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Abstract Chorus waves are intense electromagnetic emissions critical in modulating electron dynamics. In
this study, we perform two‐dimensional particle‐in‐cell simulations to investigate self‐consistent wave‐particle
interactions with oblique chorus waves. We first analyze the electron dynamics sampled from cyclotron and
Landau resonances with waves, and then quantify the advection and diffusion coefficients through statistical
studies. It is found that phase‐trapped cyclotron resonant electrons satisfy the second‐order resonance condition
and gain energy from waves. While phase‐bunched cyclotron resonant electrons cannot remain in resonance for
long periods. They transfer energy to waves and are scattered to smaller pitch angles. Landau resonant electrons
are primarily energized by waves. For both types of resonances, advection coefficients are greater than diffusion
coefficients when the wave amplitude is large. Our study highlights the important role of advection in electron
dynamics modulation resulting from nonlinear wave‐particle interactions.

Plain Language Summary Wave‐particle interactions can modulate electron distributions through
advection and diffusion. Previous studies focusing on advection and diffusion primarily relied on test particle
simulations, which uses a simplified model of wave evolution. In this study, we perform self‐consistent
simulations to investigate the wave‐particle interactions with chorus waves and quantify the advection and
diffusion coefficients of resonant electrons. It is found that advection coefficients are greater than diffusion
coefficients in both cyclotron and Landau resonances, indicating the significant role of nonlinear wave‐particle
interactions. The quantification of advection and diffusion coefficients in a self‐consistent system is important
for understanding and predicting the loss and energization processes in radiation belt electrons. This study
complements previous diffusion models that regarded the evolution of electron dynamics in wave‐particle
interactions as a slow diffusive process.

1. Introduction
Chorus waves are intense and coherent electromagnetic emissions in the Earth's magnetosphere (Burtis & Hel-
liwell, 1969; Chen, Wang, et al., 2023; Li et al., 2009; Tsurutani et al., 2009; Tsurutani & Smith, 1974), excited by
the injections of ⇠10–100 keV electrons associated with substorms (Meredith et al., 2003; Li et al., 2009; Ma
et al., 2022. These waves are scientifically interesting due to their crucial roles in modulating electron dynamics.
For instance, they can scatter 10s of keV electrons into atmosphere, producing diffuse and pulsating auroras
(Chen et al., 2020; Chen, Gao, et al., 2023; Gao et al., 2024; Zhao et al., 2021), and accelerate 100s of keV
electrons to relativistic energies, forming the outer radiation belt (Foster et al., 2017; Omura et al., 2019; Thorne
et al., 2013).

Wave‐particle interactions can modify electron distributions through advection and diffusion (Albert & Bort-
nik, 2009; Artemyev et al., 2018; da Silva et al., 2018; Fu et al., 2019, 2020; Liu et al., 2012). Quasi‐linear theory
proposes that the distribution variations induced by chorus waves can be described in terms of diffusion, char-
acterized by slow changes, assuming a constant wave spectrum and weak amplitude (Glauert & Horne, 2005;
Kennel & Engelmann, 1966; Mourenas et al., 2012; Ni et al., 2014; Summers, 2005; Tu et al., 2013). While
nonlinear theory suggests that advection is faster and more important than diffusion (Albert et al., 2021; Bortnik
et al., 2008; Zhang et al., 2018). Therefore, how the variations resulting from both advection and diffusion caused
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by chorus waves affect electron precipitation and energization, and which type of variation is dominant, remain
not fully understood.

Previous studies primarily relied on test particle simulations to calculate the advection and diffusion coefficients
of particles under resonances with waves (Gan et al., 2020; Liu et al., 2012; Mourenas et al., 2012; Tao
et al., 2012), where the spatiotemporal evolution of waves is pre‐assumed. To fully address the physics in wave‐
particle interactions with oblique chorus waves, we perform self‐consistent simulations and investigate the in-
teractions through cyclotron and Landau resonances. Our findings reveal that the advection resulting from
nonlinear effects plays a more significant role in modulating electron dynamics.

2. Simulation Model
We use a two‐dimensional general curvilinear plasma simulation code (GCPIC) simulation model (Lu
et al., 2019; Wang et al., 2024) in dipole fields to investigate the self‐consistent wave‐particle interactions. The
reduced simulation domain is used, scaled to L à 5.5–6.5 with a scaling factor of 10. It covers a radial distance
range from p/(VAe0/Ωe0) à 1,511 to 1,767 (where p represents the equatorial distance to the center of the Earth)
and a latitude range from λ ⇠�30° to ⇠30°. Here, VAe0 à Be0=

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅμ0ne0me
p is the electron Alfven speed, Ωe0 à eBe0/

me is the equatorial electron gyrofrequency, μ0 is the vacuum permeability, e and me are the charge and mass of an
electron, Be0 is the background magnetic field at the equator, and ne0 is the plasma density. At the center of
simulation domain, ne0 is 10 cm�3 and Be0 à 144 nT. In this model, electrons are pushed by relativistic Lorentz
force, and chorus waves are self‐consistently excited by electrons with a temperature anisotropy. Other details of
the model are available in Wang et al. (2024).

Figure 1. Temporal evolutions of (a, g) wave perpendicular magnetic field amplitude δB⊥, (b, h) gyrophase angle ζ, (c, i)
derivative dζ/dt, (d, j) parallel velocity v‖, (e, k) kinetic energy Ek, and (f, l) equatorial pitch angle αeq of electrons along their
motion trajectories. The left (right) column in red (blue) is for the phase‐trapped (phase‐bunched) cyclotron resonant
electron. The dashed boxes (Ωe0t à 2,807–2,879 in left column and 2,796–2,858 in right column) mark the periods of ζ
variation around Ts. The dotted lines in panels (b, h) indicate ζ à 0. The thick black lines in panels (c, i) represent the linear
fitting of d2ζ/dt2.
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The dynamics of resonant electrons are studied using the retracing method
(Chen et al., 2024). They are collected at a specific time point Ts and are
analyzed from T0 to Tf, with T0 < Ts < Tf. These electrons are not treated as
test particles; instead, they interact self‐consistently with waves. In this study,
we focus on the wave‐particle interactions at p/(VAe0/Ωe0) à 1,722 and in the
low latitude λ à �7.6°, where chorus waves propagate obliquely against
magnetic field lines with a wave normal angle of θ⇠15°. The interactions
through cyclotron and Landau resonances are separately investigated.

3. Simulation Results
3.1. Dynamics of Cyclotron Resonant Electrons
We first investigate the electron dynamics under cyclotron resonance with
waves. At Ωe0Tsà 2,840, the cyclotron resonance velocity is calculated as vcà
(ω–Ωe /γ)/k‖ à 0.88VAe0 (where Ωe à eB0/me is the local electron gyrofre-

quency, B0 is the local background magnetic field, γà h1 � ⇣v2
k á v2

⊥⌘= c2i�1=2

is the Lorentz factor, v‖ and v⊥ are the parallel and perpendicular velocities, and
c is the light speed), using a wave frequency of ω/Ωe0 à 0.29, a wave normal
angle θ à 11.26°, and a wave number kVAe0/Ωe0 à �0.65. Cyclotron resonant
electrons are collected in the ranges of v‖/VAe0à 0.58–1.18, v⊥/VAe0à 2–4, and
ζ à �π–π/2, where ζ is the gyrophase angle between v⊥ and wave perpen-
dicular magnetic field δB⊥. Cyclotron resonant electrons trapped in wave
phases are categorized into phase‐trapped and phase‐bunched electrons (Al-
bert et al., 2021; Chen et al., 2024; Liu et al., 2012; Matsumoto & Omura, 1981;
Nunn, 1974). In this study, a total of 7,651 cyclotron resonant electrons are
collected, comprising 2,288 phase‐trapped electrons and 5,363 phase‐bunched
electrons. Their dynamics are investigated from Ωe0T0 à 2,740 to
Ωe0Tf à 2,940.

Figure 1 illustrates the examples of phase‐trapped and phase‐bunched elec-
trons. The electrons move counter‐stream to waves (Figure S1 in Supporting
Information S1) and experience amplitude modulation during the traversal of
wave packets (Figures 1a and 1g). Along their motion trajectories, the tem-
poral evolutions of ζ for phase‐trapped and phase‐bunched electrons are

different. As shown in Figure 1b, the pattern of ζ evolution for the phase‐trapped electron follows a sinusoidal
function, with ζ confined within the range of ζ à �π/2–π/2. Here, ζ à π/2 denotes the positive direction of wave
perpendicular electric field δE⊥ (refer to Figure S1 in Supporting Information S1 in Wang et al., 2024). When
ζ < 0, v‖ decreases due to the negative Lorentz force dv‖/dt à �ev⊥ ⇥ δB⊥, while Ek increases due to the positive
energy transfer �ev⊥ ⋅ δE⊥ (the terms δE‖ and �ev‖ ⋅ δE‖ are significantly small and therefore neglected),
resulting in an increase in αeq. Conversely, v‖ increases but Ek and αeq decrease when ζ > 0. Within one ζ period
(as indicated by the dashed box in Figure 1b), the electron spends more time at ζ < 0, leading to the overall
increase in Ek and αeq (Figures 1e and 1f). Therefore, the phase‐trapped electron gains energy from waves. For the
phase‐bunched electron, resonance interaction only occurs when v‖ is close to vc during Ωe0t à 2,796–2,858
(marked by the dashed box in Figure 1j). As shown in Figure 1h, the pattern of ζ evolution follows a parabolic
function in this interval, with ζ increasing from �π to ⇠π/2 and then returning to �π. Since the electron spends
more time at ζ > 0, Ek and αeq exhibit an overall decrease (Figures 2k and 2l). Consequently, the phase‐bunched
electron transfers energy to waves.

For both phase‐trapped and phase‐bunched electrons, resonant interactions with waves correspond to dζ/dt⇠0
(Figures 1c and 1i), which is the first‐order resonance condition (Matsumoto & Omura, 1981; Vomvoridis
et al., 1982). We then evaluate d2ζ/dt2 by linearly fitting the slope of dζ/dt (indicated by thick black lines) during
resonant intervals. The d2ζ/dt2 for the phase‐trapped electron is nearly 0 with d2ζ/dt2 à 2.7 ⇥ 10�4. While d2ζ/
dt2 à �1.4 ⇥ 10�2 is negative for the phase‐bunched electron.

Figure 2. (a, d) Occurrence rates of d2ζ/dt2, (b, e) dwell time in the ζ–v‖
planes, and (c, f) motion trajectories in the v‖–v⊥ planes. The left (right)
column is for phase‐trapped (phase‐bunched) electrons. The black lines in
panels (b, e) represent the envelope of the electron hole. In panels (c, f), the
gray lines denote the contour lines of vt, and the black lines represent the
cyclotron resonance velocity vc.
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A statistical analysis of d2ζ/dt2 is performed. Figures 2a and 2d shows the
occurrence rate of d2ζ/dt2, defined as the ratio between the number of elec-
trons in each category and the total number of corresponding electrons. Phase‐
trapped electrons cluster around d2ζ/dt2 à 0, satisfying the second‐order
resonance condition (Matsumoto & Omura, 1981; Vomvoridis et al., 1982),
also known as “phase‐locking” condition (Inan et al., 1978; Nunn, 1986; Tao
et al., 2021). This indicates that phase‐trapped electrons can maintain the
resonant condition dζ/dt⇠0 for the longest possible time, therefore maxi-
mizing the energy gain from waves. In contrast, phase‐bunched electrons
cannot remain in resonance for long periods due to negative d2ζ/dt2, with the
maximum occurrence rate at d2ζ/dt2⇠�1.5 ⇥ 10�2.

To further distinguish the two types of electrons, we present their distributions
in the ζ–v‖ planes in Figures 2b and 2e. The color codes indicate dwell time,
which is statistically analyzed from Ts � 20 Ω�1

e0 to Ts á 20 Ω�1
e0 . The black

lines denote the envelope of the electron hole at Ts, defined as (Omura
et al., 2008; Wang et al., 2024):

k2�vk � vc�2 á 2ω2
trâcosÖζ á πÜ � SÖζ á πÜä à C, Ö1Ü

where ωtr à ωtχγ�1/2, ωt à �kkv⊥eδB⊥=me�1=2, χ à ⇥1 � ω2= �k2c2�⇤1=2, S is
the inhomogeneity factor, and C is a constant. At Ωe0Ts à 2,840, δB⊥/Be0 is
0.017, S is �0.35, and v⊥/VAe0 à 2.5. Phase‐trapped electrons primarily
localize inside the envelope, while phase‐bunched electrons are outside and
surround it. Moreover, phase‐trapped electrons mainly cluster at ζ < 0, cor-
responding to positive �ev⊥ ⋅ δE⊥ and energy gain from waves, whereas
phase‐bunched electrons concentrate at ζ > 0, associated with negative
�ev⊥⋅δE⊥ and energy loss. Therefore, the tendency of energy variation
revealed by statistical study is consistent with the results from single‐particle
analysis (Figure 1).

Additionally, the source of electrons in the velocity distribution is also
different. Figures 2c and 2f illustrate electron trajectories in the v‖–v⊥ planes,

with color codes indicating temporal evolutions. For phase‐trapped electrons, v‖ is larger than vc at Ωe0T0 à 2,740,
but it decreases to the values smaller than vc during resonance with waves. However, the total velocity
vt à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
v2
k á v2

⊥

q
(or Ek) increases since v⊥ grows significantly. In contrast, phase‐bunched electrons exhibit v‖

smaller than vc at T0, with v‖ increasing but vt (or Ek) decreasing through the interaction. Due to the lower number
density at larger v‖ in the Maxwellian distribution, an electron hole is formed when the phase‐trapped electrons
are inside the envelope (Figure 2b).

To quantify the variations of Ek and αeq for phase‐trapped and phase‐bunched electrons, we calculate the
advection and diffusion coefficients. Figure 3 illustrates the (a, g) occurrence rates of electrons at T0, (b, c, h, i)
kinetic energy advection coefficient AEk and diffusion coefficient DEkEk, (d, e, j, k) pitch angle advection coef-
ficient Aαeq and diffusion coefficient Dαeqαeq, and (f, j) cross diffusion coefficient DαeqEk in the αeq0–Ek0 planes,
where αeq0 and Ek0 represent the αeq and Ek values at T0. The occurrence rate is defined as the ratio of electron
number in each bin to the total number of corresponding electrons. The black lines denote the cyclotron resonance
energy as a function of equatorial pitch angle (referred to as cyclotron resonance line), estimated using the wave
parameters at Ts. The coefficients are calculated by (Fu et al., 2020; Su et al., 2012; Zheng et al., 2012):

AEk à
hEkf � Ek0i

∆T , Ö2Ü

DEkEk à
⌦ÖEkf � hEkf iÜ2↵

2∆T , Ö3Ü

Figure 3. Distributions of (a, g) occurrence rate, (b, h) AEk , (c, i) DEkEk , (d, j)
Aαeq , (e, k) Dαeqαeq , and (f, l) DαeqEk as a function of αeq0 and Ek0. The left
(right) column is for phase‐trapped (phase‐bunched) electrons. The dashed line
in each panel represents the cyclotron resonance line.
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Aαeq à
hαeqf � αeq0i

∆T , Ö4Ü

Dαeqαeq à
⌦Öαeqf � hαeqf iÜ2↵

2∆T , Ö5Ü

DαeqEk à
hÖαeqf � hαeqf iÜ ÖEkf � hEkf iÜi

2∆T , Ö6Ü

where αeqf and Ekf represent the values at Tf, ΔT is the interval of 200 Ω�1
e0 , and

〈…〉 denotes averaging over all electrons. To reduce statistical errors, only the
coefficients with occurrence rates above 0.1% are presented. In this study,
cyclotron resonant electrons are investigated in the ranges of αeq0 à 40°–80°
and Ek0 à 50–250 keV, clustering around the cyclotron resonance line. Phase‐
trapped electrons mainly fall in the range of Ek0 à 50–200 keV, and their
αeq0 à 46°–64° are smaller than those on the cyclotron resonance line
(Figure 3a). While phase‐bunched electrons primarily correspond to larger
αeq0 à 66°–78° (Figure 3g), consistent with their smaller v‖ at T0 (Figure 2f).
For both types of electrons, advection coefficients are two orders of magni-
tude larger than diffusion coefficients, indicating the significant role of
nonlinear wave‐particle interaction through cyclotron resonance. Moreover,
αeq advection is more efficient than Ek advection. Specifically, phase‐trapped
electrons exhibit positive Ek and αeq advections, with mean values of AEk=Ek0
⇠10 s�1 and Aαeq ⇠20 s�1, especially for the electrons with smaller αeq0
(Figures 3b and 3d). These electrons are energized due to energy gain from
waves. In contrast, phase‐bunched electrons with larger αeq0 show weaker and
negative Ek advection with mean AEk=Ek0 ⇠�5 s�1 (Figure 3h), transferring
energy to waves. They are also scattered to smaller pitch angles due to
negative αeq advection with mean Aαeq ⇠�25 s�1 (Figure 3j).

3.2. Dynamics of Landau Resonant Electrons
We then investigate the dynamics of Landau resonant electrons, which are
collected at Ωe0Ts à 3,050. The wave frequency, wave normal angle, and
wave number are ω/Ωe0 à 0.36, θ à 13.38° and kVAe0/Ωe0 à �0.76,
respectively, leading to the Landau resonance velocity of vL à ω/
k‖ à�0.48VAe0. The electrons are collected in the ranges of v‖/VAe0 à�0.78–
0.18, v⊥/VAe0 à 2–4, and ζ à �π–π/2. There are a total of 6,069 Landau
resonant electrons, and their dynamics are investigated from Ωe0T0 à 2,950 to
Ωe0Tf à 3,150.

Figure 4 presents a typical example. The Landau resonant electron moves co‐stream with wave packets (Figure S1
in Supporting Information S1), experiencing nearly constant wave phases and amplitudes (δB⊥/Be0⇠0.013, as
shown in Figure 4a). During each gyroperiod (lasting approximately 9 Ω�1

e0 ), there is energy transfer between
waves and particles, with a nonzero net energy transfer due to the finite perpendicular wave number k⊥ (Chen &
Bortnik, 2020; Omura et al., 2019). As depicted in Figures 4b and 4c, the temporal variation of v‖ is determined by
�ev⊥ ⇥ δB⊥, with |v‖| decreasing (increasing) at positive (negative) �ev⊥ ⇥ δB⊥. The δE‖ term in the Lorentz
force is significantly small and therefore neglected (not shown). The Ek variation is determined by �ev⊥ ⋅ δE⊥
rather than �ev‖ ⋅ δE‖ (Figure 4f, the details are in the Supporting Information S1), where �ev⊥ ⋅ δE⊥ is one order
of magnitude larger than�ev‖ ⋅ δE‖ (Figures 4d and 4e). This is a typical characteristic of electromagnetic Landau
resonance (Hsieh & Omura, 2018; Liu et al., 2024; Omura et al., 2019). In Figures 4b and 4e, red (blue) color
highlights the positive (negative) values of �ev⊥ ⇥ δB⊥ and �ev⊥ ⋅ δE⊥. During intervals with positive net
�ev⊥ ⇥ δB⊥ and negative net �ev⊥ ⋅ δE⊥ (e.g., Ωe0t à 3,012–3,042), both |v‖| and Ek decrease. Meanwhile, v⊥
remains almost unchanged during resonance, resulting in an increase in αeq (Figure 4g). Conversely, during
intervals with negative net�ev⊥ ⇥ δB⊥ and positive net�ev⊥ ⋅ δE⊥ (e.g., Ωe0tà 3,042–3,093), |v‖| and Ek increase

Figure 4. Temporal evolutions of (a) δB⊥, (b) �v⊥ ⇥ δB⊥, (c) v‖, (d) �v‖ ⋅
δE‖, (e) �v⊥ ⋅ δE⊥, (f) Ek, and (g) αeq of the Landau resonant electron along
motion trajectory. The black dashed box marks the period of Ek variation
around Ts. The dotted lines in panels (b, d, e) indicate the value 0. In panel (b,
e), red (blue) color highlights the positive (negative) values of �v⊥ ⇥ δB⊥ or
�v⊥ ⋅ δE⊥.
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but αeq decreases. The period of Ek variation around Ts is indicated by the
black dashed box from Ωe0t à 3,012 to 3,093, established via the adjacent
maximum Ek values. Within one period, the net energy transfer predomi-
nantly occurs from waves to particles, leading to an overall increase in |v‖| and
Ek. The electron gains energy from chorus waves.

We further calculate the advection and diffusion coefficients for Landau
resonant electrons based on Equations 2–6. Here, αeq0 and Ek0 (αeqf and Ekf)
represent the values at T0 (Tf), and only the coefficients with occurrence rates
above 0.1% are presented. The dashed lines represent the Landau resonance
energy as a function of equatorial pitch angle (referred to as Landau resonance
line), estimated using the wave parameters at Ts. The electrons cluster around
the Landau resonance line in the ranges of αeq0 à 65°–80° and Ek0 à 40–
230 keV (Figure 5a). As shown in Figures 5b–5f, the advection coefficients are
two orders of magnitude larger than diffusion coefficients, indicating that
nonlinear effects also dominate the wave‐particle interaction through Landau
resonance. Furthermore, Ek advection is more efficient than αeq advection. The
electrons in the lower energy range of Ek0 à 40–100 keV exhibit strong Ek
advection with the mean value of AEk=Ek0 ⇠10 s�1 (Figure 5b), and those with
smaller αeq0 correspond to a weak increase in αeq with Aαeq of ⇠7 s�1

(Figure 5d). Therefore, Landau resonant electrons are primarily energized by
chorus waves. Additionally, energization through Landau resonance can be
more efficient than through cyclotron resonance due to the longer interaction
time, as Landau resonant electrons move co‐stream with wave packets (Omura
et al., 2019).

4. Summary and Discussions
In this study, we investigate electron dynamics through cyclotron and Landau
resonances with oblique chorus waves and quantify the advection and diffusion
coefficients in self‐consistent wave‐particle interactions. For both kinds of
resonances, advection coefficients are greater than diffusion coefficients when
the wave amplitude is large. Phase‐trapped cyclotron resonant electrons satisfy
the phase‐locking condition d2ζ/dt2⇠0, enabling them to maintain resonance
with waves. They are mainly in the ranges of αeq à 46°–64° and Ek à 50–
200 keV, exhibiting positive αeq and Ek advections and gaining energies from
waves. On the other hand, phase‐bunched electrons, which concentrate in
αeq0 à 66°–78° and Ek à 50–200 keV, cannot remain in resonance for long
periods due to d2ζ/dt2 < 0. They are characterized by negative αeq and Ek ad-
vections, transferring energies to waves and being scattered to smaller pitch
angles. Landau resonant electrons primarily fall within αeq à 65°–80° and
Ek à 40–100 keV and are energized with positive Ek advection.

By integrating simulated wave parameters into quasi‐linear theory models
(Glauert & Horne, 2005; Summers, 2005), we estimate DEkEk =E2

k0 to be
⇠0.05–0.1 s�1 and Dαeqαeq to be ⇠0.5–1.0 s�1 along the cyclotron resonance line. These estimations match the
diffusion coefficients derived from particle dynamics (Figures 3c and 3e). Note that in our simulations, DEkEk=E2

k0
and Dαeqαeq are two orders of magnitude larger than those in observations (Mourenas et al., 2012; Ni et al., 2014;
Tao et al., 2012; Tu et al., 2013). This discrepancy arises from the reduced simulation domain, where wave
amplitude δB is one order of magnitude larger than observational values (Ma et al., 2022), resulting in a two‐
order‐of‐magnitude amplification of diffusion coefficients as they are proportional to δB2 (Liu et al., 2010).
Besides, the calculation of diffusion coefficients in observations generally relies on stable wave models, which
only consider the energy transfer from waves to particles. In this work, we use a self‐consistent model, where
waves are excited by particles, considering both the energy transfers from waves to particles and the feedback

Figure 5. (a) Occurrence rate and (b–f) advection and diffusion coefficients
in the αeq0–Ek0 planes for Landau resonant electrons, following the format of
Figure 3. The dashed line in each panel represents the Landau resonance line.
Since αeq and Ek of Landau resonant electrons exhibit opposite variations,
the absolute values of DαeqEk are presented in panel (f).
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from particles to waves. Further investigation will focus on clarifying the relation between advection/diffusion
coefficients and wave amplitude through parametric studies.

The quantification of advection and diffusion coefficients in self‐consistent wave‐particle interactions is crucial
for understanding and predicting the loss and energization processes in radiation belt electrons. Our study
highlights the significant roles of advection and associated nonlinear wave‐particle interactions, providing an
important complement to previous diffusion models. In this study, we mainly focus on the wave‐particle in-
teractions in lower latitudes. The physics in higher latitudes, where chorus waves may turn highly oblique, is also
interesting and important. We leave this for future work. To verify the influence of advection and diffusion
coefficients on electron dynamics, we need to perform electron dynamic simulations (e.g., Fokker‐Plank equation
simulation) and compare the results with satellite observations. It is our next target and will be addressed in
subsequent work.

Data Availability Statement
The simulation data are available in Chen (2024).
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