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This paper presents a parameter governor-based control approach to constrained
spacecraft rendezvous and docking (RVD) in the setting of the Two-Body problem with
gravitational perturbations. An add-on to the nominal closed-loop system, the Time Shift
Governor (TSG) is developed, which provides a time-shifted Chief spacecraft trajectory
as a target reference for the Deputy spacecraft, and enforces various constraints during
RVD missions, such as Line of Sight cone constraints, total magnitude of thrust limit,
relative velocity constraint, and exponential convergence to the target during RVD
missions. As the time shift diminishes to zero, the virtual target incrementally aligns
with the Chief spacecraft over time. The RVD mission is completed when the Deputy
spacecraft achieves the virtual target with zero time shift, which corresponds to the
Chief spacecraft. Simulation results for the RVD mission in an elliptic orbit around the
Earth are presented to validate the proposed control strategy.

I. Introduction

Many spacecraft rendezvous and docking (RVD) missions have been planned and successfully performed.
Such RVD missions allow exchanging crews or/and cargo in satellites and space stations.

RVD has been an important topic throughout the history of spaceflight. In 1966 the first RVD mission
has been manually conducted in a Gemini program. In the following year, the spacecraft Cosmos 186 and
188 have opened a new chapter in the uncrewed RVD missions. Examples of more recent RVD missions are
Crew-6 docking at ISS and the planned chaser cargo system to provide delivery services to the space station
and return cargo to the Earth [1, 2].
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Fig. 1 Spacecraft rendezvous and docking mission on an elliptic orbit.

In this work, we address a spacecraft RVD problem on elliptic orbits. A number of satellites have orbited
along elliptic orbits for various purposes, such as Earth observation, communications, and gravity assist for
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interplanetary missions. For example, the Molniya orbit is a satellite orbit intended to provide communications
over high latitudes. After the first successful insertion into this Molniya orbit in 1964, many communication
satellites have used this orbit [3]. Tundra orbit has been employed by Sirius satellite radio [4], and has also
been studied as a potential disposal orbit [5].

The control systems in RVD missions must strictly adhere to many constraints. In particular, in the
docking phase, it is crucial to satisfy the Line-of-Sight (LoS) constraint to guarantee that the docking sensor
or fiducial markers are visible [6]. The approach velocity limit is crucial when the spacecraft is in the vicinity
of the target object to decrease the risk of damage if there is a high velocity collision. Lastly, the thrusters can
only deliver limited thrust.

Many guidance and control methods have been developed for spacecraft proximity operations. In particular,
artificial potential function (APF)-based guidance has been implemented for the spacecraft rendezvous and
docking problems [7-9]. The APF-based methods can deal with path constraints by defining a potential
function that has high values in regions which spacecraft is required to avoid, and low values at the target
spacecraft location. The APF-based solution is, however, not optimal, and may not simultaneously handle
approach velocity constraints and thrust limits. Model predictive control (MPC) has been studied extensively
for spacecraft maneuvers with a variety of constraints [10, 11] and has been successfully used in the PRISMA
proximity operation demonstration mission [12, 13]. However, MPC has a high onboard computational cost
[14, 15].

I1. Time Shift Governor Approach

In this paper, we develop the Time Shift Governor (TSG) to address the constrained RVD problem
between an active chaser and a passive target in an elliptic Earth orbit in the setting of the Two-Body problem,
including the J, effects. The TSG enforces the constraints by adjusting a single parameter which is the
time shift of the target trajectory commanded to the nominal controller. Previously, this approach had been
proposed for constrained spacecraft formation control on circular Earth orbits [16, 17] and exploited for
spacecraft RVD on Halo orbits in the setting of the Three Body Problem [18]. TSG belongs to a larger set of
techniques used to coordinate motions by modifying the allocation of space and time along predetermined
paths. For instance, [19] presents a related approach in the context of multirotor unmanned aerial vehicles.

TSG is also a variant of the parameter governor scheme [20], which is an add-on control scheme for
adjusting parameters in the nominal closed-loop control system to enforce pointwise-in-time state and control
constraints. As compared to more general model predictive controllers, parameter governors can often be
implemented at a low computation cost. This efficiency is attained by solving online a low-dimensional
optimization problem based only on a small set of parameters that can be assigned discrete values.

I1I. Time Shift Governor Development

A. Problem Formulation

In this work, we consider a spacecraft docking mission in an elliptic orbit around the Earth subject to
multiple mission-specific constraints. During the docking mission, the secondary (Deputy) spacecraft is
located near the primary (Chief) spacecraft. We use subscripts ¢ and d to denote the Chief spacecraft and the
Deputy spacecraft, respectively, and we use the subscript i to denote spacecraft that can either be the Chief or
the Deputy.



1. Dynamics
The equations of motion of each spacecraft are given by

Xi = f(t’ Xi(t)’ui(t))’ (1)

where X; = [xi, yi,zi, %, Vi» 2i]" € R" and u = [uy,up,u3]" € RP stand for the spacecraft state and the
control input to the spacecraft, repectively, expressed in the Earth-centered inertial (ECI) coordinate frame.
Equation (1) represents the motion for spacecraft translational dynamics, including the perturbation effects
and is derived from Newton’s second law,

?=——?+Zij+u, )

where p and j denote, respectively, the gravitational parameter and the index of perturbation sources,
7= [x,y,z]" is the spacecraft position vector, and r is its 2-norm, e.g., r = ||7]|.
Assuming the primary body is axially symmetric, the gravitational potential, U, is expressed as,
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where ¢ is the latitude of the satellite, r, is the equatorial radius of the primary body, and Jj is the zonal
gravitational harmonics constant. We use the second zonal harmonics term (J; in our model) to reflect the
dominant effects of the Earth’s oblateness perturbation [21, 22]. The corresponding J, perturbing acceleration
is given by

r
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2. Coordinate systems

In this paper, we use two coordinate systems: the Earth-centered inertial (ECI) and local Velocity-
Normal-Binormal (VNB) frames. The ECI frame, which expresses the dynamics of spacecraft, is defined as
E : {Og,ig, jg, kg} where O is the center of the Earth, i points to the vernal equinox, k g is the Earth’s
rotational axis direction, and jr completes a right-handed frame, as shown in Fig. 2.

Fig. 2 Earth-centered inertial frame and VNB frame.

To show cone angle constraint in a graphical way, we also defined alocal VNB frameas L : {O, iy, jr,kr}
where O, is located at the Chief spacecraft location, i;, aligns with the Chief velocity vector, j; is along the
cross product of the Chief position vector relative to the center of the Earth with the Chief velocity vector
direction iy, e.g., the direction of the orbit normal, and k;, completes the right-handed frame.



3. Frozen in Time Riccati Equation Based Control

In this work, the Frozen in time Riccati Equation (FTRE)-based control is implemented for the Deputy
spacecraft stabilization to a virtual target. The FTRE-based control is the standard infinite-horizon LQR
control which is computed by solving the Discrete Algebraic Riccati Equation (DARE),

S=0Q - AL (tx)SBa(R + B} (tx)SBa(tx)) "Bl (1) SAu(tr) + AL (1) SA4(tr), )

where Q = QT > 0and R = RT > 0 denote weight matrices for state and control, respectively, and S stands for
the solution to DARE at the time instant 7, e.g., S = S(#x). Here A4(tx) and B;(fx) represent the linearized
model at the virtual target state (i.e., at X,,(#x)), converted to discrete-time. The resulting control input for the
Deputy spacecraft is then given by

uq(t) = K(tx)(Xa(te) — Xy (tx)), Vt € [tr,trr1), k € Zxo,

6
K(tx) = —=(R + B} (tx)SBa(tx)) ' Bl (11)SAa (1), ©

where X, (¢) stands for the virtual target for the Deputy spacecraft, K(¢;) is the control gain, obtained by
solving DARE, and {tk}?:o are discrete time instants. Note that the nominal controller, i.e., FTRE-based
controller, is assumed to be able to (at least locally) track X, (¢), which is a time-shifted Chief spacecraft state,
for constant time shifts.

4. Constraints

During the proximity operation, the Deputy spacecraft must satisfy a variety of constraints. In this study,
four types of constraints are considered to demonstrate the effectiveness of the proposed approach. These
constraints are imposed on the approach direction, thrust limit, relative velocity when the Deputy spacecraft
is near the Chief spacecraft, and exponential stability of the Deputy spacecraft with respect to the time shifted
virtual target.

The rendezvous and docking (RVD) mission consists of two main parts: bringing the Deputy spacecraft
close to the Chief spacecraft in the rendezvous phase and final approach of the Chief spacecraft in the docking
stage. During the RVD mission phase, the Deputy spacecraft has to stay within a prescribed approach
direction and satisfy a Line of Sight (LoS) cone angle constraint. The LoS cone angle constraint with LoS
half-cone angle « is given by

hi = =v(Xe)"p(Xa = Xe) +cos(@)|[v (Xo)|[lp(Xa = Xo)| <0, @
where linear maps p : R* — R"os and v : R” — R'el are defined as,

p(X) = [Ulnpos [01n,e1X, v(X) = [[0]n,0, [H]n,e1X, ®)

and where n,,s and n,,.; denote the dimension of position and velocity vectors, respectively. Note that
[7]; € R and [0]; € R! are an identity matrix and null matrix, respectively, with the dimension given by the
subscript.

The thrust limit constraint is defined as

hy = |lug|l — umax <0, 9

where 1,y 1s the maximum magnitude of the control input.

To provide faster response [23], an alternative approach can be used to enforce Eq. (9) using saturation
instead of handling Eq. (9) as a constraint via TSG. The saturation limits the magnitude of control input up to
the maximum value uy,x While preserving control input direction:

ua(t) = {“d(t)’ if [lua (Dl < tmax, "

Umaxlaq (), if |lug ()]l > Umax,

4



where
uq(t)

lua (Il
With Egs. (10)-(11) used to enforce Eq. (9), the TSG accounts for the saturated control input during its
prediction stage.

When the Deputy spacecraft gets into close proximity to the Chief spacecraft, the approach velocity
constraint is imposed to provide the flexibility to correct misalignment in the docking ports and to reduce the
risk of high-speed collisions. Thus, we also define the constraint on the magnitude of the approach velocity
that is only activated when the Deputy spacecraft is in the vicinity of the Chief spacecraft, i.e.,

lq(1) = an

lp(Xa = Xo)|| < 71, (12)

If Eq. (12) holds, the approach velocity is limited by a linearly decreasing function of the relative distance to
the Chief,

hy = ||v(Xa = Xo)|| = v2|lp(Xa = Xo)|| - v3 <0, (13)

where 1, y» and y3 are predetermined constants set depending on mission requirements.

Until the virtual target matches with the Chief spacecraft, the time shift parameter can be changed every
update period by TSG. To ensure that the capability of tracking the virtual target corresponding to the updated
time shift parameter is maintained so that the Deputy spacecraft stays within the region of attraction of this
virtual target, additional constraints on the predicted trajectory can be added. For instance, one such constraint
could be a terminal set constraint which involves the check that the end state of the predicted state trajectory
is inside a neighborhood of the virtual target state where this neighborhood is sufficiently small so that it
is guaranteed to be in the closed-loop region of attraction. In the subsequent simulations, we impose an
additional constraint of the form,

hy = n(Xa(1) = X, (7)) = c1[|Xa(to) — X, (t0)|le ™7 < 0, (14)

where 7 in Eq. (14) designates the time since the start of the prediction window and the map  : R" — R is
defined as

1(X) = \[pT(X)p(X) + v (X)v(X), (15)

v4 > 0 is a constant used to match position and velocity terms with ¢; > 0,4 > 0 being positive parameters.
Note that the initial virtual target X, (¢9) is determined by a time shift parameter that leads the resulting
trajectory to satisfy the first three constraints stated in Egs. (7), (9), and (13).

B. Time Shift Governor

In this work, we use the Time Shift Governor (TSG) to enforce the constraints in spacecraft RVD in an
elliptic orbit. The proposed control system is described in Figure 3, where the TSG is augmenting a nominal
control system which is made up of spacecraft dynamics and the FTRE-based controller. Instead of directly
modifying the nominal controller to enforce constraints, we implement an add-on module, called TSG, to
conduct a safe RVD mission with the Chief spacecraft.

To ensure constraint satisfaction, the TSG provides a time-shifted location of the Chief spacecraft as the
virtual target to the nominal controller of the Deputy spacecraft. Using the time shift, fpackward, the shifted
reference for the Deputy spacecraft controller at time 7 is determined by,

Xv(t) = Xc(t + tbackward)- (16)
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Fig. 3 Diagram of the FTRE-based controller augmented with the TSG to enforce the constraints.

Fig. 4 The Chief, the Deputy, and the virtual target spacecraft in the orbital track.

Assuming the Deputy spacecraft is positioned backward along the orbital track as compared to the Chief
spacecraft, we confine the time shift to non-positive values, i.e., fpackward < 0. The TSG operates by predicting
the closed-loop response of the Deputy spacecraft and the response of Chief spacecraft as it follows the
nominal orbit, and checking for constraint violations. If the imposed state and control constraints are satisfied
over a sufficiently long prediction horizon, the value of #tpackward < 0 is admissible. The TSG then maximizes
Ibackward Subject to the constraint fyaciward < 0 and that faciwarg 1S admissible. Over time, this allows the
Deputy spacecraft to approach the Chief spacecraft without violating the imposed constraints. Figure 4
illustrates the Chief and Deputy spacecraft and the virtual target.

Similarly to the developments in [16, 17, 20], it can be demonstrated that if 1) a feasible #,ackwara €Xists at
the initial time instant for the sufficiently long prediction horizon, 2) the nominal controller is stabilizing, and
3) constraints strictly hold in steady-state corresponding to any constant fpackward, then constraints be satisfied
by TSG at all future times.

We first initialize the time shift parameter fpackward tO fbackward,-1 € R<o, such that the predicted trajectory
from Egs. (1), (6) and (16) satisfies all imposed constraints over a sufficiently long prediction horizon. With
the initial deviation of the deputy spacecraft with respect to the virtual target, determined by #packward, the
values of c1,4 > 0 are chosen such that there exists at least one trajectory which avoids any constraint
violation.

The TSG updates the time shift parameter fy,ckward () and the set of time shift parameters periodically
every Ppackward [S€c] so that

tbackward(t) = tbackward(tk)’ Vit € [tka Ir + Pbackward)- (17)

The search interval for the time shift fpackward parameter at the next time instant .1 = fx + Ppackward 1S
restricted to the set

tbackward(tk+l) € 7v(l‘k+l) = {tbackward € RS()ltbackwatrd(l‘k) < tbackward(t) < 0’ vVt > tk+1}~ (18)



Algorithm 1 Time shift governor algorithm

1: Select the initial shift parameter fyackward = fbackward,0 € R0 at # = 0 such that the resulting trajectory
satisfies constraints in Eqs. (7), (9), and (13) using the selected fpackward,o in Eqs. (6) and (16);
2: fork € {1,--- ,Nsin— 1} do

3 Ibackward = backward> Lpgckward = 0;
4: while ||#packward — Ebackward” >y do
5: Propose a shift parameter:
Ebackward + Ebackward
Ibackward,m = 5
2
6: Predict the trajectory with fyackwardm Over the time interval [#x, 7k + Pres],

Lgafe = PrediCtion(tk, Xc(tk)’ Xd(tk), Xv(tk)a Tvackward,m» [tk’ Iy + Pref]);

7 Update the feasible shift parameter bounds,
Ebackward = Ibackward,m, if ]lsafe = 1>
tpackward = Ibackwardm, Otherwise;
8: end while
9: Set tbackward(tk) = Ipackward and Xv(tk) = X (1 + tbackward(tk))Q
10: Forward simulate the system over [#x, fx + Ppackward] using Egs. (1) and (6);
11: end for

Algorithm 2 Prediction(X,(?), X4(?), t1ead,m, fpred)

I Tgare = 15
2: fort e {t,-- ,t+ Preg} do
3: Compute LoS cone angle constraint /; in Eq. (7):
hy =LoS_cone(X,, X, @);
4: Compute approach velocity constraint /3 in Eq. (13):
1, = L if||p(Xa = Xl <»
} 0, otherwise ’
h3 = 1y, - approach_velocity (X4, X¢, ¥2,¥3);
5: Compute exponential stability constraint /4 in Eq. (14):
h4 = exponential _stability (¢, X4, X, c(X4(t0), Xy (£0)), A);
6: If maxje(1,343{h;} = 0, then L = 0 and break;

end for
8: return 1g,f.

)




Table 1  Classical orbital elements of the reference Molniya orbit

SMA, a Eccentricity, e Inclination,i RAAN,Q  Argp,w  True anomaly, v
26646.6808 [km] 0.74 62.8 [deg] 0 [deg] 280 [deg] 0 [deg]

We use one period of the osculating orbit, denoted by Py.f, as the prediction horizon. Using Egs. (2), (6),
and (10), the feasibility (admissibility) of the updated time shift parameter is determined by checking for the
absence of constraint violations by the predicted trajectory of the closed-loop model over a sufficiently dense
time grid over the prediction horizon, i.e., for ¢t € [z, + Pref].

Approximations can be employed to reduce the online computational effort. For instance, in evaluating
the admissibility of a particular value of fpackward (fx+1) at the time instant #x,;, we need FTRE control gains
K which depend on Deputy spacecraft model linearization at states X (fx+1 + fbackward (?x+1) + k Pbackward)»
k € Zso. These time instants change as fpackward (fx+1) is varied inside 7 (tx+1) during optimization. To
reduce the number of DAREs that need to be solved, we can simply pre-compute a few of FTRE control
gains along the predicted Chief spacecraft orbit over the time interval [fx + fpackward(?x), tx + Pres] and
employ elementwise interpolation of the pre-computed gain values. This strategy has been employed in the
subsequent simulation results.

IV. Simulation Results
In this section, we report simulation results of the Deputy spacecraft rendezvous and docking (RVD) to
the Chief spacecraft on a Molniya orbit.

A. Simulation specifications

In this simulation, we consider the Chief spacecraft following the reference Molniya orbit [3]. See Fig. 5
for a plot of the nominal Molniya orbit, which has a period of 721.5 minutes, corresponding to the orbital
elements stated in Table. 1. The one osculating orbital period Pres is chosen as the prediction horizon for the
TSG at a time instant ¢, i.e., the prediction is performed over the time interval, [#, 7 + Pref]. The gravitational
parameter is u = 398600.4418km? /sec®. The zonal gravitational harmonics constant and equatorial radius of
the primary body in Eq. (4) are J, = —C;,9 = 4.8417 x 10* and Teg = 6378.1363km.

The nominal controller of the Deputy spacecraft is the FTRE-based controller in Eq. (6) with an LQR
gain K(tx) computed for the following state and control weighting matrices, Q and R:

0 = diag(10,10,10,1,1,1), R = diag(1,1,1). (19)

The LQR gain K(¢;) is computed from a linearized model at the virtual target, corresponding to fpackward-

We consider constraints defined with the following values: 20 [deg] of the Half-cone angle « in Eq. (7), 50
[cm? / sec?] of the maximum thrust in Eq. (9), y1 =5 [km], y» = 20 [rad/s], y3 = 1073 [km/s] of the approach
velocity constraint in Eq. (12), (13), and ¢; = 2 [km], 4 = 1.5 X 107> [rad/sec], y4 = 1 [sec?] in the stability
constraint in Eq. (14).

B. Results

Table. 2 states the initial condition for the Deputy spacecraft expressed in the ECI frame. The Deputy
spacecraft initially departs to the Chief spacecraft from about 4874 km backward in the orbital track. See
Fig. 6 for a plot of the Chief (cross) and the Deputy (circle) with the TSG for the constrained RVD mission on
a Molniya orbit. After 609 minutes, ?.,4, of simulation, the Deputy spacecraft closes within meters, e.g.,
1P (Xa(tena) — Xe(tena))l| < 1 m.
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Fig.5 Reference trajectory for Chief spacecraft on a Molniya orbit.

Table 2 Initial condition for the Deputy spacecraft to the Chief spacecraft, e.g., X;(0) — X.(0)

) Yo 020 0xo 0Yyo 0%0
-4872.6495 [km] 54.8262 [km] 106.6803 [km] -0.6190 [km/s] -1.7186 [km/s] -3.3441 [km/s]
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Fig. 6 Spacecraft rendezvous trajectories with initial and first achieved points at time feng =~ 609 minutes:
X.(0) (magenta), X;(0) (black), X, (tend) (cyan), Xs(fena) (blue).



Figures 7a and 7b show the Deputy spacecraft position (blue) and velocity (orange) relative to the Chief
spacecraft and to the virtual target in the ECI frame. The Deputy spacecraft becomes gradually closer to
the Chief spacecraft and successfully achieves the RVD mission. Figure. 7 illustrates how the TSG governs
the RVD mission by shifting the virtual target of the Deputy in the VNB frame. With the TSG handling the
virtual target, the proposed control strategy demonstrates its capability to complete the RVD mission without

constraint violation.

5000 ‘ ‘ 4 350 ‘ 0.5
—p(Xa— Xo) —p(Xa — Xo)
v(Xa — X) 300 v(Xa — X,)
4000 I3 = 104
= g =250 g
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(a) The evolution of the Deputy relative position/velocity to the (b) The evolution of the Deputy relative position/velocity to the
Chief spacecraft during the RVD using the TSG. virtual target spacecraft during the RVD using the TSG.
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Fig. 7 The Deputy spacecraft (blue line) and the virtual target (magenta asterisk) trajectories in the local
VNB frame, as defined in Section II1.A.2.
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Figures 8a,8b, 8c, and 8d show the performance of our proposed control approach with the TSG during
the RVD mission. Figure 8a indicates the Line of Sight (LoS) cone angle constraint A is effectively handled
by the TSG. In Fig. 8b, the thrust constraint £, is presented. Note that the saturation in Eq. (10) addresses this
constraint. Figure 8c shows the time history of the relative velocity constraint 43. The TSG is capable of
enforcing this constraint when the Deputy spacecraft close within Skm. In other words, during the docking
stage, the approach velocity is successfully handled by the TSG in the proximity of the Chief spacecraft. The
exponential convergence constraint is presented as a function of time in Fig. 8d. Since the radius of the closed
ball is shrinking exponentially, this constraint ensures that the nominal closed-loop system of the Deputy
spacecraft converges to the virtual target. Moreover, the virtual target reaches the Chief spacecraft, ensuring
that the Deputy spacecraft also converges the Chief spacecraft.
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0 s Ob//—m—mp- - -

2

< 001 E 01
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S -003 £ 03
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3
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500 1000 1500 0 500 1000 1500
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(a) The LoS cone angle constraint, /11, evo- (b) Thrust constraint, /5, evolution during
lution during the RVD using the TSG. the RVD using the TSG.
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(c) The approach velocity constraint, 73, (d) stability constraint, h4, evolution during

evolution during the RVD using the TSG. the RVD using the TSG. Note that 43 < 0
is needed only when the Deputy spacecraft
is within 5 km distance from the Chief.

Figure 8 indicates how the time shift parameter is adjusted as a function of time. The time shift parameter,
packward, begins with the initial admissible value, f,ackward,0, and changes to the largest admissible value by
the TSG at every update. The time shift value continues increasing until it achieves a sufficiently large value
for which the Deputy spacecraft can approach the Chief spacecraft. After the time shift parameter is equal to
zero, the Deputy spacecraft is able to achieve the Chief spacecraft solely by the nominal controller without
constraint violations.

V. Conclusion
In this paper, we developed the time shift governor (TSG) for the spacecraft rendezvous and docking
(RVD) missions in elliptic Earth orbits. The TSG has been demonstrated to be able to enforce various
constraints during the proximity operation, such as on the approach direction, relative velocity, thrust limit,

11
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Fig. 8 The evolution of the time shift parameter during the rendezvous in minutes.

and exponential convergence to the target. To enforce the constraints, a virtual target, selected as a time-shifted
Chief spacecraft trajectory, is provided by TSG to the nominal controller of the Deputy spacecraft. The
simulated RVD in the elliptic Earth orbit shows the effectiveness of the TSG in enforcing constraints.
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