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Abstract

This paper introduces a supervisory unit, called the stability governor (SG), that provides improved guarantees of stability for
constrained linear systems under Model Predictive Control (MPC) without terminal constraints. At each time step, the SG
alters the setpoint command supplied to the MPC problem so that the current state is guaranteed to be inside of the region
of attraction for an auxiliary equilibrium point. The proposed strategy is shown to be recursively feasible and asymptotically
stabilizing for all initial states sufficiently close to any equilibrium of the system. Thus, asymptotic stability of the target
equilibrium can be guaranteed for a large set of initial states even when a short prediction horizon is used. A numerical example
demonstrates that the stability governed MPC strategy can recover closed-loop stability in a scenario where a standard MPC
implementation without terminal constraints leads to divergent trajectories.
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1 Introduction

Model Predictive Control (MPC) is a feedback strat-
egy defined by the solution of a receding horizon opti-
mal control problem (OCP). MPC is an attractive op-
tion for many control tasks due to its ability to provide
high-performance control in the presence of system con-
straints. Moreover, theoretical properties (e.g., stability
and robustness) of MPC have been extensively stud-
ied [13,16] and there is a wealth of practical evidence of
the effectiveness of MPC.

Asymptotic stability of a system under MPC feedback
is often guaranteed through the choice of the terminal
penalty and the terminal set constraint of the receding
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horizon OCP [13]. However, there are compelling rea-
sons to avoid the use of a terminal constraint when im-
plementing MPC. For example, OCPs with only control
constraints are much easier to solve and it is possible to
establish continuity of the value function for a range of
OCPs with no state constraints [16, Chapter 2.6]. The
total number of constraints in the OCP may also be
significantly increased by the inclusion of a stabilizing
terminal constraint. Moreover, offline computation of a
stabilizing terminal set may be intractable for high di-
mensional systems (e.g., [15, Example 2]).

Additionally, the performance of many algorithms used
to solve linear-quadratic OCPs can significantly im-
prove when there are no terminal constraints and the
pointwise-in-time state and control constraints are of
a particular form. For example, if projections onto the
state and input constraint sets are easy to compute (e.g.,
box constraints), then expensive sub-problems reduce to
inexpensive projection operations for a variety of first-
order optimization methods. Examples of such methods
are the dual projected gradient method (e.g., [14]), the
alternating directional method of multipliers (e.g., [1]),
the Chambolle & Pock method [6], and the proportional-
integral projected gradient method [20]. In addition,
second-order methods (e.g., [3, 12, 19]) can take ad-
vantage of the problem structure that arises when all
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constraint sets are boxes.

Omitting the terminal constraint in MPC clearly pro-
vides certain theoretical and practical benefits. However,
doing this also has the undesirable consequence of weak-
ening the associated theoretical guarantees of closed-
loop stability and recursive feasibility. Limén et al. [10]
showed that, under reasonable assumptions, a system
under MPC without terminal constraints has a region
of attraction (ROA) characterized by a sublevel set of
the optimal cost. However, the size of this ROA is often
much smaller than the ROA resulting from an MPC law
with terminal constraints.

This paper develops a stability governor (SG) for MPC
without terminal constraints that expands the ROA of
[10] by altering the reference command provided to the
MPC problem. At each time step, the SG constructs an
auxiliary reference command that ensures the current
state is inside of the ROA for the corresponding equilib-
rium. Under this paradigm, asymptotic stability of the
target equilibrium can be guaranteed for all initial states
contained in the union of ROAs corresponding to each
equilibria of the system. As a result, closed-loop stability
and recursive feasibility can be guaranteed using shorter
prediction horizons and a smaller terminal penalty pa-
rameter than the existing method in [10].

The SG is similar in philosophy to the feasibility gov-
ernors (FGs) in [17,18], which expand the feasible re-
gion of MPC with terminal constraints by altering the
reference command so that the predicted final state is
maintained in the terminal region of the modified refer-
ence. In contrast, the SG maintains the current state in
a sequence of ROA estimates for MPC without terminal
constraints. Thus, the challenges associated with enforc-
ing terminal constraints are avoided and efficient solvers
for OCPs without terminal constraints can be used.

The recent work in [15] also warrants discussion in the
context of our work. Asymptotic stability and recursive
feasibility of the approach in [15] is enforced through a
set of implicit terminal conditions. These terminal con-
ditions are explicitly enforced in the OCP, but are im-
plicit in the sense that they constitute sufficient condi-
tions for satisfaction of a terminal constraint based on
the maximum output admissible set (MOAS) [4] of a
terminal control law. The work in [15] is motivated by
scenarios where computation of the MOAS is intractable
(e.g., high dimensional systems). In contrast, our work
is primarily motivated by the computational simplicity
of MPC without terminal constraints and we impose no
additional constraints on the predicted terminal state.

The paper is organized as follows. Section 2 describes
the problem setting. Section 3 establishes properties of
MPC without terminal constraints. Section 4 derives
properties of the OCP that are used to develop the SG in
Section 5. Section 6 describes modifications that can be

made to the SG. A numerical example is reported in Sec-
tion 7. Finally, Section 8 contains concluding remarks.

Notation: Let N represent the natural numbers including
0. Given a,b > 0, let Ny ;) = NN [a,b]. Given z €
R™ and W € R™*™ with W > 0, the W-norm of x is

lz|lw = VaTWaz. Let || - || represent the 2-norm when
no subscript is specified. Given p € R and X C R", let
pX = {pzx |z € X}. Let (2,y) = [T yT]T. The normal
cone mapping for a convex set Z is defined as

T () — .
NZ(Z):{éyly (w—2)<0Vwe Z}, ifzeZ,

otherwise.

The classes of K and KL functions follow the usual defi-
nitions (e.g., see [5]). For a sequence {vy}72 ,, the nota-
tion v, = v is used as shorthand for v, = v for all £ € N.

2 Problem Setting

We consider a class of linear time-invariant systems given
by

Thi1 = Az + Buy, (la)
2 = Cxp + Duy, (1b)

where x; € R™ is the state, uy, € R™ is the control, and
2z € R™= is the tracking output. The control objective
is to drive the tracking output zj to a desired setpoint
r € R™= subject to pointwise-in-time constraints

xr € X,up €U, Vk €N, (2)
where X C R™ and U4 C R™ are constraint sets.

Assumption 1 The pair (A, B) is stabilizable and the
sets X and U are closed, convex, and contain the origin
in their interior.

Equilibria of (1) satisfy Z[zT 4T 27T = 0, where

A-IB 0
C D-I

7 =

Moreover, these equilibria can be parameterized by a
reference v € R™ according to

x

(3)

S
<

G
Uy | = |G
G

where GT = [GT GT GT]7 is a basis for the nullspace
of Z and Assumption 1 ensures that Null(Z) # {0} [11].
The following assumption excludes ill-posed reference
tracking problems.



Assumption 2 The matriz G is full rank and v} € V
such that G v = r, where

V={veR™ |Gy ent X, Gyv €IntU}.
is the set of strictly steady-state feasible references.
Remark 1 If n, > n,, then there may exist multiple
v satisfying G,v = r. In this case, let v denote any

particular choice (e.g., the minimum norm solution).

Consider the following OCP, which defines a reference
tracking MPC policy:

N—1
min Jy(z,v,0) = Aw(Zy,v) + (s, Uy, v 4a,
i (o, 0:0) = i)+ 3 b(aw ) (o)
st. Tp=uw, (4b)

ZTip1 = AZ; + By,
i1 €X, U €U,

i € Nyg ny—1], (4c)
i € Npg,ny—1], (4d)

where N € Nis the prediction horizon, A\ > 1 is a weight-
ing parameter, and

U, u,v) =||z — Govl[[g + |lu — Guvl [,

w(a,v) =l - Gyol?,

where @), R, and P are weighting matrices. The pre-
dicted state and control sequences are denoted as X =
(Zo,...,Zn) and U = (dg,...,Un—1). The state z and
reference v are parameters in this OCP. We use the no-
tation Pa(x,v) to refer to problem (4) specified with
parameters (x,v) and fixed constants N € N and A > 1.

Assumption 3 The cost matrices in (4) satisfy Q =
QT = 0 and R = RT = 0. The terminal cost matrizc
P = PT = 0 is chosen as

P=(A-BK)'P(A-BK)+n(Q+ KT"RK), (5)

where n > 1 is a constant and K is a gain matrixz chosen
so that (A — BK) is Schur stable.

Consider the closed-loop system under the following
MPC feedback strategy:

Tp41 = Az + Bu* (zk, vi), (6a)
u(zg, vp) = 20" (Tg, Vi), (6b)

where {v;}72, is a sequence of reference commands,
" (z,v) is the optimal solution to Py (z,v), and E =
[I, O ... 0] is a matrix that selects the first control in-
put. The SG developed in this paper chooses vy, at each
time step so that the target equilibrium G, v} is asymp-
totically stable with a region of attraction (ROA)! that

! Throughout the paper, the terminology “region of attrac-
tion” will be used to refer to any invariant subset of the
largest region of attraction of (6).

is significantly larger than the ROA that results from
selecting vy, = v}

3 Properties of Terminal Unconstrained MPC

In this section, we establish nominal stability of the
closed-loop system (6) for a static reference vy = v. To
begin, we define the following set-valued map:

Qv,0) = {2 €R" [w(zv) <a},  (7)
which is used to define an implicit terminal set.

Definition 2 (Implicit terminal set) A set S is called
an implicit terminal set forv € V if: (1) S = Q(v, a) for
somea >0, (2)S C X, and (3) inf, ey {w(Azx+ Bu,v) —
w(x,v) +l(x,u,v)} <0 forallz e S.

The following proposition provides a sufficient condition
for Q(v,a) to be an implicit terminal set. The result
follows directly from Assumption 3.

Proposition 1 Let the stated assumptions hold, v € V,
and a > 0. Then, Q(v, ) is an implicit terminal set if

Q,a) C{xr e X | [Gyv — K(z — Gyu)] €U}, (8)
where K is defined in Assumption 3.

The results in [10] can then be used to establishes a ROA
for the closed-loop system in (6) for vy = v.

Theorem 3 Let the stated assumptions hold and let v €
V and o > 0 be such that Q(v, &) is an implicit terminal
set. Consider the closed-loop system in (6) for a static ref-
erence sequence v, = v. Defined = o/(|Q-2P2Q~2|2)
andlet N > 1 and A > 1. Then, T, = G,v is an asymp-
totically stable equilibrium with an ROA given by

'\ (v) = {zr e R"| Vi (z,v) < (z,u*(z,v),v)
+ (N = 1)d+ Mo},

where V3 (x,v) is the optimal cost of Py (x,v). Moreover,
ifv € Ty (v) and u* = u*(z,v), then &y € Qv,a) and

VR (Az + Bu*,v) < VR (z,v) — l(z,u*,v).  (9)
PROOF. The proof follows identically to that of [10,
Theorem 1] since d < £(z,u,v) for all z ¢ Q(«,v) and
u € R™ . Hence, Assumptions 1-2 of [10] are satisfied.
One can easily show that I'y(v) D Q(v, @) and that

TN () :={z € R" | VJ(x,v) < Nd + \a} C Ty (v),

is also an ROA for the closed-loop system [10].
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Fig. 1. The dependence of the condition number of the un-
compressed Hessian H = blkdiag(R, H) and the compressed
Hessian H = R+ BTHB (see Appendix A) on the terminal
weighting A for the inverted pendulum example in Section 7.

Remark 4 For all initial states xg in the N-step back-
ward reachable set to Int Q(v,a), the terminal weight-
ing A > 1 can be selected to be sufficiently large so that
xo € YN (v) [10, Theorem 3].

Remark 5 The volume of Y (v) is also influenced by
the choice of K and P in Assumption 3. Hence, it is
possible to increase the volume of T, (v) by tuning K.

In premise, the closed-loop system (6) can track any tar-
get auxiliary reference v} € V by fixing vy, = v}, spec-
ifying a such that Q(v}, «) is an implicit terminal set,
and selecting (N, \) such that zo € T3 (v}). However,
if 2o is far from G,v, then zg € YN (v}) is only sat-
isfied for large values of N and A. Hence, computing
0*(zk, v¥) would require solving a high-dimensional and
poorly conditioned quadratic program (see Figure 1).
This may be computationally prohibitive — especially
when using first-order optimization methods.

To address these issues, the SG developed in Section 5
selects the reference vy at each time step so that the
closed-loop system (6) can be asymptotically stabilized
around G,v} without requiring that xo € T ().

4 Properties of the Value Function

This section derives properties of the value function that
are used to develop the stability governor. To begin, note
that P3 (7, v) can be written in condensed form as

min  Jy(z,v,0) =0’ Ha+ 20" FO +0TWe  (10)

st. neZ()={aeu" | (Az+ Bi) e XV},
where 6 = (z,v) and the matrices in (10) are defined in
Appendix A. The set of feasible states F C X and the

value function V3 : F x V — [0, 00) of (10) are defined
as

F=A{z| Z(x) # 0},

V3(z,v) = min Jy(z,v,1).
N (z,v) Jn N(z,v,1)

The square-root of the value function, ¥(z,v) :=

V3 (z,v), is vital for the analysis and development

of the stability governor. In particular, we will demon-
strate that 1 is Lipschitz continuous with respect to v
for all z € F, ie.

[¢(,0") = ¢(,0)] < [l = vllw,, V2 € F, Vo',v €V,

where W, > 0 is defined in Appendix A. Note that we

are only interested in perturbations of ¢ with respect to

perturbations in v for a fixed z. Moreover, the constraint

set mapping Z depends only on x and not v. Hence, the

desired bound can be derived by analyzing the solutions
o0 (10) for a fixed z € F.

Note that Z(z) is convex and non-empty for all z € F
by Assumptions 1 and 3. Thus, the following variational
inequality is necessary and sufficient for optimality of
(10) [2, Chapter 2.7]:

Hu+ Fyv + Fox 4+ Nz () 0.

Hence, the solution mapping of this variational inequal-
ity at a fixed z € F can be written as

Sgc(v) ZAgl(—Fv’U—Fxx), A, :H+N2(w)

Note that S, is a function for all z € F by strong convex-
ity of (10) (Assumptions 1 and 3) and that V3 (z,v) =
Jn(x,v, S, (v)). Moreover, the operator A, : RVN" =
RN™ has the following properties.

Proposition 2 Fiz x € F and let y,y' € Z(x), u €
Az (y), v € Ay(y'). The map A, satisfies:

(1) (W —uy' —y) > Iy —yl%;
(2) (A" — A u, o —w) > (A W — A 3
(3) A — A ullg < ||/ —ul[g-1.

The proof of Proposition 2 is omitted for brevity as it
follows analogously to that of [8, Proposition 1]. The
following corollary arises from the second statement in
Proposition 2 by selecting y = S, (v) and 3’ = S, (v').
Corollary 6 Fizxz € F and letv',v €V, then

(Sz(v") = Sz(v), Fy (v = v)) < ~[|S2(v") = Su(v) I3,

and ||Sz(v") = Sz (v)|lg < ||Fp(v) — v)||g-1, where F,, €
RN™uXn s defined in Appendiz A.

Corollary 6 can then be used to derive the desired Lips-
chitz condition on .

Lemma 7 Fizxz € F and letv',v € V, then
Y (z, ") = (z,0)] < V' = vllw,,

where Wy, > 0 is defined in Appendiz A.



PROOF. Note that J(z,v,1) = ||(z,v,1)]|%, where

Wx WZU
, F=[F, F], W= :
Wk, w,

w FT
F H

b =

Moreover, VR (x,v) = ||(z,v,S,(v))||% and ¢(z,v) =
[[(z,v,S%(v))l|e. Thus,

v, )=, )]

=z, v, Se (W))llo = lI(x, v, So(v)) o]
<100, = v, S (v) = Sz ()3,

where the last line follows from the reverse triangle in-
equality. By definition of @,

I, v") = (@, 0)|* < (18 (v') = Sa(v) |
+2(82(v") = Sa(v), Fo (v =) + [[v" = vl ,

and Corollary 6 can be used to write
(. 0") = (@, 0)* < [V —vlify, = [S:(0") = Su(v) 13,

where the desired result follows by dropping the negative
term and taking the square-root.

5 Stability Governor

In this section, we describe the reference selection pol-
icy that defines the SG. To begin, the following lemma
establishes a bound for V3 (zg41, k).

Lemma 8 Consider the closed-loop system in (6). Let
vg € V and o > 0 be such that Q(vg, a) is an implicit
terminal set, define d = o/(||Q " 2P2Q~2|2?), and let
N > 1, A > 1, and xp € TN (v). Define 0" (xp, vx) =:
(a;lo, ...,a;lel) and

ﬁ.k+1 = (dzll’ ...71/)/le71, Gu'Uk — K(i}k\”k — szk))-

Then, VR (21, vk) < IN(Tht1, Uk, Weg1) < VR (g, v8)—
(xk, ug, v ). Moreover, Ug41 € Z(xp41)-

PROOF. The result follows from the fact that :%’]"Vl s €

Q(vg, @) [10] and by using standard arguments in MPC
stability analysis (e.g., see [16, Chapter 2.4]).

The following lemma forms the basis of the SG.

Lemma 9 Let vi, o, d, N, and X\ be defined as in
Lemma 8. If x1, € T\ (vk,), k41 4s given by (6), and

[ok41 = vkllw, < VNd+ Ao
— VIN(@kt1, Uk, Wpegr), (11)

then V3 (Try1,ve+1) < Nd + Aa.

PROOF. By Lemma 7:

Y(Tpt1, Vk+1) </ VR (@ry1,v) + lvksr — villw, -

Hence, V) (wkt1,vk+1) < Nd + A is implied by the
upper-bound of [|vk+1 — vk|lw, in (11) and the upper-
bound of V](> (Tk+1,vk) in Lemma 8.

The following parameterization of the reference com-
mand is adopted to reduce the computational cost of
implementing the SG:

Vkt1 = Vg + ki1 (VF — vk), (12)

where vg € V is a given initialization, v € V is the tar-
get auxiliary reference, and ki € [0,1] is a time-varying
parameter that dictates the rate at which vy converges
to vyr. Note that ki = 1 implies vy, = v and that kK =0
implies vy = vi_1.

Lemma 9 states that the reference command can be up-
dated so that x4 € T?\V('Uk+1) if o, € I‘J)‘V(vk) and
Q(vg, ) is an implicit terminal set. However, Q(vj41, @)
must also be an implicit terminal set to apply this re-
sult recursively. The following proposition, the proof of
which is in Appendix B, provides a constructive method
for computing a > 0 such that Q(vg, @) is an implicit
terminal set for all vy, parameterized by (12).

Proposition 3 Let v} € V, vg € V, and o > 0 satisfy

Qvg, ) C {x € X | [Guvo — K(x — Gvo)] € U},
Qi a) C{z € X | [Guuy — K(z — Gu))] € U},

where ) is defined in (7). Then, Q(v,«) is an implicit
terminal set for allv € {vo+k(vi—vg) | k € [0,1]} C V.

The SG is defined by the following reference selection
policy, which enforces (11) by design:

Kk+1 = min{fgy1, 1}, (13)

Nd+Aa—+/JIn(x Uk, .
R B v VIN(Tr41,08 xc+1)7 if vy # 7,
Rk+1 =

lvg—villw,
00 if v, = .

So, consider the system

Tp+1 = Azg + Bu* (xg, vg),
Vg1 = Vg + Kpg1 (V) — vp),

(14a)
(14b)

where kg1 is defined by (13). The following theorem,
which is the primary result of this paper, details the
closed-loop properties of (14).

Theorem 10 Let vi € V, vop € V, and a > 0 sat-
isfy the conditions in Proposition 3. Define d =



a/(|Q 2P2Q %)|2), N > 1, and X\ > 1. If 2y €
'y (vo), then the closed-loop system in (14) has the
following properties:

e Recursive feasibility, i.e., the optimization problem
P (z, vi) is feasible and xy, € TN (vy) for all k € N.

o Asymptotic stability, i.e., limg_s o0 (g, vg) = (Grvk,vF)
and (G,vk,v¥) is a Lyapunov stable equilibrium.

e Finite-time convergence of the reference, i.e., 3k’ € N
such that vy, = v for allk > k.

PROOF. To begin, we prove recursive feasibility. Note
that V{(zr,vr) < oo directly implies feasibility of
P (2, vi). So, we prove the recursive feasibility prop-
erty by proving that @, € T'x(vg) for all k& € N. Note
that Q(vg41, @) is an implicit terminal set for all k£ > 0
by Proposition 3 and that zy € T\ (vg) by assumption.
Fix k € N and assume the non-trivial case of vy # v}.
If Kkpr = 0, then vpy1 = v, and a1 € Tf‘v(vkﬂ)
by (9) If Kk+1 > 0, then Tpr1 € T?‘V(’U}Hl) by
Lemma 9. If instead vy = v}, then v, = v = v and
Trr1 € Y (vks1) by (9). Thus, zx € Ty (vi) C T (vk)
for all kK > 1 by induction.

Next, we prove that Vk € N, x; > K for a constant
E > 0. Recall that Jy (g1, vk, Qg1) < VJ(\,(xk,vk) —
(g, ug, vr) by Lemma 8. Hence, Jy(Zg41, Vg, Ugt1) <
(N — 1)d + Aa since xj, € TN (vg), and so

VNd + Aa — /(N = 1)d + Aa

vy —vollw,

Rgy1 = K=

7

where Rj1 is defined in (13) and we have used the fact
that ||v¥ — vk|lw, is monotonically decreasing by defi-
nition of v. Thus, asymptotic convergence of vy to v}
follows from ||vF — vg|| < (1 — R)||vf — vg—1]|.

To prove convergence of x, we use [17, Lemma 5| to
state that there exists p € KL and ¢ € K such that

ok — Gavellg < p(Jlz0 — Gavoll, k)
+<(sup Avj|)7 (15)
j>0

and lim supy ||z — Goukllq < ¢ (lim supy, || Avg||). Thus,
limg oo ||k — Gzuk|| = 0 since vy converges, and so
limk_,oo Tk = C;a;’U;k

Next, we show that (G,v},v}) is Lyapunov stable. Let
d > 0and ||(zg, vo) — (Gzvf,v))|| < 6. Then ||vg — v <

[lvg —vk|| < 6 for all k € N by definition of vj. Note that

[0 — Gavoll < [lzo = Gavy|| + [|Gavy — Gavol
<O+ [[Gallllvr = wvoll < (L +[[Gl))d,

and [|[Avg|| = ||Jox — vg—1|| = Krl|vE — vg—1|| < 6 for all
k € N. Thus, by the triangle inequality:

|lzr — Govrllg < ok — Gavkllo + |G (v — )@

for some constants pi,ps > 0, where the second in-
equality follows by (15). Thus, it is possible to bound
lxx — Guu¥|| and ||ug, — v arbitrarily small given 6 suf-
ficiently small; hence (G, v, v}) is Lyapunov stable.
Last, we demonstrate finite-time convergence of the ref-
erence. Note that Jas € K such that VQ{(zg,vi) <
as(|lzx — Gyokl]). Thus, limg o VR (2k,v5) = 0. So,
Ve > 0, 3k € N such that VQ(zg,vr) < ¢ and |Jvf —
vgllw, < cfor all k > k’. Consequently,

VNd+ o — /e
c

Rk+1 = , VE> K.

Thus, one can define ¢ > 0 sufficiently small and define
k' € N accordingly such that 5,1 > 1 for all k > &'
Therefore, ki1 = 1 and v = v} for all k > k.

Remark 11 The requirement zo € Y (vo) is much less
restrictive than the condition xo € YN (v}) since vg € V
1$ a free parameter. In other words, the set of initial states
that can be stabilized is

Ry ={recX|FvecVstreclyw)}= U '\ (v).
veV

The SG-based MPC procedure is summarized as follows.

Offtine:

(1) Choose @ > 0 and R > 0.
) Choose K such that (A — BK) is Schur stable and
compute P using (5) for some n > 1.
(3) Choose vy so that G,vg is close to zy (e.g., vg =
Glxo) and define v} such that r = G v,

) Compute the parameter o > 0 using Proposition 3
and define d = o/(|Q"2P2Q2)|?).
(5) Optional: Repeat steps 2-4 by tuning K so that the

volumes of Q(«,vg) and Q(a,v}) are maximized.

(6) Define N and A such that zg € I'\(vo).

Online (at time step k + 1):

(1) Compute K41 using (13).
(2) Update the reference vy according to (12).
(3) Solve P (Tr+1, ukt1) and let ug 1 = u* (Tg41, Vk41)-

If the target setpoint r is changed during online oper-
ation, then o > 0 must be recomputed using Proposi-
tion 3. Alternatively, this can be avoided by using a value
of a > 0 that ensures Q(v, o) is an implicit terminal set
for all v in a subset of V. The following proposition, the
proof of which is in Appendix B, provides a method for
computing such an a.



Proposition 4 Define
Ve={veR™ |G e (l—e)X, Guv e (1—e,)U},

where €, € (0,1) and €, € (0,1) are user-defined param-
eters. Let a > 0 satisfy

{z e R" | ||z]|% < a} C e, X. (16)
In addition, if G, = 0, let a satisfy
{zeR"||z|p <a} Cc{zeR" |- KzeclU}, (17)
whereas if G, # 0, let « satisfy
{zeR"||z|» <a} C{zr eR™ |- Kz € e,U}. (18)
Then, Q(v, &) is an implicit terminal set for all v € V.

Note that the value of o determined using Proposition 4
will generally be smaller than that of Proposition 3.

6 Modifications to the SG
6.1 Performance-based Modifications

In this subsection, we discuss modifications that can be
made to the SG to improve closed-loop performance at
the expense of increasing the computational cost.

(1) Improving the bound on VQ(xk41,vk): The SG re-
lies on the shifted-and-padded cost Jy(2gt1, Vg, Ugt1)
to upper bound V3 (141, vx). Hence, it is possible to im-
prove the performance of the SG by using an improved
upper-bound Vk+1 satisfying VJG(ka, vg) < Vk+1 <
JIN(Tk+1, 0k, Wrt1)- That is, one could instead compute

VNd+ Ao — V,EH

vy — vk lw,

"%k:-‘rl = ’ if Uk 7& U:v

in (13). To obtain Vi1, one could (for example) subop-
timally solve 73])\‘, (Tk+1,vk) using Uiy as a warm-start.

(2) Online recomputation of a: The SG uses Proposi-
tion 3 to compute a constant o > 0 that ensures Q(vk, «)
is an implicit terminal set for all £ € N. However, one
could instead recompute o« > 0 during operation. For ex-
ample, at each time step k, one could use Proposition 3
to compute a value ay that ensures Q(v, ay) is an im-
plicit terminal set for all v € {vy+£ (v, —vi) | & € [0,1]},
where v}, = v + K’ (v} — vg) for some k' € (0,1]. The
reference update under such a scheme would then be
limited to fx4+1 € [0, x]. This modification could be ad-
vantageous if @ must be very small to enforce that vg
and/or v} satisfy the conditions in Proposition 3.

(8) Direct optimization over V.: The SG relies on the
scalar reference parameterization in (12). One could in-
stead choose vy by solving

min ) 2 19
Jmin o v 2 (19)

s.t. ||Uk+1 — Uk”Wv < VNd+ \a — Vk+1

for some L = 0 and Vk+1 > Vi (2k+1,vk). This for-
mulation, referred to as the quadratically constrained
SG (QC-SG), removes the restriction that vy € {vo +
k(v —vg) | k € [0,1]}. The drawback being that (19) is
a quadratically constrained quadratic program. Hence,
the QC-SG is more computationally expensive to im-
plement than the SG if n, > 1. Moreover, the QC-SG
optimizes v41 over the closed set V. defined in Propo-
sition 4. Therefore, it is necessary use a value of @ > 0
computed using Proposition 4 if n, > 1. Note that the
SG and QC-SG are equivalent in the case of n, = 1.

(4) Offtine sampling of the MPC policy: At each time
step, the SG ensures that the Lyapunov descent con-
dition in (9) holds by enforcing the sufficient condi-
tion V) (wx,vx) < Nd + Aa. Hence, the performance of
the SG can be improved if one can determine (e.g., us-
ing offline sampling) a value V* > Nd + Aa such that
V3 (z,v) < V* implies that the descent condition in (9)
holds. The SG scheme can then be altered to enforce
that V (zx,vg) < V* for all k > 0 by selecting

VV* = /IN(Ths1, Ok, Tieg1)

vy — vkllw,

’%k—i-l = ,if’Uk 75’0:

Remark 12 The SG can be interpreted as a method of
obtaining feasible (suboptimal) solutions to

min of vl (20)
stz e R(v),

where R(v) represents the largest ROA of (6) when
vy = v. In general, R(v) is non-convex and unknown,
so solving (20) is not practically feasible. Instead, the
SG enforces that 1, € T (v) C R(vi) through the use
of tractable analytical bounds, while the aforementioned
modifications act to improve how well the SG approxi-
mates the solution of (20).

6.2 Robustness-based Modifications

In this subsection, we briefly address modifications that
can be made to the SG to ensure that the closed-loop
system is inherently robust. Suppose that the plant in
(la) isinstead z11 = Az + Bug+wyg. Under the stated
assumptions, Vjé is uniformly continuous [9, Proposition
1] and hence 3¢ € K such that Vz,z + Az € F:

VR (2 + Az,v) = VR (@, 0)] < (| Ax])).



Let Q(vg, @) be an implicit terminal set, x;, € TN (vk),
and ug = u*(xg, vk). Then,

VK}(xk+1, Uk) < V]G(A‘rk + Buy, vk) + g(HwkH)
< INn(Axy, + Bug, vk, Tpy1) + E(|Jwie])-

Suppose that ||wg|| < 71 (w) for some w € (0, d). Then,
V3 (@pt1,v6) < (N —1)d + da+w < Nd + Aa by
Lemma 8 and é(xk,uk,vk) > d > &(||lwk)-

Thus, if £(Jlwg|) < @ < d for all k € N, then the refer-
ence vg.1 can be selected to enforce zx 11 € Ya (vit1)
by satisfying

k41 = vkllw, £ VNd + A

~ VIN(Ths1, Ok, Tpr1) + 0,

instead of the bound in (11).

In summary, inherent robustness can be obtained by re-
ducing the size of the reference steps. Hence, a simple
heuristic method for promoting inherent robustness is
to increment the reference command according to

Vg1 = Vg + Brig1(v) — ),
where 8 € (0,1) is a fixed scale factor.

We also remark that the undisturbed closed-loop tra-
jectories produced by SG-MPC will often satisfy xj €
Int Y (vg) for all k > 0 (e.g., see Figures 3-4). This is
caused by the use of analytical bounds in the develop-
ment of the SG. Hence, there is some inherent robustness
that is unintentionally introduced due to conservatism
in the bounds used to compute the reference step.

7 Example

A linear model of an inverted pendulum on a cart is used
for demonstration. The system states are x = (s, $, ¢, )
where s is the position of the cart and ¢ is the angle
of the pendulum relative to the upright position. The
continuous-time equations of motion are

4 .
gmz2¢> —ml§ = mglo
(M +m)s —ml¢p = —bs + F,

where m = 0.1 kg is the mass of the pendulum, / =1 m
is the length of the pendulum, g = 9.81 m/s? is the
gravitational constant, M = 1 kg is the mass of the cart,
b= 0.1 Ns/m is the damping coefficient of the cart, and
u = F is the input force. The system is discretized using
a zero-order hold with a sampling period of T' = 0.02 s.

—o5p e ——MPC, N = 141 ——SG, N =434
e ——MPC, N =44

3
Time [s]

Fig. 2. Two ungoverned MPC implementations (labelled
“MPC”) compared to an SG-MPC implementation (labelled
“SG”). Each implementation uses a terminal weight of
A = 1000. The dotted line in the top plot shows the refer-
ence command trajectory produced by the SG.

The tracking output is the cart position (i.e. C' = [100 0]
and D = 0) and the control task is to steer the system
from xzoy = (0,0,0,0) to a setpoint of r = 1. The system
constraints are F' € [—1,1] and ¢ € [—57/180, 57/180].
Weight matrices of @) = diag(10,1,10,1) and R = 0.1
are used in all cases. In each SG-MPC implementation,
the initial reference is chosen as vg = 0 unless other-
wise specified. This choice automatically ensures that
To € Tj\v(vo) forall N > 1 and A > 1 since zg = G, o,
hence V3 (29, v0) = 0. Thus, selection of N and \ is solely
a trade-off between closed-loop performance and com-
putational cost when the SG is adopted in this example.

The terminal matrix P is obtained by solving (5) with
n = 1 and K given by the LQR gain corresponding to
Qx = diag(5,0.01,120,0.01) and Rx = 0.5. Proposi-
tion 3 yields a value of o = 0.875 for this choice of vy, P
and K. The matrices Qg and Rg were tuned to increase
the volume of Q(v}, o) (Remark 5).

Figure 2 compares two ungoverned MPC implementa-
tions (i.e., executing the feedback law ux = u*(zy,1))
with N € {44,141}, and an SG implementation with
N = 43. All three implementations use a terminal weight
of A = 1000. Note that N = 141 is the minimum hori-
zon length necessary to enforce zo € T1%(1), whereas
N = 44 is the minimum horizon length for which con-
vergence and recursive feasibility are observed in simu-
lation. Hence, Figure 2 demonstrates that the SG-MPC
strategy results in recursively feasible and asymptoti-
cally stable trajectories in a case where the correspond-
ing ungoverned MPC controller would lead to divergent
trajectories. Moreover, the closed-loop performance of
the SG-MPC strategy does not dramatically differ from
the ungoverned MPC policies. For reference, the cumu-
lative stage cost ), £(xy, ug, 1) for each implementation
is 773.9 (MPC, N = 141), 814.5 (MPC, N = 44), and
871.7 (SG-MPC). However, the SG-MPC implementa-
tion guarantees stability with much smaller N.
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Fig. 3. Closed-loop trajectories resulting from SG-MPC im-
plementations with different values of N and A. The dotted
lines in the top plots correspond to the reference command
trajectories of each SG implementation.

Figure 3 compares the closed-loop trajectories that
arise from SG-MPC implementations with: (a) N = 43
and A € {25,50,500}, and (b) N € {40,55,100}
and A = 500. As expected, the closed-loop perfor-
mance and settling time of the reference command
improves as N or A increase. We define a normal-

~ A
ized value function V{(z,v) ‘;@&f;& such that

Vi(z,v) <1 <= V{(z,v) < Nd+ Aa. One can see
that V (zx, vi) peaks at values between 0.44 and 0.84
due to the fact that the SG relies on the upper-bounds in

Lemma 7 and 8. Moreover, the peak of V3 (x, vg) tends
to decrease as N and \ are increased — presumably due
to these bounds becoming less tight.

Thus, it is natural to wonder how the closed-loop per-
formance of the proposed SG differs from an idealized
implementation. Hence, we compare: (1) an idealized
SG that selects vy such that V3 (zg,vr) = Nd + Ao if
ve # v, (2) the proposed SG with vy selected so that
V3 (20,v0) = Nd + Aa, and (3) the proposed SG with
vg = 0. Figure 4 compares the closed-loop performance
of these three strategies in the case of N = 100 and
A = 500. The first strategy cannot be implemented in
practice, but is shown for comparison as it represents the
hypothetical best-case performance of the SG. The sec-
ond strategy is used to demonstrate the effect of the ref-
erence initialization vy on the closed-loop performance.

As expected, the reference sequence produced by the
ideal SG converges the quickest since it maintains
V3 (zk,vr) = 1 whenever vy, # v}. Similarly, the pro-
posed SG exhibits its best performance when provided
with the ideal initial reference, since this maintains the
value of V3 (z,vy) closer to 1 in the transient phase.
Despite these differences, however, the closed-loop per-

T L Ideal SG =
S5/ ——SG, v =} @o,s
® of ——8G, =0 || &5
0 2 4 6 % 2 4 6
Time [s] Time [s]

Fig. 4. A comparison of the ideal SG in (20), the SG with an
ideal initial reference, and the SG with vg = 0. The dotted
lines in the left plot correspond to the reference command
trajectories of each SG implementation.
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Fig. 5. Three SG-MPC implementations (A € {1,5,25})
based on numerically sampled ROAs compared to an
SG-MPC implementation (A = 25) based on an analytical
ROA. A horizon length of N = 43 is used in each case. The
accumulated stage cost is provided as a performance metric.

formance of each method is comparable. In particular,
the cumulative stage cost for each method is 776.2
(ideal), 776.5 (ideal vp), and 794.3 (vo = 0). Hence, the
proposed SG obtains comparable performance to its
best-case performance even with a conservative initial
reference selection of vy = 0. Moreover, this gap in per-
formance can be reduced through a better choice of the
initial reference vy. Last, we remark that the peak in
V3 (zk, vr) is particularly low when N = 100, A = 500,
and vg = 0 (see Figure 3). Hence, the small difference
in performance between the three SG implementations
in Figure 4 can be expected to be even smaller for cases
with smaller N and/or A.

Finally, we note that the performance of the SG-MPC
strategy is strongly tied to the value of the terminal
weight A\. However, Figure 5 shows that the high perfor-
mance can be obtained with small terminal weights A if
offline sampling 2 is used to obtain an expanded estimate
of the ROA as discussed in Section 6.1. In particular,
the SG-MPC based on a sampled ROA with A = 5 and
A = 25 outperforms the analytical SG-MPC implemen-
tation with A = 25. In fact, the sample-based implemen-
tation with A = 25 slightly outperforms the analytical
implementation with A = 1000 in Figure 2 (accumulated
stage costs of 866.5 and 871.7 respectively). Hence, large
terminal weightings can be avoided if offline sampling of
the MPC policy can be performed.

2 The MPC policy was sampled in a 25% point uniform grid
of state variables in [0, 2] x [—1.2,1.2] x [-57 /180, 57/180] x
[—0.2,0.2]. The size of the sample-based ROA was defined
to be 80% of the smallest value of V{(z,0) for which the
descent condition in (9) did not hold.



8 Conclusions

This paper developed a supervisory scheme, called the
stability governor, that expands the closed-loop region
of attraction of a system controlled by MPC without ter-
minal constraints. Theoretical guarantees were derived
for the recursive feasibility of the MPC law, asymptotic
stability of the target equilibrium, and finite-time con-
vergence of the modified reference command. Moreover,
it was shown that closed-loop stability under the su-
pervised MPC strategy can be achieved using a much
smaller prediction horizon length and terminal weight-
ing parameter than an unsupervised MPC implementa-
tion; thereby reducing the computational cost of imple-
menting the MPC law. Future work will investigate the
extension of the stability governor to time-distributed
MPC [7,8] and nonlinear MPC.
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A Condensed MPC Matrices

Let ® deno’Ee the Kronecker Qroduct and define QI =
IN® Gy, G, = InN®Gy, R =In®R, and H =
blkdiag(In—1 ® Q, AP), and

_ 0 .
d B 0
. A .
A= ., B=| AB
AN—I .
AN-1B AB B

Then, the matrices in (10) are
H=R+B"HB, F, = B"HA, F, = -B"HG, - RG,

F= [Fr Fv]a Wm = ATI:IA: er = *ATIA{G’.T,



We Wiy
W, = GT(\P+NQ)G,+NGTRG,, W = .
wI w,

B Proof of Propositions

PROOF. (Proposition 3) Assume the conditions in the
statement of the proposition hold. The proof follows by
demonstrating that for allv € {vo+r(v:—wvo)|k € [0,1]},

Q,a) C{x e X | [Gyv — K(z — Gyv)] € U}.

Let x € [0,1] and v = vg + K(v) — vp). First, we prove
that Q(v,a) C X. Let # € Q(v,a) and define 7; =
x—Gy(v—1wg), Tz =2 — Gz(v—v}). Then,

121 = Gavollp = |72 — Gov[[p = |z — Govl|b < o,

ie, T1 € Qug,a) C X and Ty € Q(vf,a) C X. More-
over,

z=1a+ Gy(vo + k(v —vg) — V)
=kl —Gy(v—v2))+ (1 —k)(x — Gz(v—1p))
= I{i‘g + (1 — fi)fl.

Thus, x is a convex combination of points T1,Z2 € X,
sox € X and Q(v, o) C X.

Next, we prove Q(v, ) C {z | G,v — K(x — Gyv) € U}.
Since 71 € Q(vp, @) and Ty € Q(v}, ), then G = G v9—
K(#1—Gpvp) €U and 1 = Gyt — K (i2 — Gvi¥) € U.
Define u = G,v — K(x — G4v). It follows that

u = Gy(vo + k(v — v0))
— K [kZ2 + (1 — K)T1 — G4 (vo + £(v) — vg))]
= Iiﬂg + (1 — I<L)’l~l,1.

and so u € U by convexity of U. Thus, z € {z | Gyv —
K(z — Gyv) € U} and so Qv,a) C {z | Guv — K(z —
Gyv) e U}.

PROOF. (Proposition 4) Assume the conditions in the
statement of the proposition hold. The proof follows by
showing that for all v € V,

Qv,a) C{x € X | [Gyv — K(x — G,v)] € U},

which implies the result by Proposition 1. To begin,
we show that (16) implies that Q(v,a) C X for all
v € V.. First, note that Vv € V,, (x — G,v) € e, X im-
plies that x € X. To see this, note that (z — G,v) €
€zX — dr; € X such that x — G v = e, x1. More-
over, Guv € (1 — €;)X = 3Jxo € X such that
G,v = (1 — €;)xg. Therefore, © = €21 + (1 — €;)xa,
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where ¢, € (0,1),z1,20 € X, and so x € X by con-
vexity. Thus, z € Q(v,a) = |z — G| < a =
(x—Gypv) € ,X = x € X, where the second implica-
tion follows from (16). Thus, Q(v, ) C X for allv € V.,
and we note that Int(e, X’) > 0 by Assumption 1.

Next, we show that (17) (if G, = 0) and (18) (if G,, # 0)
implies that Q(v,a) C {z | [Gyv — K(x — Gpv)] € U}
for all v € V.. First, consider the case of G,, = 0. The
conclusion that Q(v,a) C {z | [-K(z — Gyv)] € U}
follows directly from (17). Now consider the case of G, #
0. Note that Vv € V,, [-K(x — G,v)] € €,U implies that
[Guv — K(z — Gyv)] € U. This follows from identical
convexity arguments used to prove the previous result.
Thus, z € Qv,a) = [z — G| <a = —K(z —
Gyv) € e, = [Guv — K(x — G,v)] € U, where the
second implication follows from (18). Thus, Q(v, ) C
{z | [Guv — K(x — Gv)] € U} for all v € V., and we
note that Int(e, ) > 0 by Assumption 1.
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