛 is a list

of costants (naming elements of ℳ) of sort INDEX, 𝐸 ≡ 𝑒1, . . . , 𝑒𝑛 is a list of costants (naming elements

of ℳ) of sort ELEM, and 𝑤𝑟(𝑏, 𝐼, 𝐸) abbreviates the term 𝑤𝑟(𝑤𝑟(· · ·𝑤𝑟(𝑏, 𝑖1, 𝑒1) · · ·), 𝑖𝑛, 𝑒𝑛). Thus, also
𝒩 |= 𝑎 = 𝑤𝑟(𝑏, 𝐼, 𝐸) because ℳ is a substructure of 𝒩 . Vice versa, suppose that ℳ ̸|= 𝑎 ∼ 𝑏. This means

that either |𝑎| ̸= |𝑏| or that there are infinitely many 𝑖 ∈ INDEXℳ such that 𝑟𝑑ℳ(𝑎, 𝑖) ̸= 𝑟𝑑ℳ(𝑏, 𝑖). Since ℳ
is a substructure of 𝒩 , these conditions holds in 𝒩 too. □

In a functional model ℳ of 𝒜ℛext(𝑇𝐼), we say that diff(𝑎, 𝑏) is defined iff there is a maximum index

where 𝑎, 𝑏 differ (or if 𝑎 = 𝑏). If in the model ℳ the index sort INDEX is interpreted as the set of the integers,

with standard ordering, then for any two positive-support functions 𝑎, 𝑏, we have that diff(𝑎, 𝑏) is defined.

However, this will not be the case if the index sort INDEX is interpreted, e.g., in some non-standard model of

the integers. We must take into considerations these models too, since we want to prove amalgamation. For

this purpose, we need to build amalgams for all models of the theory (only in that case in fact, amalgamation

turns out to be equivalent to quantifier-free interpolation). Thus, we are forced to take into consideration

below also phenomena that might arise only in non-standard models.

An embedding 𝜇 : ℳ −→ 𝒩 between 𝒜ℛext(𝑇𝐼)-models (or of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)-models) is said to be

diff-faithful iff, whenever diff(𝑎, 𝑏) is defined, so is diff(𝜇(𝑎), 𝜇(𝑏)) and it is equal to 𝜇(diff(𝑎, 𝑏)). Since

there might not be a maximum index where 𝑎, 𝑏 differ, in principle it is not always possible to expand a

functional model of 𝒜ℛext(𝑇𝐼) to a functional model of 𝒞𝒜ℛ𝒟(𝑇𝐼), if the set of indexes remains unchanged.

Indeed, in order to do that in a diff-faithful way, one needs to explicitly add to INDEXℳ new indexes

including at least the ones representing the missing maximum indexes where two given array differ. This

idea leads to Theorem 4.4 below, which is the main result of the current section. We first need a couple of

lemmas.

Lemma 4.2. Let ℳ be a model of 𝒜ℛext(𝑇𝐼) and let 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ ARRAYℳ; if 𝑎 ∼ℳ 𝑎′, 𝑏 ∼ℳ 𝑏′ and

diff𝑘(𝑎
′, 𝑏′) is defined for every 𝑘, then diff(𝑎, 𝑏) is also defined.

Proof. Notice first that, from 𝑎 ∼ 𝑎′ and 𝑏 ∼ 𝑏′, it follows that |𝑎| = |𝑎′| and |𝑏| = |𝑏′|. In case |𝑎| ̸= |𝑏|,
we have that diff(𝑎, 𝑏) = max{|𝑎|, |𝑏|} (see Lemma 3.2), which implies that diff(𝑎, 𝑏) is defined. Hence,

the relevant case is when we have 𝑙 = |𝑎| = |𝑏| = |𝑎′| = |𝑏′| and 𝑎′ ̸∼ 𝑏′ (if 𝑎′ ∼ 𝑏′, then we have also 𝑎 ∼ 𝑏

and the maximum of the finitely many indexes where 𝑎, 𝑏 differ is diff(𝑎, 𝑏)). Then for the infinitely many

indexes 𝑗𝑘 = diff𝑘(𝑎
′, 𝑏′) we have 𝑎′(𝑗𝑘) ̸= 𝑏′(𝑗𝑘); for at least one of such 𝑗𝑘 we must also have 𝑎(𝑗𝑘) ̸= 𝑏(𝑗𝑘)

because 𝑎 ∼ 𝑎′ and 𝑏 ∼ 𝑏′. Consider now the indexes in [𝑗𝑘, 𝑙]: in this interval, the pair of arrays 𝑎, 𝑏 differs

on at least one but at most finitely many indices (because 𝑎, 𝑎′ differs on finitely many indices there and so

do the pairs 𝑏, 𝑏′ and 𝑎′, 𝑏′), so the biggest one such index will be diff(𝑎, 𝑏). □

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Interpolation Results for Arrays with Length and MaxDiff 13

Lemma 4.3. Let ℳ be a model of 𝒜ℛext(𝑇𝐼). There exist a model 𝒩 of 𝒜ℛext(𝑇𝐼) and a diff-faithful

embedding 𝜇 : ℳ → 𝒩 such that the restriction of 𝜇 to the sort ELEM is not surjective. In addition, if ℳ is

a model of 𝒞𝒜ℛ𝒞ext(𝑇𝐼), 𝒞𝒜ℛ𝒟(𝑇𝐼) or of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼), so is 𝒩 .

Proof. To build 𝒩 it is sufficient to put:

∙ INDEX𝒩 = INDEXℳ,

∙ ELEM𝒩 = ELEMℳ ∪ {𝑒} where 𝑒 /∈ ELEMℳ,

∙ ARRAY𝒩 consists of the positive-support functions 𝑎 : INDEX𝒩 −→ ELEM𝒩 for which there exist

𝑎′ ∈ ARRAYℳ such that 𝑎 ∼ 𝑎′.

Now notice that if diff is totally defined in ℳ, so it is in 𝒩 . In fact, this follows from the definition of

ARRAY𝒩 and Lemma 4.2: if 𝑎 ∼ 𝑎′, 𝑏 ∼ 𝑏′ and diff𝑘(𝑎
′, 𝑏′) is defined for every 𝑘, then diff(𝑎, 𝑏) is also

defined by the previous lemma. The claim is proved in the same way for all the above mentioned array

theories (notice that in case the signature includes the Const symbol, 𝜇 trivially preserves it). □

Theorem 4.4. For every index theory 𝑇𝐼 , every model ℳ of 𝒜ℛext(𝑇𝐼) (resp. of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)) has a

diff-faithful embedding into a model of 𝒞𝒜ℛ𝒟(𝑇𝐼) (resp. of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)).

Proof. It is sufficient to well-order the pairs 𝑎, 𝑏 ∈ ARRAYℳ such that diff(𝑎, 𝑏) is not defined in ℳ,

apply to each pair the construction of the next lemma (taking unions at limit ordinals), and then repeat the

whole construction 𝜔 times, taking union again. In doing this, we make use of the fact that the models of

𝒜ℛext(𝑇𝐼) (resp. of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)) are closed under unions of chains, since 𝒜ℛext(𝑇𝐼) (resp. 𝒞𝒜ℛ𝒞ext(𝑇𝐼))

is a theory comprising only ∀*∃* axioms (see [10] for this and other preservation results).

Formally, consider the set of all pairs (𝑎, 𝑏) of arrays in ℳ such that diff(𝑎, 𝑏) is not defined in ℳ. By

Zermelo’s Theorem, the set of such pairs (𝑎, 𝑏) can be well-ordered: let {(𝑎𝑖, 𝑏𝑖)}𝑖∈𝐼 be such a well-ordered

set of pairs, where 𝐼 is some ordinal. By transfinite induction on this well-order, we define ℳ0 := ℳ
and, for each 𝑖 ∈ 𝐼, ℳ𝑖 := 𝒩 as an extension of

⋃︀
𝑗<𝑖 ℳ𝑗 such that (i) 𝒩 is a model of 𝒜ℛext(𝑇𝐼) (of

𝒞𝒜ℛ𝒞ext(𝑇𝐼) if ℳ is a model of 𝒞𝒜ℛ𝒞ext(𝑇𝐼), resp.); (ii)
⋃︀

𝑗<𝑖 ℳ𝑗 has a diff-faithful embedding into 𝒩 ;

and (iii) diff𝒩 (𝑎𝑖, 𝑏𝑖) is defined (this 𝒩 exists thanks to the next lemma).

Now we take the chain union ℳ1 :=
⋃︀

𝑖∈𝐼 ℳ𝑖. Thanks to this construction, we get that, for every pair

(𝑎𝑖, 𝑏𝑖) with 𝑎𝑖, 𝑏𝑖 ∈ ARRAYℳ, diff(𝑎, 𝑏) becomes defined in ℳ1; however, this only guarantees that diff is

defined for every pair (𝑎𝑖, 𝑏𝑖) such that 𝑎𝑖, 𝑏𝑖 are in ARRAYℳ, whereas nothing is said for the pairs 𝑎, 𝑏 in

ARRAYℳ
1

∖ ARRAYℳ. Then, we iteratively repeat the chain construction above for these new (𝑎, 𝑏). Indeed, it

is possible to construct, by an analogous chain argument, a model ℳ2 as done above, starting from ℳ1

instead of ℳ. Clearly, we get ℳ0 := ℳ ⊆ ℳ1 ⊆ ℳ2 by construction.

At this point, we iterate the same argument countably many times, so as to define a new chain of models

of 𝒜ℛext(𝑇𝐼) (of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)):

ℳ0 := ℳ ⊆ ℳ1 ⊆ ... ⊆ ℳ𝑛 ⊆ ...

Defining ℳ′ :=
⋃︀

𝑛 ℳ𝑛, we immediately obtain that ℳ′ is a model of 𝒞𝒜ℛ𝒟(𝑇𝐼) (resp. of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)).

such that ℳ ⊆ ℳ′ . After 𝜔 steps we are done, because every pair (𝑎, 𝑏) appearing in ℳ𝑖 occurs after

finitely many steps, and its corresponding diff(𝑎, 𝑏) becomes defined in ℳ𝑖+1. □

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Ghilardi and Gianola, et al.

Lemma 4.5. Let ℳ be a model of 𝒜ℛext(𝑇𝐼) (resp. of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)) and let 𝑎, 𝑏 ∈ ARRAYℳ be such

that diffℳ(𝑎, 𝑏) is not defined. Then there are a model 𝒩 of 𝒜ℛext(𝑇𝐼) (resp. of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)) and a

diff-faithful embedding 𝜇 : ℳ → 𝒩 such that diff𝒩 (𝑎, 𝑏) is defined.

Proof. Thanks to Lemma 4.3, we can assume that ELEMℳ has at least an element 𝑒 (different from

⊥ℳ, 𝑒𝑙ℳ). Notice that we must have |𝑎| = |𝑏|, otherwise diff(𝑎, 𝑏) is defined and it is max(|𝑎|, |𝑏|) according
to Lemma 3.2.

Let 𝐼 = {𝑖 ∈ INDEXℳ | 𝑎(𝑖) ̸= 𝑏(𝑖)} be the set of indices without maximum element (hence infinite) where

they differ. Let ↓ 𝐼 := {𝑗 ∈ INDEXℳ | ∃𝑖 ∈ 𝐼, 𝑗 ≤ 𝑖} ⊇ 𝐼. Notice that the condition

(+) “∃𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 (𝑗 ≥ 𝑖→ 𝑥(𝑗) = 𝑒𝑙)”

cannot be satisfied both for 𝑥 = 𝑎 and 𝑥 = 𝑏: indeed, if this were the case, assuming w.l.o.g. that 𝑖𝑎 ≤ 𝑖𝑏

(where 𝑖𝑎 and 𝑖𝑏 are the witnesses for the existentially quantified index 𝑖 in (+) for 𝑥 = 𝑎 and 𝑥 = 𝑏

respectively), we would have that 𝑎(𝑗) = 𝑒𝑙ℳ = 𝑏(𝑗) for all 𝑗 ≥ 𝑖𝑏, 𝑗 ∈ 𝐼, which is a contradiction with the

definition of 𝐼. In case one of them satisfies it, we assume it is 𝑏.

Let ∆ be the Robinson diagram of the 𝑇𝐼 -reduct of ℳ and let 𝑘0 be a new constant; let us introduce the

set

∆′ := ∆ ∪ {𝑖 < 𝑘0 | 𝑖 ∈↓ 𝐼} ∪ {𝑘0 < 𝑖 | 𝑖 ∈ INDEX
ℳ∖ ↓ 𝐼}.

By the compactness theorem for first order logic and since 𝐼 is infinite, the set ∆′ turns out to be consistent.

In fact, if ∆′ were inconsistent, then there would exist a finite subset of it not admitting a model. However,

a finite subset of ∆′ can contain constraints only for a finite number of index constants 𝑑 occurring in

∆, 𝑖 ∈↓ 𝐼, 𝑖′ ∈ INDEXℳ∖ ↓ 𝐼 and 𝑘0. Such constraints can be verified inside the 𝑇𝐼 -reduct of ℳ itself: to

interpret the additional constant 𝑘0, it is sufficient to use the fact that 𝐼 contains arbitrarily large indexes

and the fact that the definition of ↓ 𝐼 implies that

∀𝑖 ∈↓ 𝐼, ∀𝑗 ∈ INDEX
ℳ∖ ↓ 𝐼, 𝑖 < 𝑗.

By Robinson Diagram Lemma, there exists a model 𝒜 of 𝑇𝐼 extending the 𝑇𝐼 -reduct of ℳ; such 𝒜
contains in its support an element 𝑘0 such that

∀𝑖 ∈↓ 𝐼, 𝑖 < 𝑘0,

∀𝑖 ∈ INDEX
ℳ∖ ↓ 𝐼, 𝑘0 < 𝑖.

We now take ELEM𝒩 = ELEMℳ, INDEX𝒩 = INDEX𝒜; we let also ARRAY𝒩 to be the set of all positive-support

functions from INDEX𝒩 into ELEM𝒩 (notice that this 𝒩 is trivially also a model of 𝒞𝒜ℛ𝒞ext(𝑇𝐼)). We observe

that 𝑘0 < |𝑎|ℳ and recall that |𝑎|ℳ = |𝑏|ℳ.

Let us now define the embedding 𝜇 : ℳ → 𝒩 ; at the level of the sorts INDEX and ELEM, we use inclusions.

For the ARRAY sort, we need to specify the value 𝜇(𝑐)(𝑘) for 𝑐 ∈ ARRAYℳ and 𝑘 ∈ INDEX𝒩 ∖ INDEXℳ (for the

other indices we keep the old ℳ-value to preserve the read operation). Our definition for 𝜇 must preserve

the maxdiff index (whenever already defined in ℳ) and must guarantee that diff𝒩 (𝜇(𝑎), 𝜇(𝑏)) = 𝑘0 (by

construction, we have 𝑘0 > 0). For a generic array 𝑐 ∈ ARRAYℳ, we operate as follows:

(1) if |𝑐|ℳ < 𝑘0 we put 𝜇(𝑐)(𝑘0) = ⊥ℳ, otherwise:

(2) if |𝑐|ℳ ≥ 𝑘0 and the condition (⋆) below holds, we put 𝜇(𝑐)(𝑘0) = 𝑒,

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Interpolation Results for Arrays with Length and MaxDiff 15

(3) if |𝑐|ℳ ≥ 𝑘0 and the condition (⋆) below does not hold, we put 𝜇(𝑐)(𝑘0) = 𝑒𝑙ℳ.

The condition (⋆) is specified as follows:

(⋆) there is 𝑖 ∈ 𝐼 such that for all 𝑗 ∈ 𝐼, 𝑗 ≥ 𝑖 we have 𝑐(𝑗) = 𝑎(𝑗).

For all the remaining indexes 𝑘 ∈ INDEX𝒩 ∖ (INDEXℳ ∪ {𝑘0}) we put

𝜇(𝑐)(𝑘) =

⎧⎨⎩⊥ℳ, if 𝑘 /∈ [0, |𝑐|ℳ]

𝑒𝑙ℳ, if 𝑘 ∈ [0, |𝑐|ℳ]
(4)

Notice that we have 𝜇(𝑎)(𝑘0) = 𝑒 ̸= 𝑒𝑙ℳ = 𝜇(𝑏)(𝑘0) (the last equality holds because 𝐼 is infinite and does

not have maximum, hence condition (⋆) holds for 𝑎 but not for 𝑏). In addition:

∙ for all 𝑖 ∈ INDEXℳ such that 𝑘0 < 𝑖, we have 𝑖 /∈↓ 𝐼, according to the construction of 𝑘0 and

consequently 𝑖 /∈ 𝐼, that is 𝑎(𝑖) = 𝑏(𝑖);

∙ for all 𝑖 ∈ INDEX𝒩 ∖ (INDEXℳ ∪ {𝑘0}) such that 𝑘0 < 𝑖, since we have |𝑎|ℳ = |𝑏|ℳ, we get

𝜇(𝑎)(𝑖) = ⊥ℳ iff 𝜇(𝑏)(𝑖) = ⊥ℳ,

𝜇(𝑎)(𝑖) = 𝑒𝑙ℳ iff 𝜇(𝑏)(𝑖) = 𝑒𝑙ℳ.

Hence, we can conclude that diff𝒩 (𝜇(𝑎), 𝜇(𝑏)) is defined and equal to 𝑘0.

We only need to check that our 𝜇 preserves 𝑟𝑑, |−|, 𝑤𝑟, constant arrays and diff (whenever defined).

The operation 𝑟𝑑 is preserved because 𝜇 acts as an inclusion for indexes and elements and because we

have 𝜇(𝑐)(𝑘) = 𝑐(𝑘) if 𝑘 ∈ INDEXℳ.

Concerning length, we have |𝜇(𝑐)|𝒩 = |𝑐|ℳ because of (4) and because of the above definition of 𝜇(𝑐)(𝑘0)

(recall that 𝑘0 > 0).

Concerning write operation, we prove that for all 𝑐 ∈ ARRAYℳ, 𝑖 ∈ INDEXℳ∩[0, |𝑐|] and 𝑒′ ∈ ELEMℳ∖{⊥ℳ}
we have

𝜇(𝑤𝑟(𝑐, 𝑖, 𝑒′)) = 𝑤𝑟(𝜇(𝑐), 𝑖, 𝑒′).

Remember that we have |𝑤𝑟(𝑐, 𝑖, 𝑒′)| = |𝑐| = |𝜇(𝑐)|.

∙ For 𝑘 ̸= 𝑖 in INDEXℳ

𝜇(𝑤𝑟(𝑐, 𝑖, 𝑒′))(𝑘) = 𝑤𝑟(𝑐, 𝑖, 𝑒′)(𝑘) = 𝑐(𝑘)

𝑤𝑟(𝜇(𝑐), 𝑖, 𝑒′)(𝑘) = 𝜇(𝑐)(𝑘) = 𝑐(𝑘);

∙ For 𝑘 = 𝑖

𝜇(𝑤𝑟(𝑐, 𝑖, 𝑒′))(𝑖) = 𝑤𝑟(𝑐, 𝑖, 𝑒′)(𝑖) = 𝑒′

𝑤𝑟(𝜇(𝑐), 𝑖, 𝑒′)(𝑖) = 𝑒′;

∙ For 𝑘 = 𝑘0 > |𝑐| the claim follows immediately from the definition;

∙ For 𝑘 = 𝑘0 < |𝑐|, (⋆) holds for 𝑐 iff it holds for 𝑤𝑟(𝑐, 𝑖, 𝑒′), because 𝐼 is infinite. Hence we have

𝜇(𝑤𝑟(𝑐, 𝑖, 𝑒′))(𝑘0) = 𝑒 iff 𝜇(𝑐)(𝑘0) = 𝑒.

∙ For 𝑘 ∈ INDEX𝒩 ∖ (INDEXℳ ∪ {𝑘0}), the claim is clear from the definition and from the fact that 𝑤𝑟

preserves length.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Ghilardi and Gianola, et al.

For constant arrays, we must show only that 𝜇(Const(𝑖))(𝑘0) = 𝑒𝑙ℳ in case 𝑘0 < 𝑖: this is clear, because

𝑎 does not satisfy (+), hence (⋆) does not hold for Const(𝑖).

Let us now finally consider the diff operation and let us prove that if diffℳ(𝑐1, 𝑐2) is defined, then

diff𝒩 (𝜇(𝑐1), 𝜇(𝑐2)) is also defined and equal to it. Assume that diffℳ(𝑐1, 𝑐2) is defined; since 𝜇 preserve

length, the only relevant case, in view of Lemma 3.2, is when we have |𝑐1| = |𝑐2|; since the values of 𝑐1, 𝑐2

on indexes from ℳ are preserved, taking in mind (4) (in particular, that for 𝑘 ∈ INDEX𝒩 ∖ (INDEXℳ ∪ {𝑘0})
we have 𝜇(𝑐1)(𝑘) = 𝜇(𝑐2)(𝑘)), we only have to exclude that we have

diff
ℳ(𝑐1, 𝑐2) < 𝑘0 and 𝜇(𝑐1)(𝑘0) ̸= 𝜇(𝑐2)(𝑘0)

If this is the case, we have, e.g., 𝜇(𝑐1)(𝑘0) = 𝑒 ̸= 𝑒𝑙ℳ = 𝜇(𝑐2)(𝑘0) (𝑘0 < |𝑐1| = |𝑐2|), which implies that (⋆)

holds for 𝑐1 but not for 𝑐2. However, it cannot be that (⋆) holds for only one among 𝑐1, 𝑐2. The reason for

this is as follows. Indeed, if 𝑖 ∈ 𝐼 is the index that witnesses (⋆) for 𝑐1, then 𝑐1(𝑗) = 𝑎(𝑗) for all indexes

𝑗 ∈ 𝐼 such that 𝑗 ≥ 𝑖 (which are infinitely many). Since 𝐼 is infinite and without maximum and since

diffℳ(𝑐1, 𝑐2) < 𝑘0, we must have diffℳ(𝑐1, 𝑐2) ∈↓ 𝐼 by the definition of ∆, so there must be infinitely

many indices in 𝐼 bigger than diffℳ(𝑐1, 𝑐2) and arbitrarily large, which means in particular that there

exists an index 𝑖′ ∈ 𝐼 such that 𝑖′ ≥ 𝑖 and 𝑖′ > diff(𝑐1, 𝑐2). This 𝑖
′ witnesses (⋆) for 𝑐2, as wanted. This

concludes the proof. □

5 STRONG AMALGAMATION FOR 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)

In this section, we prove that the most expressive theory of the paper 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) has strong amalgamation.

However, we also show that this is not the case for 𝒞𝒜ℛ𝒟(𝑇𝐼) (even if it is amalgamable). We recall that

strong amalgamation holds for models of 𝑇𝐼 (see Definition 3.1): this observation is crucial for the following.

Strong amalgamation of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) will be proved in two steps. First, we provide the amalgam construc-

tion for 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼), where we also notice that the same arguments can be used to prove that 𝒞𝒜ℛ𝒟(𝑇𝐼)

has amalgamation too. Then, after exhibiting a counterexample showing that the strong amalgamation fails

for 𝒞𝒜ℛ𝒟(𝑇𝐼), we check that the amalgam construction for 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) satisfies the condition for being a

𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)-strong amalgam.

5.1 Amalgam constructions

Let ℳ1 and ℳ2 be two models of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) (resp. of 𝒞𝒜ℛ𝒟(𝑇𝐼)); we want to amalgamate them over

their common substructure 𝒜 and let 𝑓𝑖 be the embedding of 𝒜 into ℳ𝑖 (we assume that 𝑓𝑖 is just inclusion

for the INDEX and ELEM components). We can assume w.l.o.g. that our models are all functional and, by

applying renaming, that

(INDEXℳ1 ∖ INDEX𝒜) ∩ (INDEXℳ2 ∖ INDEX𝒜) = ∅

(ELEMℳ1 ∖ ELEM𝒜) ∩ (ELEMℳ2 ∖ ELEM𝒜) = ∅.

We build the amalgamated model in two steps. We first embed ℳ1 and ℳ2, via the embeddings 𝜇𝑖 (i=1,2),

into a model ℳ of 𝒞𝒜ℛ𝒞ext(𝑇𝐼) (resp., of 𝒜ℛext(𝑇𝐼)) in a diff-faithful way. Then ℳ is embedded, via

another diff-faithful embedding 𝜇′ into a model ℳ̂ of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) (resp., of 𝒞𝒜ℛ𝒟(𝑇𝐼)): 𝜇
′ is guaranteed

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Interpolation Results for Arrays with Length and MaxDiff 17

to exist by Theorem 4.4.

ℳ1

𝒜 ℳ ℳ̂

ℳ2

𝜇1𝑓1

𝑓2

𝜇′

𝜇2

Construction of 𝜇𝑖

We build the model ℳ and the two diff-faithful embeddings 𝜇𝑖 : ℳ𝑖 → ℳ such that 𝜇1 ∘ 𝑓1 = 𝜇2 ∘ 𝑓2.
We let INDEXℳ be a strong amalgam of INDEXℳ1 and INDEXℳ2 (𝑇𝐼 enjoys strong amalgamation), whereas

we let ELEMℳ = ELEMℳ1 ∪ ELEMℳ2 . Let ARRAYℳ be the set of all positive-support functions from INDEXℳ

into ELEMℳ.

The INDEX and ELEM components of the embeddings 𝜇𝑖 will be inclusions. The definition of the value of

𝜇𝑖(𝑎)(𝑘), for 𝑎 ∈ ARRAYℳ𝑖 and 𝑘 ∈ INDEXℳ, is given by cases as follows:

∙ if 𝑘 ∈ INDEXℳ𝑖 , we put 𝜇𝑖(𝑎)(𝑘) = 𝑎(𝑘);

∙ if 𝑘 ∈ INDEXℳ3−𝑖 ∖ INDEX𝒜: let (2⋆) be the relation7

′′there exist 𝑐 ∈ ARRAY
𝒜, 𝑏 ∈ ARRAY

ℳ𝑖

s.t. 𝑏 ∼ℳ𝑖 𝑎, 𝑘 > diff
ℳ𝑖(𝑏, 𝑓𝑖(𝑐))

′′,

we put

𝜇𝑖(𝑎)(𝑘) =

⎧⎪⎪⎨⎪⎪⎩
𝑓3−𝑖(𝑐)(𝑘), if (2⋆) holds

⊥ℳ, if (2⋆) does not hold & 𝑘 /∈ [0, |𝑎|ℳ𝑖]

𝑒𝑙ℳ, if (2⋆) does not hold & 𝑘 ∈ [0, |𝑎|ℳ𝑖]

∙ if 𝑘 /∈ INDEXℳ𝑖 ∪ INDEXℳ3−𝑖 , we put

𝜇𝑖(𝑎)(𝑘) =

⎧⎨⎩⊥ℳ, if 𝑘 /∈ [0, |𝑎|ℳ𝑖]

𝑒𝑙ℳ, if 𝑘 ∈ [0, |𝑎|ℳ𝑖].

Requirements check for the amalgamated model

The model ℳ introduced above is in fact a 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)-amalgam (and also a 𝒞𝒜ℛ𝒟(𝑇𝐼)-amalgam) for the

models ℳ1 and ℳ2 with the common substructure 𝒜:

Theorem 5.1. 𝒞𝒜ℛ𝒟(𝑇𝐼) and 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) enjoy the amalgamation property.

Proof. We need to prove that the functions 𝜇𝑖: (i) are well-defined, (ii) are injective, (iii) preserve |−|,
(iv) preserve 𝑟𝑑 and 𝑤𝑟, (v) preserve diff, (vi) satisfy the condition 𝜇1 ∘ 𝑓1 = 𝜇2 ∘ 𝑓2, (vii) preserve constant

arrays (for the statement about 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)).

(i) Since INDEXℳ is a strong amalgam of INDEXℳ1 and INDEXℳ2 , the case distinctions we made for

defining 𝜇𝑖(𝑎)(𝑘) are non-overlapping and exhaustive.

7When we write 𝑘 > diffℳ𝑖 (𝑏, 𝑓𝑖(𝑐)) we mean in fact that 𝑘 > 𝜇𝑖(diff
ℳ𝑖 (𝑏, 𝑓𝑖(𝑐))) (this relation is meant to hold in ℳ).

Our simplified notation is justified by the fact that 𝜇𝑖 is inclusion for INDEX sort. The fact that the choice of the 𝑐 satisfying
(2⋆) is immaterial is shown in the proof of Theorem 5.1, see the item (i) below.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Ghilardi and Gianola, et al.

We now show that if, for 𝑖 = 1, 2 and 𝑘 ∈ INDEXℳ3−𝑖 ∖ INDEX𝒜 and 𝑎 ∈ ARRAYℳ𝑖 , the relation

(2⋆) holds relatively to two different pairs of arrays (𝑐1, 𝑏1), (𝑐2, 𝑏2) from ARRAY𝒜 × ARRAYℳ𝑖 , then

we nevertheless have 𝑓3−𝑖(𝑐1)(𝑘) = 𝑓3−𝑖(𝑐2)(𝑘) (this proves the consistency of the definition). For

symmetry, let us consider only the case 𝑖 = 1. Since the index ordering is total, let us suppose that we

have for instance

𝑘 > diff
ℳ1(𝑏1, 𝑓1(𝑐1)) ≥ diff

ℳ1(𝑏2, 𝑓1(𝑐2)). (24)

By the transitivity of ∼𝑀1 , 𝑏1 and 𝑏2 differ on finitely many indices, hence we can consider the finite

sets

𝐽 := {𝑗 ∈ INDEX
𝒜 | 𝑏1(𝑗) ̸= 𝑏2(𝑗), 𝑗 > diff

ℳ1(𝑏1, 𝑓1(𝑐1))}

𝐸 := {𝑏1(𝑗) | 𝑗 ∈ 𝐽} ⊆ ELEM
𝒜.

Let now pick 𝑐 := 𝑤𝑟(𝑐2, 𝐽, 𝐸); then 𝑐 ∼𝒜 𝑐2. Since 𝑓2 is an embedding, we have 𝑓2(𝑐)(𝑘) = 𝑓2(𝑐2)(𝑘)

for all 𝑘 ∈ INDEXℳ2 ∖ INDEX𝒜. Suppose we have also

diff
𝒜(𝑐1, 𝑐) ≤ diff

ℳ1(𝑓1(𝑐1), 𝑏1). (25)

Then

diff
𝒜(𝑐1, 𝑐) ≤ diff

ℳ1(𝑓1(𝑐1), 𝑏1) < 𝑘

and consequently also the desired equality

𝑓2(𝑐1)(𝑘) = 𝑓2(𝑐)(𝑘) = 𝑓2(𝑐2)(𝑘)

follows.

In order to prove (25), we consider 𝑗 ∈ INDEX𝒜 with 𝑗 > diffℳ1(𝑓1(𝑐1), 𝑏1) and show that we have

𝑐(𝑗) = 𝑐1(𝑗) (in fact, if this is true, then (25) cannot fail because diff𝒜(𝑐1, 𝑐) would be such a 𝑗,

absurd). Suppose not, i.e. that 𝑐(𝑗) ̸= 𝑐1(𝑗); then we cannot have 𝑗 ∈ 𝐽 otherwise, by definition of 𝑐

and 𝐸, we would have 𝑐(𝑗) = 𝑏1(𝑗) = 𝑓1(𝑐1)(𝑗) = 𝑐1(𝑗) (𝑓1 is inclusion for indexes and 𝐽 ⊆ INDEX𝒜),

contradiction. Hence, we have 𝑗 /∈ 𝐽 , so 𝑐(𝑗) = 𝑐2(𝑗) and 𝑏1(𝑗) = 𝑏2(𝑗). Now remember that

𝑗 > diff
ℳ1(𝑏1, 𝑓1(𝑐1)) ≥ diff

ℳ1(𝑏2, 𝑓1(𝑐2)),

hence

𝑐1(𝑗) = 𝑏1(𝑗), 𝑐2(𝑗) = 𝑏2(𝑗)

𝑐(𝑗) = 𝑐2(𝑗) = 𝑏2(𝑗) = 𝑏1(𝑗) = 𝑐1(𝑗)

thus getting an absurdity.

(ii) Injectivity of 𝜇1 and 𝜇2 is immediate.

(iii) In order to prove that |−| is preserved, it is sufficient to show that for every 𝑎 ∈ ARRAYℳ1 and for all

𝑘 ∈ INDEXℳ, we have

𝜇1(𝑎)(𝑘) ̸= ⊥ ↔ 0 ≤ 𝑘 ≤ |𝑎|ℳ1 .

The only relevant case is when 𝑘 ∈ INDEXℳ2 ∖ INDEX𝒜 and (2⋆) holds. In such a case, we have two

possibilities:

|𝑏|ℳ1 = |𝑐|𝒜: in this case, since 𝑏 ∼ℳ1 𝑎, we have |𝑎|ℳ1 = |𝑏|ℳ1 = |𝑐|𝒜 = |𝑓2(𝑐)|ℳ2 (𝑓2 is an

embedding), thus getting what we need for 𝑘;

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Interpolation Results for Arrays with Length and MaxDiff 19

|𝑏|ℳ1 ̸= |𝑐|𝒜: in this case 𝑘 > diffℳ1(𝑏, 𝑓1(𝑐)) = max{|𝑏|ℳ1 , |𝑐|𝒜} by Lemma 3.2. Since 𝑎 ∼ 𝑏 implies

|𝑎| = |𝑏|, the definition of 𝜇1 produces 𝜇1(𝑎)(𝑘) = 𝑓2(𝑐)(𝑘) = ⊥ (the last identity holds because

𝑘 > |𝑐|𝒜), which is as desired because 𝑘 > |𝑏|ℳ1 = |𝑎|ℳ1 too.

(iv) The fact that 𝑟𝑑 and 𝑤𝑟 operations are preserved is easy (notice in particular that, if (2⋆) holds for 𝑎

via the pair (𝑐, 𝑏), then the same pair guarantees (2⋆) for arrays of the kind 𝑤𝑟(𝑎, 𝑖, 𝑒)).

(v) Again we limit to the case of 𝜇1 for symmetry. We need to show that for every 𝑎1, 𝑎2 ∈ ARRAYℳ1 , we

have 𝜇1(diff
ℳ1(𝑎1, 𝑎2)) = diffℳ(𝜇1(𝑎1), 𝜇1(𝑎2)). Notice that, if we call 𝑗 the index diff(𝑎1, 𝑎2) ∈

INDEXℳ1 , by definition of 𝜇1 on array applied to indexes in INDEXℳ1 , we have that 𝜇1(𝑎1)(𝑗) =

𝑎1(𝑗) ̸= 𝑎2(𝑗) = 𝜇1(𝑎2)(𝑗). Hence, in order to conclude, it is sufficient to show that, given 𝑘 ∈ INDEXℳ

such that 𝑘 > diffℳ1(𝑎1, 𝑎2), the equality 𝜇1(𝑎1)(𝑘) = 𝜇1(𝑎2)(𝑘) holds. Notice first that we can

always reduce to one of the following three cases

(a) |𝑎1| < |𝑎2| = diffℳ1(𝑎1, 𝑎2);

(b) diffℳ1(𝑎1, 𝑎2) < |𝑎1| = |𝑎2|;
(c) |𝑎1| = |𝑎2| = diffℳ1(𝑎1, 𝑎2).

We now show that 𝜇1(𝑎1)(𝑘) = 𝜇1(𝑎2)(𝑘).

∙ If 𝑘 ∈ INDEXℳ1 :

𝜇1(𝑎1)(𝑘) = 𝑎1(𝑘) = 𝑎2(𝑘) = 𝜇1(𝑎2)(𝑘).

∙ If 𝑘 /∈ INDEXℳ1 ∪ INDEXℳ2 , we analyze the three cases separately:

Case(a) : then 𝑘 /∈ [0, |𝑎𝑖|] for 𝑖 = 1, 2. We have 𝜇1(𝑎1)(𝑘) = ⊥ = 𝜇1(𝑎2)(𝑘);

Case (b) : we have

𝜇1(𝑎1)(𝑘) = ⊥ ⇔ 𝜇1(𝑎2)(𝑘) = ⊥

𝜇1(𝑎1)(𝑘) = 𝑒𝑙 ⇔ 𝜇1(𝑎2)(𝑘) = 𝑒𝑙;

Case (c) : similarly to (a), we have 𝑘 /∈ [0, |𝑎𝑖|] for 𝑖 = 1, 2.

∙ If 𝑘 ∈ INDEXℳ2 ∖ INDEX𝒜 and (2⋆) does not hold neither for 𝑎1 nor for 𝑎2, the argument is the same

as in the previous case.

Otherwise, suppose that (2⋆) holds for, say, 𝑎1 as witnessed by the pair (𝑐1, 𝑏1). Then we get

𝜇1(𝑎1)(𝑘) = 𝑓2(𝑐1)(𝑘). We prove that (2⋆) holds for 𝑎2 too and that we have 𝜇1(𝑎1)(𝑘) = 𝑓2(𝑐1)(𝑘) =

𝜇1(𝑎2)(𝑘).

Since 𝑏1 and 𝑎1 differ on finitely many indices inside ℳ1, we can consider the finite sets

𝐼 := {𝑖 ∈ INDEX
ℳ1 | 𝑏1(𝑖) ̸= 𝑎1(𝑖), 𝑖 > diff

ℳ1(𝑎1, 𝑎2)},

𝐸 := {𝑏1(𝑖) | 𝑖 ∈ 𝐼} ⊆ ELEM
ℳ1

and the array 𝑏̂ := 𝑤𝑟(𝑎2, 𝐼, 𝐸); for this array, we obviously have 𝑎2 ∼ℳ1 𝑏̂. If we also have

diff
ℳ1(𝑏1, 𝑏̂) ≤ diff

ℳ1(𝑎1, 𝑎2) (26)

then we get: 𝑘 > diffℳ1(𝑎1, 𝑎2) e 𝑘 > diffℳ1(𝑏1, 𝑓1(𝑐1)) (the latter is from (2⋆)). Hence:

𝑘 > max{diffℳ1(𝑎1, 𝑎2), diff
ℳ1(𝑏1, 𝑓1(𝑐1))} ≥

≥ max{diffℳ1(𝑏1, 𝑏̂), diff
ℳ1(𝑏1, 𝑓1(𝑐1))} ≥

≥ diff(𝑏̂, 𝑓1(𝑐1))

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Ghilardi and Gianola, et al.

(the last disequality holds because of the ‘triangular disequality’ (16) of Lemma 3.2). Hence we

obtain (2⋆) for 𝑎2 via the pair given by 𝑐 := 𝑐1 and 𝑏 := 𝑏̂ (because we have 𝑎2 ∼ℳ1 𝑏̂ and

𝑘 > diff(𝑏̂, 𝑓1(𝑐1))) and consequently 𝜇1(𝑎2)(𝑘) = 𝑓2(𝑐1)(𝑘).

It remains to prove (26); to this aim, let us pick 𝑗 ∈ INDEXℳ1 such that 𝑗 > diff(𝑎1, 𝑎2) and let us

show that 𝑏1(𝑗) = 𝑏̂(𝑗). If this is not the case, i.e., if 𝑏1(𝑗) ̸= 𝑏̂(𝑗), then according to the definition

of 𝑏̂ we have 𝑏̂(𝑗) = 𝑎2(𝑗) and 𝑗 /∈ 𝐼. Hence 𝑏̂(𝑗) = 𝑎2(𝑗) = 𝑎1(𝑗) = 𝑏1(𝑗) (the last identity holds

because 𝑗 /∈ 𝐼 and 𝑗 > diff(𝑎1, 𝑎2)), absurd.

(vi) In order to prove 𝜇1 ∘ 𝑓1 = 𝜇2 ∘ 𝑓2, let us consider 𝑐 ∈ ARRAY𝒜; let us put 𝑎𝑖 = 𝑓𝑖(𝑐) for 𝑖 = 1, 2 and

let us check that

𝜇1(𝑎1)(𝑘) = 𝜇2(𝑎2)(𝑘)

holds for all 𝑘 ∈ INDEXℳ.

∙ Case 𝑘 ∈ INDEX𝒜: we have

𝜇1(𝑎1)(𝑘) = 𝑎1(𝑘) = 𝑓1(𝑐)(𝑘) = 𝑐(𝑘)

𝜇2(𝑎2)(𝑘) = 𝑎2(𝑘) = 𝑓2(𝑐)(𝑘) = 𝑐(𝑘).

∙ Case 𝑘 ∈ INDEXℳ1 ∖ INDEX𝒜: clearly (2⋆) holds for 𝑎2 with 𝑐 := 𝑐 and 𝑏 := 𝑎2, consequently

𝜇1(𝑎1)(𝑘) = 𝑎1(𝑘) = 𝑓1(𝑐)(𝑘)

𝜇2(𝑎2)(𝑘) = 𝑓1(𝑐)(𝑘).

∙ Case 𝑘 ∈ INDEXℳ2 ∖ INDEX𝒜: clearly (2⋆) holds for 𝑎1 with 𝑐 := 𝑐 and 𝑏 := 𝑎1, consequently

𝜇1(𝑎1)(𝑘) = 𝑓2(𝑐)(𝑘)

𝜇2(𝑎2)(𝑘) = 𝑎2(𝑘) = 𝑓2(𝑐)(𝑘).

∙ Case 𝑘 /∈ (INDEXℳ1 ∪ INDEXℳ2) and 𝑘 ∈ [0, |𝑐|]: we have

𝜇1(𝑎1)(𝑘) = 𝑒𝑙 = 𝜇2(𝑎2)(𝑘).

∙ se 𝑘 /∈ (INDEXℳ1 ∪ INDEXℳ2) and 𝑘 /∈ [0, |𝑐|]: we have

𝜇1(𝑎1)(𝑘) = ⊥ = 𝜇2(𝑎2)(𝑘).

This completes our case analysis.

(vii) Here we assume thatℳ1,ℳ2 are models of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼); we need to show, e.g., that 𝜇1(Const
ℳ1(𝑖))(𝑘) =

𝑒𝑙 for every 𝑘 such that 0 ≤ 𝑘 ≤ 𝑖. Now, if 𝑖 ∈ INDEX𝒜 this is obvious, because Constℳ1(𝑖) =

𝑓1(Const
𝒜(𝑖)). Hence suppose that 𝑖 ∈ INDEXℳ1 ∖ INDEX𝒜; the only possibly problematic case is when

𝑘 ∈ INDEXℳ2 ∖ INDEX𝒜 and (2⋆) applies, as witnessed by a pair (𝑏, 𝑐) for Constℳ1(𝑖). But we have

|𝑏| = |Constℳ1(𝑖)| = 𝑖 and |𝑓1(𝑐)| ̸= 𝑖 (because |𝑓1(𝑐)| = |𝑐| ∈ INDEX𝒜). Then, according to (2⋆)

and recalling Lemma 3.2, we have 𝑘 > diffℳ𝑖(𝑏, 𝑓𝑖(𝑐)) = max{|𝑏|, |𝑓1(𝑐)|} = max{𝑖, |𝑓1(𝑐)|} ≥ 𝑖,

contradicting the choice of 𝑘.

□

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Interpolation Results for Arrays with Length and MaxDiff 21

5.2 The 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)-amalgam is strong

We now prove the main result of the section, i.e., strong amalgamation for 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼). Unfortunately,

this property does not hold for 𝒞𝒜ℛ𝒟(𝑇𝐼): as it is shown in the example below, we need constant arrays

in the language (recall that strong amalgamation is equivalent to general quantifier-free interpolation, see

Theorem 2.4(ii)).

Example 5.2. Consider the following two formulae (where 𝑃 is a free predicate symbol):

(𝐴) |𝑎| = 0 ∧ 𝑟𝑑(𝑎, 0) = 𝑒 ∧ 𝑃 (𝑎)

(𝐵) |𝑏| = 0 ∧ 𝑟𝑑(𝑏, 0) = 𝑒 ∧ ¬𝑃 (𝑏).

The conjunction (𝐴) ∧ (𝐵) is inconsistent because 𝑎 and 𝑏 are in fact the same array (because of Axioms 7

and 10). However, the only common variable is 𝑒; to get the interpolant, we can use 𝑃 (𝑤𝑟(Const(0), 0, 𝑒)),

but then it is clear that the language lacking constant arrays does not suffice.

To prove strong amalgamation for 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) we need a couple of lemmas.

Lemma 5.3. Every model ℳ of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) can be embedded into a model 𝒩 such that INDEX𝒩 is

infinite.

Proof. This is basically due to the fact that 𝑇𝐼 is stably infinite. So let us first embed the 𝑇𝐼 -reduct

of ℳ into an infinite model 𝒜 of 𝑇𝐼 . We define 𝒩 as follows. We let ELEM𝒩 be equal to ELEMℳ and the

𝑇𝐼 -reduct of INDEX
𝒩 be equal to 𝒜. We let ARRAY𝒩 be the set of positive support functions from INDEX𝒩 to

ELEM𝒩 (the model so built will then be embedded into a full model of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) using Theorem 4.4). We

only need to define the embedding 𝜇 : ℳ −→ 𝒩 . This embedding will be the identity for INDEX and ELEM

sorts; for arrays, we let 𝜇(𝑎)(𝑘) be equal to 𝑎(𝑘) for 𝑘 ∈ INDEXℳ and for 𝑘 ̸∈ INDEXℳ, we put 𝜇(𝑎)(𝑘) equal

to 𝑒𝑙ℳ or ⊥ℳ depending whether we have 𝑘 ∈ [0, |𝑎|] or not. The proof that 𝜇 preserves all operations is

easy. □

Let us call an element 𝑖 ∈ INDEXℳ of a model ℳ of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) finite iff the set {𝑗 ∈ INDEXℳ | 0 ≤ 𝑗 ≤ 𝑖}
is finite. 𝐹𝑖𝑛(ℳ) denotes the set of finite elements of ℳ.

Lemma 5.4. Let 𝒜,ℳ be models of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) and let 𝑓 : 𝒜 −→ ℳ be an embedding. Then there

exist a third model 𝒩 of 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) and an embedding 𝜈 : ℳ → 𝒩 , such that for every 𝑎 ∈ ARRAY𝒩 with

|𝑎|𝒩 ∈ 𝜈(𝑓(INDEX𝒜)) one of the following conditions hold:

(1) there exists 𝑐 ∈ ARRAY𝒜 such that 𝜈(𝑓(𝑐)) ∼𝒩 𝑎;

(2) there exists 𝑘𝑎 ∈ INDEX𝒩 ∖ 𝜈(INDEXℳ) with 𝑎(𝑘𝑎) ̸∈ 𝜈(𝑓(ELEM𝒜)) such that for every 𝑐 ∈ ARRAY𝒜 we

have 𝑎(𝑘𝑎) ̸= 𝜈(𝑓(𝑐))(𝑘𝑎).

Proof. Because of Lemma 5.3, we can freely assume that INDEXℳ is infinite. If for all 𝑎 ∈ ARRAYℳ whose

length comes from 𝒜, there is 𝑐 ∈ ARRAY𝒜 such that 𝑓(𝑐) ∼ℳ 𝑎 then it is sufficient to take 𝒩 = ℳ and the

identity as 𝜈. Otherwise, one take a well ordering of the arrays, apply the construction below by tranfinite

induction and repeat it 𝜔-times. The union of the chain so built will have the required properties.

Let 𝑎 ∈ ARRAYℳ be such that |𝑎| is from 𝒜 (i.e. such that |𝑎| = 𝑓(𝑖) for some 𝑖 ∈ INDEX𝒜) and such that

there does not exist 𝑐 ∈ ARRAY𝒜 such that 𝑓(𝑐) ∼ℳ 𝑎. Then |𝑎| is not finite, because otherwise we would

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Ghilardi and Gianola, et al.

have that 𝑎 ∼ℳ 𝑓(Const(𝑖)).8 Consider the diagram ∆ of the 𝑇𝐼 -reduct of ℳ and let 𝑘𝑎 a fresh constant;

the set
∆′ := ∆ ∪ {𝑖 < 𝑘𝑎 | 𝑖 ∈ 𝐹𝑖𝑛(ℳ)}∪

∪{𝑖 > 𝑘𝑎 | 𝑖 ∈ INDEX
ℳ ∖ 𝐹𝑖𝑛(ℳ)}.

(27)

is consistent. Suppose that ∆′ is inconsistent. By compactness, we would have that there exists a finite

subset ∆′
0 of ∆′ which is inconsistent too. ∆′

0 would involve finitely many finite indexes 𝑖1 < · · · < 𝑖𝑛 and

finitely many infinite indexes 𝑗1 < · · · < 𝑗𝑚 and a finite subset ∆0 of ∆.

If 𝑚 = 0, since INDEXℳ is infinite, there exist an element 𝑖′ ∈ INDEXℳ large enough, so as to get

𝑖1 < · · · < 𝑖𝑛 < 𝑖′ in ℳ. If 𝑚 > 0, then already in INDEXℳ there exists an element 𝑖′ such that

𝑖1 < · · · < 𝑖𝑛 < 𝑖′ and such that 𝑖′ < 𝑗1 < · · · < 𝑗𝑚 hold in ℳ, otherwise 𝑗1 would be a finite index. This

element 𝑖′ can interpret the constant 𝑘𝑎. In both cases, we conclude that ∆′
0 would be consistent, which is a

contradiction.

By Robinson Diagram Lemma, ∆ has a model ℬ extending the 𝑇𝐼 -reduct of ℳ.

We let now ELEM𝒩 = ELEMℳ, INDEX𝒩 = INDEXℬ and we let ARRAY𝑁 to be the set of positive-support

functions from INDEX𝒩 into ELEM𝒩 (then, in view of Theorem 4.4, 𝒩 can be embedded into a full model of

𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)). This model contains an element 𝑘𝑎 such that for all 𝑖 ∈ INDEXℳ we have that 𝑘𝑎 ̸= 𝑖 and

𝑖 < 𝑘𝑎 iff 𝑖 ∈ 𝐹𝑖𝑛(ℳ). In particular, 𝑘𝑎 < |𝑎| (because |𝑎| is infinite).
Thanks to Lemma 4.3, we can freely suppose that ELEM𝒩 = ELEMℳ has an element 𝑒 not belonging to

𝑓(ELEM𝒜) (in particular 𝑒 ̸= 𝑓(𝑒𝑙𝒜) = 𝑒𝑙𝒩 = 𝑒𝑙ℳ). We build 𝜇 as required by the statement of the lemma

(more precisely, the 𝜈 required by the lemma will be a chain unions of the 𝜇’s built at each transfinite

step as shown below). The INDEX- and ELEM-components of 𝜇 will be inclusions. We define 𝜇(𝑏)(𝑘) for all

𝑏 ∈ ARRAYℳ. If 𝑘 ∈ INDEXℳ, we obviously put 𝜇(𝑏)(𝑘) = 𝑏(𝑘); in the other cases, the definition is as follows:

(1) if 𝑏 ̸∼ℳ 𝑎, then 𝜇(𝑏)(𝑘) = 𝑒𝑙𝒩 or 𝜇(𝑏)(𝑘) = ⊥𝒩 , depending on whether 𝑘 ∈ [0, |𝑏|] or not;
(2) if 𝑏 ∼ℳ 𝑎 and 𝑘 ̸= 𝑘𝑎, then again 𝜇(𝑏)(𝑘) = 𝑒𝑙𝒩 or 𝜇(𝑏)(𝑘) = ⊥ℳ, depending on whether 𝑘 ∈ [0, |𝑏|]

or not;

(3) if 𝑏 ∼ℳ 𝑎 and 𝑘 = 𝑘𝑎, then 𝜇(𝑏)(𝑘) = 𝑒.

We need to show that 𝜇 preserves 𝑟𝑑, 𝑤𝑟, |−|, constant arrays and diff. Preservation of 𝑟𝑑, 𝑤𝑟, |−| are
easy; constant arrays are preserved, because we cannot have Constℳ(𝑖) ∼ℳ 𝑎, otherwise |𝑎| = 𝑖, which

cannot be because |𝑎| is an element from INDEX𝒜 by hypothesis, so that we would have 𝑓(Const𝒜(𝑖)) =

Constℳ(𝑖) ∼ℳ 𝑎, contradiction. For preservation of diff, the problematic case would be the case in which

we have 𝑘𝑎 > diff(𝑏1, 𝑏2), 𝑏1 ∼ℳ 𝑎 and 𝑏2 ̸∼ℳ 𝑎. However, this is impossible because diff(𝑏1, 𝑏2) ∈ INDEXℳ

and the fact that we have 𝑘𝑎 > diff(𝑏1, 𝑏2) implies that diff(𝑏1, 𝑏2) is finite, which would entail either

𝑏1 ∼ℳ 𝑏2 or |𝑏1| ̸= |𝑏2|: in the former case, we would have 𝑏2 ∼ℳ 𝑎 and in the latter 𝑘𝑎 > diff(𝑏1, 𝑏2) =

max(|𝑏1|, |𝑏2|) = max(|𝑎|, |𝑏2|) ≥ |𝑎|.
We finally notice that 𝑘𝑎 satisfies the requirements of the lemma. First, 𝑘𝑎 ̸∈ 𝜇(INDEXℳ) and 𝜇(𝑎)(𝑘𝑎) =

𝑒 ̸∈ 𝜇(𝑓(ELEM𝒜)) hold by construction. Moreover, since for every 𝑐 ∈ ARRAY𝒜 we have 𝜇(𝑓(𝑐))(𝑘𝑎) = 𝑒𝑙𝒩 or

𝜇(𝑓(𝑐))(𝑘𝑎) = ⊥𝒩 (depending whether 𝑘𝑎 ∈ [0, |𝑐|] holds or not), in any case we see that 𝜇(𝑓(𝑐))(𝑘𝑎) ̸=
𝜇(𝑎)(𝑘𝑎). □

8Notice that this is the only argument in the whole strong amalgamation proof requiring the fact that we have Const in the
language.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Interpolation Results for Arrays with Length and MaxDiff 23

Theorem 5.5. 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) enjoys the strong amalgamation property.

Proof. We keep the same notation and construction as in the proof of Theorem 5.1. However, thanks to

Lemma 5.4 we can now suppose (for 𝑖 = 1, 2) that all arrays 𝑎 ∈ ARRAYℳ𝑖 whose length belongs to INDEX𝒜

are such that one of the following two conditions are satisfied:

(1) there exists 𝑐 ∈ ARRAY𝒜 with 𝑓𝑖(𝑐) ∼ℳ𝑖 𝑎;

(2) there exists 𝑘𝑎 ∈ INDEXℳ𝑖 ∖ INDEX𝒜 such that 𝑎(𝑘𝑎) is an element from ELEMℳ𝑖 ∖ ELEM𝒜 different from

all the 𝑓𝑖(𝑐)(𝑘𝑎), varying 𝑐 ∈ ARRAY𝒜.

Let 𝑎𝑖 ∈ ARRAYℳ𝑖 (𝑖 = 1, 2) be such that ∀𝑘 ∈ INDEXℳ we have

𝜇1(𝑎1)(𝑘) = 𝜇2(𝑎2)(𝑘) (28)

Notice that, since 𝑇𝐼 has the strong amalgamation property and the 𝜇𝑖 preserve length, this can only happen

if |𝑎1| = |𝑎2| belongs to INDEX𝒜. We look for some 𝑐 ∈ ARRAY𝒜 such that 𝑎1 = 𝑓1(𝑐); since 𝜇2 is injective

this would entail 𝑎2 = 𝑓2(𝑐) because

𝜇2(𝑎2) = 𝜇1(𝑎1) = 𝜇1(𝑓1(𝑐)) = 𝜇2(𝑓2(𝑐)),

implying that ℳ̂ is a strong amalgam, as requested.

We separate two cases: (i) one of the arrays 𝑎1, 𝑎2 satisfy the above condition 2; (ii) both arrays 𝑎1, 𝑎2

satisfy the above condition 1.

(i) We show that this case is impossible. Suppose, e.g., that 𝑎1 satisfies condition 2 in ℳ1. Then there

exists an index 𝑘𝑎1 in INDEXℳ1 ∖ INDEX𝒜 such that 𝑎(𝑘𝑎1) is an element from ELEMℳ1 ∖ ELEM𝒜 which

is different from all the 𝑓1(𝑐)(𝑘𝑎1), varying 𝑐 ∈ ARRAY𝒜. Since we must have 𝜇1(𝑎1)(𝑘𝑎1) = 𝜇2(𝑎2)(𝑘𝑎1)

and 𝜇1(𝑎1)(𝑘𝑎1) does not belong to ELEMℳ2 (recall that ELEMℳ1 ∩ ELEMℳ2 = ELEM𝒜), the value of

𝑎2 for the index 𝑘𝑎1 (0 < 𝑘𝑎1 < |𝑎1| = |𝑎2|) is built according to the rule (2⋆), because otherwise

𝜇2(𝑎2)(𝑘𝑎1) would be equal to some element in ELEMℳ2 . Let (𝑐, 𝑏) the pair such that

𝑐 ∈ ARRAY
𝒜, 𝑏 ∈ ARRAY

ℳ2 , 𝑏 ∼ℳ2 𝑎2, 𝑘𝑎1 > diff
ℳ2(𝑏, 𝑓2(𝑐))

𝜇2(𝑎2)(𝑘𝑎1) = 𝑓1(𝑐)(𝑘𝑎1).

Then we have

𝜇1(𝑎1)(𝑘𝑎1) = 𝑎1(𝑘𝑎1) ̸= 𝑓1(𝑐)(𝑘𝑎1) = 𝜇2(𝑎2)(𝑘𝑎1)

contradiction.

(ii) Hence we can have 𝜇1(𝑎1) = 𝜇2(𝑎2) only when both 𝑎1, 𝑎2 satisfy condition 1 above. Let us call

𝑐𝑖 ∈ ARRAY𝒜 (𝑖 = 1, 2) the arrays such that 𝑓𝑖(𝑐𝑖) ∼ℳ𝑖 𝑎𝑖. Then, the pair (𝑐1, 𝑓1(𝑐1)) witnesses (2⋆) for

𝑎1 and for every positive 9 index 𝑘 ∈ INDEXℳ1 ∖INDEX𝒜 (and similarly for 𝑎2). We look for 𝑐 ∈ ARRAY𝒜

such that 𝑓1(𝑐) = 𝑎1. Let us consider the following relations coming from (28) and from the definition

of 𝜇𝑖:
∀𝑘 ∈ INDEX

𝒜, 𝑎1(𝑘) = 𝑎2(𝑘)

∀𝑘 ∈ INDEX
ℳ1 ∖ INDEX𝒜, 𝑎1(𝑘) = 𝑓1(𝑐2)(𝑘)

∀𝑘 ∈ INDEX
ℳ2 ∖ INDEX𝒜, 𝑓2(𝑐1)(𝑘) = 𝑎2(𝑘).

(29)

9Notice that if 𝑘 ∈ INDEXℳ1 ∖ INDEX𝒜 is positive, then 𝑘 > diff(𝑓1(𝑐), 𝑓1(𝑐)) = 0.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Ghilardi and Gianola, et al.

where we used that 𝜇2(𝑎2)(𝑘) = 𝑓1(𝑐2)(𝑘) if 𝑘 ∈ INDEXℳ1 ∖ INDEX𝒜, and 𝜇1(𝑎1)(𝑘) = 𝑓2(𝑐1)(𝑘) if

𝑘 ∈ INDEXℳ2 ∖ INDEX𝒜.

Let us now consider the sets (they are finite because 𝑓2(𝑐2) ∼ℳ2 𝑎2)

𝐽 = {𝑗 ∈ INDEX
𝒜 | 𝑐2(𝑗) ̸= 𝑎2(𝑗)} ⊆ INDEX

𝒜

𝐸 = {𝑎2(𝑗) | 𝑗 ∈ 𝐽} ⊆ ELEM
𝒜,

and let us put 𝑐 = 𝑤𝑟(𝑐2, 𝐽, 𝐸); we check that 𝑐 is such that 𝑓1(𝑐) = 𝑎1.

∙ If 𝑘 ∈ INDEX𝒜:

𝑓1(𝑐)(𝑘) = 𝑐(𝑘) = 𝑤𝑟(𝑐2, 𝐽, 𝐸)(𝑘) = 𝑎2(𝑘) = 𝑎1(𝑘)

because 𝑓1 preserves 𝑟𝑑, by the definition of 𝐽 and because of the equalities (29);

∙ If 𝑘 ∈ INDEXℳ1 ∖ INDEX𝒜:

𝑓1(𝑐)(𝑘) = 𝑓1(𝑤𝑟(𝑐2, 𝐽, 𝐸))(𝑘) = 𝑤𝑟(𝑓1(𝑐2), 𝐽, 𝐸)(𝑘) = 𝑓1(𝑐2)(𝑘) = 𝑎1(𝑘)

by the definition of 𝑐, the fact that 𝑓1 is an embedding, because 𝐽 ⊆ INDEX𝒜 (hence 𝑘 /∈ 𝐽) and

because of the equalities (29).

□

Strong amalgamation corresponds to general quantifier-free interpolation (Theorem 2.4), hence we obtain

that:

Corollary 5.6. The theory 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) has the general quantifier-free interpolation property.

6 SATISFIABILITY

We now address the problem of checking satisfiability of quantifier-free formulæ in 𝒞𝒜ℛ𝒟(𝑇𝐼) and

𝒞𝒜ℛ𝒟𝒞(𝑇𝐼). Decidability of the 𝑆𝑀𝑇 (𝒞𝒜ℛ𝒟(𝑇𝐼))- and 𝑆𝑀𝑇 (𝒞𝒜ℛ𝒟𝒞(𝑇𝐼))-problems, at least in the

relevant case where 𝑇𝐼 is any fragment of Presburger arithmetics, can be solved by reduction to the satisfia-

bility problem for the so-called ‘array-property fragment’ of [5]: the reduction can be obtained by eliminating

the 𝑤𝑟, |−|, diff and Const symbols in favor of universally quantified formulæ belonging to that fragment

(see Lemmas 3.3,3.4,3.5). However, we now supply a direct decision procedure for quantifier-free formulæ,

since this will be useful for the interpolation algorithm in Section 7.

A flat literal 𝐿 is a formula of the kind 𝑥0 = 𝑓(𝑥1, . . . , 𝑥𝑛) or 𝑥1 ̸= 𝑥2 or 𝑅(𝑥1, . . . , 𝑥𝑛) or ¬𝑅(𝑥1, . . . , 𝑥𝑛),

where the 𝑥𝑖 are variables, 𝑅 is a relation symbol, and 𝑓 is a function symbol. If ℐ is a set of 𝑇𝐼 -terms, an

ℐ-instance of a universal formula of the kind ∀𝑖 𝜑 is a formula 𝜑(𝑡/𝑖) for some 𝑡 ∈ ℐ.

Definition 6.1. A pair of sets of quantifier-free 𝒞𝒜ℛ𝒟(𝑇𝐼)-formulæ Φ = (Φ1,Φ2) is a separated pair iff

(1) Φ1 contains equalities of the form |𝑎| = 𝑖, diff𝑘(𝑎, 𝑏) = 𝑖 and 𝑎 = 𝑤𝑟(𝑏, 𝑖, 𝑒); moreover if it contains

the equality diff𝑘(𝑎, 𝑏) = 𝑖, it must also contain an equality of the form diff𝑙(𝑎, 𝑏) = 𝑗 for every

𝑙 < 𝑘; finally, if Φ1 ∪ Φ2 contains occurrences of an array variable 𝑎, Φ1 must contain also an equality

of the form |𝑎| = 𝑖;

(2) Φ2 contains Boolean combinations of 𝑇𝐼 -atoms and of atoms of the forms:

𝑟𝑑(𝑎, 𝑖) = 𝑟𝑑(𝑏, 𝑗), 𝑟𝑑(𝑎, 𝑖) = 𝑒, 𝑒1 = 𝑒2, (30)

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Interpolation Results for Arrays with Length and MaxDiff 25

where 𝑎, 𝑏, 𝑖, 𝑗, 𝑒, 𝑒1, 𝑒2 are variables or constants of the appropriate sorts.

Φ is said to be finite iff Φ1 and Φ2 are both finite.

Example 6.2. The pair Φ = (Φ1,Φ2) given by

Φ1 = {𝑐1 = 𝑤𝑟(𝑐2, 𝑖, 𝑒), |𝑐1| = 𝑙𝑐1 , |𝑐2| = 𝑙𝑐2}, Φ2 = {𝑙𝑐1 ̸= 𝑙𝑐2} (31)

fulfills the conditions for being a separated pair.

Notably, in a separated pair Φ = (Φ1,Φ2), if we introduce a unary function symbol 𝑓𝑎 for every array

variable 𝑎 and rewrite 𝑟𝑑(𝑎, 𝑖) as 𝑓𝑎(𝑖), it turns out that the formulæ from Φ2 can be seen as formulæ of the

combined theory 𝑇𝐼 ∪ ℰ𝒰ℱ . 𝑇𝐼 ∪ ℰ𝒰ℱ is decidable in its quantifier-free fragment and admits quantifier-free

interpolation because 𝑇𝐼 is an index theory (see Nelson-Oppen results [27] and Theorems 2.4,2.5): we adopt

a hierarchical approach (similarly to [32, 34]) and we rely on satisfiability and interpolation algorithms for

such a theory as black boxes.

In order to be able to apply such hierarchical approach to satisfiability problems, we first reduce to

satisfiability problems for separated pairs (Lemma 6.4 below). Then, given a separated pair Φ = (Φ1,Φ2),

we transfer to Φ2 some information that is hidden in Φ1: this is the information stored in the universally

quantified formulae (18),(19),(22). In principle, one should instantiate the universally quantified variable

appearing in those formulae with all possible ground terms that can be built up using the index variables

occurring in the current constraint. Unfortunately, there are infinitely many such terms; in the interpolation

algorithm of our previous paper [17], we devised incremental instantiations: first we instantiate with terms

of complexity 0, then with terms of complexity 1, then with terms of complexity 2, etc. (the complexity

of a term can be defined as the maximum nestings of function symbols occurring in it). We completely

avoid these incremental instantiations in the current paper, not only in the satisfiability algorithm, but

also in the interpolation algorithm of next Section (this is the substantial improvement over [17] from the

computational point of view). We first define our instantiations with respect to an arbitrary set of terms 𝐼:

Definition 6.3. Let ℐ be a set of 𝑇𝐼 -terms and let Φ = (Φ1,Φ2) be a separated pair; Φ(ℐ) = (Φ1(ℐ),Φ2(ℐ))
is the smallest separated pair satisfying the following conditions:

- Φ1(ℐ) is equal to Φ1
10 and Φ2(ℐ) contains Φ2;

- if Φ1 contains the atom 𝑎 = 𝑤𝑟(𝑏, 𝑖, 𝑒) then Φ2(ℐ) contains all the ℐ-instances of the formulae (18)

(with the terms |𝑎|, |𝑏| replaced by the index constants 𝑖, 𝑗 such that |𝑎| = 𝑖, |𝑏| = 𝑗 ∈ Φ1, respectively);

- if Φ1 contains the atom |𝑎| = 𝑖, then Φ2(ℐ) contains all the ℐ-instances of the formulae (19);

- if Φ1 contains the conjunction
⋀︀𝑙

𝑖=1 diff𝑖(𝑎, 𝑏) = 𝑘𝑙, then Φ2(ℐ) contains the formulae (22) (with the

terms |𝑎|, |𝑏| replaced by the index constants 𝑖, 𝑗 such that |𝑎| = 𝑖, |𝑏| = 𝑗 ∈ Φ1, respectively).

A separated pair Φ is 0-instantiated iff Φ = Φ(ℐ), where ℐ is the set of index variables occurring in Φ.

We say that a separated pair Φ = (Φ1,Φ2) is is 𝒞𝒜ℛ𝒟(𝑇𝐼)-satisfiable iff so it is the formula
⋀︀

Φ1∧
⋀︀

Φ2.
11

Lemma 6.4. Let 𝜑 be a quantifier-free formula; then it is possible to compute in linear time a finite

separation pair Φ = (Φ1,Φ2) such that 𝜑 is 𝒞𝒜ℛ𝒟(𝑇𝐼)-satisfiable iff Φ is satisfiable.

10This is because only Φ2 needs to be instantiated.
11In case Φ1,Φ2 are not finite, this means that all formulae in Φ1 ∪ Φ2 are simultaneously satisfiable. Notice however that in
all our concrete applications, Φ1 and Φ2 are always finite.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Ghilardi and Gianola, et al.

Proof. We first flatten all atoms from 𝜑 by repeatedly abstracting out subterms (to abstract out a

subterm 𝑡, we introduce a fresh variable 𝑥 and update 𝜑 to 𝑥 = 𝑡 ∧ 𝜑(𝑥/𝑡)); then we remove all atoms of the

kind 𝑎 = 𝑏 occurring in 𝜑 by replacing them by the equivalent formula (17), namely

diff(𝑎, 𝑏) = 0 ∧ 𝑟𝑑(𝑎, 0) = 𝑟𝑑(𝑏, 0) .

Then we abstract out all terms of the kind 𝑤𝑟(𝑏, 𝑖, 𝑒), diff(𝑎, 𝑏) and |𝑎|, so that 𝜑 has now the form

Φ1 ∧ Φ2, where Φ2 does not contain 𝑤𝑟, diff, |−|-symbols and Φ1 is a conjunction of atoms of the form

𝑎 = 𝑤𝑟(𝑏, 𝑖, 𝑒), 𝑖 = diff(𝑎, 𝑏), 𝑗 = |𝑎|. Finally, we add to Φ1 the missing atoms of the kind |𝑎| = 𝑖 required

by Definition 6.1.12 □

Example 6.5. If we apply the procedure of Lemma 6.4 to the formula

𝑐1 = 𝑤𝑟(𝑐2, 𝑖, 𝑒) ∧ |𝑐1| ̸= |𝑐2|

we obtain the separated pair (31) of Example 6.2.

Next we show that 0-instantiations suffice:

Lemma 6.6. The following conditions are equivalent for a finite 0-instantiated separated pair Φ = (Φ1,Φ2):

(i) Φ is 𝒞𝒜ℛ𝒟(𝑇𝐼)-satisfiable;

(ii)
⋀︀

Φ2 is 𝑇𝐼 ∪ ℰ𝒰ℱ-satisfiable.

Proof. The meaning of the lemma is that the role of Φ1 is just that of contributing instances to

0-instantiation (such a role is exhausted when 0-instantiation is done).

(𝑖) ⇒ (𝑖𝑖) is clear.

To prove (𝑖𝑖) ⇒ (𝑖), let 𝒜 be the model witnessing the satisfiability of
⋀︀

Φ2 in 𝑇𝐼 ∪ ℰ𝒰ℱ and let ℐ be the

set of all index variables occurring in Φ1 ∪ Φ2. According to the definition of a separated pair, for every

array variable 𝑎 occurring in Φ1 ∪ Φ2 there is an index variable 𝑙𝑎 such that:

𝒜 |= 𝑓𝑎(𝑖) ̸= ⊥ ↔ 0 ≤ 𝑖 ≤ 𝑙𝑎.

for all 𝑖 ∈ ℐ (here 𝑓𝑎 is the unary function symbol replacing 𝑎 in 𝑇𝐼 ∪ ℰ𝒰ℱ , recall that formulae (19) have

been instantiated with index variables according to Definition 6.3).

The standardization 𝒜′ of 𝒜 is the 𝑇𝐼 ∪ ℰ𝒰ℱ-model obtained from 𝒜 by modifying the values 𝑎(𝑘) (for

all array variables 𝑎 occurring in Φ2 and for all indexes 𝑘 ∈ INDEX𝒜 different from the elements assigned in

𝒜 to the variables in ℐ) in such a way that we have

𝒜′ |= 𝑓𝑎(𝑘) = ⊥ ↔ (𝑙𝑎 < 𝑘 ∨ 𝑘 < 0),

𝒜′ |= 𝑓𝑎(𝑘) = 𝑒𝑙 ↔ 0 ≤ 𝑘 ≤ 𝑙𝑎 .

The standardization 𝒜′ of 𝒜 is still a model of
⋀︀

Φ2. For instance, suppose that
⋀︀

Φ2 contains a literal of

the type 𝑟𝑑(𝑎, 𝑖) = 𝑒: since 𝑘 is different from the elements assigned in 𝒜 to the variables in ℐ, and 𝑖 is in ℐ,
the changes above in the definition of 𝑓𝑎 introduced in 𝒜′ do not interfere with 𝑟𝑑(𝑎, 𝑖) = 𝑒, hence it is still

valid in 𝒜′. The other cases are analogous.

12The transformation of Lemma 6.4 does not introduce in Φ1 any formula of the kind diff𝑛(𝑎, 𝑏) = 𝑘𝑛 (for 𝑛 > 1). These
formulæ will however be introduced by the Step 1 of the interpolation algorithm of Section 7.

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Interpolation Results for Arrays with Length and MaxDiff 27

However, in 𝒜′ now also the formulae (19), (22) and (18) hold: this is because the ℐ-instantiations of

the universal index quantifiers occurring in such formulae were taken care in 𝒜 and their truth value is not

modified passing to 𝒜′, whereas the construction of 𝒜′ takes care of the instantiations outside ℐ.
Let us now define an 𝒞𝒜ℛ𝒟(𝑇𝐼)-model ℳ satisfying Φ. We first build a structure 𝒩 where diff may

not be totally defined. We let INDEX𝒩 = INDEX𝒜
′
and ELEM𝒩 = ELEM𝒜

′
; we take as ARRAY𝒩 the set of

all positive-support functions from INDEX𝒩 into ELEM𝒩 : this includes all functions of the form 𝑓𝑎. In

addition, if
⋀︀𝑙

𝑛=1 diff𝑛(𝑎1, 𝑎2) = 𝑘𝑛 ∈ Φ1, then the related iterated maxdiff’s are defined in 𝒩 and we have

𝒩 |=
⋀︀𝑙

𝑛=1 diff𝑛(𝑎1, 𝑎2) = 𝑘𝑛 by the above construction. Thus Φ holds in 𝒩 and in order to obtain our

final ℳ we only need to apply Theorem 4.4. □

From Lemmas 6.4 and 6.6, we get the following result:

Theorem 6.7. The 𝑆𝑀𝑇 (𝒞𝒜ℛ𝒟(𝑇𝐼)) problem is decidable for every index theory 𝑇𝐼 .

Example 6.8. Let us show that

𝑐1 = 𝑤𝑟(𝑐2, 𝑖, 𝑒) ∧ |𝑐1| ̸= |𝑐2| (32)

is not 𝒞𝒜ℛ𝒟(𝑇𝐼)-satisfiable. This is obvious if one considers our axiom (3), however we want to obtain this

result from the above algorithm making a reduction to 𝑇𝐼 ∪ℰ𝒰ℱ -satisfiability. As we know from Example 6.5,

a separated pair Φ = (Φ1,Φ2) equisatisfiable to (32) is the separated pair (31) of Example 6.2, namely:

Φ1 = {𝑐1 = 𝑤𝑟(𝑐2, 𝑖, 𝑒), |𝑐1| = 𝑙𝑐1 , |𝑐2| = 𝑙𝑐2} Φ2 = {𝑙𝑐1 ̸= 𝑙𝑐2} .

For 0-instantiations, we have to consider 3 index variables (namely 𝑖, 𝑙𝑐1 , 𝑙𝑐2). Thus, instantiating (18) gives

(𝑒 ̸= ⊥ ∧ 0 ≤ 𝑖 ≤ 𝑙𝑐2) → 𝑟𝑑(𝑐1, 𝑖) = 𝑒

(𝑖 < 0 ∨ 𝑖 > 𝑙𝑐2 ∨ 𝑒 = ⊥) → 𝑟𝑑(𝑐1, 𝑖) = 𝑟𝑑(𝑐2, 𝑖)

𝑖 ̸= 𝑖→ 𝑟𝑑(𝑐1, 𝑖) = 𝑟𝑑(𝑐2, 𝑖)

𝑙𝑐1 ̸= 𝑖→ 𝑟𝑑(𝑐1, 𝑙𝑐1) = 𝑟𝑑(𝑐2, 𝑙𝑐1)

𝑙𝑐2 ̸= 𝑖→ 𝑟𝑑(𝑐1,)𝑙𝑐2 = 𝑟𝑑(𝑐2, 𝑙𝑐2)

(33)

whereas instantiating (19) gives

𝑙𝑐1 ≥ 0 ∧ (𝑟𝑑(𝑐1, 𝑖) ̸= ⊥ ↔ 0 ≤ 𝑖 ≤ 𝑙𝑐1)

𝑙𝑐1 ≥ 0 ∧ (𝑟𝑑(𝑐1, 𝑙𝑐1) ̸= ⊥ ↔ 0 ≤ 𝑙𝑐1 ≤ 𝑙𝑐1)

𝑙𝑐1 ≥ 0 ∧ (𝑟𝑑(𝑐1, 𝑙𝑐2) ̸= ⊥ ↔ 0 ≤ 𝑙𝑐2 ≤ 𝑙𝑐1)

𝑙𝑐2 ≥ 0 ∧ (𝑟𝑑(𝑐2, 𝑖) ̸= ⊥ ↔ 0 ≤ 𝑖 ≤ 𝑙𝑐2)

𝑙𝑐2 ≥ 0 ∧ (𝑟𝑑(𝑐2, 𝑙𝑐1) ̸= ⊥ ↔ 0 ≤ 𝑙𝑐1 ≤ 𝑙𝑐2)

𝑙𝑐2 ≥ 0 ∧ (𝑟𝑑(𝑐2, 𝑙𝑐2) ̸= ⊥ ↔ 0 ≤ 𝑙𝑐2 ≤ 𝑙𝑐2)

(34)

We can now see that formulae (33)-(34) are indeed 𝑇𝐼 ∪ ℰ𝒰ℱ-inconsistent with 𝑙𝑐1 ≠ 𝑙𝑐2 (a direct check is

slightly laborious, but an SMT-solver discharges instantaneously this proof obbligation).

Regarding complexity for the 𝑆𝑀𝑇 (𝒞𝒜ℛ𝒟(𝑇𝐼)) problem, notice that the satisfiability of the quantifier-

free fragment of common index theories (like ℐ𝒟ℒ, ℒℐ𝒜, ℒℛ𝒜) is decidable in NP; hence, for such index

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Ghilardi and Gianola, et al.

theories, an NP bound for our 𝑆𝑀𝑇 (𝒞𝒜ℛ𝒟(𝑇𝐼))-problems is easily obtained, because 0-instantiation is

clearly finite and polynomial (all strings of universal quantifiers to be instantiated have length one).

The above decidability and complexity results apply also to 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼): one only simply has to allow

the Φ1-component of a separation pair to contain also atoms of the form Const(𝑖) = 𝑎 and Definition 6.3 to

require that Φ2(ℐ) contains all the ℐ-instances of the formulae (20) in case 𝐶𝑜𝑛𝑠𝑡(𝑖) = 𝑎 ∈ Φ1.

7 THE INTERPOLATION ALGORITHM

Since amalgamation is equivalent to quantifier-free interpolation for universal theories such as 𝒞𝒜ℛ𝒟(𝑇𝐼)

and 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) (thanks to Theorem 2.4), Theorem 5.1 guarantees that 𝒞𝒜ℛ𝒟(𝑇𝐼) and 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) admit

quantifier-free interpolation. However, the proof of Theorem 5.1 is not constructive: hence, in order to

compute an interpolant for an unsatisfiable conjunction like 𝜓(𝑥, 𝑦) ∧ 𝜑(𝑦, 𝑧), one needs in principle to

enumerate all quantifier-free formulæ 𝜃(𝑦) that are consequences of 𝜑 and are inconsistent with 𝜓. Since

the quantifier-free fragments of 𝒞𝒜ℛ𝒟(𝑇𝐼) and 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) are decidable, this is an effective procedure

and, considering the fact that interpolants of jointly unsatisfiable pairs of formulæ exist, it also terminates.

However, this type of algorithm is not practical. In this section, we provide a better and more practical

algorithm that relies on a hierarchical reduction to 𝑇𝐼 ∪ ℰ𝒰ℱ . Our algorithm works for 𝒞𝒜ℛ𝒟(𝑇𝐼) only; for

𝒞𝒜ℛ𝒟𝒞(𝑇𝐼), we make some comments in Section 8.

Our problem is the following: given two quantifier-free formulae 𝐴0 and 𝐵0 such that 𝐴0 ∧ 𝐵0 is not

satisfiable (modulo 𝒞𝒜ℛ𝒟(𝑇𝐼)), to compute a quantifier-free formula 𝐶 such that

(i) 𝒞𝒜ℛ𝒟(𝑇𝐼) |= 𝐴0 → 𝐶;

(ii) 𝒞𝒜ℛ𝒟(𝑇𝐼) |= 𝐶 ∧𝐵0 → ⊥;

(iii) 𝐶 contains only the variables (of sort INDEX, ARRAY, ELEM) which occur both in 𝐴0 and in 𝐵0.

Below, we work with ground formulae over signatures expanded with free constants instead of quantifier-

free formulae. We use letters 𝐴,𝐵, . . . for finite sets of ground formulae; the logical reading of a set of

formulae is the conjunction of its elements. For a signature Σ and a set 𝐴 of formulae, Σ𝐴 denotes the

signature Σ expanded with the free constants occurring in 𝐴. Let 𝐴 and 𝐵 be two finite sets of ground

formulae in the signatures Σ𝐴 and Σ𝐵 , resp., and Σ𝐶 := Σ𝐴 ∩ Σ𝐵 . We ‘color’ a term, a literal, or a formula

𝜙 by calling it:

∙ 𝐴𝐵-common iff it is defined over Σ𝐶 ;

∙ 𝐴-local (resp. 𝐵-local) if it is defined over Σ𝐴 (resp. Σ𝐵);

∙ 𝐴-strict (resp. 𝐵-strict) iff it is 𝐴-local (resp. 𝐵-local) but not 𝐴𝐵-common;

∙ strict if it is either 𝐴-strict or 𝐵-strict.

There are a number of manipulations that can be freely applied to a jointly unsatisfiable pair 𝐴,𝐵 without

compromising the possibility of extracting an interpolant out of them. A list of such manipulations (called

‘metarules’) is supplied in [7], [8]. Here we need to introduce only some of them:

(i) we can add to 𝐴 an 𝐴-local quantifier-free formula entailed by 𝐴 (similarly we can add to 𝐵 a 𝐵-local

quantifier-free formula entailed by 𝐵): the interpolant computed after such a transformation is trivially

an interpolant for the original pair too;

(ii) we can pick an 𝐴-local term 𝑡 and a fresh constant 𝑥 (to be considered 𝐴-strict from now on) and add

to 𝐴 the equality 𝑥 = 𝑡: again, the interpolant computed after such a transformation is trivially an

interpolant for the original pair too (the same observation extends to 𝐵);

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Interpolation Results for Arrays with Length and MaxDiff 29

(iii) we can pick an 𝐴𝐵-common term 𝑡 and a fresh constant 𝑥 (to be considered 𝐴𝐵-common from now

on) and add to both 𝐴 and 𝐵 the equality 𝑥 = 𝑡: in this case, if 𝜃 is the interpolant computed after

such a transformation, then 𝜃(𝑡/𝑥) is an interpolant for the original pair.

We shall often apply the above metarules (i)-(ii)-(iii) in the sequel.

7.1 The Algorithm

We reduce the problem of finding an interpolant of an unsatifiable pair (𝐴0, 𝐵0) to an analogous polynomial

size problem in the weaker theory 𝑇𝐼 ∪ ℰ𝒰ℱ .

Our unsatisfiable pair (𝐴0, 𝐵0) needs to be preprocessed. Using the procedure in the proof of Lemma 6.4,

we can suppose that both 𝐴0 and 𝐵0 are given in the form of finite separated pairs. In fact, the procedure

of Lemma 6.4 just introduces constants in order to explicitly name terms, so that it fits within the above

explained remarks (see metarules (ii)-(iii)). The newly introduced constants are colored 𝐴-strict, 𝐵-strict or

𝐴𝐵-common depending on the color of the terms they name. Notice that because of this preprocessing, for

every 𝐴-strict (resp. 𝐵-strict, 𝐴𝐵-common) array constant 𝑎, in 𝐴0 (resp. 𝐵0, 𝐴
0 ∩𝐵0) there is an atom of

the kind |𝑎| = 𝑙𝑎.

To sum up, 𝐴0 is of the form
⋀︀
𝐴0

1 ∧
⋀︀
𝐴0

2 and 𝐵0 is of the form
⋀︀
𝐵0

1 ∧
⋀︀
𝐵0

2 , for separated pairs (𝐴0
1, 𝐴

0
2)

and (𝐵0
1 , 𝐵

0
2).

Our interpolation algorithm consists of three transformation steps (all of them fit our metarules (i)-(ii)-

(iii)). We let 𝑁𝐴 (resp. 𝑁𝐵) be the number of 𝐴-local (resp. 𝐵-local) index constants occurring within a 𝑤𝑟

symbol in 𝐴0 (resp. 𝐵0); we let also 𝑁 be equal to 1 +𝑚𝑎𝑥(𝑁𝐴, 𝑁𝐵).

Step 1. This transformation must be applied for every pair of distinct 𝐴𝐵-common ARRAY-constants 𝑐1, 𝑐2.

The transformation picks fresh INDEX constants 𝑘1, . . . , 𝑘𝑁 (to be colored 𝐴𝐵-common) and adds the atoms

diff𝑛(𝑐1, 𝑐2) = 𝑘𝑛 (for all 𝑛 = 1, . . . , 𝑁) to both sets 𝐴1 and 𝐵1. This transformation fits metarule (iii).

Step 2. We apply 0-instantiation, that is we replace 𝐴 with 𝐴(ℐ𝐴) and 𝐵 with 𝐵(ℐ𝐵), where ℐ𝐴 is

the set of 𝐴-local index constants and ℬ is the set of 𝐵-local index constants (see Definition 6.3). This

transformation fits metarule (i).

Step 3. As proved in Theorem 7.4 below, at this step 𝐴2∧𝐵2 is 𝑇𝐼 ∪ℰ𝒰ℱ -inconsistent; since 𝑇𝐼 ∪ℰ𝒰ℱ has

quantifier-free interpolation by Theorem 2.5, we can compute an interpolant 𝜃 of the jointly unsatisfiable pair

𝐴2, 𝐵2. To get our desired 𝒞𝒜ℛ𝒟(𝑇𝐼)-interpolant, we only have to replace back in it the fresh 𝐴𝐵-common

constants introduced by our trasformations by the 𝐴𝐵-common terms they name.

Example 7.1. This is the classical example (due to R. Jhala) showing that 𝒜ℛext does not have quantifier-

free interpolation (one needs diff in the signature to recover it). Let 𝐴0 be {𝑐1 = 𝑤𝑟(𝑐2, 𝑖, 𝑒)} and 𝐵0

be {𝑖1 ≠ 𝑖2, 𝑟𝑑(𝑐1, 𝑖1) ̸= 𝑟𝑑(𝑐2, 𝑖1), 𝑟𝑑(𝑐1, 𝑖2) ̸= 𝑟𝑑(𝑐2, 𝑖2)}. Preprocessing adds the 𝐴𝐵-common literals

|𝑐1| = 𝑙𝑐1 , |𝑐2| = 𝑙𝑐2 to both 𝐴0
1 and 𝐵0

1 . Step 1 introduces the 𝐴𝐵-common atoms

diff1(𝑐1, 𝑐2) = 𝑘1, diff2(𝑐1, 𝑐2) = 𝑘2

again to be added to both 𝐴0
1 and 𝐵0

1 . We now examine the 0-instantiations 𝐴(ℐ𝐴) and 𝐵(ℐ𝐵) required

by Step 2. Such instantiations are finitely many, but their number is rather large, so we limit ourselves to

indicate a set of instantiations that is sufficient to produce an inconsistency in Step 3.

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Ghilardi and Gianola, et al.

Considering 𝐴(ℐ𝐴), we add to the formulae (33),(34) from Example 6.8 also the folowing further instances

of (18)

𝑘1 ̸= 𝑖→ 𝑟𝑑(𝑐1, 𝑘1) = 𝑟𝑑(𝑐2, 𝑘1)

𝑘2 ̸= 𝑖→ 𝑟𝑑(𝑐1, 𝑘2) = 𝑟𝑑(𝑐2, 𝑘2)
(35)

Considering 𝐵(ℐ𝐵), we need the following instances of (19)

𝑙𝑐1 ≥ 0 ∧ (𝑟𝑑(𝑐1, 𝑖1) ̸= ⊥ ↔ 0 ≤ 𝑖1 ≤ 𝑙𝑐1)

𝑙𝑐2 ≥ 0 ∧ (𝑟𝑑(𝑐2, 𝑖1) ̸= ⊥ ↔ 0 ≤ 𝑖1 ≤ 𝑙𝑐2)

𝑙𝑐1 ≥ 0 ∧ (𝑟𝑑(𝑐1, 𝑖2) ̸= ⊥ ↔ 0 ≤ 𝑖2 ≤ 𝑙𝑐1)

𝑙𝑐2 ≥ 0 ∧ (𝑟𝑑(𝑐2, 𝑖2) ̸= ⊥ ↔ 0 ≤ 𝑖2 ≤ 𝑙𝑐2)

(36)

and also the following 6 instances of (22) (actually the first 4 formulas below can be added to 𝐴(ℐ𝐴) too):

𝑘1 ≥ 𝑘2 ≥ 0

(𝑟𝑑(𝑐1, 𝑘1) = (𝑟𝑑(𝑐2, 𝑘1) → 𝑘1 = 0

(𝑟𝑑(𝑐1, 𝑘2) = (𝑟𝑑(𝑐2, 𝑘2) → 𝑘2 = 0

𝑙𝑐1 = 𝑙𝑐2 ∧ 𝑘1 = 𝑘2 → 𝑘1 = 0

𝑖1 > 𝑘2 → (𝑟𝑑(𝑐1, 𝑖1) = (𝑟𝑑(𝑐2, 𝑖1) ∨ 𝑖1 = 𝑘1

𝑖2 > 𝑘2 → (𝑟𝑑(𝑐1, 𝑖2) = (𝑟𝑑(𝑐2, 𝑖2) ∨ 𝑖2 = 𝑘1.

(37)

The 𝑇𝐼 ∪ ℰ𝒰ℱ-inconsistency of (33),(34),(35),(36),(37) with 𝐵0 is an easy problem for an SMT-solver (but

can also be checked manually with some effort).

Since we got the desired inconsistency, we can rely in Step 3 on a black-box interpolation algorithm for

𝑇𝐼 ∪ ℰ𝒰ℱ . Such algorithm for instance produces the formula

𝑘2 = 0 ∧ (𝑘1 = 𝑘2 ∨ 𝑟𝑑(𝑐1, 𝑘2) = 𝑟𝑑(𝑐2, 𝑘2)) (38)

which is 𝑇𝐼∪ℰ𝒰ℱ -implied by 𝐴(ℐ𝐴) and 𝑇𝐼∪ℰ𝒰ℱ -inconsistent with 𝐵(ℐ𝐵). To get an 𝒞𝒜ℛ𝒟(𝑇𝐼)-interpolant,

it is enough to replace 𝑘1, 𝑘2 by diff1(𝑐1, 𝑐2), diff2(𝑐1, 𝑐2) respectively in (38).

Example 7.2. We let

𝐴0 ≡ {diff(𝑎1, 𝑎2) = 𝑗, diff(𝑎1, 𝑐1) = 𝑗1, diff(𝑎2, 𝑐2) = 𝑗2}

𝐵0 ≡ {𝑗 < 𝑙, 𝑗1 < 𝑙, 𝑗2 < 𝑙, 𝑟𝑑(𝑐1, 𝑙) ̸= 𝑟𝑑(𝑐2, 𝑙)}

In the preprocessing step, we must add the atoms |𝑎1| = 𝑙𝑎1 , |𝑎2| = 𝑙𝑎2 to 𝐴0
1 and |𝑐1| = 𝑙𝑐1 , |𝑐2| = 𝑙𝑐2 to

both 𝐴0
1 and 𝐵0

1 . Since 𝑁𝐴 = 𝑁𝐵 = 0, we have 𝑁 = 1; Step 1 adds the 𝐴𝐵-common atom diff(𝑐1, 𝑐2) = 𝑘1

with fresh index variable 𝑘1. Step 2 makes the required 0-instantiations producing a 0-instantiated separated

pair, let us call it (𝐴,𝐵). From such instantiations, we get in Step 3 the 𝑇𝐼 ∪ ℰ𝒰ℱ-interpolant

𝑘1 ≤ max(𝑗1, 𝑗2, 𝑗). (39)

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Interpolation Results for Arrays with Length and MaxDiff 31

This formula is in fact 𝑇𝐼 ∪ℰ𝒰ℱ -implied by 𝐴1 and 𝑇𝐼 ∪ℰ𝒰ℱ -inconsistent with 𝐵1 (notice that 𝐵1 contains,

in addition to 𝑗 < 𝑙, 𝑗1 < 𝑙, 𝑗2 < 𝑙, 𝑟𝑑(𝑐1, 𝑙) ̸= 𝑟𝑑(𝑐2, 𝑙), also

𝑘1 < 𝑙 → 𝑟𝑑(𝑐1, 𝑙) = 𝑟𝑑(𝑐2, 𝑙)

by (22)). Using the recover instruction of meta-rule (iii), we get form (39) the 𝒞𝒜ℛ𝒟(𝑇𝐼)-interpolant

diff(𝑐1, 𝑐2) ≤ max(𝑗1, 𝑗2, 𝑗).

Example 7.3. Let 𝐴0 be

{diff(𝑎, 𝑐1) = 𝑖1, diff(𝑏, 𝑐2) = 𝑖1, 𝑎1 = 𝑤𝑟(𝑏, 𝑖1, 𝑒1), |𝑎| = 𝑘,

𝑎 = 𝑤𝑟(𝑎1, 𝑖3, 𝑒3), |𝑎1| = 𝑘, |𝑏1| = 𝑘, |𝑐1| = 𝑘, |𝑐2| = 𝑘}

and let 𝐵0 be {𝑟𝑑(𝑐1, 𝑖1) ̸= 𝑟𝑑(𝑐2, 𝑖2), 𝑖1 < 𝑖2, 𝑖2 < 𝑖3, 𝑖3 < 𝑘, |𝑐1| = 𝑘, |𝑐2| = 𝑘}.
We do not need any preprocessing here; since 𝑁 = 3,13 Step 1 adds the 𝐴𝐵-common atoms

diff1(𝑐1, 𝑐2) = 𝑘1, diff2(𝑐1, 𝑐2) = 𝑘2, diff3(𝑐1, 𝑐2) = 𝑘3 .

Step 2 produces a separated pair (𝐴,𝐵) such that 𝐴2 ∧𝐵2 is 𝑇𝐼 ∪ ℰ𝒰ℱ-inconsistent (inconsistency can be

tested via an SMT-solver like z3 [14] or MathSat [6]). The related 𝑇𝐼 ∪ℰ𝒰ℱ -interpolant (once 𝑘1, 𝑘2 and 𝑘3

are replaced by diff1(𝑐1, 𝑐2), diff2(𝑐1, 𝑐2) and diff3(𝑐1, 𝑐2), respectively) gives our 𝒞𝒜ℛ𝒟(𝑇𝐼)-interpolant.

Theorem 7.4. The above 3-steps algorithm computes a quantifier-free interpolant for every 𝒞𝒜ℛ𝒟(𝑇𝐼)-

mutually unsatifiable pair 𝐴0, 𝐵0 of quantifier-free formulae.

Proof. We only need to prove that Step 3 really applies.

Suppose not; let 𝐴 = (𝐴1, 𝐴2) and 𝐵 = (𝐵1, 𝐵2) be the separated pairs obtained after applications of

Steps 1 and 2. If Step 3 does not apply, then 𝐴2 ∧ 𝐵2 is 𝑇𝐼 ∪ ℰ𝒰ℱ-consistent. We claim that (𝐴,𝐵) is

𝒞𝒜ℛ𝒟(𝑇𝐼)-consistent (contradicting that (𝐴0, 𝐵0) ⊆ (𝐴,𝐵) was 𝒞𝒜ℛ𝒟(𝑇𝐼)-inconsistent).

Let ℳ be a 𝑇𝐼 ∪ ℰ𝒰ℱ-model of 𝐴2 ∧ 𝐵2. ℳ is a two-sorted structure (the sorts are INDEX and ELEM)

endowed for every array constant 𝑑 occurring in 𝐴 ∪𝐵 of a function 𝑑ℳ : INDEXℳ −→ ELEMℳ. In addition,

INDEXℳ is a model of 𝑇𝐼 . We list the properties of ℳ that comes from the fact that our Steps 1-2 have

been applied (below, we denote by 𝑘ℳ the element of INDEXℳ assigned to an index constant 𝑘):14

(a) we have that ℳ |=
⋀︀
𝐴1(ℐ𝐴) (where ℐ𝐴 is the set of 𝐴-local constants) and ℳ |=

⋀︀
𝐵1(ℐ𝐵) (where

ℐ𝐵 is the set of 𝐵-local constants): this is because (𝐴1, 𝐴2) and (𝐵1, 𝐵2) are 0-instantiated by Step

2;15

(b) for𝐴𝐵-common array variables 𝑐1, 𝑐2, we have that 𝐴1∩𝐵1 contains a literal of the kind diff𝑛(𝑐1, 𝑐2) =

𝑘𝑛 for 𝑛 ≤ 𝑁 ; suppose that ℳ |= 𝑙𝑐1 = 𝑙𝑐2
16 and that 𝑘 is an index constant such that ℳ |= 𝑘 ̸= 𝑙

for all 𝐴𝐵-common index constant 𝑙; then, we can have ℳ |= 𝑐1(𝑘) ̸= 𝑐2(𝑘) only when ℳ |= 𝑘 < 𝑘𝑁 :

this is because Step 1 has been applied and because of (a).

We expand ℳ to an 𝒜ℛext(𝑇𝐼)-structure 𝒩 and endow it with an assignment to our 𝐴-local and 𝐵-local

variables, in such a way that all diff operators mentioned in 𝐴1, 𝐵1 are defined and all formulae in 𝐴,𝐵

13Recall that 𝑁 is defined as 1 + 𝑚𝑎𝑥(𝑁𝐴, 𝑁𝐵), where 𝑁𝐴 (resp. 𝑁𝐵) be the number of 𝐴-local (resp. 𝐵-local) index

constants occurring within a 𝑤𝑟 symbol in 𝐴0 (resp. 𝐵0).
14Thus if e.g. 𝑘, 𝑙 are index constants, ℳ |= 𝑘 = 𝑙 is the same as 𝑘ℳ = 𝑙ℳ.
15The sets 𝐴1(ℐ𝐴), 𝐵1(ℐ𝐵) are introduced in Definition 6.3.
16Recall that 𝑙𝑐1 , 𝑙𝑐2 are the 𝐴𝐵-common constants such that the literals |𝑐1| = 𝑙𝑐1 , |𝑐2| = 𝑙𝑐2 belongs to 𝐴1 ∩ 𝐵1.

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Ghilardi and Gianola, et al.

are true. In view of Theorem 4.4, this structure can be expanded to the desired full model of 𝒞𝒜ℛ𝒟(𝑇𝐼).

We take INDEX𝒩 and ELEM𝒩 to be equal to INDEXℳ and ELEMℳ; the 𝑇𝐼 -reduct of 𝒩 will be equal to the

𝑇𝐼 -reduct of ℳ and we let 𝑥𝒩 = 𝑥ℳ for all index and element constants occurring in 𝐴 ∪𝐵. ARRAY𝒩 is the

set of all positive support functions from INDEX𝒩 into ELEM𝒩 . The interpretation of 𝐴-local and 𝐵-local

constants of sort ARRAY is more subtle. We need a détour to explain it.

Let 𝑘 be an index constant such that ℳ |= 𝑘 ̸= 𝑙 for all 𝐴-local index constants 𝑙; we introduce an

equivalence relation ≡𝑘 on the set of 𝐴-local array variables as follows: ≡𝑘 is the smallest equivalence relation

that contains all pairs (𝑎1, 𝑎2) such that ℳ |= 𝑙𝑎1 = 𝑙𝑎2 and moreover an atom of one of the following two

kinds belongs to 𝐴0
1: (I) 𝑎1 = 𝑤𝑟(𝑎2, 𝑖, 𝑒); (II) diff(𝑎1, 𝑎2) = 𝑙, for an 𝑙 such that ℳ |= 𝑙 < 𝑘.

Claim1: for every 𝐴-local constants 𝑎1, 𝑎2 such that 𝑎1 ≡𝑘 𝑎2, the number of the 𝐴-local constants 𝑗 such

that ℳ |= 𝑘 < 𝑗 and 𝑎ℳ1 (𝑗ℳ) ̸= 𝑎ℳ2 (𝑗ℳ) is less or equal to 𝑁𝐴 < 𝑁 .

Proof of Claim1. This is easily shown by induction on the length of the finite sequence witnessing 𝑎1 ≡𝑘 𝑎2.

According to the definition of reflexive-symmetric-transitive closure, if 𝑎1 ≡𝑘 𝑎2 holds then there are

𝑑0, . . . , 𝑑𝑛 such that 𝑑0 = 𝑎1, 𝑑𝑛 = 𝑎2 and for each 𝑗 < 𝑛, we have that either (𝑑𝑗 , 𝑑𝑗+1) or (𝑑𝑗+1, 𝑑𝑗) satisfies

the above requirements: the induction is on such 𝑛. Notice that the statement is not entirely obvious because

the number of the 𝐴-local index constants is much bigger than 𝑁𝐴 (for instance, it includes the 𝐴𝐵-common

constants introduced in Step 1). However induction is easy: it goes through the atoms occurring in the input

set 𝐴0
1 and uses (a). The required observations are the following: if 𝑑𝑗 = 𝑤𝑟(𝑑𝑗+1, 𝑖, 𝑒) ∈ 𝐴0

1, then the only

𝐴-local constant where 𝑑ℳ𝑗 and 𝑑ℳ𝑗+1 can differ is 𝑖; if diff(𝑑𝑗 , 𝑑𝑗+1) = 𝑙 ∈ 𝐴0
1 and ℳ |= 𝑙 < 𝑘, then 𝑑ℳ𝑗

and 𝑑ℳ𝑗+1 cannot differ on any 𝐴-local constant above 𝑘ℳ. Iterating these observations during induction, the

claim is clear: we can collect at most the set of the 𝐴-local constants occurring in 𝐴0
1 within a 𝑤𝑟 symbol.

Claim2: if 𝑐1, 𝑐2 are 𝐴𝐵-common and 𝑐1 ≡𝑘 𝑐2, then 𝑐
ℳ
1 (𝑘ℳ) = 𝑐ℳ2 (𝑘ℳ).

Proof of Claim2. We apply Claim1 to the 𝐴𝐵-common array variables 𝑐1, 𝑐2 and let us consider the atoms

diff1(𝑐1, 𝑐2) = 𝑘1, . . . , diff𝑁 (𝑐1, 𝑐2) = 𝑘𝑁 ∈ 𝐴1. Now 𝑘1, . . . , 𝑘𝑁 are all 𝐴𝐵-common (hence also 𝐴-local)

constants, moreover 𝑁 > 𝑁𝐴 and the number of the 𝐴-local constants above 𝑘ℳ where 𝑐1, 𝑐2 differ is

at most 𝑁𝐴. According to (b) above, if for absurdity 𝑐ℳ1 (𝑘ℳ) = 𝑐ℳ2 (𝑘ℳ) does not hold, then we have

ℳ |= 𝑘 < 𝑘𝑁 . Since ℳ |= 𝑘 ≥ 0 (otherwise 𝑐ℳ1 (𝑘ℳ) = 𝑐ℳ2 (𝑘ℳ) follows), this means by Lemma 3.5 that

we have ℳ |= 𝑘1 > · · · > 𝑘𝑁 > 0. However 𝑘1, . . . , 𝑘𝑁 are all 𝐴-local constants above 𝑘, their number is

bigger than 𝑁𝐴, hence we must have ℳ |= 𝑐ℳ1 (𝑘ℳ𝑖) = 𝑐ℳ2 (𝑘ℳ𝑖) for some 𝑖 = 1, . . . , 𝑁 ; the latter implies

ℳ |= 𝑘𝑖 = · · · = 𝑘𝑁 = 0 by Lemma 3.5, absurd. ⊣

In order to interpret 𝐴-local constants of sort ARRAY, we assign to an 𝐴-local constant 𝑎 of sort ARRAY the

function 𝑎𝒩 defined as follows for every 𝑖 ∈ INDEX𝒩 :

(�-i) if 𝑖 is equal to 𝑘ℳ, where 𝑘 is an 𝐴-local constant, then 𝑎𝒩 (𝑖) := 𝑎ℳ(𝑘ℳ);

(�-ii) if 𝑖 is different from 𝑘ℳ for every 𝐴-local constant 𝑘, but nevertherless 𝑖 is equal to 𝑘ℳ for some

(necessarily 𝐵-strict) index constant 𝑘 and there is an 𝐴𝐵-common array variable 𝑐 such that 𝑐 ≡𝑘 𝑎,

then 𝑎𝒩 (𝑖) is equal to 𝑐ℳ(𝑘ℳ);

(�-iii) in the remaining cases, 𝑎𝒩 (𝑖) is equal to 𝑒𝑙ℳ or ⊥ℳ depending whether ℳ |= 0 ≤ 𝑖∧ 𝑖 ≤ 𝑙𝑎 holds or

not.

Notice that 𝑎𝒩 (𝑖) is univocally specified in case (†-ii) because of the above Claim2. We now show that

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Interpolation Results for Arrays with Length and MaxDiff 33

(*) all 𝑎𝒩 are positive-support functions and all formulæ from 𝐴1 ∪𝐴2 are true in 𝒩 .

Recall in fact that formulæ in 𝐴2 are Boolean combinations of 𝐴-local atoms of the kind (30): these are

𝑇𝐼 ∪ ℰ𝒰ℱ-atoms and, due to their shape, each of them is true in ℳ iff it is true in 𝒜 (this is because 𝑟𝑑

functions are applied only to 𝐴-local index constants, so that the modifications we introduced for passing

from 𝑎ℳ to 𝑎𝒩 does not affect truth of these atoms). Concerning formulæ in 𝐴1, these are all 𝑤𝑟, diff

and |−|-atoms.17 The reason why they are true in 𝒩 is the 0-instantiation performed by Step 2 (see (a)

above). For example, consider an atom of the kind |𝑎| = 𝑙𝑎 appearing in 𝐴1: since formulae (19) have

been instantiated with all the 𝐴-local index constants via Step 2, for all 𝐴-local index constant ℎ, we have

ℳ |= 𝑟𝑑(𝑎, ℎ) ̸= ⊥ iff ℳ |= 0 ≤ ℎ ≤ 𝑖. Now, thanks to definition (†), for all the elements ℎ ∈ INDEX𝒩 we

have an analogous result: in case ℎ is equal to 𝑘ℳ for some 𝐴-local constant 𝑘, we employ definition (†-i),
otherwise we use (†-ii) or (†-iii) (for (†-ii), notice that 𝑎 ≡𝑘 𝑐 implies that ℳ |= 𝑙𝑎 = 𝑙𝑐 and 0-instantiation

guarantees that 𝑐ℳ(𝑘ℳ) is equal to ⊥ℳ or to 𝑒𝑙ℳ depending whether ℳ |= 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑙𝑐 holds or

not). Hence we get that 𝒜 satisfies formula (19), since the universal quantifier has been instantiated in all

possible ways. Thus 𝒜 |= |𝑎| = 𝑙𝑎, by Lemma 3.3. The other cases are similar: notice in particular that

if 𝑎 = 𝑤𝑟(𝑎′, 𝑖, 𝑒) ∈ 𝐴1 then 𝑎 ≡𝑘 𝑎
′. If diff(𝑎, 𝑎′) = 𝑖 ∈ 𝐴1, the relevant case is when ℳ |= 𝑖 < 𝑘 and

ℳ |= 𝑙𝑎1 = 𝑙𝑎2 , but in this case we have 𝑎 ≡𝑘 𝑎
′ too.

The assignments to the 𝐵-local array variables 𝑏 are defined analogously, so that

(*) all 𝑏𝒩 are positive-support functions and all formulæ from 𝐵1 ∪𝐵2 are true in 𝒩 .

There is however one important point to notice: for all 𝐴𝐵-common constants 𝑐 of sort ARRAY, our

specification of 𝑐ℳ does not depend on the fact that we use the above definition for 𝐴-local or for 𝐵-local

array variables: to see this, we only have to notice that 𝑐 ≡𝑘 𝑐 holds in case (†-ii) is applied. This remark

concludes our proof. □

It is not difficult to see that the quantifier-free 𝑇𝐼 ∪ℰ𝒰ℱ -interpolation problem generated by our algorithm

is of polynomial size, thus a polysize reduction obtains.

8 FURTHER RELATED WORK AND CONCLUSIONS

We introduced two theories of arrays, namely the theory 𝒞𝒜ℛ𝒟(𝑇𝐼) of contiguous arrays with maxdiff and

its extension 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) that also supports ‘constant’ arrays’. These theories are strictly more expressive

than McCarthy’s theory and the other variants studied in the literature: notably, strong length of arrays

is definable, and inside it arrays are fully defined in every memory location. We proved that 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼)

admits general interpolation by showing that its models are strongly amalgamable; the existence of amalgams

also implies that 𝒞𝒜ℛ𝒟(𝑇𝐼) has interpolants. We also studied the SMT problem for 𝒞𝒜ℛ𝒟(𝑇𝐼) and showed

through instantiations techniques that it is decidable. Finally, we provided a general algorithm for computing

𝒞𝒜ℛ𝒟(𝑇𝐼) quantifier-free interpolants that relies on a polynomial reduction to the problem of computing

general interpolants for the index theory. Differently from the previous algorithm in [17], this procedure

avoids full instantiation of terms.

17In addition, we have diff𝑛-atoms for 𝑛 > 1, but these are all 𝐴𝐵-common atoms that were not part of the initial pair
𝐴0, 𝐵0. In fact they are also true in 𝒩 , but strictly speaking we do not need to check this fact to get the absurdity that
𝐴0 ∧ 𝐵0 is 𝒞𝒜ℛ𝒟(𝑇𝐼)-consistent.

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Ghilardi and Gianola, et al.

One future research direction regards the implementation of this procedure, which is still missing. In

the last decade, some implemented approaches have been introduced to compute interpolants for different

theories, by relying on different techniques. For complex theories, in [26] McMillan proposed an interpolating

proof calculus to compute interpolants via refutational proofs obtained from the z3 SMT-solver. It is worth

mentioning his approach because it takes advantages from the flexibility of the z3 solver to deal with several

theories and their combination: it makes use of a secondary interpolation engine in order to ‘fill the gaps’ of

refutational proofs introduced by theory lemmas, which are specific formulæ derived by the satellites theories

encoded in z3. This secondary engine only needs an interpolation algorithm for QF_UFLIA. This approach

can be used to compute interpolants for array theories, but since here theory lemmas use quantified formulæ,

the method can generate quantified formulæ.

Concerning in particular array theories, another notable approach for computing interpolants is due to

the authors of [18], which exploited the proof tree preserving interpolation scheme from [12] to construct

interpolants via a resolution proof. This method supports the use of the diff operation between arrays in

order to compute quantifier-free interpolants, but the semantic interpretation of diff is undetermined as

in [7].

In [9], the authors presented AXDInterpolator [1], an implementation of the interpolation algorithm

from [17], which allows the user to choose z3, Mathsat, or SMTInterpol ([11]) as the underlying

interpolation engines. In order to show its feasibility, it was tested against a benchmark based on C programs

from the ReachSafety-Arrays and MemSafety-Arrays tracks of SV-COMP [4]. Since many C programs

from [4] require the usage of array length (and, in particular, strong length) we plan to develop a tool that

implements the new algorithm for contiguous arrays presented in this paper.

There is still a question concerning our interpolation algorithm that needs to be investigated: extending

the algorithm to the theory 𝒞𝒜ℛ𝒟𝒞(𝑇𝐼) (with constant arrays in the language). In order to handle constant

arrays, the construction of Theorem 7.4 is still appropriate, except for the fact that condition (†-ii) should
not be applied to define Const(𝑖)𝒩 when 𝑖 is an 𝐴-strict constant such that 𝑖ℳ is equal to 𝑗ℳ for some 𝐴𝐵-

common 𝑗. To avoid this, one could introduce right after Step 1 some form of guessing for equalities between

index constants: however, such a guessing (based on colorings) would create branches and consequently

would not produce a polynomial instance of a 𝑇𝐼 ∪ ℰ𝒰ℱ-interpolation problem in Step 3. This issue needs

further analysis.

Finally, although quite challenging, it would be interesting to extend our interpolation results also to

array theories combined with cardinality constraints, similar to those introduced, e.g., in [2],[28].

REFERENCES

[1] 2021. AXDInterpolator. https://github.com/typesAreSpaces/AXDInterpolator Accessed: 2021-10-12.

[2] Francesco Alberti, Silvio Ghilardi, and Elena Pagani. 2017. Cardinality constraints for arrays (decidability results and

applications). Formal Methods Syst. Des. 51, 3 (2017), 545–574. https://doi.org/10.1007/s10703-017-0279-6

[3] Paul D. Bacsich. 1975. Amalgamation properties and interpolation theorems for equational theories. Algebra Universalis

5 (1975), 45–55.

[4] Dirk Beyer. 2021. Software Verification: 10th Comparative Evaluation (SV-COMP 2021). In Proc. of TACAS 2021

(LNCS, Vol. 12652). Springer, Berlin, Heidelberg, 401–422. https://doi.org/10.1007/978-3-030-72013-1 24

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable About Arrays?. In Proc. of VMCAI

2006 (LNCS, Vol. 3855). Springer, Berlin, Heidelberg, 427–442. https://doi.org/10.1007/11609773 28

[6] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebastiani. 2008. The

MathSAT 4 SMT Solver. In Proc. of CAV 2008 (LNCS, Vol. 5123). Springer, Berlin, Heidelberg, 299–303. https:

Manuscript submitted to ACM

https://github.com/typesAreSpaces/AXDInterpolator
https://doi.org/10.1007/s10703-017-0279-6
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-70545-1_28

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Interpolation Results for Arrays with Length and MaxDiff 35

//doi.org/10.1007/978-3-540-70545-1 28

[7] Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. 2012. Quantifier-Free Interpolation of a Theory of Arrays. Log.

Methods Comput. Sci. 8, 2 (2012). https://doi.org/10.2168/LMCS-8(2:4)2012

[8] Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. 2014. Quantifier-free interpolation in combinations of equality

interpolating theories. ACM Trans. Comput. Log. 15, 1 (2014), 5:1–5:34. https://doi.org/10.1145/2490253

[9] José Abel Castellanos Joo, Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur. 2021. AXDInterpolator: A Tool for

Computing Interpolants for Arrays with MaxDiff. In Proc. of SMT 2021, Vol. 2908. CEUR Workshop Proceedings,

40–52. http://ceur-ws.org/Vol-2908/paper15.pdf

[10] C. C. Chang and H. Jerome Keisler. 1990. Model Theory (third ed.). North-Holland, Amsterdam-London.

[11] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. 2012. SMTInterpol: An Interpolating SMT Solver. In Proc. of

SPIN 2012 (LNCS, Vol. 7385). Springer, Berlin, Heidelberg, 248–254.

[12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. 2013. Proof Tree Preserving Interpolation. In Proc. of TACAS

2013 (LNCS, Vol. 7795). Springer, Berlin, Heidelberg, 124–138. https://doi.org/10.1007/978-3-642-36742-7 9

[13] William Craig. 1957. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J.

Symbolic Logic 22 (1957), 269–285.

[14] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proc. of the TACAS 2008 (LNCS,

Vol. 4963). Springer, Berlin, Heidelberg, 337–340. https://doi.org/10.1007/978-3-540-78800-3 24

[15] Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, and Cesare Tinelli. 2012. Ground interpolation for the theory of

equality. Log. Methods Comput. Sci. 8, 1 (2012). https://doi.org/10.2168/LMCS-8(1:6)2012

[16] Silvio Ghilardi. 2004. Model Theoretic Methods in Combined Constraint Satisfiability. J. Autom. Reasoning 33, 3-4

(2004), 221–249.

[17] Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur. 2021. Interpolation and Amalgamation for Arrays with MaxDiff.

In Proc. of FOSSACS 2021 (LNCS, Vol. 12650). Springer, Berlin, Heidelberg, 268–288. https://doi.org/10.1007/978-

3-030-71995-1 14

[18] Jochen Hoenicke and Tanja Schindler. 2018. Efficient Interpolation for the Theory of Arrays. In Proc. of IJCAR 2018

(LNCS, Vol. 10900). Springer, Berlin, Heidelberg, 549–565. https://doi.org/10.1007/978-3-319-94205-6 36

[19] Jochen Hoenicke and Tanja Schindler. 2019. Interpolation and the Array Property Fragment. CoRR abs/1904.11381

(2019). arXiv:1904.11381 http://arxiv.org/abs/1904.11381

[20] Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. 2006. Interpolation for Data Structures. In Proc. of

SIGSOFT/FSE 2006. ACM, 105–116.

[21] Emil W. Kiss, László Márki, Péter Pröhle, and Walter Tholen. 1982. Categorical algebraic properties. A compendium

on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity. Studia Sci. Math. Hungar.

18, 1 (1982), 79–140.

[22] Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh, and Arie Gurfinkel. 2019. Interpolating Strong Induction.

In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,

2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.).

Springer, 367–385. https://doi.org/10.1007/978-3-030-25543-5 21

[23] John McCarthy. 1962. Towards a Mathematical Science of Computation. In Proc. of IFIP Congress 1962. North-Holland,

21–28.

[24] Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Proc. of CAV 2003 (LNCS, Vol. 2725).

Springer, Berlin, Heidelberg, 1–13. https://doi.org/10.1007/978-3-540-45069-6 1

[25] Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proc. of CAV 2006 (LNCS, Vol. 4144). Springer,

Berlin, Heidelberg, 123–136.

[26] Kenneth L. McMillan. 2011. Interpolants from Z3 proofs. In Proc. of FMCAD 2011. FMCAD Inc., 19–27.

[27] Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating Decision Procedures. ACM Trans. Program.

Lang. Syst. 1, 2 (1979), 245–257.

[28] Rodrigo Raya and Viktor Kunkak. 2022. NP Satisfiability for Arrays as Powers. In Proc. of VMCAI 2022 (LNCS,

Vol. 13182). Springer, Berlin, Heidelberg, 301–318. https://doi.org/10.1007/978-3-030-94583-1 15

[29] Andrey Rybalchenko and Viorica Sofronie-Stokkermans. 2007. Constraint Solving for Interpolation. In Proc. of VMCAI

2007 (LNCS, Vol. 4349). Springer, Berlin, Heidelberg, 346–362. https://doi.org/10.1007/978-3-540-69738-1 25

[30] Andrey Rybalchenko and Viorica Sofronie-Stokkermans. 2010. Constraint solving for interpolation. J. Symb. Comput.

45, 11 (2010), 1212–1233. https://doi.org/10.1016/j.jsc.2010.06.005

[31] Viorica Sofronie-Stokkermans. 2006. Interpolation in Local Theory Extensions. In Proc. of IJCAR 2006 (LNCS,

Vol. 4130). Springer, Berlin, Heidelberg, 235–250. https://doi.org/10.1007/11814771 21

[32] Viorica Sofronie-Stokkermans. 2008. Interpolation in Local Theory Extensions. Log. Methods Comput. Sci. 4, 4 (2008).

https://doi.org/10.2168/LMCS-4(4:1)2008

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.2168/LMCS-8(2:4)2012
https://doi.org/10.1145/2490253
http://ceur-ws.org/Vol-2908/paper15.pdf
https://doi.org/10.1007/978-3-642-36742-7_9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.2168/LMCS-8(1:6)2012
https://doi.org/10.1007/978-3-030-71995-1_14
https://doi.org/10.1007/978-3-030-71995-1_14
https://doi.org/10.1007/978-3-319-94205-6_36
https://arxiv.org/abs/1904.11381
http://arxiv.org/abs/1904.11381
https://doi.org/10.1007/978-3-030-25543-5_21
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-540-69738-1_25
https://doi.org/10.1016/j.jsc.2010.06.005
https://doi.org/10.1007/11814771_21
https://doi.org/10.2168/LMCS-4(4:1)2008

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Ghilardi and Gianola, et al.

[33] Viorica Sofronie-Stokkermans. 2016. On Interpolation and Symbol Elimination in Theory Extensions. In Proc. of IJCAR

2016 (LNCS, Vol. 9706). Springer, Berlin, Heidelberg, 273–289. https://doi.org/10.1007/978-3-319-40229-1 19

[34] Viorica Sofronie-Stokkermans. 2018. On Interpolation and Symbol Elimination in Theory Extensions. Log. Methods

Comput. Sci. 14, 3 (2018). https://doi.org/10.23638/LMCS-14(3:23)2018

[35] Nishant Totla and Thomas Wies. 2013. Complete instantiation-based interpolation. In Proc. of POPL 2013. ACM,

537–548. https://doi.org/10.1145/2429069.2429132

[36] Nishant Totla and Thomas Wies. 2016. Complete Instantiation-Based Interpolation. J. Autom. Reasoning 57, 1 (2016),

37–65. https://doi.org/10.1007/s10817-016-9371-7

[37] Yakir Vizel and Arie Gurfinkel. 2014. Interpolating Property Directed Reachability. In Computer Aided Verification -

26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,

July 18-22, 2014. Proceedings. 260–276. https://doi.org/10.1007/978-3-319-08867-9 17

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.23638/LMCS-14(3:23)2018
https://doi.org/10.1145/2429069.2429132
https://doi.org/10.1007/s10817-016-9371-7
https://doi.org/10.1007/978-3-319-08867-9_17

	Abstract
	1 Introduction
	1.1 Plan of the paper

	2 Formal Preliminaries
	3 Arrays with MaxDiff
	4 Embeddings
	5 Strong Amalgamation for CARDC(TI)
	5.1 Amalgam constructions
	5.2 The CARDC(TI)-amalgam is strong

	6 Satisfiability
	7 The interpolation algorithm
	7.1 The Algorithm

	8 Further Related Work and Conclusions
	References

