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Abstract Chorus waves are intense electromagnetic emissions critical in modulating electron dynamics. In
this study, we perform two-dimensional particle-in-cell simulations to investigate self-consistent wave-particle
interactions with oblique chorus waves. We first analyze the electron dynamics sampled from cyclotron and
Landau resonances with waves, and then quantify the advection and diffusion coefficients through statistical
studies. It is found that phase-trapped cyclotron resonant electrons satisfy the second-order resonance condition
and gain energy from waves. While phase-bunched cyclotron resonant electrons cannot remain in resonance for
long periods. They transfer energy to waves and are scattered to smaller pitch angles. Landau resonant electrons
are primarily energized by waves. For both types of resonances, advection coefficients are greater than diffusion
coefficients when the wave amplitude is large. Our study highlights the important role of advection in electron
dynamics modulation resulting from nonlinear wave-particle interactions.

Plain Language Summary Wave-particle interactions can modulate electron distributions through
advection and diffusion. Previous studies focusing on advection and diffusion primarily relied on test particle
simulations, which uses a simplified model of wave evolution. In this study, we perform self-consistent
simulations to investigate the wave-particle interactions with chorus waves and quantify the advection and
diffusion coefficients of resonant electrons. It is found that advection coefficients are greater than diffusion
coefficients in both cyclotron and Landau resonances, indicating the significant role of nonlinear wave-particle
interactions. The quantification of advection and diffusion coefficients in a self-consistent system is important
for understanding and predicting the loss and energization processes in radiation belt electrons. This study
complements previous diffusion models that regarded the evolution of electron dynamics in wave-particle
interactions as a slow diffusive process.

1. Introduction

Chorus waves are intense and coherent electromagnetic emissions in the Earth's magnetosphere (Burtis & Hel-
liwell, 1969; Chen, Wang, et al., 2023; Li et al., 2009; Tsurutani et al., 2009; Tsurutani & Smith, 1974), excited by
the injections of ~10-100 keV electrons associated with substorms (Meredith et al., 2003; Li et al., 2009; Ma
et al., 2022. These waves are scientifically interesting due to their crucial roles in modulating electron dynamics.
For instance, they can scatter 10s of keV electrons into atmosphere, producing diffuse and pulsating auroras
(Chen et al., 2020; Chen, Gao, et al., 2023; Gao et al., 2024; Zhao et al., 2021), and accelerate 100s of keV
electrons to relativistic energies, forming the outer radiation belt (Foster et al., 2017; Omura et al., 2019; Thorne
et al., 2013).

Wave-particle interactions can modify electron distributions through advection and diffusion (Albert & Bort-
nik, 2009; Artemyev et al., 2018; da Silva et al., 2018; Fu et al., 2019, 2020; Liu et al., 2012). Quasi-linear theory
proposes that the distribution variations induced by chorus waves can be described in terms of diffusion, char-
acterized by slow changes, assuming a constant wave spectrum and weak amplitude (Glauert & Horne, 2005;
Kennel & Engelmann, 1966; Mourenas et al., 2012; Ni et al., 2014; Summers, 2005; Tu et al., 2013). While
nonlinear theory suggests that advection is faster and more important than diffusion (Albert et al., 2021; Bortnik
et al., 2008; Zhang et al., 2018). Therefore, how the variations resulting from both advection and diffusion caused
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Figure 1. Temporal evolutions of (a, g) wave perpendicular magnetic field amplitude 6B, (b, h) gyrophase angle ¢, (c, i)
derivative d{/dt, (d, ) parallel velocity v, (e, k) kinetic energy E;, and (f, I) equatorial pitch angle a,,, of electrons along their
motion trajectories. The left (right) column in red (blue) is for the phase-trapped (phase-bunched) cyclotron resonant
electron. The dashed boxes (€2, = 2,807-2,879 in left column and 2,796-2,858 in right column) mark the periods of {
variation around 7'. The dotted lines in panels (b, h) indicate { = 0. The thick black lines in panels (c, i) represent the linear
fitting of d*¢/dr’.

by chorus waves affect electron precipitation and energization, and which type of variation is dominant, remain
not fully understood.

Previous studies primarily relied on test particle simulations to calculate the advection and diffusion coefficients
of particles under resonances with waves (Gan et al., 2020; Liu et al., 2012; Mourenas et al., 2012; Tao
et al., 2012), where the spatiotemporal evolution of waves is pre-assumed. To fully address the physics in wave-
particle interactions with oblique chorus waves, we perform self-consistent simulations and investigate the in-
teractions through cyclotron and Landau resonances. Our findings reveal that the advection resulting from
nonlinear effects plays a more significant role in modulating electron dynamics.

2. Simulation Model

We use a two-dimensional general curvilinear plasma simulation code (GCPIC) simulation model (Lu
et al., 2019; Wang et al., 2024) in dipole fields to investigate the self-consistent wave-particle interactions. The
reduced simulation domain is used, scaled to L = 5.5-6.5 with a scaling factor of 10. It covers a radial distance
range from p/(V,,o/Q.o) = 1,511 to 1,767 (where p represents the equatorial distance to the center of the Earth)
and a latitude range from A ~ —30° to ~30°. Here, V.0 = B.o/+[HoN.0, is the electron Alfven speed, Q.o = eB,o/
m, is the equatorial electron gyrofrequency, y, is the vacuum permeability, e and m, are the charge and mass of an
electron, B, is the background magnetic field at the equator, and n,, is the plasma density. At the center of
simulation domain, 71, is 10 cm™ and B,, = 144 nT. In this model, electrons are pushed by relativistic Lorentz
force, and chorus waves are self-consistently excited by electrons with a temperature anisotropy. Other details of
the model are available in Wang et al. (2024).
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Phase-trapped electrons

Phase-bunched electrons The dynamics of resonant electrons are studied using the retracing method
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(Chen et al., 2024). They are collected at a specific time point 7, and are
analyzed from T, to T, with Ty < T, < T, These electrons are not treated as
test particles; instead, they interact self-consistently with waves. In this study,
we focus on the wave-particle interactions at p/(V,,¢/€2,¢) = 1,722 and in the

low latitude 4 = —7.6°, where chorus waves propagate obliquely against

-0.02-0.01 0.00 0.01 0.02 magnetic field lines with a wave normal angle of 6~15°. The interactions

2 2
dg/dt through cyclotron and Landau resonances are separately investigated.

200

100 8 3. Simulation Results
o]

3.1. Dynamics of Cyclotron Resonant Electrons

We first investigate the electron dynamics under cyclotron resonance with
waves. At Q,,T, = 2,840, the cyclotron resonance velocity is calculated as v, =

2940 (0-Q,In)lk = 0.88V,, (Where Q, = eBy/m, is the local electron gyrofre-

-1/2
quency, By is the local background magnetic field, y = [1 - (vﬁ + vi)/ cz]

is the Lorentz factor, v and v, are the parallel and perpendicular velocities, and
c is the light speed), using a wave frequency of w/Q,, = 0.29, a wave normal
angle 0 = 11.26°, and a wave number kV,,,/Q2,, = —0.65. Cyclotron resonant
electrons are collected in the ranges of v/V .o = 0.58-1.18,v,/V, ., = 2-4,and
{ = —n—n/2, where { is the gyrophase angle between v, and wave perpen-
dicular magnetic field 6B ,. Cyclotron resonant electrons trapped in wave

2840

phases are categorized into phase-trapped and phase-bunched electrons (Al-
2740 bertetal.,2021; Chenetal.,2024; Liuetal., 2012; Matsumoto & Omura, 1981;

1 2 Nunn, 1974). In this study, a total of 7,651 cyclotron resonant electrons are
1/ Vaco collected, comprising 2,288 phase-trapped electrons and 5,363 phase-bunched
electrons. Their dynamics are investigated from Q,7, = 2,740 to

Figure 2. (a, d) Occurrence rates of dZC/dtz, (b, e) dwell time in the {~v Q 0]} = 2.940
e > .
planes, and (c, f) motion trajectories in the v —v, planes. The left (right)
column is for phase-trapped (phase-bunched) electrons. The black lines in Figure 1 illustrates the examples of phase-trapped and phase-bunched elec-

panels (b, e) represent the envelope of the electron hole. In panels (c, ), the trons. The electrons move counter-stream to waves (Figure S1 in Supporting

gray lines denote the contour lines of v,, and the black lines represent the
cyclotron resonance velocity v,.

Information S1) and experience amplitude modulation during the traversal of
wave packets (Figures 1a and 1g). Along their motion trajectories, the tem-
poral evolutions of ¢ for phase-trapped and phase-bunched electrons are
different. As shown in Figure 1b, the pattern of { evolution for the phase-trapped electron follows a sinusoidal
function, with ¢ confined within the range of { = —z/2—z/2. Here, { = #/2 denotes the positive direction of wave
perpendicular electric field OE | (refer to Figure S1 in Supporting Information S1 in Wang et al., 2024). When
{ <0, v, decreases due to the negative Lorentz force dv,/dt = —ev, X 6B, while E; increases due to the positive
energy transfer —ev, - E, (the terms 6E| and —ev - SE are significantly small and therefore neglected),
resulting in an increase in @,,. Conversely, v increases but £, and a,,, decrease when ¢ > 0. Within one { period
(as indicated by the dashed box in Figure 1b), the electron spends more time at { < 0, leading to the overall
increase in E; and a,,, (Figures le and 1f). Therefore, the phase-trapped electron gains energy from waves. For the
phase-bunched electron, resonance interaction only occurs when v is close to v, during Q ot = 2,796-2,858
(marked by the dashed box in Figure 1j). As shown in Figure 1h, the pattern of { evolution follows a parabolic
function in this interval, with { increasing from —z to ~z/2 and then returning to —z. Since the electron spends
more time at { > 0, E; and a,,, exhibit an overall decrease (Figures 2k and 21). Consequently, the phase-bunched
electron transfers energy to waves.

For both phase-trapped and phase-bunched electrons, resonant interactions with waves correspond to d¢/dt~0
(Figures 1c and 1i), which is the first-order resonance condition (Matsumoto & Omura, 1981; Vomvoridis
et al., 1982). We then evaluate d°C/dr* by linearly fitting the slope of d¢/dr (indicated by thick black lines) during
resonant intervals. The d°¢/df* for the phase-trapped electron is nearly 0 with d’¢/dr® = 2.7 x 10~*. While d*¢/
d* = —1.4 x 1072 is negative for the phase-bunched electron.
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Figure 3. Distributions of (a, g) occurrence rate, (b, h) Ag,, (¢, 1) D, (d, j)

Phase-trapped electrons

Phase-bunched electrons

g0 ()

a0 ()

Ag,,» (e k) Dy o, and (f, 1) Dy, r, asa function of a,, and E. The left

(right) column is for phase-trapped (phase-bunched) electrons. The dashed line

in each panel represents the cyclotron resonance line.

A statistical analysis of d’¢/df* is performed. Figures 2a and 2d shows the

R 2501 a My 8 occurrence rate of d*¢/dr*, defined as the ratio between the number of elec-
E i:g ] 8 trons in each category and the total number of corresponding electrons. Phase-
:3 100 1 % trapped electrons cluster around d*¢/df* = 0, satisfying the second-order
50 H I o) resonance condition (Matsumoto & Omura, 1981; Vomvoridis et al., 1982),
250 fpy I‘ I’ 40 ~ also known as “phase-locking” condition (Inan et al., 1978; Nunn, 1986; Tao
'z; i:g g E \% et al., 2021). This indicates that phase-trapped electrons can maintain the
:3 100 v S 0 uf‘ resonant condition d{/dt~0 for the longest possible time, therefore maxi-
ol s P be 0 < mizing the energy gain from waves. In contrast, phase-bunched electrons
250 ¢ T T P cannot remain in resonance for long periods due to negative d°¢/di*, with the
g izz ' _-/1 7',l' :i ne k) maximum occurrence rate at d°¢/di*~—1.5 x 1072,
W 100 ‘-ﬁ_/_:' o -: ) /__ g o 102 EE; To further distinguish the two types of electrons, we present their distributions
228 = - : 0 e in the {~v planes in Figures 2b and 2e. The color codes indicate dwell time,
S 200 d . / < which is statistically analyzed from 7, — 20 Qe_ol to T, + 20 Q;OI. The black
& 150 R 0o & lines denote the envelope of the electron hole at T, defined as (Omura
WF 100 s < etal, 2008; Wang et al., 2024):
50 - / - : -40
= 228 e | = gy 1f10° H.’g“ kz(v“ - vc)2 + 2w,2r[cos(§ +7) =S +n)]=C, (1)
g 150 ] g
- 122 e 2 ] 0" o where w,, = wyy "%, w, = (kHvJ_ezSBl/me)l/z, X = [1 - wz/(kzcz)]l/2, S is
A 528 f .nl - ! | P HE the inhomogeneity factor, and C is a constant. At Q7 = 2,840, 6B /B, is
3 < 0.017, § is —=0.35, and v,/V,,, = 2.5. Phase-trapped electrons primarily
ié izg _:' - B E:: localize inside the envelope, while phase-bunched electrons are outside and
50 _-_5 -l b 1 107 F surround it. Moreover, phase-trapped electrons mainly cluster at { < 0, cor-
W0 50 B0 70 80 40 50 6 70 80 responding to positive —ev, - 6E, and energy gain from waves, whereas

phase-bunched electrons concentrate at { > 0, associated with negative
—ev,-0E,| and energy loss. Therefore, the tendency of energy variation
revealed by statistical study is consistent with the results from single-particle
analysis (Figure 1).

Additionally, the source of electrons in the velocity distribution is also
different. Figures 2¢ and 2f illustrate electron trajectories in the v;—v, planes,

with color codes indicating temporal evolutions. For phase-trapped electrons, v, is larger than v, at Q,,T,, = 2,740,
but it decreases to the values smaller than v, during resonance with waves. However, the total velocity

v, = vﬁ +v3 (or E;) increases since v, grows significantly. In contrast, phase-bunched electrons exhibit V|

smaller than v, at Ty, with v increasing but v, (or E}) decreasing through the interaction. Due to the lower number
density at larger v in the Maxwellian distribution, an electron hole is formed when the phase-trapped electrons
are inside the envelope (Figure 2b).

To quantify the variations of E; and a,, for phase-trapped and phase-bunched electrons, we calculate the
advection and diffusion coefficients. Figure 3 illustrates the (a, g) occurrence rates of electrons at T, (b, c, h, i)
kinetic energy advection coefficient Ag, and diffusion coefficient D g,, (d, €, j, k) pitch angle advection coef-

ficient A,,, and diffusion coefficient Dy, 0, and (f, j) cross diffusion coefficient D,k in the a,,,—FE; planes,

eq0
where a,, and Ey, represent the a,, and E; values at T,,. The occurrence rate is defined as the ratio of electron
number in each bin to the total number of corresponding electrons. The black lines denote the cyclotron resonance
energy as a function of equatorial pitch angle (referred to as cyclotron resonance line), estimated using the wave

parameters at T. The coefficients are calculated by (Fu et al., 2020; Su et al., 2012; Zheng et al., 2012):

(Ex¢ — Exo)
Ay = K7 2
Ey, AT ( )
(Eyy — (Ey))’
DEkEk = 7< Y 2Aka > s (3)
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Fmmmmmmmmmmm——oo. - — (a&If - ae‘l()) (4)
_002[5 f ; g AT
@ : L g 2
@ 001f 5 ] D = ((@egr = (@eqy))") (5)
© : 1 Geaheq 2AT ’
oy
3 ! ~ Aegr — (e ) (Egy — (Eis)))
2 b AegEr — IAT P (6)
o
5
7 where a,,-and E; represent the values at T, AT is the interval of 200 Qe_ol ,and
(...) denotes averaging over all electrons. To reduce statistical errors, only the
> coefficients with occurrence rates above 0.1% are presented. In this study,
> cyclotron resonant electrons are investigated in the ranges of a,,o = 40°-80°
o and E;, = 50-250 keV, clustering around the cyclotron resonance line. Phase-
~>§ trapped electrons mainly fall in the range of E;, = 50-200 keV, and their
o s Ao = 46°-64° are smaller than those on the cyclotron resonance line
:= ! (Figure 3a). While phase-bunched electrons primarily correspond to larger
' 2 — - : Apq0 = 66°-78° (Figure 3g), consistent with their smaller v at T;, (Figure 2f).
@ h For both types of electrons, advection coefficients are two orders of magni-
o < 4
2 0.00 N "M""“H“'L‘ tude larger than diffusion coefficients, indicating the significant role of
£ nonlinear wave-particle interaction through cyclotron resonance. Moreover,
3 Olgg = : = a,, advection is more efficient than E; advection. Specifically, phase-trapped
< f : M,.\ﬁ:ﬁmﬂ// v electrons exhibit positive £y and a,,, advections, with mean values of A,/ Eg
Q A ~ ' _ _ . .
< 17510 T T 1 ~10 s7' and Aq, ~20s !, especially for the electrons with smaller A0
W 165 o (Figures 3b and 3d). These electrons are energized due to energy gain from
90 i 5 waves. In contrast, phase-bunched electrons with larger a,,, show weaker and
' p g eq0
o~ 80 ] negative E, advection with mean Ay, /E;y ~—5 s~" (Figure 3h), transferring
& nor ] energy to waves. They are also scattered to smaller pitch angles due to
gg ________________ negative a,, advection with mean 4, ~—25 s~ (Figure 3j).
2950 3000 3050 3100 3150
ot 3.2. Dynamics of Landau Resonant Electrons

Figure 4. Temporal evolutions of (a) 6B, (b) —=v, X 6B, (c) v, (d) —v, -
OE, (e) —v, - OE |, (f) E, and () a,,, of the Landau resonant electron along
motion trajectory. The black dashed box marks the period of E; variation
around 7. The dotted lines in panels (b, d, e) indicate the value 0. In panel (b,
e), red (blue) color highlights the positive (negative) values of —v, X 6B or

—v, - 0E,.

We then investigate the dynamics of Landau resonant electrons, which are
collected at Q, 4T, = 3,050. The wave frequency, wave normal angle, and
wave number are w/Q,, = 0.36, 8 = 13.38° and kV,,/Q,, = —0.76,
respectively, leading to the Landau resonance velocity of v, = w/
ky = —0.48V, 0. The electrons are collected in the ranges of v|/V,,, = —0.78—
0.18, v, /V4,0 = 24, and { = —n—n/2. There are a total of 6,069 Landau
resonant electrons, and their dynamics are investigated from Q,,7,, = 2,950 to
Q0T = 3,150.

Figure 4 presents a typical example. The Landau resonant electron moves co-stream with wave packets (Figure S1
in Supporting Information S1), experiencing nearly constant wave phases and amplitudes (6B,/B,,~0.013, as
shown in Figure 4a). During each gyroperiod (lasting approximately 9 Q), there is energy transfer between
waves and particles, with a nonzero net energy transfer due to the finite perpendicular wave number k£, (Chen &
Bortnik, 2020; Omura et al., 2019). As depicted in Figures 4b and 4c, the temporal variation of v is determined by
—ev, X 6B, with |y | decreasing (increasing) at positive (negative) —ev, X 6B, . The SE| term in the Lorentz
force is significantly small and therefore neglected (not shown). The E,, variation is determined by —ev, - 6E |
rather than —ev|, - 5E (Figure 4, the details are in the Supporting Information S1), where —ev, - SE, is one order
of magnitude larger than —ev - 5 (Figures 4d and 4e). This is a typical characteristic of electromagnetic Landau
resonance (Hsieh & Omura, 2018; Liu et al., 2024; Omura et al., 2019). In Figures 4b and 4e, red (blue) color
highlights the positive (negative) values of —ev;, X 6B, and —ev, - 0E . During intervals with positive net
—ev, X 6B, and negative net —ev, - 0E (e.g., Q,f = 3,012-3,042), both Iv| and E; decrease. Meanwhile, v,
remains almost unchanged during resonance, resulting in an increase in a,, (Figure 4g). Conversely, during
intervals with negative net —ev, X 6B and positive net —ev , - 6E | (e.g., Q,f = 3,042-3,093), Iv|l and E increase
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Figure 5. (a) Occurrence rate and (b—f) advection and diffusion coefficients
E,(, planes for Landau resonant electrons, following the format of

in the a,,

Figure 3. The dashed line in each panel represents the Landau resonance line.
Since a,, and E; of Landau resonant electrons exhibit opposite variations,
the absolute values of D, r, are presented in panel (f).
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but a,, decreases. The period of E; variation around 7, is indicated by the
black dashed box from Q,yt = 3,012 to 3,093, established via the adjacent
maximum E; values. Within one period, the net energy transfer predomi-
nantly occurs from waves to particles, leading to an overall increase in |y | and
E,. The electron gains energy from chorus waves.

We further calculate the advection and diffusion coefficients for Landau
resonant electrons based on Equations 2-6. Here, ., and Ey (@, and Ey)
represent the values at T (T/), and only the coefficients with occurrence rates
above 0.1% are presented. The dashed lines represent the Landau resonance
energy as a function of equatorial pitch angle (referred to as Landau resonance
line), estimated using the wave parameters at 7. The electrons cluster around
the Landau resonance line in the ranges of a,,, = 65°-80° and E;, = 40—
230keV (Figure 5a). As shown in Figures Sb—5f, the advection coefficients are
two orders of magnitude larger than diffusion coefficients, indicating that
nonlinear effects also dominate the wave-particle interaction through Landau
resonance. Furthermore, Ej advection is more efficient than @, advection. The
electrons in the lower energy range of E,, = 40-100 keV exhibit strong E;
advection with the mean value of A,/ E;y ~10 s (Figure 5b), and those with
smaller a,,, correspond to a weak increase in a,, with Aq,, of ~7 57!
(Figure 5d). Therefore, Landau resonant electrons are primarily energized by
chorus waves. Additionally, energization through Landau resonance can be
more efficient than through cyclotron resonance due to the longer interaction
time, as Landau resonant electrons move co-stream with wave packets (Omura
etal., 2019).

4. Summary and Discussions

In this study, we investigate electron dynamics through cyclotron and Landau
resonances with oblique chorus waves and quantify the advection and diffusion
coefficients in self-consistent wave-particle interactions. For both kinds of
resonances, advection coefficients are greater than diffusion coefficients when
the wave amplitude is large. Phase-trapped cyclotron resonant electrons satisfy
the phase-locking condition d*¢/d*~0, enabling them to maintain resonance
with waves. They are mainly in the ranges of a,, = 46°-64° and E; = 50—
200 keV, exhibiting positive a,, and E} advections and gaining energies from
waves. On the other hand, phase-bunched electrons, which concentrate in
Qg0 = 66°-78° and E; = 50-200 keV, cannot remain in resonance for long
periods due to d°¢/dr* < 0. They are characterized by negative a,, and E; ad-
vections, transferring energies to waves and being scattered to smaller pitch
angles. Landau resonant electrons primarily fall within a,, = 65°-80° and
E; = 40-100 keV and are energized with positive E; advection.

By integrating simulated wave parameters into quasi-linear theory models
(Glauvert & Horne, 2005; Summers, 2005), we estimate DEkEk/ E,%O to be

~0.05-0.1 s™" and Dy, q, 0 be ~0.5-1.0 s™! along the cyclotron resonance line. These estimations match the

diffusion coefficients derived from particle dynamics (Figures 3c and 3e). Note that in our simulations, Dg, g,/ E%O

and D, ,, are two orders of magnitude larger than those in observations (Mourenas et al., 2012; Ni et al., 2014;

Tao et al., 2012; Tu et al., 2013). This discrepancy arises from the reduced simulation domain, where wave
amplitude 6B is one order of magnitude larger than observational values (Ma et al., 2022), resulting in a two-
order-of-magnitude amplification of diffusion coefficients as they are proportional to 68> (Liu et al., 2010).
Besides, the calculation of diffusion coefficients in observations generally relies on stable wave models, which
only consider the energy transfer from waves to particles. In this work, we use a self-consistent model, where
waves are excited by particles, considering both the energy transfers from waves to particles and the feedback
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from particles to waves. Further investigation will focus on clarifying the relation between advection/diffusion
coefficients and wave amplitude through parametric studies.

The quantification of advection and diffusion coefficients in self-consistent wave-particle interactions is crucial
for understanding and predicting the loss and energization processes in radiation belt electrons. Our study
highlights the significant roles of advection and associated nonlinear wave-particle interactions, providing an
important complement to previous diffusion models. In this study, we mainly focus on the wave-particle in-
teractions in lower latitudes. The physics in higher latitudes, where chorus waves may turn highly oblique, is also
interesting and important. We leave this for future work. To verify the influence of advection and diffusion
coefficients on electron dynamics, we need to perform electron dynamic simulations (e.g., Fokker-Plank equation
simulation) and compare the results with satellite observations. It is our next target and will be addressed in
subsequent work.
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