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Sliding friction of a pillar array interface: part I†

Jasreen Kaur,a Xuemei Xiao,b Constantine Khripin,c Chung-Yuen Hui *be and
Anand Jagota *ad

Biology is replete with examples, at length scales ranging from the molecular (ligand–receptor binding)

to the mesoscopic scale (wing arresting structures on dragonflies) where shape-complementary

surfaces are used to control interfacial mechanical properties such as adhesion, friction, and contact

compliance. Related bio-inspired and biomimetic structures have been used to achieve unique

interfacial properties such as friction and adhesion enhancement, directional and switchable properties.

The ability to tune friction by altering surface structures offers advantages in various fields, such as soft

robotics and tire manufacturing. Here, we present a study of friction between polydimethylsiloxane

(PDMS) samples with surfaces patterned with pillar-arrays. When brought in contact with each other

the two samples spontaneously produce a Moiré pattern that can also be represented as an array of

interfacial dislocations that depends on interfacial misorientation and lattice spacing. Misorientation

alone produces an array of screw dislocations, while lattice mismatch alone produces an array of edge

dislocations. Relative sliding motion is accompanied by interfacial glide of these patterns. The frictional

force resisting dislocation glide arises from periodic single pillar–pillar contact and sliding. We study the

behavior of pillar–pillar contact with larger (millimeter scale) pillar samples. Inter-pillar interaction

measurements are combined with a geometric model for relative sliding to calculate frictional stress that

is in good agreement with experiments.

1. Introduction

Achieving tunable adhesion and friction has applications ran-

ging from rubber processing in tire manufacturing to object

handling in soft robotics.1,2 Nature has provided us with many

examples3–6 of how microstructures on the surface can help

control adhesion and friction. One such example is that of a

gecko,4,7,8 which has fibrillar structures on its toes to help it

climb rough and smooth surfaces.5,9,10 Geckos stick using van

der Waals dispersion forces11 and have reversible adhesion.12

Another such example is that of the head arresting system in

dragonflies,13 which consists of intricate complementary

microstructures on their head and neck to immobilize the

head during tandem flight. Pillars in insects and amphibians

have liquid secretion14,15 to form a capillary bridge for adhe-

sion. Many other animals like skinks,16 insects like beetles and

spiders17–19 have microstructures on their contacting surfaces

to achieve desired adhesion and friction.

Bioinspired and biomimetic structures have been shown to

modulate adhesion,20–22 friction,23 and contact compliance6,24–28

and to provide new functionality such as switchability and direc-

tional properties just by altering surface structures. An exemplary

instance is the renowned case of Velcro,29 which operates on a

loop-clasp mechanism. There is now a considerable literature on

bioinspired contact surfaces.3,9,14,15,20,30–38

Most bioinspired studies focus on adhesion/friction enhance-

ment for microstructures on one side against a generic smooth

or rough surface on the other.38,39 Shape complementary micro-

structures on both sides40–44 of the interface have been relatively

less explored. It has been demonstrated that shape complemen-

tarity at the micron scale can significantly enhance adhesion

selectivity.40,43,45 Guduru46,47 explored the mechanics of detach-

ment between a wavy elastic surface and a rigid solid, uncovering

an intriguing phenomenon. Surface waviness induces an

unstable detachment process with alternating stable and

unstable segments, resulting in increased work of separation.

These findings provide an alternative explanation for the

sometimes observed increase in pull-off force on rough sur-

faces. Adhesion selectivity using rippled surfaces45 showed
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how shape complementary surfaces can enhance adhesion.

Singh et al. used microchannel structures43 to show adhesion

enhancement in such shape complementary interfaces. Chen

et al.40 showed the same using a pillar geometry.

The investigation of sliding friction in shape-comple-

mentary surfaces has been relatively limited. Amonton’s and

Coulomb’s laws describe friction in phenomenological terms,

but the understanding of the relationship between macroscopic

frictional response and the behavior of microscopic contacts

remains under active investigation.48–50 He et al.42 studied

sliding friction in ridge-channel and pillar interfaces, achieving

friction enhancement in structured surfaces as compared to

control surfaces. They reported the spontaneous formation of

interfacial dislocations and presented a model for friction in

ridge-channel surfaces based on treating the dislocation core as

a crack. However, they presented only a qualitative description

of friction in pillar surfaces.

For periodically structured two-sided interfaces, orienta-

tional or lattice-parameter mismatch leads to spontaneous

production of Moiré patterns on the interface, much like an

incommensurate twist grain boundary in crystalline solids.

These can also be represented as dislocation structures in

shape complementary surfaces that resemble microscale repli-

cas of dislocations on the atomic scale in crystalline solids.

Therefore, models for dislocation glide and microscopic fric-

tion mechanisms are relevant. For instance, the Peierls/

Nabarro model for the dislocation core provides expressions

for the minimum stress needed for dislocation glide.51,52 The

Prandtl-Tomlinson model53 for nanoscale friction is a mini-

malistic model for the relationship between the energy of

interaction between two surfaces and friction.50,54 Related ideas

have been used to explain friction in soft materials.55–57 The

Frenkel–Kontorova (FK) model is similarly based on motion of

a chain of particles placed on a periodic substrate and is used

to describe sliding in crystalline interfaces. This model can be

used to understand a pillar interface, where each pillar has to

slide past pillars on the other side of the interface.50,58

In this work we study friction in bioinspired, two-sided,

micropillar surfaces. Our goal is to relate macroscopically

measured friction stress, in terms of the pillar deformation at

the interface. This problem is analogous to that of determining

the stress needed for a dislocation to glide in a crystal, the basic

version of which is determined by the Peierls–Nabarro model of

the dislocation.51,52,54,58–60 Analogously, for our model, friction

is defined as the force required for Moiré patterns/dislocations

to slide across the interface, the details of which depend on

pillar–pillar interaction.

2. Experimental methods
2.1 Sample fabrication

Micropillar samples were fabricated using polydimethylsiloxane

(PDMS) elastomer molded into an etched silicon master with

pillar geometry on the surface patterned by photolithography. The

pillars fabricated were 10 mm in diameter, 16 mm in height, and

arranged in a square array with a minimum interpillar spacing of

20 mm. PDMS precursor (silicone elastomer base) was combined

with crosslinker (curing agent, Sylgard 184 Silicone Elastomer kit,

Dow Corning) in the ratio 10 : 1 by weight. The mixture was then

degassed under vacuum for 30 minutes before applying to the

master and was cured at room temperature for 2 days. The cured

PDMS was then peeled off the silicon master. A typical sample is

30 mm long, 10 mm wide and about 800 mm thick. The second

complementary sample was fabricated in a similar way. Addi-

tional samples were fabricated in a similar way but cured at

different temperatures to introduce slightly different interpillar

spacing due to differences in thermal contraction from curing to

room temperature. Flat samples were also fabricated with no

micropatterns and used for control experiments. A white light

interferometry-based optical profilometer (Zegage, Zygo Corp) was

used to produce micrographs of micropillar samples as shown in

Fig. 1(a) and (b). Fig. 1(c) and (d) show a plan view of the interface

each patterned with micropillars showing a misorientation,

y (Fig. 1c) or a lattice mismatch, l (Fig. 1d) between the two

arrays. The circles represent the bottom of the pillars where they

join the bulk. Fig. 1c shows two pillar arrays (black and red

lattices), in which the black lattice is rotated by a misorientation

angle, y = 101, with respect to the red lattice. Fig. 1d shows two

Fig. 1 (a) 2D view of micropillars arranged in a square array with interpillar
spacing of 20 mm. The pillars are 10 mm in diameter and B16 mm in length.
(b) 3D view of micropillars. (c) Arrays of black and red pillars at a relative
misorientation angle, y = 101. (d) Red and black pillar arrays with lattice
spacing mismatch, l = (a/a0) = 1.2. (e) Picture of a mm-scale, single pillar
sample. (f) Image of two mm-scale single pillar samples, mounted on a
custom built tribometer.
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lattices with different minimum spacings a and a0 where l = a/a0

is the lattice mismatch. (In the case shown here, l = 1.2).

In order to study inter-pillar interaction, larger, mm-scale,

single pillar samples were fabricated, as shown in Fig. 1(e), with

the same aspect ratio as the micropillars. The process included

using the same PDMS mixture and pouring the mixture into a

mold fabricated for this purpose. The cured single pillar

samples were 3 mm in diameter and 4.8 mm in height with

backing dimensions of 30 mm � 30 mm � 8 mm shown in

Fig. 1e and f. Details of the single pillar experiments and its

analysis are given in the companion paper.61

2.2 Friction measurement

Friction measurements were conducted using a custom built

Flat-on-Flat Tribometer as shown in Fig. 2a. The setup consists

of two stages on which samples are mounted, and a load cell

Fig. 2 (a) Schematic of custom-built flat-on-flat tribometer. Pillar samples are mounted on upper and lower stages as shown. Vertical and horizontal
motors control the relative displacement between two samples. (b) Micropillar PDMS samples for measuring sliding friction, Top sample has dimensions
30 mm by 10 mm and bottom sample is 4 mm by 4 mm. (c) Schematic of pillar samples in contact showing the Burgers vector for pillar samples.
(d) Schematics of single pillar samples, Hc = height of contact or vertical overlap (e) lx = lateral overlap.
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each to measure horizontal or shear force, and vertical or

normal force. Vertical and horizontal motors control the

respective movement of stages, and the rotation motor controls

rotation of the lower stage (to control misorientation). The

motors are connected to a motion controller and the entire

system is controlled by custom-written LabVIEW code. A camera

is used to image the behavior of pillars at the interface during

sliding.

Sliding friction was measured at five different values of

misorientation (y = 01, 51, 151, 301, 451) and five different

normal loads (0.075 N to 0.4 N) for patterned and flat control

samples and each experiment was repeated three times. The

setup can work under normal load or displacement control.

Normal load is controlled by normal displacement, which is fed

to the PID controller operated by LabVIEW software. The two

samples are brought in contact using the vertical motor.

A typical friction experiment consists of sticking the top and

bottom samples to glass slides using double-sided Scotchs

tape. The slides are mounted onto the lower and upper stages

and brought into contact under displacement control (Fig. 2a).

After mounting the samples on the stage, we set the mis-

orientation angle between the two samples using the rotation

motor. We start by aligning the two samples at 01 misorientation,

which is when dislocations disappear from the interface. With

this as y = 01, other angles are easily obtained. Once we have the

desired misorientation, we set a normal load and switch to

normal load control. When the load stabilizes to the set value,

we slide the samples with respect to each other for 3 mm at a

velocity of 0.01 mm s�1.

3. Results and discussion
3.1 Moiré patterns & dislocations

When the two micropillar samples are first brought in contact,

Moiré patterns appear spontaneously on the interface, as we’ve

reported previously.41–43 Due to the square patterning and

periodicity, the interface consists of periodic square regions,

and the size of these regions depends on the misorientation

and lattice spacing mismatch.42,62 The boundary of each square

region can be viewed as a dislocation line, albeit with a diffuse

core. Specifically, these regions are formed by two parallel

sets of mutually perpendicular dislocation lines (see Fig. 3).

We refer to the edges in the Moiré patterns as ‘‘dislocation

lines’’ by analogy to twist grain boundaries in crystals.62,63

Although they are geometrically similar to twist grain bound-

aries, the mechanics of interaction across the interface is

different as discussed later.

The Moiré pattern and its accompanying dislocation array

forms during the initial application of normal load, with

density and orientation depending on l and y values. Orienta-

tional mismatch alone, (y 4 01 at l = 1), produces an array of

screw dislocations whereas a lattice mismatch alone, (l a 1 at

y = 01), produces an array of edge dislocations. Presence of both,

an orientation mismatch and a lattice mismatch, produces an

array of mixed dislocations.42 The density of square regions

increases with increase in mismatch.42 Fig. 3 shows formation

of Moiré patterns64 between shape complementary pillar sam-

ples. Fig. 3a(i) represents geometrically the formation of screw

dislocations when red and black square lattices overlap at a 51

misorientation. As noted above, the black arrow lines in Fig. 3

represent dislocation lines. A corresponding pattern can also be

clearly seen on the interface of our actual pillar samples in

Fig. 3a(ii) for the same misorientation angle. As sliding begins,

pillars are pushed into contact, each with a neighboring pillar

with force that changes with displacement until it loses contact

Fig. 3 Moiré pattern & Dislocation lines. Representation of Moiré patterns
as screw, edge, and mixed dislocations. (3a)(i) An array of screw disloca-
tions produced by aligning red and black lattices at a misorientation, y = 51
and l(a/a0) = 1. (3a)(ii) An array of screw dislocations formed at the interface
of two pillar samples in contact. (3b)(i) An array of edge dislocations
produced when two lattices (here, red and black) have a lattice mismatch,
l(a/a0) = 1.023. (3b)(ii) An array of edge dislocations formed at the interface
of two pillar samples in contact at l(a/a0) = 1.023. Note difference in scale
between 3a(ii) and 3b(ii). (3c) (i) an array of mixed dislocations produced by
aligning the two lattices at a misorientation y = 51 and at lattice mismatch,
l(a/a0) = 1.023. (3c)(ii) An array of mixed dislocations on the pillar interface
with the same conditions as 3c(i).

Paper Soft Matter

P
u
b
li

sh
ed

 o
n
 1

2
 J

an
u
ar

y
 2

0
2
4
. 
D

o
w

n
lo

ad
ed

 b
y
 L

eh
ig

h
 U

n
iv

er
si

ty
 o

n
 7

/2
1
/2

0
2
4
 9

:3
7
:2

0
 P

M
. 

View Article Online



This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 1447–1458 |  1451

with its partner pillar. This process occurs for each pillar. In the

micrographs of Fig. 3, we observe a pattern of light and dark

regions. The lighter patterns correspond to when pillars from

complementary surfaces are in partial or full registry (i.e., right

next to each other). The darker regions are where pillars from

both samples are bent on top of each other and are at maxi-

mum disregistry. The lines connecting dark regions can be

interpreted to be dislocation lines.

Fig. 3b compares the formation of Moiré patterns corres-

ponding to edge dislocations geometrically and in experiments.

Fig. 3b(i) shows that red and black lattices with l = 1.023 form

edge dislocations. Similar patterns are observed experimentally

as shown in Fig. 3b(ii). Edge dislocations appear on a perfectly

aligned interface with lattice mismatch. As misorientation is

then increased from y = 01, Moiré patterns corresponding to

mixed dislocations appear on the interface (shown in Fig. 3c).

Fig. 3b(ii) represents experimentally observed edge dislocations

at l = 1.023 � 0.001. The pattern again shows light and dark

regions. Fig. 3c(i) represents Moiré patterns corresponding

to dislocations with mixed edge and a screw character for l =

1.023 and y = 51. The patterns are different than that of screw

dislocations if observed carefully in that they are tilted slightly

compared to the orientation of screw dislocations. Fig. 3c(ii)

represents mixed dislocations for pillar samples in contact at

l = 1.023 � 0.001 and y = 51. A more detailed account of the

geometry of dislocation arrays can be found in ref. 42. For

completeness, we provide the main results. These are that the

dislocation density r and orientation a of the dislocation lines

are functions of misorientation angle, y, and lattice mismatch,

l. Orientation, a is found as,

a ¼ tan�1 sin y

l� cos y
; (1)

and

density as r ¼ 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl� 1Þ2 þ 4l sin2
y

2

� �

s

(2)

where b is the magnitude of the Burgers vector b, l is lattice

mismatch, and y is misorientation.

To further analyze the orientation of moving dislocations, it

is useful to consider the Peach–Kohler force,58 which is a

configurational force that defines the direction of dislocation

motion. It is given by

FPK = (s�b) � x, (3)

where s is applied stress, and x is the dislocation line vector

(see Fig. 4a and b for frame of reference). For a screw disloca-

tion as shown in Fig. S17d (ESI†), Burgers vector, b1 is asso-

ciated with the dislocation line AA00 and b2 is associated with

dislocation line CC00. Thus, for a screw dislocation, there are

two Burgers vectors i.e., b1 ¼ � 1
ffiffiffi

2
p e1 þ

1
ffiffiffi

2
p e2 and b2 ¼

1
ffiffiffi

2
p e1 þ

Fig. 4 Sliding happens through dislocation glide. Optical images of pillar interface. (a) Screw dislocations: at misorientation, y = 51, l = 1 (before sliding
commences), (b) snapshot of sliding screw dislocations at misorientation, y = 51, l = 1. For sliding in ‘2’ direction, the dislocation pattern moves in
‘1’ direction. (c) Edge dislocations: at misorientation, y = 01, l = 1.023 (before sliding commences), (d) snapshot of sliding edge dislocation pattern
at l = 1.023. For sliding in ‘2’ direction, the dislocation pattern moves in ‘2’ direction.
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1
ffiffiffi

2
p e2; x is the dislocation line vector, x1 ¼ � 1

ffiffiffi

2
p e1 þ

1
ffiffiffi

2
p e2; and

x2 ¼
1
ffiffiffi

2
p e1 þ

1
ffiffiffi

2
p e2 and stress, s = �te2#e3 � te3#e2 +

pe3#e3, thus, FPK ¼ t
1

2
e1 þ

1

2
e2

� �

and FPK ¼ t
1

2
e1 �

1

2
e2

� �

.

This gives the resultant force in e1 direction and this implies

that screw dislocation runs perpendicular to the direction

of sliding which is true as shown in Fig. 4b (full video in

ESI,† SI: V3_lambda=1_5_deg_ ScrewDislocation.avi). For

an edge dislocation as shown in Fig. S17e (ESI†), Burgers

vector b1 is associated with dislocation line C 0C00 and Burgers

vector b2 is associated with dislocation line A0A00. Thus, b1 ¼

1
ffiffiffi

2
p e1 �

1
ffiffiffi

2
p e2; b2 ¼

1
ffiffiffi

2
p e1 þ

1
ffiffiffi

2
p e2; and corresponding disloca-

tion line vector, x1 ¼
1
ffiffiffi

2
p e1 þ

1
ffiffiffi

2
p e2; x2 ¼ � 1

ffiffiffi

2
p e1 þ

1
ffiffiffi

2
p e2;

thus, FPK ¼ t �1

2
e1 þ

1

2
e2

� �

and FPK ¼ t
1

2
e1 þ

1

2
e2

� �

respectively. Net resultant force, FPK is in e2 direction, which

implies that for an edge dislocation, dislocation lines run

parallel to the direction of sliding as shown in Fig. 4c and d

and a full video in ESI† (SI: V8_lambda=1.023_0deg_

EdgeDislocation).

Fig. S17 (ESI†) and Fig. 4 show that, as we traverse the sample,

the registry between pillars above and below the interface varies

systematically and periodically, with period identical to that of the

Moiré pattern. We see that the direction of dislocation motion is

consistent with that given by the Peach–Kohler formula. When

sliding initiates, the interface loses its symmetry (compare

Fig. 4a–d). The period of the Moiré pattern corresponds to

disregistry equal to the Burgers vector. Therefore, for one Burgers

vector of slip in the ‘2’ direction, each pillar undergoes a full load-

release cycle. This observation is key for our calculation of

macroscopic friction stress. That is, at any point in time, the

instantaneous friction force is the sum of all pairwise inter-pillar

contact forces across the interface. The friction force averaged

over one sliding cycle (slip = Burgers vector) can be obtained by

matching external work done to the energy loss for each pillar pair

in going through a full loading-unloading cycle.

3.2 Friction stress measurements

Fig. 5(a) shows typical raw data for measured friction stress as a

function of sliding distance, for different values of normal

stress varying from 4 � 103 N m�2 to 2.5 � 104 N m�2 at

Fig. 5 Experimental data for friction. (a) Friction stress as a function of displacement for no lattice mismatch i.e., l = 1, but y = 51 at various normal loads.
(b) Friction stress as a function of displacement at a lattice mismatch l = 1.023 for misorientation y = 01. (c) Friction stress as a function of displacement at
a lattice mismatch i.e., l = 1.023 for misorientation y = 51. (d) Steady state friction stress as a function of normal stress at a lattice mismatch l = 1.023 for
several misorientations from y = 01 to y = 451 and normal load, in comparison with a flat control sample.
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l = 1 and y = 51 (dislocations have screw character). As the pillar

samples come in contact and start sliding, friction force first

rises and then subsides to an approximately constant value.

Note that the friction stress increases with increasing normal

stress. (Friction stress is obtained by averaging friction force

when it stabilizes between 2 to 3 mm of shear displacement and

then dividing it by the nominal area of contact, which in this

case is sample size i.e., 4 � 4 mm2.) Fig. 5b shows how the

friction stress varies with displacement for edge dislocation

case at l = 1.023 and y = 01. Fig. 5c shows data for friction stress

versus displacement for mixed dislocation case at l = 1.023 and

y = 51. The data show that friction stress is strongly dependent on

pressure and does not dependmuch on edge or screw character of

dislocation nor on misorientation if l is close to unity.

Fig. 5d shows a plot of how friction stress varies as a

function of normal load and misorientation, y. This particular

case is at l = 1.023 for various values of y = 01, 51, 151, 301 and

451. As can be seen from the Fig. 5d, friction rises strongly with

the normal stress but is essentially independent of misorienta-

tion. This is starkly different from that found in the ridge-

channel geometry43 where friction depends strongly on misor-

ientation angle. Weak dependence on misorientation for pillar

samples is likely because pillars are organized in a square

lattice, which is not far from isotropic. Also shown in

Fig. 5(d) is measured friction stress for a control in which

one of the pillar interfaces is replaced by a flat, unstructured,

PDMS sample. Friction for cases where both sides have pillars

shows significant increase as compared to friction in the

control case. Friction stress for pillar complementary samples

can be seen to be enhanced by up to about a factor of 5 over that

of a control sample.

We turn our attention next to studying the relationship

between macroscopically observed friction and the pairwise

interaction of pillars. For this purpose, we first show results

on single pillar-pair experiments and then combine these with

a geometric model of the sliding interface to calculate predicted

macroscopic friction stress.

3.3 Single pillar pair friction experiments

We propose that the friction force arises from the ensemble

of pillar–pillar interactions. To study this quantitatively and

directly, we first conduct experiments on the interaction of

pairs of pillars. Single pillar samples are fabricated following

the process mentioned in Section 2.1. Pairs of these single-

pillar samples are slid past each other. The contact is charac-

terized by two types of overlaps between pillars: in the plane of

the interface (lateral overlap) and along the length of the

undeformed pillar (vertical overlap or Hc as height of contact)

as shown in Fig. 2d, e and 6a, b.

The experiments are performed keeping the vertical distance

between two pillars fixed. Let the length of each pillar be L. If

the gap exceeds the upper limit (2L), we have zero vertical

overlap. Then the pillars disengage and the force they transmit

to each other while sliding goes to zero. If the gap hits the lower

limit (L), then the pillar can take any vertical load.

Fig. 6a represents a lateral overlap that varies from 0 to 1,

where lx is a dimensionless parameter to measure lateral over-

lap and is defined as, lx ¼ 1� Dx

2R
. Fig. 6b represents vertical

overlap along the length of the pillar and is defined as lz ¼
Hc

L
.

Fig. 6c–h shows a schematic progression of sliding a pair of

pillars past each other. The collection of forces resisting this

motion gives rise to the macroscopic friction force as well as the

vertical reaction force.

Neglecting the role of adhesion (see experiments in ESI,†

Section S3 on lubricated vs. dry single pillar pair experiments),

we make the approximation that if we normalize all displace-

ments and location by pillar radius and stresses by the shear

modulus, then the normalized stress is a function of normal-

ized location. That is, if one scales the system uniformly, forces

measured in the pillar-pair interaction experiments can simply

be scaled down to estimate forces in the micropillar samples.

A series of figures in Fig. 6c–h shows progression of sliding for

a typical single pillar-pair experiment. The corresponding shear

and normal force plots are shown in Fig. 7 as a function of

shear displacement. As the sliding starts under normal displace-

ment control (i.e., vertical overlap is fixed for each experiment and

normal load varies), the two pillars come in contact and bend as

shear displacement increases. The two pillars appear to stick to

each other as shear stress/force reaches a maximum point and

then series of slipping events occur, accompanied by decrease of

shear force, and ending with separation of the two pillars. (The

case shown here in Fig. 6c–h is for a 100% lateral overlap, lx = 1).

Fig. 7a shows variation of shear force with sliding displace-

ment for single pillar pair experiments for lateral overlap, lx = 1

at different vertical overlaps ranging from (4.8 mm to 0.8 mm).

Shear force is maximum for maximum lateral overlap (lx = 1)

and Hc = 4.8 mm and decreases if the lateral overlap or height

of contact is decreased (as shown in Section S3 in ESI†). After

contact, the shear force initially increases linearly with shear

displacement. At an intermediate shear displacement, the

response softens and then hardens again prior to initiation of

stick-slip. As seen from Fig. 7a, after shear displacement

reaches B8 mm, there is a decline in shear force as the pillars

slide with respect to each other in stick-slip steps. This stick

slip motion, as the force declines, is most significant in the

100% lateral overlap case, whereas the force drop in the rest of

the cases (lx = 0.75, 0.5, 0.25, 0) is more sudden (shown in ESI†).

Normal force, on the other hand, rises initially but declines as

shear force slope increases. This is because the two pillars in

contact are almost horizontal (more force in shear direction)

and thus normal force declines.

Fig. 7a and b also show quartic fits to the experimental data.

The detailed mechanics of this inter-pillar interaction is pre-

sented in a companion paper.61

The single pillar pair experiments provide:

T usð Þ;N usð Þ; u�

w ¼
ðu�

0

T usð Þdus
(4)
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where, T, N, u*, us, and w are shear force, normal force,

maximum shear displacement, shear displacement, and energy

loss from a single pillar pair, respectively. As shown in ESI,† the

effect of adhesion is negligible so that change of scale leaves

all stresses unchanged. Therefore, if the scale factor between

the single pillar pair experiments and the pillar array is as, then

energy scales as (as)
3, displacement by as, and forces by (as)

2.

Thus, for given overlap between a pair of micropillars, we may

use the results of the mm-scale single pillar pair experiments to

compute the shear and normal force of interaction for given

lateral and vertical overlap of a pair of micro-pillars.

Each single-pillar-pair experiment is conducted for five

specified values of lateral and vertical overlap (5 � 5 = 25 cases

in all) producing data such as shown in Fig. 7a and b (see also

Fig. 6 Representation of different pillar overlaps and single pillar pair experiment. (a) Lateral overlaps, lx ranging from 1 to 0. (b) Vertical overlap or height
of contact (Hc) which ranges from 4.8 mm (full contact) to 0.8 mm (least contact). (c–h) Sliding experiment for a single pillar pair (1 & 2, side view).
Progression of pillar contact during sliding at lx = 1 and full height overlap (Hc = 4.8 mm).

Fig. 7 Friction data for single pillar pair experiments. (a) Shear force as a function of shear displacement for 100% lateral overlap (lx = 1) at different
heights of contact, Hc (b) normal force as a function of shear displacement for 100% lateral overlap (lx = 1) at different heights of contact, Hc (4.8 mm to
0.8 mm).
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ESI,† Fig. S7 and S8). Each force plot is fit with four fitting

parameters. Each fitting parameter is a function of the two

overlap parameters i.e., lateral overlap and vertical overlap or

height of contact (Hc). Thus, we have a 2D surface for each

parameter (more information provided in ESI,† Fig. S15) that is

fit by a third order polynomial in two variables (lateral and

vertical overlaps) using which we can estimate the shear and

normal forces for any specified overlaps.

3.4 Overall friction response

This section presents a geometric model illustrating the inter-

action between cylindrical pillars as they slide past one

another. Fig. 8(a) shows two circles (representing pillars) slid-

ing past each other with some lateral overlap, lx ¼ Dxj j
2R

. Here,

Dx denotes the lateral displacement between the centers of the

two pillars, and R is the radius of each pillar. The upper pillar is

shown in a sequence of positions (numbered 1 to 4) as it moves

vertically by a distance ‘dy’ at each step. The deflection, d,

which quantifies the deviation of the pillars from their initial

positions during sliding, is determined for each step. The

deflection is expressed as:

d ¼ 2R� d; 2R� d4 0

0; 2R� do 0

� �

(5)

where d represents the distance between the centers of the two

pillars and is calculated using the equation:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2 þ Dy2
p

; Dx ¼ x2 � x1; Dy ¼ y2 � y1 (6)

thus, deflection simplifies to d ¼ 2R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2 þ Dy2
p

, when

2R 4 d.

The final displacement in sliding direction, uf, is derived

from the initial displacement at which the pillars first come

into contact, denoted as ui, and is defined by:

uf (Final displacement) = � (Dy � ui)(0 r uf r 4R)

(7)

This calculation also mirrors the physical bending of single

pillars observed in sliding experiments. As the red lattice slides

over the black lattice, the model calculates the displacement

(in sliding direction) of each red pillar at every point in time,

setting the displacement to zero once the distance between

the centers of the pillars exceeds 2R. Initial displacement is

defined as,

ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2RÞ2 � Dx2ð Þ
q

; (8)

which indicates the displacement at which pillars begin to

overlap.

Fig. 8(b) visualizes the overall experimental setup with

stationary lattice of large black pillars rotated by 51 with respect

to z-axis, and a lattice of smaller red pillars sliding over the

black lattice. The aim is to calculate shear stress that arises due

to interaction between overlapping pillars. In the sliding lattice

model, the calculation of shear and normal force begins with

the determination of the final displacement, uf of each red

pillar, which is analogous to the physical displacement

observed in single pillar sliding experiments (Fig. 7a and b).

This final displacement is tracked until the inter-pillar distance

exceeds twice the radius, effectively reducing the displacement

to zero for calculation purposes.

The force-versus-displacement curves derived from single

pillar experiments are processed through a quartic polynomial

fitting procedure (with zero intercept). This yielded a set of four

coefficients for each curve, and these coefficients are functions

of two parameters: the lateral overlap, lx and the height of

contact, Hc. Through this functional relationship, we formu-

lated a series of surface functions that map the dependency of

these coefficients on the overlap parameters.

The simulation is carried out for fixed gap and this func-

tional mapping allows us to interpolate between measured

overlaps for predicting the system’s response to varying degrees

of overlap between the pillars. To provide a visual illustration of

Fig. 8 Geometric model (a) geometry of two pillars sliding past each other with Dx lateral overlap. We imagine that the lower pillar is fixed while the
upper one moves. (b) Geometric representation of overall experiment using large black lattice rotated by 51w.r.t z axis and overlapping with a smaller red
lattice sliding on the top.

Soft Matter Paper

P
u
b
li

sh
ed

 o
n
 1

2
 J

an
u
ar

y
 2

0
2
4
. 
D

o
w

n
lo

ad
ed

 b
y
 L

eh
ig

h
 U

n
iv

er
si

ty
 o

n
 7

/2
1
/2

0
2
4
 9

:3
7
:2

0
 P

M
. 

View Article Online



1456 |  Soft Matter, 2024, 20, 1447–1458 This journal is © The Royal Society of Chemistry 2024

these relationships, contour plots for each surface function

have been included in Fig. S15a and b (ESI†).

With the surface functions defined, we are able to determine

the coefficients for any specified combination of lateral and

height overlaps. These coefficients, when applied in con-

junction with the final displacement values, enable us to

compute the shear and normal force. This approach allows

for an accurate quantification of shear and normal forces.

These individual forces from pairs of pillars are subsequently

summed and divided by the sample area to ascertain the

average shear and normal stress across the lattice.

The shear stress vs. normal stress predictions yielded by our

model align closely with the empirical data from microscale

friction experiments, remaining within the experimental shear

stress range. Fig. 9(a)–(c) display the comparison of shear stress

versus normal stress values obtained from the model with

experimental data for various values of l and y.

Fig. 9a presents a comparative analysis of shear stress versus

normal stress, specifically for a lattice parameter, l, set to 1

across various angles of rotation, y. The correlation between the

model’s predictions and the experimental data is generally

favorable, however, an anomaly is observed for the case where

y = 01, the red curve. In this specific instance, the model

predicts a sawtooth pattern in the shear force curve, diverging

from the experimental trend. This deviation is attributed to the

absence of edge-nucleated dislocations within the model’s

framework for the y = 01 scenario. Consequently, the sawtooth

pattern leads to a lower average shear stress in comparison to

both the experimental data and the other curves represented

for different y values.

For a more detailed theoretical underpinning, including a

comparison with a one-dimensional edge dislocation model,

readers are directed to the ESI,† Section S4. This section

discusses how the force summation approach used here aligns

with energetic methods traditionally employed in the computa-

tion of average friction stress. See also Section S6 in ESI,† which

contains a simple model that shows why summation of forces

calculated using isolated pairs of pillars works because the

pillars are highly compliant.

4. Summary and conclusions

We presented a study of friction of shape-complementary pillar

interfaces. The structure of the interface can be understood to

comprise Moiré patterns that accommodate misorientation

and differences in lattice spacing on two sides of the interface.

Relative sliding of such complementary pillar structures can be

viewed as being accommodated by glide of Moiré patterns. The

frictional force depends strongly on pressure but only weakly

on misorientation. Friction for complementary pillar structures

is higher than that of control samples by up to a factor of 5.

In order to relate macroscopic measured friction to the beha-

vior of single pillar-pair interactions, we conducted mm-scale

single pillar-pair experiments and obtained pillar–pillar inter-

action forces at the interface. Using these data, we developed a

simple numerical model to determine the sliding friction of the

pillar interface as a sum of pairwise pillar–pillar interactions.

Our model compares well with experiments.

This pillar interface has many similarities to atomistic

interfaces. The interaction of atoms inside the dislocation core

determines the force required to move a dislocation. In our

case, the relevant interaction is that between pillars on opposite

sides of the interface. An important difference between our

interfacial structure and that found in crystalline interfaces at

the atomic scale is that the summed mechanics of pillar pairs

suffices to obtain the total friction stress. That is, pillar–pillar

coupling is very stiff. In ESI,† S6 we present a simple model

for an incommensurate pillar pair array which shows how,

for sufficiently stiff pillars the system would behave more like

atomistic interfaces do, with disregistry confined to dis-

location lines.

Our results show how shape complementary pillar interfaces

can be designed for enhanced, sliding friction.

Data availability

The data presented in this paper are available from the authors

on reasonable request.

Fig. 9 Comparison of friction data from single pillar-pair experiments to that from geometric model simulations. Comparison of shear stress as
a function of normal stress for geometric model and experiments at several misorientations y = 01, 51, 101, 151, 301, 451 at lattice mismatch, (a) l = 1
(b) l = 1.023 (c) l = 1.006.
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