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Sliding friction of a pillar array interface: part II,
contact mechanics of single pillar pairs†

Xuemei Xiao,‡a Jasreen Kaur,‡b Bangguo Zhu,a Anand Jagota *bc and

Chung-Yuen Hui *ad

Insects and small animals often utilize structured surfaces to create friction during their movements.

These surfaces typically consist of pillar-like fibrils that interact with a counter surface. Understanding

the mechanical interaction between such surfaces is crucial for designing structured surfaces for

engineering applications. In the first part of our study, we examined friction between

poly(dimethylsiloxane) (PDMS) samples with surfaces patterned with pillar-arrays. We observed that

sliding between these surfaces occurs through the interfacial glide of dislocation structures. The

frictional force that resists this dislocation glide is a result of periodic single pillar-pillar contact and

sliding. Hence, comprehending the intricate interaction between individual pillar contacts is a

fundamental prerequisite for accurately modeling the friction behavior of the pillar array. In this second

part of the study, we thoroughly investigated the contact interaction between two pillars located on

opposite sides of an interface, with different lateral and vertical offsets. We conducted experiments

using PDMS pillars to measure both the reaction shear and normal forces. Contact interaction between

pillars was then studied using finite element (FE) simulations with the Coulomb friction model, which

yielded results that aligned well with the experimental data. Our result offers a fundamental solution for

comprehending how fibrillar surfaces contact and interact during sliding, which has broad applications in

both natural and artificial surfaces.

1. Introduction

The ability to control friction between soft and hard surfaces

through surface architecture has various engineering applica-

tions, such as automobile tires and locomotion of soft robots.1

Over the last two decades, the design of textured surfaces has

been influenced by the adhesive properties observed in small

animals and insects, such as geckos rapidly climbing vertical

walls.2 This inspiration has led researchers to develop fibrillar

surfaces to enhance and control adhesion and friction.3–11

Typically, these surfaces consist of micro-pillars or fibrils

arranged in arrays, allowing for flexible contact with hard

surfaces.3–11 While many successful examples have utilized

relatively soft elastomers, other materials like carbon nanotube

arrays have been used to create compliant surfaces with

significantly increased friction.12,13 Polypropylene pillar arrays

have demonstrated a dramatic increase in friction,14 and soft

pillar arrays with moderate to small aspect ratios have also

shown enhanced friction. Shen et al.15 demonstrated that a

film-terminated fibrillar interface can greatly enhance static

friction. Varenberg et al.16 fabricated a low aspect ratio hexago-

nal micro-array made of polyvinyl siloxane (PVS) to control wet

and dry friction. Kim et al.17 utilized an array of soft polyur-

ethane pillars with spatulate tips, resulting in a significant

increase in friction when sliding against a flat surface made of

the same material. It is worth noting that in much of the

aforementioned work, the pillar array was tested against an

unstructured, flat, and occasionally rough surface. Furthermore,

there is a lack of experimental studies or theoretical analysis on

the contact interaction between individual pillars in the array.

In Part I of this work,18 we presented a study of the friction

between poly(dimethylsiloxane) (PDMS) samples with surfaces

patterned with pillar arrays. We demonstrated that the relative

sliding motion is accommodated by the interfacial glide of

surface dislocations. The mechanics of contact during sliding

are highly complex, as the pillars are nonlinearly elastic and

undergo significant rotation during bending. Additionally, the

shape and size of the contact area during sliding are influenced

by friction, local deformation, and global changes in geometry
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caused by large rotations. In our experiments, the aspect ratio of

the soft pillars (height/radius) is 3.2, making the conventional

beam bending theory inadequate for accurately describing glo-

bal deformation. Moreover, there are other complications arising

from misalignments between pillars in the array, which are

caused by misorientation and vertical separation. For the single

pillar pair (SPP), the misorientation and vertical separations are

represented by lateral and vertical offsets, as illustrated in Fig. 1.

In Part II of this work, we present an experimental and

modeling study on the mechanics of two elastomeric pillars in

sliding contact. Our experiments are designed to measure the

sliding force between two pillars as they come into contact and

eventually separate when the contact becomes unstable. We

control the vertical separation (or height of contact) and the

horizontal separation (or lateral offset) in our sliding experiments

(refer to Fig. 1 and the section on geometry). The results from a 3D

Finite Element (FE) simulation, using a Coulomb friction model

for interfacial tractions on the contacting surfaces, are fitted to the

experimental data.

The plan of this paper is as follows. In Section 2 we give

details about the specimen geometry, the experimental method

and material selection. Details of the FE simulations are given

in Section 3. Comparison of FE and experimental results are in

Section 4. We conclude in Section 5 with a summary and

discussion.

2. Geometry

Fig. 1 shows the specimen geometry. The SPP samples consist

of two identical PDMS pillars on two identical PDMS substrates

(see 2.1 for fabrication process). Each pillar is a circular

cylinder with diameter 2R = 3 mm and height L = 4.8 mm.

We also studied another geometry with diameter 2R = 3 mm,

and height L = 6 mm (results are given in Fig. S5–S7 in ESI†). In

the following, unless otherwise specified, the results are for

diameter 2R = 3 mm and height L = 4.8 mm which is in the same

ratio as in the micro-pillar samples. We vary two geometric

parameters. The first is height of contact Hc or its non-

dimensional form vertical overlap as lz = Hc/L, which measures

the overlap in the z or vertical direction. When Hc = L or lz = 1,

there is no offset in the z direction while lz o 0 means that the

pillars can never make contact. The second parameter,

lx � 1�
Dx

2R
, measures the lateral overlap of the two pillars,

where Dx is the offset between centers of two pillars in the x

direction. Thus, lx = 1 means that there is no offset in x direction

while lx o 0 means that the two pillars can never contact.

2.1. Methods and materials

Single pillar samples are fabricated using PDMS elastomer.

PDMS precursor (silicone elastomer Abase) is combined with

crosslinker (curing agent, Sylgard 184 Silicone Elastomer kit,

Dow Corning) in a weight ratio of 10 : 1. The resulting mixture is

then degassed under vacuum for 30 minutes before being

poured into the single pillar aluminum mold, which has been

coated with a silicone-based aerosol spray. Subsequently, the

mixture is cured at 80 1C for 120 minutes. Once the curing

process is complete, the single pillar sample is removed from

the mold and allowed to cool for a few minutes. The dimen-

sions of cured single pillar samples are 3 mm diameter and

4.8 mm height with a backing 30 mm � 30 mm � B8 mm as

shown in Fig. 2b.

2.2. Shear and normal force during relative sliding

Shear and normal force of interaction are measured using a

custom built flat-on-flat tribometer as shown in Fig. 2c. The

setup consists of a stage where samples are mounted, two load

cells to measure horizontal or shear force and vertical or

normal force. Vertical and horizontal motors control respective

direction movement of stages, and the rotation motor controls

rotation of the stage. The motors are connected to a motion

controller which is controlled by custom-written software in

LabVIEW. A camera is used to image the behavior of pillars in a

side view during sliding experiments. Shear and normal force

measurements are conducted for various vertical and lateral

overlaps. Lateral overlap is varied from 100% to 0%, specifi-

cally, lx = 1, 0.75, 0.5, 0.25, 0 and height of contact (Hc) is varied

from 4.8 mm to 0.8 mm. A typical experiment consists of

sticking the top and bottom samples to glass slides using

uncured PDMS and curing at 80 1C for 30 minutes. The samples

are then brought in contact under displacement control using

the vertical motor. The two pillars are made to slide past each

other for B14 mm at 0.05 mm s�1. The top sample slides with

respect to the bottom sample under displacement control, and

shear and normal load are recorded with respect to sliding

displacement, and data are saved in a text file.

The progression of contact for the case of no lateral offset or

full overlap, lx = 1 and lz = 1 is shown in Fig. 7c–h in Part I.18

These figures clearly show the complicated change in geometry

(large rotation in concert with stick-slip) as the two pillars make

Fig. 1 Geometry of single pillar pair (SPP) sample. The substrate of the

bottom sample is fixed and the upper PDMS substrate moves in the y

direction with constant speed v. The height of contact is Hc and the lateral

offset is Dx.
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and lose contact as they move past each other. For more details,

please see Exp1.mp4 in ESI† Video S1.

3. Finite element model

All simulations were carried out using dynamic implicit (quasi-

static) (DIQ) solver in ABAQUS.19 The dimensions of the sub-

strate are 15 mm � 15 mm � 9 mm. In all simulations, we fixed

the bottom of one substrate, thenmoved the bottom of the other

substrate horizontally with a constant velocity of v = 0.2 mm s�1

while fixing the total distance between the substrates in the z

direction (the result of velocity convergence tests is given in

Fig. S1 in ESI†). (Because the system is nearly quasi-static, the

value of the velocity is essentially irrelevant. Specifically, the role of

viscoelasticity in this 10 : 1 PDMS is negligible.) Eight-node linear

hybrid brick elements (C3D8RH) were used in all simulations.

A typical mesh geometry used in our simulation is shown in Fig. 3.

Since PDMS is practically incompressible, in our simula-

tions, we represented it by a compressible neo-Hookean solid

with a bulk modulus 100 times that of the shear modulus.

Contact interaction between pillars was modeled using a

Coulomb friction model with a constant friction coefficient m.

Recall that the pillars are made of PDMS, which has a shear

modulus less than 1 MPa. The modulus used in our simula-

tions is determined by comparing the horizontal and normal

reaction forces for small horizontal displacements in our

simulations (lx = 1) with experimental data. This comparison

gives a shear modulus of 0.65 MPa which is consistent with

literature values.20 The shear modulus is then fixed at this value

for all simulations with different overlaps. This means that the

friction coefficient m is the only remaining fitting parameter.

We also carried out mesh convergence tests using different

sized meshes for pillars and substrate (see Fig. S2 in ESI†).

The average size of the pillar mesh is smm� smm� smmwith

s = 0.5, 0.4, 0.3, 0.2, 0.1. The mesh of the substrate increases

from s mm � s mm � 1 mm near the pillar to 1 mm � 1 mm �

1 mm near the free edges. We use the reaction force in the

horizontal direction (shear force), Fs, versus the horizontal dis-

placement u as a criterion for convergence. In ESI,† we show that

for sufficiently fine meshes, specifically, when s o 0.5 mm, the

Fs versus u curves converge onto each other.

4. Results

In the following, the reaction forces in the x and z direction will

be called the shear and normal forces, respectively. The shear

Fig. 2 (a) Aluminum mold for single pillar sample. (b) Optical micrograph of SPP samples approaching contact. (c) Schematic of custom-built flat on flat

Tribometer.
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and normal forces in experiments (symbols) and FE results

(solid lines) for the case of lx = 1 and five heights of contact Hc

are shown in Fig. 4. To compare FE solutions with data, we fit a

straight line to the initial part of experimental data to find the

origin where the shear force is zero.

Fig. 4a shows that for each Hc, the shear force increases

almost linearly with displacement u untilBA. Then it increases

at a slower rate until the shear force reaches a maximum atBB.

During this time, the pillars make contact and bend in opposite

directions. At peak B, contact becomes unstable, and the two

pillars slip past each other and eventually separate

(see FE1.mp4 in ESI† Video S2). Comparing Fig. 4a and b, we

see that while the shear force keeps increasing before peak, the

normal force reaches a maximum between A and B (BC), then

drops and increases again after the peak C.

To understand this phenomenon, we check the magnitude

of ‘real’ friction contact force (CS) as well as the ‘real’ normal force

(CN) in the contact region and calculate the ratio of ‘real’ friction

force CS to ‘real’ normal force CN as CS/CN. These contact forces

are calculated in ABAQUS by summing the shear and normal

forces over elements in the contact patch. The FE result for lz =

2.8/4.8 or Hc = 2.8 mm is shown in Fig. 5b. According to the

Coulomb friction model, the ratio of contact friction force and

contact normal force CS/CN should be exactly 0.4 if slip occurs.

The contact surface should be locked (no slip) if this ratio is less

than 0.4. The result in Fig. 5b indicates that slip occurs during

small displacement up to A. Note that CS/CN is less than 0.4

between A and B, that is, in this region, the pillars stick with no

global slip. More interesting is that during the initial period when

slip occurs, the top pillar slips downwards with a horizontal/

vertical component in the negative y/z direction (see Fig. 5c and

FEcontact.mp4 in ESI† Video S3). After the sticking period, the

direction of slip is reversed, the top pillar now slips upwards with

a horizontal/vertical component in the positive y/z direction.

In Fig. 6 and 7, we present results for two other lateral

overlaps. The shear and normal forces versus horizontal dis-

placement u are given in Fig. 6 for lx = 0.75 and five vertical

offsets. Experimental data and FE results are represented by

symbols and solid lines, respectively. As expected, lateral offset

reduces the contact area which lowers the contact forces.

Although the FE simulation using a friction coefficient of m =

0.4 did a reasonable job in fitting the experimental data, the

best fit occurs at a slightly higher friction coefficient of 0.5. The

simulation result for the case of m = 0.4 is given in Fig. S3 (ESI†).

Fig. 7 plots the shear and normal forces for lx = 0.5. Similar

to the case of lx = 0.75, we found it is necessary to increase the

friction coefficient in FE simulations to obtain the best fit. For

this case, we use m = 0.6. The results using m = 0.4 for case with

lx = 0.5 are shown in Fig. S4 (ESI†).

To summarize, our FE results based on Coulomb friction

model agree well with the experimental data, especially

Fig. 3 Mesh geometry used for FE modeling. The mesh for the pillars is

approximately uniform with size roughly equal to 0.3 mm. The substrate

has a variable size mesh, with the small mesh size near the pillar, increasing

to 1 mm near the edges.

Fig. 4 FE simulation results (solid lines) (m = 0.4) & experimental results (circles) for 5 heights of contact Hc with lx = 1 (no lateral offset), L = 4.8 mm and

2R = 3 mm. (a) Shear force versus horizontal displacement u, A and B correspond to u where significant slope changes occur. (b) Normal force versus u.

The normal force reaches a peak at C before the pillars separate.
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considering the large changes in geometry during sliding

contact and the simplicity of the friction model. There are

some discrepancies between simulation and experiments.

Specifically, for any fixed lx, the greatest deviation between

experiment and simulation occurs when lz = 1 (Hc = L). This

discrepancy is understandable, since for this case, the ends of

the pillars will rotate and contact with the substrate surface and

this interaction is not fully accounted for in our simulations. In

addition, we need to increase the friction coefficient to best fit

the data as the lateral offset increases. This result is incon-

sistent with the fact that the samples are made of the same

material. An explanation for this discrepancy will be given in

the discussion.

5. Summary and discussion

In this work, we studied the behavior under relative sliding of

individual pillar pairs with different lateral overlaps and

Fig. 5 (a) Schematic of deformed pillars. The inset shows contact forces (CN and CS) on the lower pillar (note the direction of CS is not fixed, it changes

with the relative motion of the two pillars). (b) Contact forces vs. displacement u for Hc = 2.8 mm with lx = 1 (no lateral offset). The friction coefficient in

simulation is 0.4. The part of the dashed line that is horizontal corresponds to slip, i.e., CS/CN = m. Note pillars stick between A and B, i.e., CS/CN o m. (c)

Snapshots of two set of elements between two pillars as sliding progresses in a FE simulation with Hc = 2.8 mm with lx = 1 (or no lateral offset).
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vertical overlaps experimentally and by FE simulations. We

found that our 3D FE model along with a Coulomb friction

model for the contacting surface captured all the complex

features of experimental measurements, but with different

friction coefficients. For fixed lateral offsets, the constant

friction coefficients for different vertical offsets are the same.

The friction force and normal force increase with larger vertical

overlap, lz (or larger Hc) at the same displacement. For changing

lateral offsets, the constant friction coefficients need to change

to obtain the best fit. Specifically, the constant friction coeffi-

cient is 0.4, 0.5, 0.6 for lx = 1, lx = 0.75, lx = 0.5, correspondingly.

The increase in friction coefficient needed to fit data sug-

gests that the Coulomb friction model with constant friction

coefficient is too simple to represent the interfacial interaction

between single pillars. Even if the Coulomb model is valid, our

model ignores adhesive interaction between pillars. With smal-

ler contact area due to lateral offset, adhesive interaction will

start to play an important role in comparison with friction

force. Specifically, when we decrease lx, the contact area

decreases, however, this decrease is modulated by adhesion,

which is not accounted for in our model. As a result, we need to

use a larger friction coefficient to make up for the forces caused

by adhesive interaction. To illustrate this idea, let us consider

the much simpler case of a small rigid sphere of radius R in

adhesive contact with a soft incompressible elastic substrate

with shear modulus, G. When the contact radius is large,

adhesion can be ignored, and the contact radius a is well

estimated by the Hertz theory,21

a ¼
3RN

16G

� �1=3

; (1)

where N is the normal compressive load acting on the sphere.

For this case, the shear force S require to slide the contact

can be estimated by integrating the Hertz pressure using

the Coulomb friction model, which is found to be exactly mN

(see ESI†).

On the other hand, consider the situation where the normal

force N is zero, so adhesion dominates. Recall that Johnson–

Kendall–Roberts theory (JKR)21 showed that there is a finite

contact radius a0 for the case of N = 0, i.e.,

a0 ¼
9pWadR

2

8G

� �1=3

(2)

Fig. 6 FE simulation results (solid lines) (m = 0.5) & experimental results (circles) for 5 different heights of contact Hc with lx = 0.75. (a) Shear force versus

horizontal displacement u. (b) Normal force versus u.

Fig. 7 FE simulation results (solid lines) (m = 0.6) & experimental results (circles) for 5 different heights of contact Hc with lx = 0.5. (a) Shear force versus

horizontal displacement u. (b) Normal force versus u.

Paper Soft Matter

P
u
b
li

sh
ed

 o
n
 1

2
 J

an
u
ar

y
 2

0
2
4
. 
D

o
w

n
lo

ad
ed

 b
y
 L

eh
ig

h
 U

n
iv

er
si

ty
 o

n
 7

/2
1
/2

0
2
4
 9

:5
1
:2

9
 P

M
. 

View Article Online



This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 1459–1466 |  1465

where Wad is the work of adhesion. Note that if we ignore

adhesion, then the Coulomb model would predict S = 0 since

N = 0. However, if we include adhesion, then S is not zero.

Specifically, the pressure distribution inside the contact region

is a combination of compression and tension such that N = 0.

The region of compression occupies the circle with radius

c o a0 where c=a0 ¼
ffiffiffiffiffiffiffiffi

2=3
p

(see ESI†). If we assume the region

subjected to tension cannot give rise to friction, then the

friction force S caused by adhesive contact can be obtained

by integrating the compressive stress inside the circle of radius

c using the Coulomb model, which is (see ESI†)

S ¼
4pmWadR

ffiffiffi

3
p (3)

Thus, adhesive contact would predict a finite shear force even if

the net normal force is zero. Note for this special case there is

no external normal load, so the shear force is directly propor-

tional to the work of adhesion.

While it is possible to include adhesion in our simulation

model, for example, by covering the pillar surfaces with cohe-

sive elements, the computational difficulties are challenging.

Indeed, further controlled experiments need to be performed to

understand the role of adhesion in small contact situations.

Further, we cannot rule out the possibility that Coulomb

friction may not be the correct model for the self-contact of

PDMS and that other friction models may have to be consid-

ered. For example, Chateauminois and Fretigny22 have mea-

sured the local shear stress due to steady sliding of a smooth

glass sphere on a smooth PDMS substrate and found that this

sliding stress is approximately constant and independent of

the normal force acting on the sphere. Their results indicate

that Coulomb friction does not apply to smooth glass/PDMS

surface. However, it is important to note that in our experi-

ments, the contact is between PDMS surfaces. Furthermore, the

surfaces of our PDMS samples are rough due to the fabrication

process, which is different from the smooth surfaces used in

ref. 22 As a result, the sliding friction behavior can be signifi-

cantly different from that observed on smooth PDMS/glass

surfaces in ref. 22. To justify our usage of Coulomb model,

we conducted independent friction experiments (see ESI†).

Briefly, in these additional experiments, we pressed a PDMS

pillar against another PDMS pillar, with the pillars positioned

at a right angle to each other, and then induced sliding motion.

The results of our friction experiments strongly support the

applicability of the Coulomb friction model. In addition, the

observed friction coefficient aligns closely with the values

utilized in our simulations. These findings provide further

validation for our choice of the Coulomb model in describing

the friction behavior in our study.

Finally, our simulation differs from the experiments which

show that stick-slip often occurs near the shear force peak (B in

Fig. 4). This behavior is not captured by our simulation since

our solver is quasi-static.

In conclusion, our experiments quantify how friction and

normal forces change with different lateral and vertical offsets

for single pillar systems. This result provides a quantitative

method to understand how offsets of a surface architecture

with pillar array control sliding friction as shown in our

companion paper (refer to Part I).18 Finally, our simulation

technique can be extended to study single side contact for pillar

interfaces on flat substrates.
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