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Abstract

The Solar system Notification Alert Processing System (SNAPS) is a Zwicky Transient Facility (ZTF) and Rubin
Observatory alert broker that will send alerts to the community regarding interesting events in the solar system.
SNAPS is actively monitoring solar system objects and one of its functions is to compare objects (primarily main
belt asteroids) to one another to find those that are outliers relative to the population. In this paper, we use the
SNAPShot1 data set, which contains 31,693 objects from ZTF, and derive outlier scores for each of these objects.
SNAPS employs an unsupervised approach; consequently, to derive outlier rankings for each object, we propose
four different outlier metrics such that we can explore variants of the outlier scores and add confidence to the
outlier rankings. We also provide outlier scores for each object in each permutation of 15 feature spaces, between
two and 15 features, which yields 32,752 total feature spaces. We show that we can derive population outlier
rankings each month at Rubin Observatory scale using four Nvidia A100 GPUs, and present several avenues of
scientific investigation that can be explored using population outlier detection.

Unified Astronomy Thesaurus concepts: Asteroids (72); Small solar system bodies (1469); Sky surveys (1464);

Astroinformatics (78); GPU computing (1969)

1. Introduction

The Rubin Observatory’s Legacy Survey of Space and Time
(LSST; Ivezi€ et al. 2019) will have an major impact on time-
domain astronomy. To prepare for this large all-sky survey,
many researchers have been designing data processing
pipelines (Coughlin et al. 2021; van Roestel et al. 2021) for
precursor surveys, such as the Zwicky Transient Facility (ZTF;
Bellm et al. 2018). While ZTF generates roughly a tenth of the
LSST data volume, it and other LSST precursor surveys such
as the Asteroid Terrestrial-impact Last Alert System (Tonry
et al. 2018), Automated Survey for SuperNovae (Shappee et al.
2014), and the Catalina Real-Time Transient Survey (Drake
et al. 2014) are instrumental for ensuring that the necessary
preparations have been made to maximize the scientific return
of LSST. Several alert brokers are currently being developed to
prepare for LSST including Fink (Moller et al. 2020), ALeRCE
(Forster et al. 2021; Sanchez-Saez et al. 2021), ANTARES
(Matheson et al. 2021), Lasair (Smith et al. 2019), among
others.”

Recent LSST preparation efforts have focused on classifying
astrophysical sources (Soraisam et al. 2020). In the context of
solar system science, the vast majority of objects are asteroids,
and so classification is less important in this context (e.g.,
classifying an asteroid versus comet is not very illuminating).
Instead, a major focus of the solar system community is to
detect interesting transient events in addition to detecting
asteroids that are different relative to the population.

4 For an update-to-date list of LSST alert brokers, see the following URL:
https: //www.lsst.org/scientists /alert-brokers.
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In this paper, we present our population outlier detection
software infrastructure for the Solar system Notification Alert
Processing System (SNAPS). Trilling et al. (2023) presented the
first SNAPS data release (SNAPShot1), which contains 31,693
asteroids from ZTF. Each asteroid has been observed at least 51
times and has been assigned a rotation period and light-curve
amplitude among other derived properties. Beyond solar
system science, ZTF has been similarly used for deriving the
rotation periods of fully convective stars (Lu et al. 2022). It is
clear that the time-domain capabilities of new observatories are
revolutionizing our understanding of the solar system and
beyond.

At present, SNAPS is operating as a downstream broker from
ANTARES (Matheson et al. 2021), and will continue to do so in
the LSST era (more detail on SNAPS can be found in Trilling
et al. 2023). Population outlier detection refers to detecting
asteroids that have interesting properties relative to the other
asteroids in the database. Because we have few examples of
outlying objects in the solar system, we use an unsupervised
machine-learning approach that detects interesting objects
without the use of binary classification labels (i.e., inlier versus
outlier). Our approach ranks the objects by assigning them an
outlier score, and this will allow users of SNAPS to customize
the number of objects that they may want to investigate further;
for instance, a user may find an interesting object and then use
telescopic follow-up observations for additional analysis.
Furthermore, we use an ensemble of algorithms and outlier
detection metrics to guide the search for outliers, as the
methods may disagree on which objects have the highest
outlier scores.

The paper is organized as follows. Section 2 describes the
data sets used throughout the paper. Section 3 presents the
population outlier detection system. Section 4 highlights key
results by deriving population outlier scores for objects in our
ZTF catalog, in addition to showing system performance using


https://orcid.org/0000-0002-0826-6204
https://orcid.org/0000-0002-0826-6204
https://orcid.org/0000-0002-0826-6204
https://orcid.org/0000-0003-4580-3790
https://orcid.org/0000-0003-4580-3790
https://orcid.org/0000-0003-4580-3790
https://orcid.org/0000-0002-6676-1713
https://orcid.org/0000-0002-6676-1713
https://orcid.org/0000-0002-6676-1713
https://orcid.org/0000-0002-6292-9056
https://orcid.org/0000-0002-6292-9056
https://orcid.org/0000-0002-6292-9056
https://orcid.org/0009-0005-9955-1500
https://orcid.org/0009-0005-9955-1500
https://orcid.org/0009-0005-9955-1500
mailto:michael.gowanlock@nau.edu
http://astrothesaurus.org/uat/72
http://astrothesaurus.org/uat/1469
http://astrothesaurus.org/uat/1464
http://astrothesaurus.org/uat/78
http://astrothesaurus.org/uat/1969
https://doi.org/10.3847/1538-3881/ad4da5
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ad4da5&domain=pdf&date_stamp=2024-07-05
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ad4da5&domain=pdf&date_stamp=2024-07-05
http://creativecommons.org/licenses/by/4.0/
https://www.lsst.org/scientists/alert-brokers

THE ASTRONOMICAL JOURNAL, 168:56 (20pp), 2024 August

Gowanlock et al.

Table 1
Features Used for Outlier Detection in SNAPShot1

Feature Description NaN to Mean  Derived m o
G_BR The Bowell G value in the r filter (Bowell et al. 1989). v 0.226 0.234
H_BR The absolute magnitude of the object, in the Bowell HG system, in the r filter. v 14.108 1.877
G_BG The Bowell G value in the g filter. v 0.216 0.255
H_BG The absolute magnitude of the object, in the Bowell HG system, in the g filter. v 14.685 1.902
LCAMP The amplitude of the light curve. v 0.322 0.300
ROTPER The rotation period (in hours) of the object. v 101.150  643.548
GRCOLOR The g — r color of the object. v 0.596 0.146
SIGGRCOLOR The 1o error of the g — r color. v 0.008 0.006
PERIPOWER The normalized Lomb-Scargle periodogram power of the rotation period. v 0.514 0.289
NEOWISE_DIAM The diameter of the object calculated by the NEOWISE survey. v 8.263 15.675
NEOWISE_VALBEDO The albedo in the V band, calculated by the NEOWISE survey. v 0.196 0.185
MPC_A The object’s semimajor axis in astronomical units. 2.698 1.837
MPC_E The object’s eccentricity. 0.144 0.100
MPC_I The object’s inclination in degrees. 9.660 8.917
HAVG The object’s average absolute magnitude. v 14.045 1.830

Note. The table shows each feature and a description. The text describes that NEOWISE_DIAM and NEOWISE_VALBEDO do not provide values for all ZTF objects;
therefore, those objects that are missing values, are replaced by the mean of the distribution of those features. The mean and standard deviation (u, o) of the features
before normalization are shown as they are used to generate a synthetic data set used to assess population outlier detection at LSST scale.

this catalog, and expected performance at LSST scale. Section 5
shows example avenues of scientific investigation that can be
carried out using the system. Finally, Section 6 discusses
population outlier detection in the time-domain era of
astronomy and future work directions.

2. Data Sets

In this section, we describe the data sets used in our
evaluation, including SNAPShot1 (Trilling et al. 2023), which
is a ZTF data set. We also outline a synthetic data set that is
used to assess the performance of the system at LSST scale.

2.1. SNAPShotl

The first SNAPS data release is SNAPShot1, and a detailed
description of this data release is outlined in Trilling et al.
(2023). This data release contains |D| = 31,693 ZTF asteroids
that have at least 51 observations, such that properties can be
derived, including light-curve properties, such as rotation
periods and amplitudes. When we describe the data normal-
ization procedure in the next section, we will summarize the
properties of each asteroid.

SNAPShotl includes data from the NEOWISE catalog
(Mainzer et al. 2019), and we used the NEOWISE_DIAM and
NEOWISE_VALBEDO features as those properties may be
useful for detecting outliers. However, some of the ZTF objects
were not included in the NEOWISE catalog; consequently, in
cases where values were undefined (using “NaN” values), we
replaced those values with the mean of the distribution. This
ensures that those objects with undefined values are considered
typical, and therefore, will not be ranked as an outlier based on
the NEOWISE_DIAM and NEOWISE_VALBEDO properties.

2.2. LSST Synthetic Data Set

The LSST catalog will contain roughly 5 million asteroids at
the end of the 10 yr survey. To examine the performance of the
system at LSST scale, we generate a synthetic data set with 5
million objects with the same d =15 dimensions used for
SNAPShot1 described in Table 1 and denote this data set as
LSST5M. We replicate the features of each object in

SNAPShot1 and then add noise to the values of each feature.
The noise added to each feature is drawn from a Gaussian
distribution using p = 0 where the standard deviation, o, is that
of each feature in SNAPShot1 (as shown in Table 1). While
we do not expect that this data set will be exceedingly
representative of the LSST catalog, it is sufficient for testing the
performance of population outlier detection with SNAPS at
LSST scale (see Section 4.5).

3. Finding Outlying Asteroids: An Unsupervised Approach

The two major categories of machine learning are supervised
and unsupervised learning (Zhou et al. 2017). Supervised
learning takes as input feature vectors with class labels and
attempts to learn the function that maximizes classifying
objects with the correct class label. In contrast, unsupervised
learning does not use class labels and instead attempts to
identify patterns in data.

Other time-domain alert brokers that will classify sources
outside of the solar system, such as Fink (Moller et al. 2020),
ALeRCE (Forster et al. 2021; Sanchez-Séez et al. 2021), and
ANTARES (Matheson et al. 2021). Regarding the solar system,
the alert broker Fink (Moller et al. 2020) has been used to
identify new candidate solar system objects (Le Montagner
et al. 2023), and they also design a new phase function model
that corrects for the geometric properties of asteroids, including
spin coordinates, to better characterize sparse photometry from
ZTF (B. Carry et al. 2024, in preparation). Unlike much of the
prior work, source classification is not the target of our alert
broker; rather, we are interested in identifying objects
exhibiting interesting behavior either relative to its prior
observational record, or as compared to the greater population
of objects. Here, we refer to the former as real-time and the
latter as population outlier detection, respectively. Since there
are very few known examples of small bodies exhibiting
interesting /transient behavior, we are focused on unsupervised
approaches to outlier detection, as we do not have sufficient
examples of outlier activity needed to train supervised
approaches. Furthermore, since LSST is expected to detect
many new objects which may exhibit exotic properties for
which we have no known examples, we do not want to
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Figure 1. Illustrative example of a d = 2 feature space comparing outlier detection approaches for (a) DSSJ with ¢ = 0.67 and (b) a graphic representation of ANNSJ
with k£ = 3. (a) The points are shown as black dots, where a fixed radius is drawn around each point. (b) The kNN graph is shown where a directed edge between two
nodes denotes the k = 3 neighbors for each point. Since k = 3 and there are 10 points, there are a total of 30 directed edges. Colors are used to improve readability in
both subfigures. The DSSJ and ANNSJ approaches will be described in greater detail in Sections 3.5-3.7.

inadvertently exclude these objects from being detected as
outliers, which may occur if a supervised approach is used.

3.1. Terminology

Because this paper includes material from several fields of
computer science and astronomy, we outline terminology that
is used throughout the paper as follows.

1. Feature vector/point. A feature vector is a set of
numerical attributes that define an object, e.g., an asteroid
(example properties include color, rotation period, and
albedo). Because these feature vectors occupy a position
in a d-dimensional feature space, they are also called
points. Throughout this paper, we refer to asteroid
properties as feature vectors and points.

2. Data set/database. A collection of feature vectors is
denoted as D. The cardinality of the set (number of
objects/asteroids) is denoted as |D|.

3. Feature space. The space encompassing all of the feature
vectors (or points) in the data set, D.

4. Dimensionality. The number of features included in each
feature vector (d). We examine d < 15.

5. Self-join. Performing a search on all feature vectors
within a data set (D) as compared to each other.

6. Distance similarity search. This is also known as a range
query or a radius search, where a search is conducted
around a query point using a radius € and all neighbors
that are found within € are returned. A distance similarity
self-join (DSSJ) performs distance similarity searches on
all points in the data set, D.

7. k-nearest neighbors (kNN) search. Finding the closest k
points within the feature space from a given query point.
A kNN self-join performs kNN searches on all points in a
data set, D.

8. Multi-GPU speedup. A performance measure that
describes the scalability of a GPU algorithm that uses
multiple GPUs. It is the ratio of the time to compute on
one GPU (T}) to T,,_.,,,, where T,, . is the time to compute

GPU? nGru

on ngpy GPUs. In this paper we evaluate up to ngpy =4
and so the maximum possible speedup is 4x.

9. Multi-GPU parallel efficiency. A performance measure
that describes how well a resource is utilized (the GPU in
this context). It is the multi-GPU speedup above divided
by ngpu, and the maximum value is 1.0 (or 100%).

3.2. Background and GPU-accelerated Outlier Detection
Algorithms

Many of the pioneering efforts on outlier detection use the
intuitive notion of an outlier, which defines an outlier as having
a large fraction of the data set exterior to a search distance
around a given point (Knorr & Ng 1997). Subsequent efforts
have focused on the notion of neighbors around a point, where
the definition of an outlier is a function of the properties of its
closest neighbors (Campos et al. 2016). This second class of
algorithms that use kNN have been shown to outperform other
unsupervised learning methods (Campos et al. 2016). Given
these two major approaches to outlier detection, we select two
methods as follows: (1) DSSJ and (2) k-nearest neighbors self-
join (KNNSJ).

The DSSJ operation performs distance similarity searches on
all feature vectors (or points) within a data set. Each distance
similarity search returns all points within a search distance, e,
of a point. Thus, the “self-join” refers to searching all points
within a data set as compared to each other. kkNNSJ finds the
kNN of all points in a data set. Compared to DSSJ, which uses a
fixed search radius ¢, the ANN algorithm employs varying
search radii for each point in the data set to find at least k
neighbors per point. For example, in a densely populated
region of the data space, the search radius will be small such
that it finds at least k neighbors, whereas in a sparsely
populated region, the search radius will need to be larger.
Examples of the DSSJ and ANNSJ approaches are outlined in
Figure 1.

The typical approach for selecting parameters for an outlier
detection algorithm (e.g., k in the kNNSJ approach) is to use the
receiver operating characteristic (ROC; Campos et al. 2016).
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However, ROC requires a set of labels that define inliers and
outliers. Because we do not have a labeled set of outliers, we
elect to use a different approach. We select a search radius e for
DSSJ and the number of neighbors k for kANNSJ by reaching a
trade-off between overfitting to the local data density or
underfitting to the global data density of each feature space.
While this computation adds additional complexity to the
detection of outliers across all of the feature spaces, it ensures
that we are not arbitrarily selecting the parameters e or k.

3.3. Population Outlier Detection and Accelerating Scientific
Discovery

One facet of population outlier detection is the examination
of multidimensional feature spaces. The features must be
normalized to ensure that some properties are not given more
weight than others. Otherwise, some features may dominate the
feature space, and obfuscate other features from contributing to
the degree that an object is considered an outlier. Therefore, we
normalized all features to be in the range [0, 1]. We used all of
the SNAPShotl features outlined in Table 1, where the
nonnormalized mean and standard deviation values are
reported.

To address a wide range of science cases, and to accelerate
the scientific discovery process, we assign objects an outlier
ranking across all permutations of the 15 feature spaces
(Table 1 shows each feature), where the dimensionality d > 2.
In this context, population outlier detection serves two
purposes: (1) to filter those objects that are likely to be outliers
from the typical population of asteroids and (2) to accelerate
the scientific discovery process by providing additional
information that may be of interest to a researcher.

Regarding (2) above, the notion of accelerating the scientific
discovery process by augmenting a human researcher with
machine support has been described in other works, which
address providing multiple data variants to a user or guiding the
scientific discovery process through data prioritization (Wagstaff
et al. 2013; Pankratius et al. 2016). Population outlier detection
across numerous multidimensional feature spaces provides both
data prioritization and variant exploration.

To enable the permutation approach described above, SNAPS
will provide information regarding each permutation of the
d =15 features/dimensions where d > 2. Therefore, the total
number of feature spaces in SNAPShot1 is as follows:

15
2(1.5) =32, 752. (1)
l

i=2

Below we describe the methods used for outlier detection
and how we rank each object within each feature space.

3.4. Outlier Detection Methods and Object Ranking

We present two outlier detection methods each of which
have two different metrics, where each outputs a ranked list of
outlier objects. The ranked list method allows us to compare
the rankings between outlier detection approaches. Because the
different outlier detection methods are likely to return different
rankings for each object, this allows us to have several outlier
detection criteria that can be used to determine whether a given
object should be investigated in greater detail. This may
include telescopic follow-up to obtain additional information
about an object. This approach allows SNAPS users to
determine their own thresholds for decision making.

Gowanlock et al.

We let the list of ranked objects for a given method be
denoted as R where the rank of object i is denoted as r; € R
where i =1,...,|D|. Object i with the minimum ranking value
r; € R, argmin(r; € R), has the greatest probability of being an
outlier, whereas the object with the maximum value, argmax
(r; € R) is considered the most typical object in the feature
space. We highlight that some of the outlier detection methods
yield ties between objects, where two or more objects may be
assigned the same outlier score, whereas other methods may
not produce ties between object rankings.

3.5. Distance Similarity Self-join

The DSSJ method finds all points within a search radius, e,
around each point in a data set. Intuitively, points having a
significant number of points within € are considered typical,
and those with few points within € will be considered outliers.

3.5.1. Ranking Metrics

We outline two ranking metrics for DSSJ as follows. One
metric is distance-oblivious where all points within the search
radius, €, of a query point are considered equal, and thus their
distances to the query point are not included in the ranking. The
other metric is distance-aware where the distances of points to
the query point within the search radius e are considered in the
ranking calculation. These two metrics yield different rankings
for the DSSJ method.

1. Distance-oblivious. The ranking function, R, is simply a
ranking from the fewest to the greatest number of
neighbors each point has within the search distance e.

2. Distance-aware. The ranking function, R, is a ranking
from the largest mean distance between an object and its
points within € and the smallest mean distance.
Intuitively, if a given point has its neighbors at large
distances, then this implies that it is an outlier.

3.5.2. Overfitting versus Underfitting: On The Selection of The Search
Radius €

The selection of e will directly impact the outlier ranking of
each object in the data set. Consider two extremes: (1) when
€~ 0, there will be few (if any) neighbors found within €
around a given point/feature vector, and (2) as € — oo each
feature vector will find all other feature vectors in the feature
space. Both of these cases are impractical for finding outliers.
The search radius e must not be too small such that too few
neighbors are found, while not being too large such that too
many neighbors are found.

Considering the extreme cases above, a small value of e
implies that the local density of a feature vector determines
whether it is an outlier, whereas a large value of € implies that
the global density makes this determination. Thus, in the
former case, the data will be overfit to the local density, and in
the latter case, the data will be underfit. Here, we provide a
simple solution for selecting e, which considers the pragmatic
nature of finding outlying objects in the context of large-scale
astronomical surveys, by reaching a trade-off between under-
fitting and overfitting.

Consider two ranked lists, R* and RZ, and n, which refers to
some top fraction of the outliers in each list. In this paper we set
n=0.01|D| (1% of the data set). If the top-n outlying objects in
R* and R® are permuted and a given object in R” has a similar
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position in R®, then the object has been found to be an outlier
in both ranked lists. Likewise, objects that are not within the
top-n objects in both lists are inliers, and are thus typical
objects in the data set.

Given the above we compare the similarity of two ranked
lists of outliers, R* and R”, by counting the total fraction,
fe€10, 1], of feature vectors belonglng in the top-n in both lists,
or more formally their intersection:

f=IR* M R%| -7, 2

where r; €R*<nand r; € RE <n.

To reach a trade-off between underfitting and overfitting, we
search a grid of evenly spaced € values, G, where each value of
e is denoted as ¢; where j=1, 2,...,|G|, and €¢; € [€nin, Emax]-
€min and €pax refer to the minimum and maximum values of €
searched, respectively, and their selection will be described
later in Section 3.5.3.

For each value of ¢;, we derive a corresponding ranking of
outliers, denoted as R;, where R; corresponds to the ranking
given by €y and R corresponds to the ranking given by €max.

€min Tefers to a small search radius, and thus would produce a
ranked list that overfits the data. Likewise, ey,ax refers to a large
search radius that would underfit the data. To find a good value
of ¢j € [€min, €max], We compute the similarity (using
Equation (2)) between R; and R;, and the similarity between
R\ and R;. These two sets of similarity values, corresponding
to those generated as compared to Ry and R/, are denoted as
U™ and U™, respectively, where |U™"| = |[U™| = |G|.

Finally, the selected value of € is given by the value of j that
minimizes the difference in similarity values, which is
described below:

select
€ = €argmin(| U""" U™ - (3)

Ilustrative example. To better illustrate these concepts,
consider the following concrete example that computes U™"
and U™ with |G| =3 (i.e., for illustrative purposes we only
consider computing the fraction of points that match for three
values of €). Here, |G| =3 implies that j=1, 2, 3, and that
€min = €1 and €pax = €3.

The set of top-n outlying points found by €y, €,, and €5 are as
follows, where we set n = 10. We color code the points that are
common between sets:

€1 = €min = {1,2,3,4,5,16,17,18,19,20},
e ={1,2,3,4,8,9,10,100,101, 102},
€3 = €mas = {1,2,8,9,10,11,12,13,14, 15}

Using Equation (2) we compute U™" and U™, which
compares the similarity between the top-n points found by émin
and enax, respectively. Specifically, U™" is computed by
comparing €; to those found by ¢, (itself), €, and e3. U™ is
computed by comparing ez to €, €, and ez (itself). We
highlight that because we compare the same set to itself, this
guarantees that there is a 1.0 match fraction in U™" and U™,

Using the example values above and Equation (2) we
compute U™" and U™ as follows:

U™ = {2/10, 5/10, 10/10} = {0.2, 0.5, 1.0}.

Observe that because we compare the smallest value of € to
increasingly larger values of €, the match fraction declines. And
similarly because we compare the largest value of € to
increasingly larger values of ¢, the match fraction increases.

Gowanlock et al.

g
<)

o
o

o
o

e
>

e
N]

—— UM :e=0.0360
ymax:e=0.1707
gselect; 0.1256

Fraction Match (Number of Neighbors)

0'00.0360 0.0630 0.0899 0.1168 0.1438 0.1707

(a)

1.0

—— U™Min:e=0.0360
ymax:e=0.1707
gselect; 0.0716

° o o
IS o ©

Fraction Match (Mean Distance)

o
[N]

0.0360 0.0630 0.0899 0.1168 0.1438 0.1707
&

(b)

Figure 2. Example plots showing computing the best value of € on an example
d =5 feature space, which are the first five features in Table 1. U™" (U™)
refers to the fraction (f) of the top-n objects that are in both ranked lists for
€ =0.0360 (e = 0.1707) and the € values on the horizontal axis. The value of
€1t is shown as the vertical dotted line for (a) the number of neighbors metric
(dzstance oblivious), and (b) the mean distance metric (distance-aware).

0.0

This produces an intermediate value of ¢ that will be selected
that reaches a trade-off between the smallest and largest e
values.

Figure 2 shows a plot of this selection procedure on one of
the feature spaces, where (a) shows the number of neighbors
metric and (b) shows the mean distance metric (as defined in
Section 3.5.1). The plot shows how similar the rankings are
between the ¢ value on the horizontal axis as compared to the
smallest (U™") and largest (U™) € values, which are those that
are expected to overfit and underfit the data, respectively. Thus,
as € increases, the fraction match for U™" decreases, whereas it
increases for U™, A trade-off for €*°* is reached where
€min < €% < ¢ .. Note that € is evenly sampled on the
horizontal axis, which is somewhat misleading. While the axis
shows linear increases in ¢, this leads to a nonlinear increase in
the search volume, which is a function of the data
dimensionality. Thus, it is similar to a logarithmic sampling
of the search volume on the horizontal axis. However, fine-
grained samphng is unnecessary at hlgh values of e, as a large
value of € is unlikely to minimize the difference between
U”“" and U;/* (Equation (3)). We will examine this in more
deta11 when we show the distribution of ¢***! values across all
feature spaces in Section 4.2.
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In this section, we omitted how ¢, and €, are selected. In
what follows, we describe how we select these values.

3.5.3. Selection and Computation of the € Search Grid

A major challenge of using DSSJ for outlier detection is that
the values of e, and e, vary for each feature space. For
instance, with lower-dimensional data, the search radius needed
to find an average number of neighbors per point is smaller
than for high-dimensional data, as the total volume of the
feature space increases exponentially with the number of
dimensions. Furthermore, since the data in the feature spaces
are unlikely to follow any well-defined data distributions, the
values of € need to be found numerically as they cannot be
found analytically.

To address this, we define selectivity, which is the mean
number of neighbors within € found in a data set for DSSJ
(Gallet & Gowanlock 2021). The definition is s = (JA| — |D|) -
ID| ™" where |D| is the number of feature vectors and |A| is the
total result set size (the total number of pairs of points within e
of each other) of the self-join operation. Thus, it computes the
mean number of neighbors within ¢ in a data set, excluding a
point/feature vector finding itself. When processing SNAP-
Shotl, we set Syin &~ 0.001|D| and sy, =~ 0.15|D|, corresp-
onding to a minimum and maximum selectivity of 0.1% and
15% of the data set. The results of DSSJ using these two
selectivity values will overfit and underfit the data,
respectively.

To find the values of ¢y,;, and eyax that yield the minimum
and maximum selectivity values described above, we use the
method outlined in Gowanlock (2021), which was utilized to
select a search distance e that finds on average at least k
neighbors for each point in a data set for the kNNSJ algorithm.
The method is lightweight as it samples the data set to first
estimate the mean distance between points in a data set (€yean),
which is used as the upper bound on a practical search radius to
find €nax (Or €min). Then, the distances between a sample of
points and points within the data set are computed to create a
histogram of distances between points. Using this histogram, a
cumulative distance distribution histogram is computed, which
yields a relationship between the search distance and the
average number of neighbors that will be found per point in the
data set. We use this histogram to select the search radii €y,
and e,,x. We refer the reader to Gowanlock (2021) for further
details.

After enin and ey, are found, the e grid G is computed,
which is used to derive the rankings for all feature vectors in
the feature space and a value of ¢ is selected that reaches a
trade-off between overfitting and underfitting (Section 3.5.2).
We use a computationally efficient approach to compute the
result sets (A) for each ¢; € G. Consider that the result set A for
€max contains all of the neighbors for lower values of € as well.
Thus, we execute DSSJ once for €,,x and use this result set to
derive the result sets for all ¢; € G. Figure 3 shows an example
of three search radii (¢;, €, and €3), where ¢; = €y, and
€3 = €max- The figure shows that all result sets for €; < €y can
be derived from enx. Thus, independently executing DSSJ for
all ¢; € G is unnecessary (and would be very computationally
expensive), as the result set for e, can be filtered to compute
the result sets for smaller search distances.

Gowanlock et al.

Figure 3. Illustration of several result sets for query point ¢ in a d = 2 feature
space, where data points are shown as black dots and ¢ is shown as the red dot.
Three evenly spaced search distances are shown (€, €, and €3), which are
illustrated as circles centered on query point g. The result sets (A) are as
follows: A(e;) = {2, 3, 6}; A(e;) = {1, 4, 5} UA(e)); and A(e3) = {7, 8} UA
(€1) UA(ep). Points 9 and 10 are not within any of the result sets. Thus, the
result sets for €; and €, can be directly derived from that of e3.

3.6. k-nearest Neighbors Self-join

Intuitively, the ANNSJ algorithm can be employed for
unsupervised outlier detection where an outlier is characterized
as having a significant number of its kKNN located at large
distances.

3.6.1. Ranking Metrics

Similarly to DSSJ, the ANNSJ algorithm has two ranking
metrics outlined as follows, where one metric is distance-
oblivious and one is distance-aware. This yields two different
rankings for the ANNSJ method.

1. Distance-oblivious. The ranking function R is simply an
in-degree ranking of the ANN graph (Hautamaki et al.
2004), which is also known as its reverse nearest
neighbors. The in-degree refers to the number of
occurrences that a point is found within another point’s
set of ANN. The fewer the number of occurrences, the
more likely the point is an outlier.

2. Distance-aware. The ranking function is a ranking of
mean distances between a point and its kKNN. Intuitively, if
a given point has its k neighbors at large distances, then
this implies that it is an outlier.

3.6.2. On The Selection of k and the k-nearest Neighbors Search Grid

For brevity we briefly provide an overview of the procedure
for kKNNSJ because the method is analogous to that of DSSJ. We
highlight similarities and key differences between outlier
detection with ANNSJ compared to DSSJ.

Similar to DSSJ, the detection of outliers with the ANNSI
algorithm is dependent on the value of k. Unlike the DSSJ
algorithm, it is more straightforward to detect outliers with the
kNNSJ algorithm because we do not need to perform a search to
find €, and €qax. A low value of k will overfit the data and a
large value of k will underfit the data. We reach a trade-off
using an analogous method to DSSJ, which searches a grid of £
values where similarity is measured as compared to k;, and
kmax» and the value of k& which reaches a trade-off between



THE ASTRONOMICAL JOURNAL, 168:56 (20pp), 2024 August

1.0

o
o

o
o

ymin

ymax

Kkselect = 640

Fraction Match (In-Degree)
o
P

o
N

0.0

2 820 1639 2458 3277 4096
k

1.0

I o o
EN o ©

Fraction Match (Mean Distance)
o
N

ymin

ymax

Kkselect = 192

0.0

2 820 1639 2458 3277 4096
k

(b)

Figure 4. Example plots showing the computation of the best value of k using
kmin = 2 and kyax = 4096 on the same feature space shown in Figure 2. U™"
(U™) refers to the fraction (f) of the top-n objects that are in both ranked lists
for k = 2 (k = 4096) and the k values on the horizontal axis. The value of %!
is shown as the vertical dotted line for (a) the in-degree metric (distance-
oblivious), and (b) the mean distance to each point’s k neighbors (distance-
aware).

under- and overfitting is selected. Likewise, we use a
computationally efficient approach to compute the grid of k
values, denoted as k; € G where j = 1, 2,...,|G|. For each value
of k;, we compute the k neighbors for k., which contain the
neighbors for all k; < kpax. When processing SNAPShot1, we
set kpin = 2 and k. = 4096.

Figure 4 shows a plot of this selection procedure on one of
the feature spaces, where (a) shows the in-degree metric and (b)
shows the mean distance metric (as defined in Section 3.6.1).
The plot shows how similar the rankings are between the k
value on the horizontal axis as compared to the smallest and
largest values of k (kmin = 2 and k. = 4096), which are
those that are expected to overfit and underfit the data,
respectively. Thus, as k increases, the fraction match for U™"
decreases, whereas it increases for U™, A trade-off for k%t
is reached where ky;, < k€'t < k... Note that k is unevenly
sampled on the horizontal axis. This is because it is unlikely
that k*** will be large, so we do not perform a fine-grained
sampling at larger values of k. Furthermore, we find that *'***
is typically bound to a particular range of k values for the in-
degree and mean distance metrics, and so we finely sample
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Table 2
The Metric Values (Rankings) for the Example Shown in Figure 1

kNN Mean Dis-

DSSJ No. of DSSJ Mean kNN In- tance to k
Point Neighbors Distance Degree Neighbors
1 2(2) 0.6185 (1) 54) 0.7197 (5)
2 2(2) 0.6117 (3) 6 (5) 0.6435 (7)
3 43) 0.5541 (5) 6 (5) 0.5254 (8)
4 2(2) 0.5196 (7) 3(3) 0.6537 (6)
5 2(2) 0.5224 (6) 2(2) 0.7209 (4)
6 2(2) 0.3864 (9) 33) 0.4933 (9)
7 2(2) 0.6149 (2) 2(2) 0.7768 (3)
8 1(D) 0.4562 (8) 22 0.9133 (2)
9 1 (1) 0.5758 (4) 1(1) 1.0334 (1)
10 0 (0 0.0000 (0) 0 (0) 1.4839 (0)

Note. A ranking of 0 indicates the most outlying object.

those regions. We will show the distribution of k" across all
feature spaces in Section 4.2.

3.7. Summary: Comparison of Outlier Approaches

The DSSJ and ANNSJ methods each have two metrics which
yield four total outlier detection rankings for each object
(Sections 3.5.1 and 3.6.1). We briefly compare and contrast
these methods; however, their characteristics will be better
understood with an example on real-world data that we will
show in Section 4.4.

Figure 1 shows illustrative examples of (a) DSSJ and (b)
kNNSJ, where the positions of the points are identical in both
subfigures. Table 2 shows the corresponding metric values and
the resulting rankings for each. Observe that the rankings for
each method vary. Only point 10 has the same rank (0) across
the four methods, because it has no neighbors within € and it
has an in-degree value of 0. Furthermore, the DSSJ number of
neighbors metric and the ANNSJ in-degree metric have
numerous rankings that are the same between points because
the values are nonnegative integers. In contrast, the DSSJ mean
distance and kNN mean distance to k neighbors metrics are real
numbers so the probability that two values are the same is low,
and therefore it is unlikely that two points will share the same
rank. The only exception is when no neighbors are found
within the search radius e for the DSSJ mean distance metric
(e.g., point 10 in Figure 1), in which case it will be assigned a
rank of 0. From this example it appears that there is little
consensus among the outlier detection techniques; however,
this is primarily because there are only 10 points in the
example. On real-world data there is much more consensus
between the four rankings, and this will be discussed in greater
detail in Section 4.4.

3.8. High-level Population Outlier Detection System:
Description and Optimizations

In the prior sections, we discussed the outlier detection
methods. Here, we describe the GPU-accelerated implementa-
tions that are used in the system, and the integration of the
constituent components of the system. The implementation
uses shared libraries written in C/C++/CUDA using Python
(NumPy) interfaces.
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3.8.1. GPU-accelerated Implementations

We employ two state-of-the-art DSSJ and ANNSJ algorithms,
both of which use GPU acceleration. Gowanlock & Karsin
(2019) proposed a DSSJ algorithm for moderate- to high-
dimensional data. To enable searching in high-dimensional
feature spaces and avoid the curse of dimensionality problem’
where index searches become increasingly exhaustive,
Gowanlock & Karsin (2019) proposed indexing the data in ¢
dimensions, where ¢ < d. Thus, a representation of the data in ¢
dimensions avoids exhaustive index searches in high dimen-
sions. We configure our software to index in ¢ = d dimensions
when d <6, and ¢c=6 when d > 6. For example, when we
process the feature space with the greatest dimensionality
(d =15), we only index ¢ = 6 dimensions.

Several optimizations were subsequently made to the
algorithm outlined in Gowanlock & Karsin (2019), including
exploiting instruction-level parallelism and changing the order
in which query points are processed to decrease load imbalance
in the GPU kernel as outlined by Gowanlock et al. (2023). This
optimized algorithm is employed in our software.’

Gowanlock (2021) describes a hybrid CPU 4+ GPU kNNSJ
algorithm for low-dimensional data, where d <8. The
algorithm distributes query points to either the CPU or GPU
based on the expected amount of work required of each query
point. In short, query points in low-density regions are assigned
to the CPU and those in high-density regions are assigned to
the GPU. Because query points in high-density regions require
a significant number of distance calculations to refine the
candidate set (those points returned by an index but that need to
be refined using distance calculations), it is preferable to assign
these queries to the GPU instead of the CPU because the
former architecture has much higher throughput for this
operation. The other facet of distance calculation complexity
is the data dimensionality, d. For moderate- to high-
dimensional data, the GPU significantly outperforms the
CPU, and so there are cases where the CPU + GPU algorithm
yields an insignificant performance gain over a GPU-only
approach. Consequently, because the data we are using have
d = 15 dimensions, it is preferable to use the GPU-only version
of the algorithm proposed by Gowanlock (2021). While not
shown in that paper, the same method described for the DSSJ
above is employed, which indexes the data in ¢ < d dimensions
to allow for ANN searches in high dimensions. We use the
publicly available source code of this algorithm.’

3.8.2. Computational Optimizations

We describe several optimizations that are used to improve
the performance of the system. These methods are presented
independently from the results, but they will be of particular
interest when interpreting the results. Thus, the reader may
wish to read Section 4 and then return to this section later.

Multiprocessing each feature space. As described in
Section 3.3, there are 32,752 total feature spaces across d =2
—15 dimensions. We use the multiprocessing library in Python
to offload the processing of each of these feature spaces. Thus,
each feature space is computed independently and concurrently
with the others.

5 See Zimek et al. (2012) for an overview of the curse of dimensionality

problem.
6 https://github.com/mgowanlock /gpu_self_join
7 https://github.com/mgowanlock /hybrid_k_nearest_neighbor_self_join
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Oversubscription of GPU resources. It is well known that
there is overhead when communicating between the host
(which contains the CPU and main memory) and the GPU
(Capodieci et al. 2017). For instance, the KNNSJ and DSSJ
methods will need to transfer their respective result sets from
the GPU back to the main memory. During this time, the GPU
will not have anything to compute and so the resource will be
underutilized. Underutilizing the GPU will significantly
increase the total time needed to compute all of the feature
spaces.

To address the underutilization problem, we oversubscribe
the GPU and assign a maximum of o processes to the GPU at a
given time. Therefore, when one processes finishes computing
its task (a GPU kernel invocation) and starts transferring its
results back to the host, another process can start executing its
GPU kernel. The oversubscription value, o, cannot be too large,
otherwise the GPU global memory capacity will be exceeded,
and on our platform the global memory of a single GPU is
40 GiB. This will be described in greater detail in Section 4.3.

Multi-GPU scalability. Because the feature spaces are
independent, it is straightforward to assign a feature space to
a given GPU, where either the DSSJ or kNNSJ algorithms are
executed on the feature space. Thus, our system exploits the
four GPUs on our hardware platform (the platform is described
in additional detail in Section 4.1). Because the feature spaces
are of varying dimensionality, the amount of work needed to
compute each feature space varies. We schedule the
computation of feature spaces to GPUs using dynamic
scheduling, where the least-loaded GPU is assigned the next
feature space. This yields good load balancing across the four
GPUs. We describe multi-GPU scalability in greater detail
Section 4.3.

Nested parallelism of tasks across the CPU and GPU. Recall
from Sections 3.5.3 and 3.6.2 that we require finding a good
value of € and k for DSSJ and ANNSJ, respectively, such that we
do not arbitrarily select a value for these parameters that
underfits or overfits the data. We use the result set for €,,,x and
kmax to derive all result sets for lower values of ¢; and k;
respectively. The GPU computes these result sets, and transfers
them back to the host, where we then compute the result sets
for the smaller values of €; < €yax and k; < kpax in parallel on
the CPU. This allows the CPU to contribute to the overall
computation instead of simply orchestrating data transfers to/
from the GPU and performing other minor host-oriented tasks
that are required for GPU computation.

4. Results
4.1. Experimental Methodology

Our platform consists of two Intel(R) Xeon(R) Platinum
8358 CPUs (64 total physical cores) with a base clock speed of
2.60 GHz and 512 GB of main memory. The platform is
equipped with four Nvidia A100 GPUs, each of which has 40
GB of global memory. The source code uses the following
programming languages: Python, C/C++, and CUDA. All
host C/C++ code is compiled with the O3 compiler
optimization flag, and all CUDA code was compiled with
CUDA vl11.7. The C/C++ and CUDA code uses 32 bit
floating point precision. All performance-related experiments
use an average of three time trials; however, the variance in the
time measurements is insignificant, and error bars on these
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Table 3
Parameters Used throughout the Evaluation

Parameter Description
n (0.01|D)) The number of points considered when computing the similarity between two ranked lists.

1% of the data set are used as we are interested in selecting those objects that are outliers.
G The grid of € or k values that are searched for DSSJ and ANNSJ, respectively.
Smin (=0.001|D)) The minimum selectivity used when defining the e grid.
Smax (=0.15|D)) The maximum selectivity used when defining the € grid.
eselect The selected value of e that reaches a trade-off between underfitting and overfitting the feature space.
kmin (2) The minimum value of k£ used when defining the grid of k values.
kmax (4096) The maximum value of k used when defining the grid of k values.
feeteet The selected value of k that reaches a trade-off between underfitting and overfitting the feature space.
o The oversubscription factor, which is the maximum number of processes that are assigned to one GPU at a time.

Note. The values of the parameters are given in parentheses where applicable.

plots would be too small to observe so we do not report this
information.

The platform is located within our institution’s computer
cluster, Monsoon, and we ensure that our experiments are
carried out without interference from other users running on the
node. The population outlier detection pipeline requires storing
output (i.e., writing the rankings for each feature space to disk
and diagnostic plots), and this occurs over the network where
files are written to a parallel file system. We include this and all
other overheads in the end-to-end response time such that we
accurately capture the performance of the system.

For convenience, Table 3 summarizes the parameters used
throughout the evaluation, which were defined in prior
sections. Some parameters will be varied in the sections that
evaluate the performance of the algorithms.

4.2. Distribution of the Selected Values of € and k

We begin by examining the selected values of ¢ for the DSSJ
algorithm. Figure 2 showed selecting a good value of € on a
single feature space by reaching a trade-off between under-
fitting and overfitting the data. Here, we present the distribution
of °“* values across all 32,752 feature spaces for the number
of neighbors and mean distance metrics. In other words, we
show the resulting €' values from an analogous analysis to
that shown in Figure 2, but summarized across all feature
spaces.

Note that it is not possible to show the distribution using the
€9 values because the range [€min, €max] Varies across each
individual feature space. Thus, we show the index j of the
selected value of ¢; € G, denoted as arg(eselea). For example, in
Figure 2(a), instead of reporting €'** = 0.1256, we report arg
(Eselect) —15.

Figures 5 and 6 plot arg(e““") as a function of the
dimensionality of the feature spaces for the number of
neighbors and mean distance metrics, respectively. Across all
feature spaces, we find that et is not found toward the
extremes of the distribution of ¢°* values for either metric,
indicating that the range of selectivity parameters given by sin
and sy, do not need to be expanded to find a suitable ¢**°** for
each feature space. Comparing Figures 5 and 6, on average, the
former requires selecting a larger €' than the latter. We
attribute this to the difference in ranking functions. The ranking
function for the number of neighbors metric allows two or more
points to share the same rank if they have the same number of
neighbors within e. Thus a larger € allows for the rankings to be

select

more differentiated (i.e., fewer points have the same rank as e
increases), and so the under/overfitting trade-off is reached at a
larger value of €. In contrast, the mean distance metric will not
have two (or more) points with the same rank, as the
probability of two points having the same mean distance to
its neighbors is unlikely. This also explains why the
distribution of arg(e*'*) is clustered in Figure 5, whereas the
distribution is more diffuse in Figure 6.

We examine the distribution of the selected values of k for
the KNNSJ algorithm. Figures 7 and 8 plot £**'*** as a function of
the dimensionality of the feature spaces for the in-degree and
mean distance metrics, respectively. The range of k values
considered using the under/overfitting methodology is given
by kmin and ky.x, which yields the range [2, 4096]. For both
metrics, the selected values of k are well below kp.x = 4096,
and at most K" is found within the first ~25% of the
distribution at k™' <1000. We observe similar trends
between the in-degree metric (Figure 7) and the number of
neighbors metric for DSSJ (Figure 5) where the distribution of
ket is clustered, and this is due to points having the same
rank if they have the same in-degree.

4.3. Performance Results

We report the performance of the system by examining two
metrics: (1) how performance varies as a function of
oversubscription (Section 3.8.2) and (2) how performance
varies as a function of the number of GPUs (Section 3.8.2). As
outlined in Table 3, we use sp.x =~ 0.15|D] for DSSI and
kmax = 4096 for kNNSJ. These values largely dictate the
amount of work computed, and these values constitute a large
fraction of the size of the SNAPShot1 data sets, which only
contains |D| =31,693 objects. Thus, we selected these
parameters conservatively to show the worst-case performance
of the system, as it is clear from Figures 5-8 that €** and
ket are found well below €nax and kpayx, respectively.

Recall that the oversubscription factor refers to the maximum
number of processes that can be assigned to one GPU at a time.
Because using the GPU requires data transfers between the
host, and other host-side tasks be performed before and after
the main GPU kernels are executed, it is beneficial to allow
multiple processes to concurrently access the GPU (and
associated host-side functionality). For instance, this allows
PCle data transfers to be overlapped with GPU computation,
thus mitigating this data transfer cost.
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across all 32,752 feature spaces (Section 3.3). Because the € values can vary
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dimensionality, we show the index j of the selected value of ¢; € G, denoted

selecl)

as arg(e

Counts
400 600 800 1000 1200 1400

0
0
0
0
0
0
;] 0
L 5
a 12
5 209
= 773
~ 25
3 19
3
4
©

O o oo o oo w

8 9 10
imensionality (d)

=

Figure 6. The same as Figure 5, but for the mean distance metric.

Figure 9 plots the response time (hr) using one GPU as a
function of the oversubscription factor (o) to find € and compute
the outlier rankings for DSSJ. From the figure we find that with
o =1 (a maximum of a single process concurrently accessing the
GPU), the response time is 12.65 hr. However, if we use 0 =8
the response time is 2.64 hr, which is 379% faster than when no
oversubscription is used (o = 1). This demonstrates that the GPU
is underutilized when o = 1. Furthermore, we find that selecting
0 =28—12 achieves similar performance, but when o =16 the
response time begins to increase.

We find that using more than one GPU for DSSJ does not
improve performance. This is because there are significant
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Figure 7. The distribution of k' values for the in-degree metric across all

32,752 feature spaces (Section 3.3). To improve readability, the vertical axis is
truncated and does not show all K" values, which are mostly zeros. The plot
shows 99.5% of the k*'°*! values across all feature spaces.
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Figure 8. The same as Figure 7, but for the mean distance to k neighbors
metric. The plot shows 98.5% of the k*** values across all feature spaces.

host-side (CPU/main memory) tasks that are computed before
the GPU kernel is executed and after the GPU returns the
results to the host. Thus, the limiting factor for computing DSSJ
is not insufficient GPU resources, rather it is due to memory
pressure and contention, which delay the execution of GPU
kernels. This is largely a result of using Python as the “glue”
programming language, where the bottleneck is not computa-
tion, but processing minor tasks in Python that require
formatting the data needed for the C/C++ libraries and
transferring results back to Python for further analysis.

We present the performance results for kNNSJ. The ANNSJ
algorithm is more computationally expensive than DSSJ, as the
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rankings for both DSSJ metrics as a function of the oversubscription (o) factor
using one GPU. This includes the total time to find ¢**® for both outlier
detection metrics, and compute the rankings for all |D|= 32,752 feature
spaces.

search radius needed to find at least k neighbors will vary for
each point in the data set. For this reason, compared to DSSJ the
kNNSJ algorithm achieves performance gains when multiple
GPUs are used.

Figure 10(a) plots the response time (hr) for ANNSJ as a
function of the oversubcription factor (o) using four GPUs. For
the kKNNSJ algorithm, we find that oversubscription significantly
improves performance over not using oversubscription where
using o=5 is 83% faster than not using oversubscrip-
tion (0 =1).

Figure 10(b) shows the response time (hr) as a function of
the number of GPUs where we set o =5 (the value of o that
achieved the best performance in panel (a)). The speedup for
2-4 GPUs is 1.81x, 2.25x%, and 2.47 x, respectively. We find
that multi-GPU scalability is limited: a respectable performance
gain is observed with two GPUs, but poor scalability is
observed with three and four GPUs. This is due to the same
reasons described above for DSSJ where host-side tasks limit
multi-GPU scalability.

As we will show in Section 4.5, the multi-GPU performance
is much better when examining the much larger LSST5M
data set.

4.4. Visualization and Comparison of Outlier Detection
Methods

In this section, we show example visualizations of feature
spaces and the detection of outliers. The visualizations illustrate
the importance of using an ensemble of algorithms for outlier
detection, as they all yield different outlier rankings, which
make some methods more or less suitable for a given scientific
investigation. Because it is difficult to visualize feature spaces
in more than three dimensions, we limit the visualizations
tod<3.

Figure 11 shows a d =2 feature space (rotation period versus
g —r color) for the DSSJ method in panels (a)-(b) and the
kKNNSJ method in (c)—(d). In the figure, we arbitrarily denote 1%
of the points as outliers; in practice a user can select any
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Figure 10. Performance results for kNNSJ showing the total time to find £*'°**
for both outlier detection metrics, and compute the rankings for all
|D| = 32,752 feature spaces. (a) The response time (hr) to compute k™
and the corresponding rankings for both ANNSJ metrics as a function of the
oversubscription (o) factor with four GPUs. (b) The response time as a function
of the number of GPUs, demonstrating the scalability when o = 5.

percentage of points to be outliers. Furthermore, Figure 12
shows histograms of the metric values that are used to compute
the outlier rankings for the corresponding plots in Figure 11.
This information is helpful for understanding why outliers are
selected in each case. We make the following observations.

1. Figure 11(a) (DSSJ: number of neighbors metric) clearly
finds points in the underdense regions of the feature
space, but they are interspersed with other points that are
considered inliers in this space. Had a larger outlier
threshold been selected, more points in the sparse regions
would be selected as outliers. This is because the method
allows for two or more points to share the same rank. In
this case, >1% of the points have a rank of 0 (they have
no neighbors), but only the first 1% of these points are
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Figure 11. Comparison of the four outlier detection methods on an example d = 2 feature space, showing the rotation period as a function of g — r color. (a)-(b) show
the two metrics for DSSJ and (c)—(d) show the two metrics for kNNSJ. The points that fall within the top 1% of the ranked list of outliers are shown as solid red points in
each plot. The inliers (99%) are shown as the translucent blue points.

considered outliers. Figure 12(a) shows this more clearly,
where there is a large number of points (>1% of the total
fraction of points) that do not have any neighbors, but not
all of these points are classified as outliers. An example
point of this type can be clearly observed at (x, y) ~ (0, 0)
in Figure 11(a).

. Figure 11(b) (DSSJ: mean distance metric) is very similar
to that of Figure 11(a), except that some points tend to
swap outlier/inlier classifications.

. Figure 11(c) (kNNSJ: in-degree metric) clearly selects
outliers that are clustered together as shown at a rotation
period < 500 hr. This is expected as points located in a
similar region of a feature space are likely to have a
similar in-degree number (recall that the in-degree, or
reverse nearest neighbors, refers to the number of
instances that a point is considered a neighbor of another
point in its set of kNN). Counterintuitively, the outliers
selected by this metric are clustered at a rotation
period < 500 hr, and thus appear to be inliers. However,
the reason they are not inliers is because the inlying
points in this region have few of these outlying points in

their set of ANN. Interestingly, this metric finds outliers
that are largely different than both of the DSSJ methods in
Figures 11(a)—(b).

. Figure 11(d) (kNNSJ: mean distance to k neighbors

metric) is interesting to compare with the two DSSJ
methods in Figures 11(a)—(b). With this method, the
outlying points at a rotation period 222200 and <4500 hr
are all outliers, and are not interspersed with inliers as
shown in Figures 11(a)—(b). The reason the outliers are all
selected in this region is because the ANN algorithm
requires each point to find k neighbors, which decreases
the stochastic variance in this set of k points. Therefore,
the outliers will be selected in regions where there are
similarly low densities. In contrast the DSSJ methods do
not require finding a minimum number of neighbors and
so the set of neighbors found within e of each point will
have greater variation compared to each other, and
therefore DSSJ is more susceptible to stochastic variation
in local density.

In summary, each of the outlier detection methods selects

outliers based on different criteria. Thus, it may be useful for
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Figure 12. Histograms of the distribution of metric values for the corresponding plots in Figure 11. The red shaded regions are illustrative examples of where outliers
are found in the respective distributions. The mean distance metric for DSSJ (b) yields two regions where outliers are found. Points with no neighbors within their
search radius will yield a mean distance of zero and so all points that do not have any neighbors are assigned a rank of 0. And those points that have large mean

distances to their neighbors will also be outliers.

the user to select the outlier method that best suits their science
case; for instance, from Figure 11 a user may want to find
asteroids that are fast rotators (short rotation periods) that have
an unusual color. In this case, the kNN algorithm with the in-
degree metric would be best. Another option is to limit outliers
to those that have low rankings in multiple outlier detection
methods, which can be computed by averaging the outlier
scores across methods.

Figure 13 shows a scatterplot of outliers detected in a d =3
feature space (light-curve amplitude, rotation period, and g — r
color). Many observations are similar to that of Figure 11 as
described above. To better understand the assigned outlier
labels in Figure 13, for the interested reader, the Appendix
presents a comparison of rankings for this feature space. It is
informative for understanding the nuances of the four outlier
detection metrics, and illustrates why using an ensemble of
methods /metrics are needed to identify outliers. With a single
method, we may inadvertently omit detecting interesting solar
system objects, and our approach mitigates this potential
drawback.

13

4.5. Viability of Population Outlier Detection at LSST Scale

LSST will observe roughly 5 million asteroids over the 10 yr
survey; therefore, the response time and scalability measure-
ments reported in the prior sections will not directly reflect the
expected performance of the system when it is deployed on the
LSST data stream. In this section, we report the performance of
SNAPS population outlier detection on the LSST5M data set,
which is representative of the LSST data set at the end of the 10
yr survey (Section 2.2).

In this experiment, for DSSJ we set s, = 32 and Sy, = 256
and for ANNSJ we set kpp, =2 and kp.x = 256. These
maximum values are significantly lower than those used for
SNAPShot1; recall that in Section 4.3, we selected large values
of Smax and kpax using SNAPShot1 to report the conservative
(worst-case) performance. SNAPShotl has significant varia-
tions in the data densities of each feature space because it only
contains 31,693 objects and therefore, the feature spaces are
poorly sampled. The 5 million objects detected by LSST will
reduce the degree of sparsity in the feature spaces, which will
reduce the variance in the feature space data densities. This
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Figure 13. The same as Figure 11, but for a d = 3 feature space (light-curve amplitude, rotation period, and g — r color).

implies that smaller s,,,, values for DSSJ and k,,,x neighbors for
kNNSJ will be needed to adequately sample the feature spaces
when operating SNAPS at LSST scale. Furthermore, as observed
in Figures 5-8, ¢*** and £**** are generally closer to smaller
values of e and k rather than larger values, so using smaller €'
and k*'° parameter values at LSST scale should still yield good
sets of outlier rankings.

Due to the excessive execution times required of this
experiment, we only report the time to compute the first 5% of
the 32,752 feature spaces and then extrapolate this time to the
expected response time when computing all of the feature
spaces. These results are reported in Table 4. We achieve a
multi-GPU speedup (using four GPUs over one GPU) of 3.68 x
and 3.95x on DSSJ and ANNSIJ, respectively. Consequently, we
achieve a very high >92% parallel efficiency, where the
parallel efficiency is the speedup divided by the number of
GPUs. Recall that on SNAPShot1 (Section 4.3), the multi-
GPU performance was poor because the ratio of GPU to CPU
(host-side) work was low. However, with 5 million data points,
there is significantly more work to compute on the GPU and so
the abovementioned ratio is much higher, leading to greater
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Table 4
The Response Time and Multi-GPU Speedup for Distance Similarity Self-join
and k-nearest Neighbors Self-join on LSST5M

Response Time Response Time (hr) GPU
Algorithm (hr) 1 x GPU 4 x GPUs Speedup
DSSIJ 10.83 2.94 3.68
kNNSJ 45.58 11.55 3.95
Total Time 56.41 14.49

Note. The same permutations of the SNAPShotl d = 15 feature space are
employed. The response times refer to computing 5% of the 32,752 feature
spaces for both one and four GPUs. The speedup of using four GPUs over one
GPU is reported. The oversubscription factor for DSSJ and ANNSJ is 0 = 5.

multi-GPU scalability. Extrapolating the results in Table 4 to
all 32,752 feature spaces, we can compute population outliers
for both DSSJ and ANNSJ at LSST scale in roughly 12 days
using four GPUs. This will allow SNAPS to provide users
updated population outlier detection rankings once per month
over the 10 yr survey.
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We highlight several caveats to this analysis. This level of
performance is an estimate, as we only computed 5% of the
feature spaces, estimated the selectivity and ANN parameter
values, estimated the total number of asteroids detected by
LSST at the end of the survey, and used a synthetic ZTF-like
data set, which may not be representative of the LSST catalog.
Furthermore, we anticipate that the GPUs SNAPS will use to
compute population outlier scores will be upgraded over the
next ~10 yr, which will decrease the computation time needed
for this task. Despite these estimates, we believe that SNAPS
population outlier detection will scale to LSST data volumes
even if some of these assumptions change during the 10 yr
survey.

5. Example Avenues of Scientific Investigation

One of the science goals of SNAPS is to map “edge cases”
within the asteroid population, which reveal unusual physical
properties that in turn suggest constraints on the origin and
evolution of our solar system. In this section, we suggest
various scientific investigations that can be carried out using
population outlier detection and multidimensional feature space
exploration.

5.1. Outliers in a Single Dimension

The simplest outlier detection scheme is one that examines
just a single dimension. (1) There are five objects in
SNAPShotl with H <5, which corresponds to diameters
larger than around 300 km. These rare objects—some 0.02% of
SNAPShotl—turn out to be dwarf planets and large trans-
Neptunian objects in the outer solar system, and not main belt
asteroids. These objects have different compositions and
histories and therefore require a different analysis than the rest
of the sample. (2) Some objects in SNAPShot1 have a derived
rotation period of exactly 5000 hr, which is the maximum
period searched. These solutions are likely incorrect, and
probably represent objects with very low light-curve
amplitudes where no true periodic signal can be identified.
Leaving these likely false solutions aside, there are 550 objects
(1.7% of SNAPShotl) with periods > 1000 hr and <5000 hr.
This population was first identified in Erasmus et al. (2021),
who identified the Yarkovsky—O'Keefe—-Radzievskii—Paddack
(YORP) effect, which alters the rotation state of an asymmetric
object due to thermal torques (Rubincam 2000; Bottke et al.
2006), as the most likely origin mechanism for these very long
periods. This serves as an existence proof for YORP creating
slow rotation rates, and puts strong constraints on the initial
distribution of rotation rates in the asteroid belt, and the
collision rate in the main belt. These constraints in turn
constrain important details about the formation and evolution
of the solar system.

The amplitude of a light curve indicates the shape of the
asteroid, through Amag = 2.5log %, where a and b are the
major and minor axis lengths, respectively, of the ellipsoidal
asteroid shape. There are 160 objects in SNAPShot1 that have
light-curve amplitudes > 1 mag, which imply very elongated
asteroids where the long side is at least 2.5x longer than the
small side. Elongated asteroids are interesting because they
may require internal strength (McNeill et al. 2018). The
existence of these very elongated objects—present at the level
of 0.5% in SNAPShotl-—demands that asteroid evolution
models explain the creation and persistence of such objects.
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Figure 14. Outliers detected using the ANNSJ mean distance to k neighbors
metric rankings in the light-curve amplitude, rotation period, and HAVG
feature space. The inliers (99% of the objects) are plotted as translucent circles
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and the outliers with “x” markers (1% of the objects). Red and blue markers
denote C-type (g —r color < 0.563) and S-type (g —r color > 0.563)
asteroids, respectively. Two-dimensional slices through this space are shown
in Figure 15.

5.2. Outliers in Multiple Dimensions

Figure 11 shows outlier sets for our four methods, in two
dimensions. Most of the outlying points clearly have either the
most extreme rotation periods or colors, which could be
identified through a one-dimensional search. However, there
are some objects that are neither extreme in period nor color—
for example, objects near {500, 0.38 }—that are identified in all
four methods as outliers. Neither this period nor color is
extreme, but this combination of properties places these objects
in the outermost envelope of the distribution of objects in
period—color space. Thus, outliers can help define details of the
multidimensional distributions. The existence of objects near
{500, 0.38} may indicate something about the internal structure
and strength of those objects. Figure 13 adds amplitude to
create a three-dimensional space, again helping to define the
envelope of the distributions of these properties.

Figures 14 and 15 show outliers in the parameter space of
light-curve amplitude, rotation period, and HAVG (a proxy for
size). We then separate S- and C-type asteroids using
g —r=0.563 as the boundary between the two taxonomic
types (the boundary can be observed in Figure 4 in Trilling
et al. 2023). The outliers are roughly equally divided between
C- and S-type asteroids, suggesting that, to the degree that
composition and internal properties correspond to asteroid
color, unusual properties in this multidimensional space are not
biased in favor of a particular asteroid composition. These
figures show a group of objects that are particularly unusual,
with very long periods (2000-4000 hr), relatively small
amplitudes (0.2 mag), and unremarkable H magnitudes (around
15, so a few kilometers in diameter). This three-dimensional
outlier detection scheme reveals this population of very slowly
rotating asteroids that are nearly round (low amplitude) and
have sizes around 3 km, more or less. Asteroid dynamical
models must include a mechanism for the existence of these
bodies.
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Figure 15. The same as Figure 14, except that only the outliers are shown. The
panels ordered from top to bottom are as follows: rotation period as a function
of amplitude, HAVG as a function of amplitude, and HAVG as a function of
rotation period. Outliers in this space are equally divided between C-type and
S-type asteroids, indicating that composition is not a significant driver of
unusual behaviors in these three dimensions.

Figure 16 shows this same parameter space (amplitude,
rotation period, and HAVG), though with a different color
coding to emphasize a particular subset of outliers: objects with
amplitudes > 1 mag and periods > 500 hr. These are objects
that are quite elongated and slowly rotating, in both cases
showing unusual properties. In general, the maximum
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amplitude that a single elongated body can have is around
0.9 mag (Strauss et al. 2023). Amplitudes greater than this
probably indicate binary or contact binary systems. Our
population outlier detection approaches may be detecting
binary asteroids in the main belt—and, intriguingly, slowly
rotating binaries—which implies a relatively small amount of
angular momentum. The origin and evolution of these bodies is
an interesting question and may provide further clues to the
overall evolutionary history of the asteroid belt. Furthermore,
within this group, the ratio of C:S asteroids is 12:5, which may
not be statistically significant but is at least suggestive that the
mechanism of creating such unusual asteroids may depend on
composition. The sizes are 1-10 km (H is estimated to be
12.5-17.5), potentially a key clue to the evolution of these
bodies.

There are many other examples of multidimensional
investigations that can probe the properties of asteroids. As
an example of another extended science case, our team is
identifying outliers in minimum required strength in a space
that is defined by a number of asteroid physical properties
(M Chernyavskaya et al. 2024, in preparation). In summary, the
various techniques presented here to characterize large data sets
are powerful tools that provide evidence that would not
otherwise be available and allow us to carry out experiments
about the formation and evolution of the solar system.

6. Discussion and Conclusions

This paper has presented the population outlier detection
functionality of the SNAPS alert broker. We summarize our
contributions as follows.

1. We have constructed an asteroid outlier detection system
that is demonstrated on the first SNAPS data release,
SNAPShotl, which employs state-of-the-art GPU
algorithms. We showed that the system provides outlier
detection capabilities in addition to feature space
exploration and data prioritization, which will help
researchers rapidly identify objects of interest that may
warrant further investigation.

2. We utilize a feature space permutation approach that
allows users to select objects of interest based on ZTF
measurements, adjacent catalogs, and derived properties.
We show that this approach can assist in data exploration,
prioritization, and visualization activities to accelerate the
scientific discovery process.

3. We demonstrate that the outlier detection system is
currently able to scale to the ZTF data rate. Through
measurements on a synthetic data set, we expect that the
system will be able to derive population outliers at LSST
scale and will be able to provide outlier detection
rankings roughly once per month. The monthly data will
be archived and made publicly available on our website
to enable tracking how objects evolve over time relative
to the population of objects.

4. We highlight several preliminary scientific results, and
example avenues of scientific investigation that will be
enabled by SNAPS population outlier detection
capabilities.

We demonstrate the grasp of these approaches with a few
example science cases, of the countless investigations that are
possible. As described above, our calculated outlier lists will be
published on our SNAPS web page and updated monthly,
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Figure 16. Outliers detected using the DSSJ number of neighbors metric in the light-curve amplitude, rotation period, and HAVG feature space. The inliers (99% of the
objects) are plotted as translucent circles and the outliers are plotted with “x” markers (1% of the objects). We highlight with cyan diamond markers objects with a
light-curve amplitude > 1 mag and rotation period of >500 hr. There are only 14 objects with these properties and our method is able to detect all of these as outliers

denoted by the 14 diamond markers imposed behind the “x” markers.

allowing all users to pursue their own experiments with our
large and growing catalog.

It is clear that deriving outlier rankings across all feature
spaces is computationally expensive. There are several methods
that could be employed to reduce this computational cost. For
example, while we derived outliers for 15 features in
SNAPShotl, we are aware that some of these features are
redundant or correlated, and so we could reduce the total
number of feature spaces that we provide to users by
eliminating some of these feature spaces. However, the SNAPS
team will aim to provide outlier rankings for at least all
permutations of d = 15 features; however, these features will
change slightly when we begin receiving data from the Rubin
Observatory. At present, we believe that providing d =15
features should provide a reasonable level of outlier detection
and data space exploration for the community.
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We showed that population outlier detection with SNAPS
is expected to scale to LSST data volumes assuming that
the current functionality is sufficient for the LSST era. We
predict that the community will desire additional function-
ality, such as providing binary classification labels (inlier
versus outlier) instead of only using ranked lists of objects.
The SNAPS team intends to add this functionality to the system
in the future.

A distinct but complimentary service that SNAPS could
provide to the community is clustering each of the feature
spaces. This task is similar to the outlier detection methods
described here, as clustering typically relies on similarity
searches (finding nearby points in a feature space). This would
allow for the automated detection of groups of objects that may
be of interest. A canonical example would be to derive asteroid
families as a function of orbital elements (Parker et al. 2008)
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while also examining additional features/dimensions that may
be less obvious to explore.

We identified that one bottleneck in the system is using
Python to invoke the GPU algorithms for each feature space.
Since we process multiple feature spaces concurrently, this
yields nonnegligible memory pressure, which impacts the rate
at which we can process a given feature space on a GPU. Thus,
future work includes running a single process that executes all
of the feature spaces on the GPU for DSSJ and ANNSJ. By
undertaking this research direction, we anticipate that there will
be interesting opportunities for data reuse, such as providing
the set of kNN from ANNSJ to DSSJ for its computation, thus
potentially eliminating a significant fraction of the total DSSJ
cost. Another direction that can be undertaken to improve
performance is to leverage the tensor cores on many modern
GPUs to perform Euclidean distance calculations (Gallet &
Gowanlock 2022). These and other algorithmic advances are
critical for reaching LSST scale while expanding the services
offered by SNAPS, as many of the computational bottlenecks
identified in this paper cannot be solved by hardware advances
alone over the next 210 yr.

At present, other alert broker teams are preparing for LSST
by developing software infrastructure to classify objects. We
welcome collaboration with other teams that anticipate
requiring the population outlier detection methods described
here for their respective science domains.
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Appendix
Comparison of Rankings between Qutlier Detection
Methods

From Figure 13 we observed that there may be minimal
overlap between those points that are selected as outliers
between the outlier detection metrics. Figure 17 shows another
perspective on the comparison of rankings that were shown in
Figure 13, where we plot the rankings for each object as a
scatterplot. Figure 17 shows the following subplots: (a) shows a
ranking comparison for the two DSSJ metrics, (b) shows a
comparison for the two ANNSJ metrics, (c) shows a comparison
of the two distance-oblivious metrics, and (d) shows a
comparison between the two distance-aware metrics. Recall
that in all figures, the outliers are those with a low rank value.

Figure 17(a) shows a comparison of DSSJ metrics where we
observe that many of the points that have few neighbors (with a
rank 2> 0) have a large range of possible ranks using the mean
distance metric. This shows that a large mean distance to
neighboring points may be achieved when there are few or
many points within the search radius e of a given point.

Figure 17(b) shows a comparison of kNNSJ metrics. Here we
find that there are consistencies between outlier scores for both
metrics when the rankings are 2>0. Interestingly, there is an
overabundance of in-degree rankings with values between
~500—700, although these points will not be considered
outliers in this feature space.

Figure 17(c) compares the rankings derived by the distance-
oblivious metrics for DSSJ and ANNSJ. We find that there is little
correlation between the rankings of these two methods. This is
because it is possible to have a low in-degree value in the kNN
graph, but yet have several neighbors found within the search
radius e. Despite this, there are still numerous points that have
ranks near 0 in both metrics, which would indicate that they are
outliers using both metrics.

Figure 17(d) compares the rankings derived by the distance-
aware metrics for DSSJ and ANNSJ. We clearly observe that
there is a deficit of points assigned a low mean distance rank
and a high (210,000) mean distance to k neighbors rank.
Compared to the other plots, the rankings appear to be the most
correlated, although there are still major differences in the
assigned rankings.
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Figure 17. Scatterplots showing a comparison of rankings for the same d = 3 feature space shown in Figure 13. (a) Ranking comparison for the two DSSJ metrics. (b)
Ranking comparison for the two ANNSJ metrics. (c¢) Comparison of the two distance-oblivious metrics. (d) Comparison of the two distance-aware metrics. Note that
across all figures, the distance-oblivious metrics (DSSJ: number of neighbors and ANNSJ: in-degree) have numerous points that share the same rank, and so they have a
smaller range of possible rank values compared to the distance-aware metrics (DSSJ: mean distance and ANNSJ: mean distance to k neighbors).
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