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Biology is replete with examples, at length scales ranging from the molecular (ligand—-receptor binding)
to the mesoscopic scale (wing arresting structures on dragonflies) where shape-complementary
surfaces are used to control interfacial mechanical properties such as adhesion, friction, and contact
compliance. Related bio-inspired and biomimetic structures have been used to achieve unique
interfacial properties such as friction and adhesion enhancement, directional and switchable properties.
The ability to tune friction by altering surface structures offers advantages in various fields, such as soft
robotics and tire manufacturing. Here, we present a study of friction between polydimethylsiloxane
(PDMS) samples with surfaces patterned with pillar-arrays. When brought in contact with each other
the two samples spontaneously produce a Moiré pattern that can also be represented as an array of
interfacial dislocations that depends on interfacial misorientation and lattice spacing. Misorientation
alone produces an array of screw dislocations, while lattice mismatch alone produces an array of edge
dislocations. Relative sliding motion is accompanied by interfacial glide of these patterns. The frictional
force resisting dislocation glide arises from periodic single pillar—pillar contact and sliding. We study the
behavior of pillar—pillar contact with larger (millimeter scale) pillar samples. Inter-pillar interaction
measurements are combined with a geometric model for relative sliding to calculate frictional stress that
is in good agreement with experiments.

have liquid secretion'®'® to form a capillary bridge for adhe-

sion. Many other animals like skinks,"® insects like beetles and

Achieving tunable adhesion and friction has applications ran-
ging from rubber processing in tire manufacturing to object
handling in soft robotics.”? Nature has provided us with many
examples®™® of how microstructures on the surface can help
control adhesion and friction. One such example is that of a
gecko,””® which has fibrillar structures on its toes to help it
climb rough and smooth surfaces.>>"'® Geckos stick using van
der Waals dispersion forces'' and have reversible adhesion."?
Another such example is that of the head arresting system in
dragonflies,”” which consists of intricate complementary
microstructures on their head and neck to immobilize the
head during tandem flight. Pillars in insects and amphibians
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spiders'”*° have microstructures on their contacting surfaces
to achieve desired adhesion and friction.

Bioinspired and biomimetic structures have been shown to
modulate adhesion,**” friction, and contact compliance®>*>®
and to provide new functionality such as switchability and direc-
tional properties just by altering surface structures. An exemplary
instance is the renowned case of Velcro,”® which operates on a
loop-clasp mechanism. There is now a considerable literature on
bioinspired contact surfaces.>*'**>2%30-38

Most bioinspired studies focus on adhesion/friction enhance-
ment for microstructures on one side against a generic smooth
or rough surface on the other.*®*° Shape complementary micro-
structures on both sides**™* of the interface have been relatively
less explored. It has been demonstrated that shape complemen-
tarity at the micron scale can significantly enhance adhesion
selectivity.*>*>** Guduru*®*” explored the mechanics of detach-
ment between a wavy elastic surface and a rigid solid, uncovering
an intriguing phenomenon. Surface waviness induces an
unstable detachment process with alternating stable and
unstable segments, resulting in increased work of separation.
These findings provide an alternative explanation for the
sometimes observed increase in pull-off force on rough sur-
faces. Adhesion selectivity using rippled surfaces*> showed
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how shape complementary surfaces can enhance adhesion.
Singh et al. used microchannel structures** to show adhesion
enhancement in such shape complementary interfaces. Chen
et al.*® showed the same using a pillar geometry.

The investigation of sliding friction in shape-comple-
mentary surfaces has been relatively limited. Amonton’s and
Coulomb’s laws describe friction in phenomenological terms,
but the understanding of the relationship between macroscopic
frictional response and the behavior of microscopic contacts
remains under active investigation.’*° He et al** studied
sliding friction in ridge-channel and pillar interfaces, achieving
friction enhancement in structured surfaces as compared to
control surfaces. They reported the spontaneous formation of
interfacial dislocations and presented a model for friction in
ridge-channel surfaces based on treating the dislocation core as
a crack. However, they presented only a qualitative description
of friction in pillar surfaces.

For periodically structured two-sided interfaces, orienta-
tional or lattice-parameter mismatch leads to spontaneous
production of Moiré patterns on the interface, much like an
incommensurate twist grain boundary in crystalline solids.
These can also be represented as dislocation structures in
shape complementary surfaces that resemble microscale repli-
cas of dislocations on the atomic scale in crystalline solids.
Therefore, models for dislocation glide and microscopic fric-
tion mechanisms are relevant. For instance, the Peierls/
Nabarro model for the dislocation core provides expressions
for the minimum stress needed for dislocation glide.”"**> The
Prandtl-Tomlinson model®® for nanoscale friction is a mini-
malistic model for the relationship between the energy of
interaction between two surfaces and friction.”®>* Related ideas
have been used to explain friction in soft materials.>>>” The
Frenkel-Kontorova (FK) model is similarly based on motion of
a chain of particles placed on a periodic substrate and is used
to describe sliding in crystalline interfaces. This model can be
used to understand a pillar interface, where each pillar has to
slide past pillars on the other side of the interface.>*>*

In this work we study friction in bioinspired, two-sided,
micropillar surfaces. Our goal is to relate macroscopically
measured friction stress, in terms of the pillar deformation at
the interface. This problem is analogous to that of determining
the stress needed for a dislocation to glide in a crystal, the basic
version of which is determined by the Peierls-Nabarro model of
the dislocation.>">***>87% Analogously, for our model, friction
is defined as the force required for Moiré patterns/dislocations
to slide across the interface, the details of which depend on
pillar-pillar interaction.

2. Experimental methods
2.1 Sample fabrication

Micropillar samples were fabricated using polydimethylsiloxane
(PDMS) elastomer molded into an etched silicon master with
pillar geometry on the surface patterned by photolithography. The
pillars fabricated were 10 pm in diameter, 16 um in height, and
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arranged in a square array with a minimum interpillar spacing of
20 pm. PDMS precursor (silicone elastomer base) was combined
with crosslinker (curing agent, Sylgard 184 Silicone Elastomer Kkit,
Dow Corning) in the ratio 10: 1 by weight. The mixture was then
degassed under vacuum for 30 minutes before applying to the
master and was cured at room temperature for 2 days. The cured
PDMS was then peeled off the silicon master. A typical sample is
30 mm long, 10 mm wide and about 800 um thick. The second
complementary sample was fabricated in a similar way. Addi-
tional samples were fabricated in a similar way but cured at
different temperatures to introduce slightly different interpillar
spacing due to differences in thermal contraction from curing to
room temperature. Flat samples were also fabricated with no
micropatterns and used for control experiments. A white light
interferometry-based optical profilometer (Zegage, Zygo Corp) was
used to produce micrographs of micropillar samples as shown in
Fig. 1(a) and (b). Fig. 1(c) and (d) show a plan view of the interface
each patterned with micropillars showing a misorientation,
0 (Fig. 1c) or a lattice mismatch, A (Fig. 1d) between the two
arrays. The circles represent the bottom of the pillars where they
join the bulk. Fig. 1c shows two pillar arrays (black and red
lattices), in which the black lattice is rotated by a misorientation
angle, 0 = 10°, with respect to the red lattice. Fig. 1d shows two

Fig. 1 (a) 2D view of micropillars arranged in a square array with interpillar
spacing of 20 pm. The pillars are 10 pm in diameter and ~ 16 um in length.
(b) 3D view of micropillars. (c) Arrays of black and red pillars at a relative
misorientation angle, 6 = 10°. (d) Red and black pillar arrays with lattice
spacing mismatch, A = (a/a’) = 1.2. (e) Picture of a mm-scale, single pillar
sample. (f) Image of two mm-scale single pillar samples, mounted on a
custom built tribometer.
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lattices with different minimum spacings a and a’ where 1 = a/a’
is the lattice mismatch. (In the case shown here, 4 = 1.2).

In order to study inter-pillar interaction, larger, mm-scale,
single pillar samples were fabricated, as shown in Fig. 1(e), with
the same aspect ratio as the micropillars. The process included
using the same PDMS mixture and pouring the mixture into a
mold fabricated for this purpose. The cured single pillar
samples were 3 mm in diameter and 4.8 mm in height with

CCD
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backing dimensions of 30 mm x 30 mm x 8 mm shown in
Fig. 1e and f. Details of the single pillar experiments and its
analysis are given in the companion paper.®*

2.2 Friction measurement

Friction measurements were conducted using a custom built
Flat-on-Flat Tribometer as shown in Fig. 2a. The setup consists
of two stages on which samples are mounted, and a load cell
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Fig. 2 (a) Schematic of custom-built flat-on-flat tribometer. Pillar samples are mounted on upper and lower stages as shown. Vertical and horizontal
motors control the relative displacement between two samples. (b) Micropillar PDMS samples for measuring sliding friction, Top sample has dimensions
30 mm by 10 mm and bottom sample is 4 mm by 4 mm. (c) Schematic of pillar samples in contact showing the Burgers vector for pillar samples.

(d) Schematics of single pillar samples, H. = height of contact or vertical overlap (e) [, =

This journal is © The Royal Society of Chemistry 2024
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each to measure horizontal or shear force, and vertical or
normal force. Vertical and horizontal motors control the
respective movement of stages, and the rotation motor controls
rotation of the lower stage (to control misorientation). The
motors are connected to a motion controller and the entire
system is controlled by custom-written LabVIEW code. A camera
is used to image the behavior of pillars at the interface during
sliding.

Sliding friction was measured at five different values of
misorientation (# = 0°, 5°, 15°, 30°, 45°) and five different
normal loads (0.075 N to 0.4 N) for patterned and flat control
samples and each experiment was repeated three times. The
setup can work under normal load or displacement control.
Normal load is controlled by normal displacement, which is fed
to the PID controller operated by LabVIEW software. The two
samples are brought in contact using the vertical motor.

A typical friction experiment consists of sticking the top and
bottom samples to glass slides using double-sided Scotch®™
tape. The slides are mounted onto the lower and upper stages
and brought into contact under displacement control (Fig. 2a).
After mounting the samples on the stage, we set the mis-
orientation angle between the two samples using the rotation
motor. We start by aligning the two samples at 0° misorientation,
which is when dislocations disappear from the interface. With
this as 0 = 0°, other angles are easily obtained. Once we have the
desired misorientation, we set a normal load and switch to
normal load control. When the load stabilizes to the set value,
we slide the samples with respect to each other for 3 mm at a

velocity of 0.01 mm s~ .

3. Results and discussion
3.1 Moiré patterns & dislocations

When the two micropillar samples are first brought in contact,
Moiré patterns appear spontaneously on the interface, as we’ve
reported previously.”’™* Due to the square patterning and
periodicity, the interface consists of periodic square regions,
and the size of these regions depends on the misorientation
and lattice spacing mismatch.*>** The boundary of each square
region can be viewed as a dislocation line, albeit with a diffuse
core. Specifically, these regions are formed by two parallel
sets of mutually perpendicular dislocation lines (see Fig. 3).
We refer to the edges in the Moiré patterns as “dislocation
lines” by analogy to twist grain boundaries in crystals.*>%
Although they are geometrically similar to twist grain bound-
aries, the mechanics of interaction across the interface is
different as discussed later.

The Moiré pattern and its accompanying dislocation array
forms during the initial application of normal load, with
density and orientation depending on /4 and 0 values. Orienta-
tional mismatch alone, (§ > 0° at 4 = 1), produces an array of
screw dislocations whereas a lattice mismatch alone, (1 # 1 at
0 = 0°), produces an array of edge dislocations. Presence of both,
an orientation mismatch and a lattice mismatch, produces an
array of mixed dislocations.** The density of square regions
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Fig. 3 Moiré pattern & Dislocation lines. Representation of Moiré patterns
as screw, edge, and mixed dislocations. (3a)(i) An array of screw disloca-
tions produced by aligning red and black lattices at a misorientation, 0 = 5°
and Aa/a’) = 1. (3a)(ii) An array of screw dislocations formed at the interface
of two pillar samples in contact. (3b)(i) An array of edge dislocations
produced when two lattices (here, red and black) have a lattice mismatch,
Mala’) = 1.023. (3b)(ii) An array of edge dislocations formed at the interface
of two pillar samples in contact at A(a/a’) = 1.023. Note difference in scale
between 3a(ii) and 3b(ii). (3c) (i) an array of mixed dislocations produced by
aligning the two lattices at a misorientation 0 = 5° and at lattice mismatch,
Mala’) = 1.023. (3¢)(ii) An array of mixed dislocations on the pillar interface
with the same conditions as 3cfi).

increases with increase in mismatch.** Fig. 3 shows formation
of Moiré patterns®* between shape complementary pillar sam-
ples. Fig. 3a(i) represents geometrically the formation of screw
dislocations when red and black square lattices overlap at a 5°
misorientation. As noted above, the black arrow lines in Fig. 3
represent dislocation lines. A corresponding pattern can also be
clearly seen on the interface of our actual pillar samples in
Fig. 3a(ii) for the same misorientation angle. As sliding begins,
pillars are pushed into contact, each with a neighboring pillar
with force that changes with displacement until it loses contact

This journal is © The Royal Society of Chemistry 2024
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with its partner pillar. This process occurs for each pillar. In the
micrographs of Fig. 3, we observe a pattern of light and dark
regions. The lighter patterns correspond to when pillars from
complementary surfaces are in partial or full registry (i.e., right
next to each other). The darker regions are where pillars from
both samples are bent on top of each other and are at maxi-
mum disregistry. The lines connecting dark regions can be
interpreted to be dislocation lines.

Fig. 3b compares the formation of Moiré patterns corres-
ponding to edge dislocations geometrically and in experiments.
Fig. 3b(i) shows that red and black lattices with A = 1.023 form
edge dislocations. Similar patterns are observed experimentally
as shown in Fig. 3b(ii). Edge dislocations appear on a perfectly
aligned interface with lattice mismatch. As misorientation is
then increased from 0 = 0°, Moiré patterns corresponding to
mixed dislocations appear on the interface (shown in Fig. 3c).
Fig. 3b(ii) represents experimentally observed edge dislocations
at 4 = 1.023 £ 0.001. The pattern again shows light and dark
regions. Fig. 3c(i) represents Moiré patterns corresponding
to dislocations with mixed edge and a screw character for 4 =
1.023 and 6 = 5°. The patterns are different than that of screw
dislocations if observed carefully in that they are tilted slightly
compared to the orientation of screw dislocations. Fig. 3c(ii)
represents mixed dislocations for pillar samples in contact at
A =1.023 £ 0.001 and 0 = 5°. A more detailed account of the
geometry of dislocation arrays can be found in ref. 42. For

(©)
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completeness, we provide the main results. These are that the
dislocation density p and orientation o of the dislocation lines
are functions of misorientation angle, 0, and lattice mismatch,
A. Orientation, « is found as,

sin 0

—tan '~ 1
x=tan A —cosl’ (1)

and

density as p = %\/ (A —1)% + 42sin (g) )

where b is the magnitude of the Burgers vector b, / is lattice
mismatch, and 0 is misorientation.

To further analyze the orientation of moving dislocations, it
is useful to consider the Peach-Kohler force,”® which is a
configurational force that defines the direction of dislocation
motion. It is given by

Fpx = (a-b) x &, 3)

where ¢ is applied stress, and ¢ is the dislocation line vector
(see Fig. 4a and b for frame of reference). For a screw disloca-
tion as shown in Fig. S17d (ESIt), Burgers vector, b; is asso-
ciated with the dislocation line AA” and b, is associated with
dislocation line CC”. Thus, for a screw dislocation, there are

, 1 1 1
two Burgers vectors i.e., by = ——=e  +—=e;and by = —e +

V2 V2 V2

Direction of dislocation motion

(b)

Direction of dislocation
motion

(d)

Fig. 4 Sliding happens through dislocation glide. Optical images of pillar interface. (a) Screw dislocations: at misorientation, 6 = 5°, 4 = 1 (before sliding
commences), (b) snapshot of sliding screw dislocations at misorientation, 0 = 5°, 1 = 1. For sliding in 2" direction, the dislocation pattern moves in
‘1" direction. (c) Edge dislocations: at misorientation, 0 = 0°, 2 = 1.023 (before sliding commences), (d) snapshot of sliding edge dislocation pattern
at A = 1.023. For sliding in 2" direction, the dislocation pattern moves in ‘2’ direction.

This journal is © The Royal Society of Chemistry 2024
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ﬁ e, ¢ is the dislocation line vector, &; = _E \/_ e, and
1 1
& :ﬁa+ﬁe_2 and stress, ¢ = —1e,®¢€3 te;®e, +
1 1_ 1 1_
pes®es, thus, Fpgx =1 Eel +§ez and Fpx =7 Eel 7562 .

This gives the resultant force in e; direction and this implies
that screw dislocation runs perpendicular to the direction
of sliding which is true as shown in Fig. 4b (full video in
ESL,¥ SI: V3_lambda=1_5_deg  ScrewDislocation.avi). For
an edge dislocation as shown in Fig. S17e (ESIt), Burgers
vector b, is associated with dislocation line C'C” and Burgers

vector b, is associated with dislocation line A’A”. Thus, b; =

1

ey, by = e7, and corresponding disloca-
Vo \f f \f P £
1
tion line vector, & = —e, &H=—x= — ez,
1 1 1 1
thus, FPK:T(7§E+§6) and FPK:T EEJFEE)

respectively. Net resultant force, Fpy is in e; direction, which
implies that for an edge dislocation, dislocation lines run
parallel to the direction of sliding as shown in Fig. 4c and d

View Article Online
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and a full video in ESIf (SI:
EdgeDislocation).

Fig. S17 (ESIt) and Fig. 4 show that, as we traverse the sample,
the registry between pillars above and below the interface varies

V8_lambda=1.023_0deg_

systematically and periodically, with period identical to that of the
Moiré pattern. We see that the direction of dislocation motion is
consistent with that given by the Peach-Kohler formula. When
sliding initiates, the interface loses its symmetry (compare
Fig. 4a-d). The period of the Moiré pattern corresponds to
disregistry equal to the Burgers vector. Therefore, for one Burgers
vector of slip in the ‘2’ direction, each pillar undergoes a full load-
release cycle. This observation is key for our calculation of
macroscopic friction stress. That is, at any point in time, the
instantaneous friction force is the sum of all pairwise inter-pillar
contact forces across the interface. The friction force averaged
over one sliding cycle (slip = Burgers vector) can be obtained by
matching external work done to the energy loss for each pillar pair
in going through a full loading-unloading cycle.

3.2 Friction stress measurements

Fig. 5(a) shows typical raw data for measured friction stress as a
function of sliding distance, for different values of normal
stress varying from 4 x 10° N m~> to 2.5 x 10* N m > at

4
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(c)

(d)

Fig. 5 Experimental data for friction. (a) Friction stress as a function of displacement for no lattice mismatch i.e., 2 = 1, but 6 = 5° at various normal loads.
(b) Friction stress as a function of displacement at a lattice mismatch 4 = 1.023 for misorientation 6 = 0°. (c) Friction stress as a function of displacement at
a lattice mismatch i.e., 2 = 1.023 for misorientation 6 = 5°. (d) Steady state friction stress as a function of normal stress at a lattice mismatch 4 = 1.023 for
several misorientations from 0 = 0° to 0 = 45° and normal load, in comparison with a flat control sample.
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A=1and 0 = 5° (dislocations have screw character). As the pillar
samples come in contact and start sliding, friction force first
rises and then subsides to an approximately constant value.
Note that the friction stress increases with increasing normal
stress. (Friction stress is obtained by averaging friction force
when it stabilizes between 2 to 3 mm of shear displacement and
then dividing it by the nominal area of contact, which in this
case is sample size i.e., 4 x 4 mm®.) Fig. 5b shows how the
friction stress varies with displacement for edge dislocation
case at 4 =1.023 and 6 = 0°. Fig. 5¢ shows data for friction stress
versus displacement for mixed dislocation case at A = 1.023 and
0 = 5°. The data show that friction stress is strongly dependent on
pressure and does not depend much on edge or screw character of
dislocation nor on misorientation if 1 is close to unity.

Fig. 5d shows a plot of how friction stress varies as a
function of normal load and misorientation, 6. This particular
case is at 4 = 1.023 for various values of 6 = 0°, 5°, 15°, 30° and
45°. As can be seen from the Fig. 5d, friction rises strongly with
the normal stress but is essentially independent of misorienta-
tion. This is starkly different from that found in the ridge-
channel geometry*® where friction depends strongly on misor-
ientation angle. Weak dependence on misorientation for pillar
samples is likely because pillars are organized in a square
lattice, which is not far from isotropic. Also shown in
Fig. 5(d) is measured friction stress for a control in which
one of the pillar interfaces is replaced by a flat, unstructured,
PDMS sample. Friction for cases where both sides have pillars
shows significant increase as compared to friction in the
control case. Friction stress for pillar complementary samples
can be seen to be enhanced by up to about a factor of 5 over that
of a control sample.

We turn our attention next to studying the relationship
between macroscopically observed friction and the pairwise
interaction of pillars. For this purpose, we first show results
on single pillar-pair experiments and then combine these with
a geometric model of the sliding interface to calculate predicted
macroscopic friction stress.

3.3 Single pillar pair friction experiments

We propose that the friction force arises from the ensemble
of pillar-pillar interactions. To study this quantitatively and
directly, we first conduct experiments on the interaction of
pairs of pillars. Single pillar samples are fabricated following
the process mentioned in Section 2.1. Pairs of these single-
pillar samples are slid past each other. The contact is charac-
terized by two types of overlaps between pillars: in the plane of
the interface (lateral overlap) and along the length of the
undeformed pillar (vertical overlap or H. as height of contact)
as shown in Fig. 2d, e and 6a, b.

The experiments are performed keeping the vertical distance
between two pillars fixed. Let the length of each pillar be L. If
the gap exceeds the upper limit (2L), we have zero vertical
overlap. Then the pillars disengage and the force they transmit
to each other while sliding goes to zero. If the gap hits the lower
limit (L), then the pillar can take any vertical load.

This journal is © The Royal Society of Chemistry 2024
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Fig. 6a represents a lateral overlap that varies from 0 to 1,
where [, is a dimensionless parameter to measure lateral over-

lap and is defined as, /y =1 — ?—; Fig. 6b represents vertical
H.
T
Fig. 6¢c-h shows a schematic progression of sliding a pair of
pillars past each other. The collection of forces resisting this
motion gives rise to the macroscopic friction force as well as the
vertical reaction force.

Neglecting the role of adhesion (see experiments in ESL,
Section S3 on lubricated vs. dry single pillar pair experiments),
we make the approximation that if we normalize all displace-
ments and location by pillar radius and stresses by the shear
modulus, then the normalized stress is a function of normal-
ized location. That is, if one scales the system uniformly, forces
measured in the pillar-pair interaction experiments can simply
be scaled down to estimate forces in the micropillar samples.
A series of figures in Fig. 6c-h shows progression of sliding for
a typical single pillar-pair experiment. The corresponding shear
and normal force plots are shown in Fig. 7 as a function of
shear displacement. As the sliding starts under normal displace-
ment control (i.e., vertical overlap is fixed for each experiment and
normal load varies), the two pillars come in contact and bend as
shear displacement increases. The two pillars appear to stick to
each other as shear stress/force reaches a maximum point and
then series of slipping events occur, accompanied by decrease of
shear force, and ending with separation of the two pillars. (The
case shown here in Fig. 6¢c-h is for a 100% lateral overlap, I, = 1).

Fig. 7a shows variation of shear force with sliding displace-
ment for single pillar pair experiments for lateral overlap, [, =1
at different vertical overlaps ranging from (4.8 mm to 0.8 mm).
Shear force is maximum for maximum lateral overlap (I, = 1)
and H. = 4.8 mm and decreases if the lateral overlap or height
of contact is decreased (as shown in Section S3 in ESI). After
contact, the shear force initially increases linearly with shear
displacement. At an intermediate shear displacement, the
response softens and then hardens again prior to initiation of
stick-slip. As seen from Fig. 7a, after shear displacement
reaches ~8 mm, there is a decline in shear force as the pillars
slide with respect to each other in stick-slip steps. This stick
slip motion, as the force declines, is most significant in the
100% lateral overlap case, whereas the force drop in the rest of
the cases (I, = 0.75, 0.5, 0.25, 0) is more sudden (shown in ESI¥).
Normal force, on the other hand, rises initially but declines as
shear force slope increases. This is because the two pillars in
contact are almost horizontal (more force in shear direction)
and thus normal force declines.

Fig. 7a and b also show quatrtic fits to the experimental data.
The detailed mechanics of this inter-pillar interaction is pre-
sented in a companion paper.°*

The single pillar pair experiments provide:

overlap along the length of the pillar and is defined as /. =

T (us), N (us), u*

w= J:* T (us)dus W
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Fig. 6 Representation of different pillar overlaps and single pillar pair experiment. (a) Lateral overlaps, I, ranging from 1 to 0. (b) Vertical overlap or height
of contact (H.) which ranges from 4.8 mm (full contact) to 0.8 mm (least contact). (c—h) Sliding experiment for a single pillar pair (1 & 2, side view).
Progression of pillar contact during sliding at [, = 1 and full height overlap (Hc. = 4.8 mm).
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Fig. 7 Friction data for single pillar pair experiments. (a) Shear force as a function of shear displacement for 100% lateral overlap (I, = 1) at different
heights of contact, Hc (b) normal force as a function of shear displacement for 100% lateral overlap (I = 1) at different heights of contact, H. (4.8 mm to

0.8 mm).

where, T, N, u*, us,, and w are shear force, normal force,
maximum shear displacement, shear displacement, and energy
loss from a single pillar pair, respectively. As shown in ESI, the
effect of adhesion is negligible so that change of scale leaves
all stresses unchanged. Therefore, if the scale factor between
the single pillar pair experiments and the pillar array is o, then
energy scales as (ug)°, displacement by o, and forces by (xg)>.

1454 | Soft Matter, 2024, 20, 1447-1458

Thus, for given overlap between a pair of micropillars, we may
use the results of the mm-scale single pillar pair experiments to
compute the shear and normal force of interaction for given
lateral and vertical overlap of a pair of micro-pillars.

Each single-pillar-pair experiment is conducted for five
specified values of lateral and vertical overlap (5 x 5 = 25 cases
in all) producing data such as shown in Fig. 7a and b (see also

This journal is © The Royal Society of Chemistry 2024



Published on 12 January 2024. Downloaded by Lehigh University on 7/21/2024 9:37:20 PM.

Soft Matter

ESL 1 Fig. S7 and S8). Each force plot is fit with four fitting
parameters. Each fitting parameter is a function of the two
overlap parameters i.e., lateral overlap and vertical overlap or
height of contact (H.). Thus, we have a 2D surface for each
parameter (more information provided in ESI, T Fig. S15) that is
fit by a third order polynomial in two variables (lateral and
vertical overlaps) using which we can estimate the shear and
normal forces for any specified overlaps.

3.4 Overall friction response

This section presents a geometric model illustrating the inter-
action between cylindrical pillars as they slide past one
another. Fig. 8(a) shows two circles (representing pillars) slid-
|Ax

2R
Ax denotes the lateral displacement between the centers of the

two pillars, and R is the radius of each pillar. The upper pillar is
shown in a sequence of positions (numbered 1 to 4) as it moves
vertically by a distance ‘dy’ at each step. The deflection, J,
which quantifies the deviation of the pillars from their initial
positions during sliding, is determined for each step. The
deflection is expressed as:

5_J2R—d, 2R—d>0
o, 2R—d <0

ing past each other with some lateral overlap, /, =

. Here,

(5)

where d represents the distance between the centers of the two
pillars and is calculated using the equation:

d=\AX2+ A% Ax=x3 —x1; Ay =y — 3 (6)

thus, deflection simplifies to 6 =2R — y/Ax? + Ay?, when
2R > d.

The final displacement in sliding direction, us, is derived
from the initial displacement at which the pillars first come
into contact, denoted as u;, and is defined by:

ug (Final displacement) = — (Ay — 1)(0 < uf < 4R)

(7)

*,
0
R4
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This calculation also mirrors the physical bending of single
pillars observed in sliding experiments. As the red lattice slides
over the black lattice, the model calculates the displacement
(in sliding direction) of each red pillar at every point in time,
setting the displacement to zero once the distance between
the centers of the pillars exceeds 2R. Initial displacement is
defined as,

u; =1/ ((2R)? — Ax?), (8)

which indicates the displacement at which pillars begin to
overlap.

Fig. 8(b) visualizes the overall experimental setup with
stationary lattice of large black pillars rotated by 5° with respect
to z-axis, and a lattice of smaller red pillars sliding over the
black lattice. The aim is to calculate shear stress that arises due
to interaction between overlapping pillars. In the sliding lattice
model, the calculation of shear and normal force begins with
the determination of the final displacement, u; of each red
pillar, which is analogous to the physical displacement
observed in single pillar sliding experiments (Fig. 7a and b).
This final displacement is tracked until the inter-pillar distance
exceeds twice the radius, effectively reducing the displacement
to zero for calculation purposes.

The force-versus-displacement curves derived from single
pillar experiments are processed through a quartic polynomial
fitting procedure (with zero intercept). This yielded a set of four
coefficients for each curve, and these coefficients are functions
of two parameters: the lateral overlap, I, and the height of
contact, H.. Through this functional relationship, we formu-
lated a series of surface functions that map the dependency of
these coefficients on the overlap parameters.

The simulation is carried out for fixed gap and this func-
tional mapping allows us to interpolate between measured
overlaps for predicting the system’s response to varying degrees
of overlap between the pillars. To provide a visual illustration of

(b)

Fig. 8 Geometric model (a) geometry of two pillars sliding past each other with Ax lateral overlap. We imagine that the lower pillar is fixed while the
upper one moves. (b) Geometric representation of overall experiment using large black lattice rotated by 5° w.r.t z axis and overlapping with a smaller red

lattice sliding on the top.

This journal is © The Royal Society of Chemistry 2024
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these relationships, contour plots for each surface function
have been included in Fig. S15a and b (ESIY).

With the surface functions defined, we are able to determine
the coefficients for any specified combination of lateral and
height overlaps. These coefficients, when applied in con-
junction with the final displacement values, enable us to
compute the shear and normal force. This approach allows
for an accurate quantification of shear and normal forces.
These individual forces from pairs of pillars are subsequently
summed and divided by the sample area to ascertain the
average shear and normal stress across the lattice.

The shear stress vs. normal stress predictions yielded by our
model align closely with the empirical data from microscale
friction experiments, remaining within the experimental shear
stress range. Fig. 9(a)—(c) display the comparison of shear stress
versus normal stress values obtained from the model with
experimental data for various values of 4 and 0.

Fig. 9a presents a comparative analysis of shear stress versus
normal stress, specifically for a lattice parameter, 4, set to 1
across various angles of rotation, 6. The correlation between the
model’s predictions and the experimental data is generally
favorable, however, an anomaly is observed for the case where
0 = 0° the red curve. In this specific instance, the model
predicts a sawtooth pattern in the shear force curve, diverging
from the experimental trend. This deviation is attributed to the
absence of edge-nucleated dislocations within the model’s
framework for the 0 = 0° scenario. Consequently, the sawtooth
pattern leads to a lower average shear stress in comparison to
both the experimental data and the other curves represented
for different 0 values.

For a more detailed theoretical underpinning, including a
comparison with a one-dimensional edge dislocation model,
readers are directed to the ESI,f Section S4. This section
discusses how the force summation approach used here aligns
with energetic methods traditionally employed in the computa-
tion of average friction stress. See also Section S6 in ESI, ¥ which
contains a simple model that shows why summation of forces
calculated using isolated pairs of pillars works because the
pillars are highly compliant.
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4. Summary and conclusions

We presented a study of friction of shape-complementary pillar
interfaces. The structure of the interface can be understood to
comprise Moiré patterns that accommodate misorientation
and differences in lattice spacing on two sides of the interface.
Relative sliding of such complementary pillar structures can be
viewed as being accommodated by glide of Moiré patterns. The
frictional force depends strongly on pressure but only weakly
on misorientation. Friction for complementary pillar structures
is higher than that of control samples by up to a factor of 5.
In order to relate macroscopic measured friction to the beha-
vior of single pillar-pair interactions, we conducted mm-scale
single pillar-pair experiments and obtained pillar-pillar inter-
action forces at the interface. Using these data, we developed a
simple numerical model to determine the sliding friction of the
pillar interface as a sum of pairwise pillar-pillar interactions.
Our model compares well with experiments.

This pillar interface has many similarities to atomistic
interfaces. The interaction of atoms inside the dislocation core
determines the force required to move a dislocation. In our
case, the relevant interaction is that between pillars on opposite
sides of the interface. An important difference between our
interfacial structure and that found in crystalline interfaces at
the atomic scale is that the summed mechanics of pillar pairs
suffices to obtain the total friction stress. That is, pillar-pillar
coupling is very stiff. In ESI,T S6 we present a simple model
for an incommensurate pillar pair array which shows how,
for sufficiently stiff pillars the system would behave more like
atomistic interfaces do, with disregistry confined to dis-
location lines.

Our results show how shape complementary pillar interfaces
can be designed for enhanced, sliding friction.

Data availability

The data presented in this paper are available from the authors
on reasonable request.
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