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Application and comparison of remote sensing techniques for 
data-driven disaster debris quanti!cation
Jasmine H. Bekkaye and Navid H. Jafari

Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, USA

ABSTRACT
E!ective disaster debris management requires reasonable predic-
tions pre-hazard and estimates post-hazard of debris for 
a community to get back to normal sooner. However, there is a lack 
of data related to post-disaster waste quantities that could validate 
and improve debris predictions. This knowledge gap can be 
addressed by using remote sensing technology to quantify disaster 
debris promptly following a hazard. This study aimed to demonstrate 
and compare multiple remote sensing tools available for quantifying 
disaster debris using post-disaster data collected following Hurricane 
Ida. The tools used in this study are satellite imagery, emergency 
response airborne imagery, unmanned aerial vehicles (UAVs), and 
terrestrial laser scanning (TLS). We found that satellite imagery is 
useful for quantifying vegetative debris generation and transporta-
tion across vast areas, however it is often limited by spatial and 
temporal resolutions. Emergency response airborne imagery, col-
lected within days following the hazard, is well-suited for quantifying 
transported vegetative debris and can assist debris clearance of 
emergency service routes across large areas, although it can be 
limited spatially and temporally to the interests of the acquiring 
agency. UAVs and TLS can provide precise volumes of debris but 
UAVs may be a better option due to their lower cost and computa-
tional demand. Guidance is provided for selecting a remote sensing 
tool based on the desired application and available resources, which 
can assist decision making for disaster waste managers.
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1. Introduction

Natural hazards generate tremendous amounts of disaster debris streams that subse-
quently cause cascading economic, social, and environmental losses and impact response 
and recovery e!orts (Brown, Milke, and Seville 2011; Luther 2017). Disaster debris removal 
is laborious, and inadequate management results in increased costs, clean-up delays, and 
adverse environmental and human health consequences (Brown, Milke, and Seville 2011; 
Luther 2017; USEPA 2019). An e!ective disaster debris management plan requires reason-
able predictions of the type, quantity, and location of debris that will be generated by the 
hazard to e"ciently deploy response and recovery resources (FEMA 2007; USEPA 2019). 
Additionally, debris predictions are necessary to determine the size and number of 
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required Temporary Debris Managements Sites (TDMS), or temporary locations where 
disaster debris is stored until it is reduced in volume and/or taken to a #nal disposition site 
(FEMA 2007; NASEM 2014). However, there is a lack of data collected during and post- 
disaster of waste quantities to validate and improve pre-disaster debris predictions 
(Brown, Milke, and Seville 2011; Jalloul et al. 2022).

The state-of-the-art in evaluating debris quantities are summarized in Marchesini et al. 
(2021), and Zhang et al. (2019) and can primarily be divided into predictive statistical 
models, technology-based observational tools, such as remote sensing, or a combination 
of these. Multiple federal agencies have developed statistical debris estimation models 
that are primarily based on type and severity of the hazard (e.g. hurricane intensity, 
earthquake magnitude) and characteristics of the a!ected area (e.g. square footage of 
buildings, building/tree/population density) (Marchesini, Beraud, and Barroca 2021; 
F. Zhang et al. 2019). However, statistical models can be o! by orders of magnitude due 
to their generality and inherent uncertainty (Bekkaye and Jafari 2023; Marchesini, Beraud, 
and Barroca 2021). Many statistical models are heavily dependent on national or regional 
databases and are developed from historical data, which may not be available in many 
countries and limits the ability of those countries to apply existing statistical models for 
their location or develop their own estimation methods (Marchesini, Beraud, and Barroca 
2021). Additionally, many statistical models are unable to account for the variety in types 
of waste material in disaster debris, which can drastically di!er in mass and volume, 
increasing the uncertainty of estimates (Marchesini, Beraud, and Barroca 2021). Statistical 
methods are further limited by the lack of post-disaster waste quantities to validate 
estimations. E!orts have been made to collect post-disaster waste quantities more 
accurately. For example, Jafari et al. (2019) acquired post-disaster waste data collected 
from the monitor consultants hired to remove debris in Beaumont, Texas, U.S.A., following 
Hurricane Harvey in 2017. However, post-disaster waste tonnage linked to origin location 
is often unavailable and inconsistent as emergency management o"cials work to remove 
debris in a timely manner (Brown, Milke, and Seville 2011; F. Zhang et al. 2019). This 
problem can be alleviated by quantifying debris in the midst of a disaster using remote 
sensing technologies.

Remote sensing technology such as satellite imagery, airborne (airplane) imagery, 
unmanned aerial vehicle (UAV) imagery, and lidar can be used to spatially identify and 
quantify debris. These tools assist in areas without historical post-disaster waste data 
(Marchesini, Beraud, and Barroca 2021; F. Zhang et al. 2019) and provide an alternative for 
estimating debris quantities when ground-truthed post-disaster waste data is unavailable. 
Optical satellite, airborne, or UAV imagery can be utilized to identify and measure the 
spatial extent and location of damage and debris, and countless studies have explored 
these tools for various disasters and locations. For instance, Jiang and Friedland (2016) 
utilize IKONOS panchromatic satellite and National Oceanic and Atmospheric 
Administration (NOAA) emergency response airborne imagery to detect building damage 
debris zones following Hurricane Katrina in 2005. Similarly, Shirai et al. (2016) utilize 
RapidEye satellite imagery acquired before and after the Great East Japan Earthquake 
and Tsunami in 2011 to estimate the disaster building domain. To estimate vegetative 
debris (tree stumps, branches, trunks, and other leafy material) from downed trees, 
Szantoi et al. (2012) couple post-event airborne imagery with statistical modelling from 
tree stem diameter-volume bulking factors and #eld measured estimates of downed tree 

INTERNATIONAL JOURNAL OF REMOTE SENSING 2809



debris volume. Satellite imagery alone can provide a quick evaluation of damage and 
debris across large areas. However, they are a!ected by cloud cover, spatial resolution, 
and acquisition is limited temporally depending on the satellite. Several similar studies 
have been conducted on damage and debris detection using just UAV imagery (e.g. 
Hanifa et al. 2022; Yeom et al. 2019), a combination of satellite and UAV imagery (e.g. 
Gha!arian and Kerle 2019; Kakooei and Baleghi 2017), and a combination of airborne 
imagery and lidar (e.g. Pham et al. 2014). These studies primarily detect damage and 
debris in imagery using image classi#cation techniques and more recently deep learning 
techniques (e.g. Chowdhury et al. 2020; Duarte et al. 2018; Hamdi, Brandmeier, and Straub 
2019; Hong et al. 2022; Pi, Nath, and Behzadan (2020a, 2020b); Wang et al. 2021). The 
numerous studies using UAV imagery have primarily focused on damage and debris 
detection rather than debris quanti#cation. The chaotic nature of disaster recovery 
operations presents challenges for debris quanti#cation, such as deploying to locations 
with accumulated disaster debris, deploying at the right time because debris moves 
quickly (e.g. from homes to curbsides, curbsides to TDMS), safety and access concerns 
due to unstable structures, blocked infrastructure, and hazardous conditions, and coordi-
nating with emergency managers without disrupting their operations.

Point clouds produced by lidar or photogrammetry provide elevation and volume 
information, making the technique extremely suitable for disaster debris volume estima-
tion. In 2007, lidar was employed by the United States Geological Survey (USGS) to 
estimate debris volumes from Hurricane Katrina in coastal Mississippi, U.S.A., using 
a combination of NOAA emergency response imagery and airborne lidar data (Hansen 
et al. 2007). This approach performs image classi#cation to identify locations with debris 
and subsequently uses the lidar data to measure debris volumes (Hansen et al. 2007). 
Similarly, Labiak et al. (2011) utilize post-disaster airborne lidar data to quantify building 
damage and debris in Port-au-Prince, Haiti following the 2010 earthquake, and Axel et al. 
(2016) employ post-disaster airborne lidar data to quantify roadway debris. These tools 
are able to swiftly quantify debris prior to being collected and brought to TDMS. Koyama 
et al. (2016) utilize Synthetic Aperture Radar (SAR) data to estimate the volume of debris 
brought to a TDMS following the Great East Japan Earthquake and Tsunami, demonstrat-
ing another approach for quantifying debris volumes. Another potential lidar tool is 
terrestrial laser scanning (TLS). TLS can be advantageous over airborne lidar due to its 
higher point densities, portability for more frequent surveys, and applications for survey-
ing sides of buildings or objects that may be obscured from aerial view such as in urban 
environments. TLS for disaster management has primarily focused on structural damage 
assessments following a hazard, e.g. 2008 Wenchuan earthquake in China (Dai et al. 2018; 
Jiao, Jiang, and Li 2019), 2010 Chile Earthquake and Tsunami (Olsen et al. 2012), and 
Hurricane Michael in 2018 (Berman et al. 2020). Acquisition and access to SAR, airborne 
lidar, and TLS data near the time of a disaster is typically constrained by cost and logistics 
(Jalloul et al. 2022).

UAVs can provide an alternative to post-event SAR and lidar and are less limited by 
spatial and temporal resolutions compared to satellite imagery, although spatial limita-
tions still exist due to airspace restrictions and $ight time. Nonetheless, they can still serve 
as a feasible option for estimating waste volumes at the roadside curb and disposal 
facilities. Sa!arzadeh et al. (2017, 2019) employ UAVs to quantify disaster debris volumes 
at TDMS following earthquakes in Japan in 2016 and Iran in 2017. Son et al. (2019) and Yoo 
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et al. (2017) propose methods and optimal UAV parameters for estimating disaster waste 
volumes by using land#lls as a testbed. Filkin et al. (2022) and Sliusar et al. (2022) estimate 
waste quantities at land#lls but during normal operations and not by disasters.

The frequency of disaster events and their impacts is increasing (CRED 2022; NOAA 
2022), highlighting the growing need to further establish the feasibility of using remote 
sensing tools to quantify disaster debris during the response and recovery phases. This 
should be investigated across the variety of hazards (wild#res, $oods, windstorms, coastal 
storms, landslides, earthquakes) because each hazard creates di!erent debris types (FEMA 
2007; USEPA 2019). Furthermore, collecting post-disaster debris quantities has been 
identi#ed as a high priority for sustainable disaster debris management (Jalloul et al. 
2022) and more standardized work$ows need to be established for using remote sensing 
technologies to quantify debris. Although several studies have been performed using 
remote sensing technologies to quantify disaster debris, no studies have been found that 
apply and compare the e!ectiveness and performance of multiple technologies. To our 
knowledge, no studies were found beyond Sa!arzadeh et al. (2017, 2019) that utilize UAVs 
to estimate disaster debris volumes at TDMS. Additionally, no studies were found that use 
TLS to estimate debris volumes at TDMS. As a result, the objective of this study is to 
demonstrate and compare multiple remote sensing tools available for quantifying dis-
aster debris using post-disaster data collected following Hurricane Ida in 2021, including 
UAV and TLS data collected at a TDMS. The tools used in this study are satellite imagery, 
emergency response airborne imagery, UAV, and TLS, and were selected based on their 
ease of access for disaster management contexts and availability to the authors at the 
time of the disaster. This approach aims to ascertain the appropriate application of each 
tool based on performance metrics (time for #eldwork, time for processing raw data, time 
for quantitative analyses, spatial coverage, spatial resolution, temporal resolution, cost, 
and operational e!ort) and provide recommendations for selecting one or multiple tools 
for debris quanti#cation based on the desired application and available resources.

2. Materials and methods

2.1. Study area and hazard

Hurricane Ida made landfall on 29 August 2021 in southeastern Louisiana, U.S.A., near the 
town of Port Fourchon as a Category 4 hurricane on the Sa"r-Simpson scale (wind speeds 
of 58.5–69.3 m/s) (Beven, Hagen, and Berg 2022). Hurricane Ida underwent rapid intensi-
#cation as it approached the Louisiana coast, reaching maximum sustained windspeeds of 
67 m/s (150 mph) at landfall (Beven, Hagen, and Berg 2022). The heaviest precipitation 
was concentrated on the eastern side of the storm, resulting in over 25.4 cm (10 in) of 
precipitation over portions of southeastern Louisiana and storm surge $ooding up to 3 m 
(10 ft) between Golden Meadow and Grand Isle, Louisiana (Beven, Hagen, and Berg 2022). 
Southeastern Louisiana, primarily the Barataria Basin, was chosen as a testbed for this 
study due to the tremendous amount of wind and $ood damage and resulting debris 
generated. As part of a collaborative National Science Foundation (NSF) Nearshore 
Extreme Events Reconnaissance (NEER) and Geotechnical Extreme Events 
Reconnaissance (GEER) Associations e!ort, a weeklong deployment was conducted in 
southeast Louisiana from October 10 to 15 to assess the extent and impact of damage, 
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especially to coastal infrastructure. Various equipment was utilized to characterize and 
quantify storm impacts, including UAVs and TLS. A TDMS in Grand Isle was of particular 
interest, and the UAV and TLS surveys conducted at this location are the primary focus of 
the deployment for this study. Figure 1 illustrates the survey locations, the TDMS, and the 
path of the centre of Hurricane Ida, overlaid with the satellite and airborne imagery 
employed in this study.

2.2. Instrumentation and data collection

To assess large-scale vegetative debris transportation and quantities following Hurricane 
Ida, Sentinel-2 satellite imagery covering the Barataria Basin was acquired from the 
Copernicus Open Access Hub. Sentinel-2 imagery was chosen because it has the highest 
spatial resolution among publicly available satellite imagery (10 m) and orbits frequently 
enough (5–10 days) to investigate pre- and post-hazard conditions of the observed land. 
Publicly available imagery was selected because it is easily and openly accessible to 
everyone, making it more practical to emergency management o"cials and local govern-
ments with a limited amount of resources for disaster management, which is quite often 
the case (Jalloul et al. 2022). Demonstrating that publicly available imagery is applicable 
validates that fee-based imagery would also be. Imagery collected on 5 August 2021 was 
utilized to assess pre-hazard conditions and imagery collected on 19 October 2021 was 
employed for post-hazard conditions. Imagery was selected on these days because they 

Figure 1. Study area, survey locations, TDMS, and time-stamped (UTC) path of the center of Hurricane 
Ida, overlaid with Sentinel-2 satellite (colourized map) and NOAA airborne (colourized, rectangular 
swaths) imagery used in the study. (Basemap: ©2022 Maxar Technologies.)
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showed the least amount of cloud cover closest to the landfall of Hurricane Ida. The 
Sentinel-2 imagery was trimmed to exclude clouds as much as possible and focus 
primarily on Barataria Bay and surrounding communities up to the city of New Orleans 
(colourized map in Figure 1).

To further investigate vegetative debris transportation and quantities, emergency 
response airborne imagery collected on August 30 through 2 September 2021 by the 
NOAA Remote Sensing Division was employed. This imagery was chosen due to its public 
availability, high spatial resolution (15–30 cm), and acquisition immediately following the 
landfall of Hurricane Ida. The NOAA imagery (colourized, rectangular swaths in Figure 1) 
covers areas that support NOAA interests including safety of navigation, hazardous spills, 
marine debris impacts, and impacts to coastal zone management interests (NOAA 2022), 
and thus does not encompass the entire area that Sentinel-2 imagery covers.

A UAV survey was conducted over a TDMS in Grand Isle on 14 October 2021 to 
calculate disaster debris volumes. A DJI Matrice 210 equipped with a MicaSense Altum 
multispectral sensor was utilized to capture aerial imagery to be processed into a point 
cloud using SfM photogrammetry techniques. The UAV survey was planned using 
Pix4Dcapture, a commercial software application developed for creating and executing 
autonomous UAV $ight plans. A DJI Matrice 210 was $own in a grid pattern of parallel 
$ight lines with 80% frontal overlap and 70% side overlap from an approximate altitude of 
40 m and a camera angle set at 70°, resulting in a Ground Sampling Distance (GSD) of 1.85  
cm/pixel and the collection of 1,620 images. Images were geotagged during capture 
through the UAV’s on-board GPS. To improve georeferencing, three ground control points 
(GCPs) were placed around the debris piles, surveyed with a Leica GS18 T GNSS RTK rover. 
A base station was set up at the beginning of the day to record positional information 
with more accurate triangulation. The GNSS RTK rover remained on GCPs for 8 minutes to 
collect corrections from the base station and calculate the position measurements. 
Figure 2 shows the GCP surveying (Figure 2a) and their locations (Figure 2b).

A TLS survey was conducted over the TDMS at the same time as the UAV survey to 
calculate disaster debris volumes and compare the results to the UAV data. The Leica 

Figure 2. UAV data collection: (a) GCP surveying; and (b) their locations.
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RTC360 3D Laser Scanner was employed to capture full 360° scans at close range (<65 m) 
to develop a high-resolution point cloud. The TLS survey was executed using Cyclone 
FIELD 360, a mobile-device application developed for use with the Leica RTC360 to link 
the point cloud data directly in the #eld and provide immediate data visualization. The 
TLS survey was conducted using a high point density mode (3 mm resolution at 10 m 
distance up to a range of 65 m). Point cloud resolution decreases as range increases and 
can vary substantially across the area due to obstructions and further objects, which 
increase noise. The decrease in resolution at further ranges is resolved by moving the 
scanner around the area of interest and taking multiple scans that are initially aligned in 
the #eld and validated in the processing stage. In this case, 15 total scans were taken at 
the TDMS. Figure 3 shows the Leica RTC360 during one of the scans (Figure 3a) and an 
image of the site captured by the Leica RTC360 (Figure 3b).

2.3. Data processing and debris quanti!cation

To quantify vegetative debris created by Hurricane Ida across Barataria Basin as a result of 
coastal wetland loss, supervised image classi#cation using a Support Vector Machine (SVM) 
algorithm was performed on the pre- and post-Ida Sentinel-2 imagery in ArcGIS Pro. SVM 
constructs a decision boundary, or hyperplane, that optimally separates di!erent classes 
based on pixel value. Training data containing manually labelled pixels are provided to the 
algorithm along with the image to be classi#ed. The algorithm then #nds an optimal 
hyperplane in an iterative manner until a maximum margin is achieved, which is the 
distance between the hyperplane and the nearest data point from each class. False colour 
imagery in the form of near infrared, red, and green spectral bands mapped to the RGB 
colour space was utilized because it allows vegetation to be easily distinguished from water 
and other surroundings by the human eye, assisting classi#cation of training and validation 
samples. Training and validation samples were collected from the Sentinel-2 imagery across 
two classes, land and water, via strati#ed random sampling and accuracy assessments were 
performed. Evident misclassi#ed pixels were manually reclassi#ed and accuracy assess-
ments were performed on the reclassi#ed maps. Vegetative debris generated was roughly 
estimated as the change in land area between the pre- and post-Ida imagery.

To determine the quantities and locations of transported vegetative debris, areas with 
vegetative debris in the NOAA imagery were identi#ed and delineated in QGIS open- 

Figure 3. TLS data collection: (a) TLS during scan; and (b) image of site captured via TLS.
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source software, with a main focus on navigation networks, such as roads and waterways, 
infrastructure, and locations that would require debris removal. The delineated vegetative 
debris locations are limited to the coverage of the NOAA imagery. However, the NOAA 
imagery primarily covers towns and transportation networks, making it suitable for this 
analysis.

UAV image processing was executed using SfM photogrammetry techniques in 
Pix4Dmapper. SfM photogrammetry utilizes the camera position and orientation of 
each image collected and distinct features or keypoints to extract and match features 
that are recognizable in multiple images. Using the matched features and known position 
and orientation of the camera in each image, the software estimates the 3D coordinates of 
the matched features by triangulation. Bundle adjustment is performed, which iteratively 
minimizes errors in the estimated camera positions and feature locations through camera 
self-calibration. Camera self-calibration re#nes the intrinsic parameters and poses of the 
camera during each iteration to improve the overall consistency and accuracy of the 3D 
reconstruction. After bundle adjustment and camera self-calibration, the software gen-
erates a point cloud by interpolating between the 3D coordinates and additionally an 
orthomosaic of the imagery. To use the GCPs in the UAV imagery processing, base station 
coordinates were #rst corrected using the On-line Positioning User Service from the 
National Geodetic Survey, which provides free access to high-accuracy National Spatial 
Reference System Coordinates. The corrected base station position was used to compute 
a post-processed phase-#xed solution of the rover points, resulting in a 3D coordinate 
quality of 0.2 mm. The post-processed coordinates were loaded into the software to 
improve georeferencing of the model. A root mean square error of 0.6 cm was reported 
corresponding to the di!erence between the PPK measured coordinates of the GCPs and 
their calculated position in the reconstructed model based on their marking in images in 
the software. This value serves as a local indicator of how well Pix4Dmapper #tted the 
model to the GCPs. At a GSD of 1.85 cm/pixel and with the placement of GCPs, the 
maximum range of accuracy is estimated to be within 1.8–5.5 cm. This range is su"cient 
for disaster debris quanti#cation applications, and thus does not a!ect our study’s 
#ndings. The imagery covers approximately 38,000 m2 and four separate debris piles. To 
calculate disaster debris pile volumes, the UAV point cloud was analysed in 
CloudCompare open-source software. The debris piles were segmented into four indivi-
dual piles and 3D meshes were created for each segmented point cloud to compute the 
volume of each pile. A 3D mesh consists of a collection of vertices, edges, and faces that is 
generated based on the points within a point cloud and de#nes the shape and structure 
of a three-dimensional object. The volumes for each pile are the summation of the 
volumes of each individual polygon in the 3D mesh using its base and height. Height is 
calculated as the di!erence between the horizontal plane at the base of the debris pile 
(ground level) and the z-coordinate of the vertex.

To process the TLS data, Cyclone REGISTER 360 was utilized to register all 
captured scans together to create one composite point cloud. During this process, 
the alignments created in the #eld using Cyclone FIELD 360 were reviewed and 
adjusted as needed, the composite point cloud was colourized, and any mixed or 
oversaturated pixels were #ltered out. A point cloud with 1 cm resolution was 
generated in addition to the 3 mm point cloud to facilitate point cloud rendering 
due to the high computational demands of the 3 mm point cloud. Similar to the 
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UAV point cloud, the TLS point cloud was analysed and segmented into four 
individual debris piles in CloudCompare and the volume of each debris pile was 
calculated based on the 3D mesh created for each segmented debris pile. Figure 4 
presents the methodologies for quantifying disaster debris using satellite imagery, 
emergency response airborne imagery, UAV imagery, and TLS, respectively.

3. Results

Figure 5 presents the pre-Ida false colour Sentinel-2 satellite imagery collected on 
5 August 2021 (Figure 5a), the post-Ida imagery collected on 19 October 2021 
(Figure 5b), and the 19 October 2021 classi#cation map overlaid with the change in 
land cover from 5 August 2021 (Figure 5c). The classi#cation accuracy for both pre- and 

Figure 4. Workflow for debris quantification using multiple remote sensing tools. Data collection steps 
are yellow, data processing steps are blue, and debris quantification steps are green.
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post-Ida imagery was estimated at 96% based on 500 strati#ed random samples. The high 
accuracy is likely contributed to having only two classes, land and water, in the classi#ca-
tion maps. The distribution of land cover change is illustrated in Figure 5c. Land loss is 
signi#cant in northwest Barataria Bay, which overlaps with the occurrence of peak surge 
and waves. Land gain is noticeable on lakeshores northwest of Barataria Bay. The di!er-
ence in land class pixels between the pre-Ida and post-Ida classi#cation maps translate to 

Figure 5. Sentinel-2 imagery: (a) false colour pre-Ida (08/05/21); (b) false colour post-Ida (10/19/21); (c) 
10/19/21 classification map overlaid with change in land cover from 08/05/21.
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an approximate area of 329 km2 of vegetative debris generated and transported else-
where. A preliminary USGS study conducted following Hurricane Ida reported the loss of 
approximately 274 km2 (106 mi2) of wetlands in the Barataria Bay region (Schleifstein 
2021). There are likely many reasons for the di!erence in these quantities, one of which is 
di!erent spatial coverages. The imagery employed for this study has a spatial coverage of 
approximately 6,392 km2, which appears larger than the coverage in the images pre-
sented in Schleifstein (2021). There may also be sources of uncertainty in this study’s 
estimate, such as the resolution, cloud cover, shadows, and map accuracies. The 10 m 
resolution of the imagery illustrates that one misclassi#ed pixel creates an error of 100 m2. 
Cloud cover, which is apparent in Figure 5(a, b), also a!ects the classi#cations and can 
result in misclassi#ed pixels. Although the accuracy of both classi#cation maps is high at 
96%, the accuracies are based on 500 random samples. Increasing training samples across 
the region could reduce misclassi#cations.

The NOAA emergency response airborne imagery surrounding Barataria Bay and 
delineations of vegetative debris requiring immediate removal are presented in 
Figure 6, along with Hurricane Ida’s track. Figure 7 illustrates areas identi#ed in Figure 6 
with vegetative debris blocking infrastructure and transportation networks. Transported 
vegetative debris was not found in imagery north of Lake Salvador (Figure 6). Located 
west of Barataria Bay are multiple communities, including Golden Meadow (Figure 6), that 
have various $ood protection infrastructure that forms a polder. This appeared to protect 

Figure 6. NOAA imagery with vegetative debris locations outlined and the time-stamped (UTC) path of 
the center of Hurricane Ida. Areas labelled a – d in Figure 6 are enlarged in Figure 7 and illustrate 
locations with large amounts of vegetative debris on infrastructure (Basemap: ©2022 Maxar 
Technologies.)
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the communities from collecting vegetative debris, as debris was only found on the $ood 
side (Figure 7a). North of Barataria Bay, vegetative debris was found piled against sheet 
pile walls. Vegetative debris was found to be especially prominent in La#tte (Figure 6), 
where vegetative debris overtopped the seawalls and loaded on residential homes and 
infrastructure (Figure 7b). Communities east of Barataria Bay experienced the most 
instances of vegetative debris on infrastructure and transportation networks. Figures 7 
(c, d), located in Davant (Figure 6), illustrate the severity of the transported vegetative 
debris. Figure 7c shows at least 0.58 km of Louisiana Highway 23 (LA-23) completely 
encompassed in vegetative debris, and Figure 7d shows another portion of LA-23 blocked 
and numerous residences entirely surrounded by vegetative debris. The severity of 
transported vegetative debris with respect to its impacts on infrastructure and transpor-
tation networks appears to be the greatest east of Barataria Bay, which ultimately a!ects 
the recovery time for these communities and individuals.

The orthomosaic produced from the UAV imagery is presented in Figure 8 (Figure 8a), 
along with the segmented point cloud (Figure 8b) and 3D meshes with debris piles labelled 
and coloured by height (Figure 8c). Height is relative to the ground surface which was set to 
zero. A histogram on the right of the colour scale indicates the proportion of points at each 
height. The UAV point cloud consists of 5,936,585 points, with a mean point cloud density of 
173.88 points/m2. The volumes calculated for debris piles 1, 2, 3, and 4 are 4,238 m3, 3,509 m3, 
167 m3, and 1,080 m3, respectively. This imagery was collected on 14 October 2021, demon-
strating that approximately 8,994 m3 of disaster debris was collected and staged at this site 

Figure 7. Areas within white boxes in Figure 6, following the same labelling and illustrating vegetative 
debris blocking: (a) levees and flood protection in Golden Meadow; (b) residential homes and 
infrastructure in Lafitte; and (c-d) roads and residential homes in Davant.
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over 46 days following Hurricane Ida’s landfall on August 29. The debris is most likely all from 
Grand Isle due to its location at the entrance of the island (see Figure 1) and the fact that 
debris is likely not being brought from inland to the island. Thus, on average ~196 m3/day was 
collected from Grand Isle and brought to this TDMS.

The point cloud produced from the TLS survey is presented in Figure 9 (Figure 9a), along 
with the segmented point cloud (Figure 9b) and 3D meshes with debris piles labelled and 
coloured by relative elevation (Figure 9c). Height was established in the same manner as the 
UAV point cloud. The TLS point cloud scaled to 1 cm resolution consists of 92,972,859 points, 
with a mean point cloud density of 6,100 points/m2. The volumes calculated for debris piles 1, 
2, 3, and 4 are 4,978 m3, 3,726 m3, 183 m3, and 1,091 m3, respectively. Gaps with missing data 
are apparent in the point cloud – primarily in debris piles 1 and 2 (Figure 9b). Using the UAV 
point cloud for reference, the gaps appear to be located in pile locations where the exterior is 
taller than the interior or there are obstructions. This is likely a consequence of the TLS survey 
being conducted on the ground and unable to scan through obstructions.

To directly compare UAV and TLS, subsections of debris piles without data gaps were 
extracted in both point clouds (white outlines in Figures 8 and 9). Figure 10 compares debris 
pile volumes derived from the UAV and TLS point clouds for both the entire piles (Figure 10a) and 
just the extracted subsections (Figure 10b). Figure 10a reveals di!erences in UAV and TLS 

Figure 8. UAV Imagery: (a) orthomosaic; (b) segmented point cloud with white outlines around 
subsections extracted for analysis; and (c) 3D meshes with debris piles labelled and coloured by height.

Figure 9. TLS Point Cloud: (a) composite point cloud; (b) segmented point cloud with white outlines around 
subsections extracted for analysis; and (c) 3D meshes with debris piles labelled and coloured by height.
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computed volumes ranged from 1% to 16%, with an average of 8%. These disparities may stem 
from variations in the segmented debris pile boundaries between the UAV and TLS point clouds, 
which were segmented independently. The surface area of the segmented UAV point cloud is 
4,484 m2, whereas the surface area of the TLS point cloud is 4,714 m2. Additionally, 
CloudCompare’s interpolation method may inaccurately capture elevation gradients across 
TLS data gaps, assuming a near-constant elevation, while the UAV point cloud exhibits varying 
elevations in these gaps (see Figures 8 and 9). This could explain the higher debris volumes in the 
TLS point cloud. In the subsections, the di!erences in UAV and TLS computed volumes ranged 
from 2% to 6%, with an average of 4%. The di!erences only range from 6 to 42 m3, which is 
relatively small in the context of disaster debris. Independent topography surveys conducted 
before and after the UAV and TLS surveys would allow for an accuracy assessment, but due to the 
lack of such data during disaster debris collection, this information is unavailable.

4. Discussion

E!ective disaster debris management requires a reasonable understanding of the locations 
and quantities of debris generated by a disaster. This assists emergency management o"cials 
and local governments in all phases of a disaster and allows communities to promptly return 
to normal. This is becoming more important with the increasing prevalence of extreme events 
and their resulting disasters (CRED 2022). Remote sensing tools can provide valuable initial 
estimates of disaster debris quantities, o!er insights into the spatial distribution of debris, and 
track the evolution of debris accumulation. Possible discrepancies between disaster debris 
estimates from remote sensing tools and statistical models can arise due to many factors, such 
as data sources and constraints, debris types, temporal and spatial resolutions, and model 
accuracy. By comparing remote sensing estimates with statistical model predictions, discre-
pancies can be identi#ed and used to re#ne the model’s parameters and assumptions, guide 
the adaptation of statistical models over time, and help keep statistical models current and 
responsive to changing conditions. This can be extremely valuable for emergency manage-
ment o"cials and local governments that have limited technological resources.

Based on the debris quanti#cation demonstrations, Figure 11 summarizes the perfor-
mance of each remote sensing tool with respect to the following metrics: time for #eld-
work, time for processing raw data, time for quantitative analyses, spatial coverage, spatial 
resolution, temporal resolution, cost, and operational e!ort. Relative values of highest, 

Figure 10. UAV and TLS debris volume comparisons: (a) entire debris piles; and (b) subsections within 
white outlines in Figure 8(b) and Figure 9(b).
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high, medium, low, or none were assigned for each tool and metric based on their 
performance. Thus, Figure 11 serves as a guide for selecting a remote sensing tool for 
debris quanti#cation based on the desired application and available resources.

Satellite imagery can be useful for quantifying vegetative debris generated across vast 
areas by identifying areas where vegetation from wetlands has been relocated, such as 

Figure 11. Summary of criteria for each remote sensing technology for debris quantification. Metrics 
are categorized into different colour groups based on similarities and colour hues correspond to the 
magnitude of the results.
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lakeshores and canals, as well as across the broader landscape. This can help identify 
priority areas for restoration e!orts in areas like coastal Louisiana that experience intense 
land loss and high storm frequency. An advantage of satellite imagery is that it requires no 
#eldwork or deployments to collect the imagery, and both raw and pre-processed 
imagery can be publicly available, allowing for much less time spent collecting and 
processing the imagery. The most time is spent performing image classi#cation to 
quantify debris, which was also found in Jiang and Friedland (2016). The Sentinel-2 
satellite collects imagery across the world every 5–10 days, making it possible to down-
load 1,000s km2 of imagery at a time. However, with regard to debris quanti#cation it is 
limited by spatial and temporal resolutions and unable to adequately detect debris at 
smaller scales (e.g. transportation networks, TDMS, and land#lls). Satellite imagery is also 
prone to cloud cover, which makes it di"cult to obtain cloudless imagery near a storm’s 
landfall and adds uncertainty to debris quanti#cation analyses. Conversely, imagery 
collected soon after hurricane landfall may have many areas with storm surge $oodwater, 
resulting in inaccurate estimates of land lost versus inundated land (Schleifstein 2021). 
Satellite imagery with better spatial and temporal resolutions is available from commer-
cial satellites. Jiang and Friedland (2016) and Shirai et al. (2016) utilize higher-resolution 
commercial satellite imagery (1–2 m) to estimate building damage debris zones, which 
was e!ective for their goals. However, commercial imagery comes at a cost of 14–25 USD/ 
km2 depending on the commercial agency (AAAS 2022). This may be reasonable for 
smaller study areas but may become quite expensive for larger study areas, such as the 
area employed in this study. Additionally, emergency management o"cials and local 
governments may have a limited amount of resources available to them for disaster 
management, especially for disaster debris speci#cally (Jalloul et al. 2022). Validating 
the applicability of publicly accessible imagery demonstrates that fee-based imagery, 
with its higher resolution, will also be applicable and perform better. As a result, it is 
suggested that agencies capable of acquiring fee-based imagery would do so. However, 
fee-based imagery with higher spatial resolutions may require more rigorous but time- 
consuming approaches, such as object-based image classi#cation. Sentinel-2 satellite 
imagery does not appear to be the most e!ective remote sensing tool for debris quanti-
#cation. However, depending on available resources, commercial satellite imagery may be 
more e!ective given computing time trade-o!s.

Emergency response airborne imagery is suitable for identifying areas that require 
debris clearance to facilitate the provision of emergency services and locations that will 
need more debris removal and management resources. Multiple studies have e!ectively 
employed it for debris identi#cation or quanti#cation in combination with other data, 
such as panchromatic satellite imagery (Jiang and Friedland 2016), statistical modelling 
and #eld measurements (Szantoi et al. 2012), and airborne lidar (Hansen et al. 2007). 
Similar to satellite imagery, no #eldwork is required by the user to obtain the imagery. 
Emergency response airborne imagery is typically collected by government agencies, in 
this case by NOAA. The imagery is mosaicked and orthorecti#ed prior to download, 
allowing for little time spent processing the imagery. The most time is spent identifying 
and delineating debris requiring removal across the extent of the airborne imagery. An 
advantage of airborne imagery is its higher spatial resolution compared to public satellite 
imagery (15 cm vs. 10 m), validating its suitability for quantifying debris that requires 
removal, such as on transportation networks and emergency service routes. Although the 
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resolution may be #ne enough to discern debris at TDMS, NOAA emergency response 
airborne imagery is only provided as processed orthomosaics that do not include the raw 
imagery or metadata that would allow for SfM photogrammetric processing for volume 
quanti#cations. Other sources of emergency response airborne imagery may provide such 
data. Additionally, TDMS may not be located in the coverage obtained by the acquiring 
agency. Emergency response airborne imagery has much lower spatial coverage than 
satellite imagery due to its speci#c acquisition for extreme event impacts and the interests 
of the acquiring agency. Emergency response airborne imagery is collected immediately 
following a disaster, often resulting in a better temporal resolution than satellite imagery 
in the post-disaster scenario. However, in the U.S.A. the NOAA Remote Sensing Division 
only collects airborne imagery post-disaster and no pre-event imagery is acquired from 
this source. Adequate pre-disaster images may be available in countries with more 
frequent airborne surveys. This imagery is publicly available at no cost and is typically 
acquired below cloud ceilings, resulting in cloudless aerial imagery. Thus, emergency 
response airborne imagery appears to be an e!ective remote sensing tool for debris 
quanti#cation to assist debris clearance on emergency service routes but can be limited 
spatially and temporally to the acquiring agency’s interests.

UAVs are highly e!ective for quantifying disaster debris volumes. Furthermore, they 
can be employed for pre- and post-disaster surveys. Due to their limited spatial coverage, 
survey areas need to be predetermined using satellite or airborne imagery or ground 
campaigns. In contrast to satellite and emergency response airborne imagery, UAVs 
require #eld deployments and the imagery requires more time spent processing. 
Volumes were computed based on the 3D meshes created for each debris pile point 
cloud, which was almost immediate. Some other approaches have been utilized to 
calculate waste volumes from UAV imagery, i.e. using digital elevation maps (Son et al. 
2019) and Python-based algorithms (Yoo et al. 2017), although the methods are all nearly 
identical. Python-based algorithms serve as the backbone for CloudCompare functions 
and digital elevation maps are created from the point cloud generated from SfM photo-
grammetric processing. Although volume calculations in this study were almost immedi-
ate, the time for processing and quanti#cation analyses is dependent on computational 
resources and regular desktops may require more time to render dense point clouds 
based on the available CPU, GPU, or RAM. UAV surveys have low spatial coverage 
compared to satellite and airborne imagery, but spatial coverage from UAVs is dependent 
on the type of UAV and available battery. A quadcopter UAV, which was used in this study, 
has much lower spatial coverage than a #xed-wing UAV due to the mechanics of 
a quadcopter compared to a #xed-wing. UAVs have high spatial resolutions, typically 1– 
2 cm, and surveys can be performed at any temporal resolution desired by the user. For 
example, depending on the size and type of UAV, a user can conduct daily UAV surveys at 
TDMS to determine the volume of debris being brought in each day, providing emer-
gency management o"cials with knowledge of the precise volumes of debris being 
collected over time. This application was demonstrated in Sa!arzadeh et al. (2017), who 
reported 10,258 m3 stored at a TDMS one month after an earthquake and 17,417 m3 less 
than 2 months later. These e!orts can assist e"cient allocation and deployment of debris 
management resources, such as providing guidance for how many trucks should be 
deployed for debris removal, how much land is required to continue storing the debris, 
and where operations can be improved in the midst of the disaster. UAV surveys can also 
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assist characterization of the primary debris streams being generated due to the ability to 
discern objects in the imagery.

A disadvantage of UAVs is that they can be signi#cantly more expensive than satellite 
and airborne imagery, although this depends on the use and type of UAV. Quadcopter UAVs 
are available across a range of prices: they begin at 1,000–2,000 USD for multiple quadcop-
ter models and quickly jump to a range of 5,000–15,000 USD. The prices increase as more 
features are desired, such as higher-quality cameras, alternating payloads, and georeferen-
cing capabilities. The DJI Matrice 210 used in this study is priced at 15,000 USD (NSF NHERI 
RAPID Experimental Facility, pers. comm., 2023). The range of prices for #xed-wing UAVs are 
higher due to their large-scale mapping abilities and often range from 15,000 to 20,000 
USD. UAVs require much more operational e!ort than satellite or emergency response 
airborne imagery, where the only e!ort was in data processing and quanti#cation analyses. 
UAV surveys require a licenced remote pilot to operate the UAV, a visual observer to 
constantly keep sight of the UAV, and if a survey needs to be expedited, an additional 
person to place and survey GCPs. An advantage of UAVs is that the pilot can conduct the 
survey a short distance away from the study site, allowing $exibility for safe operations 
around debris collection trucks, heavy equipment, and debris waste that may also contain 
hazardous materials. This is especially advantageous for areas that are not accessible on the 
ground due to obstructions from damage or debris. However, there are airspace and 
permission considerations depending on the country and respective regulations, such as 
not $ying near airports or over bystanders without their permission. Depending on the 
available services, these obstacles can be overcome, for example, through the use of 
unmanned tra"c management systems that facilitate UAV $ights in restricted zones. 
Nonetheless, UAVs appear to be a highly e!ective remote sensing tool for debris quanti-
#cation when debris is piled at TDMS and can provide precise volumes.

Similar to UAVs, TLS is highly e!ective for quantifying debris and can additionally 
provide precise volumes. TLS requires a similar amount of time spent in the #eld, proces-
sing data, and quantifying debris as UAVs. However, rendering the TLS point cloud at full 
resolution requires more computational resources than the UAV imagery due to the much 
higher density of the TLS point cloud. This study used a scaled-down TLS point cloud (3  
mm to 1 cm) to facilitate analyses due to available computational resources. Spatial 
coverage for TLS is similar to quadcopter UAVs, but it may have less complete coverage 
than a UAV survey based on obstructions (see Figures 8–9). Heavy equipment and 
machinery moving debris was also present during the survey, which may have contrib-
uted to poor scan registrations and gaps in the point cloud. TLS has the highest spatial 
resolution out of all methods (3 mm), which allows for signi#cantly less uncertainty with 
regard to debris quanti#cation and can assist debris characterization e!orts. The higher 
resolution of the TLS point cloud has higher computational demands and may have 
trouble rendering on a regular computer setup. It should be noted that UAVs can still 
achieve millimetre resolution based on factors such as $ight height, UAV model, and 
sensor type; however, centimetre level resolutions are the most common (Z. Zhang and 
Zhu 2023). TLS surveys can be performed at any temporal resolution desired by the user, 
making it another useful method for determining volumes of debris being brought in to 
TDMS each day.

A disadvantage of TLS is the high cost of the equipment. TLS equipment is 
signi#cantly more expensive than all other remote sensing tools, ranging from 
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approximately 20,000 USD to greater than 100,000 USD. The Leica RTC360 used in 
this study is priced at 88,000 USD (NSF NHERI RAPID Experimental Facility, pers. 
comm., 2023). A TLS survey requires slightly less operational e!ort than a UAV 
survey, as GCPs are not critical for the purpose of debris quanti#cation. If a UAV 
with RTK/PPK solutions was used, GCPs would not be necessary, further simplifying 
UAV operations. UAVs with RTK/PPK solutions and lidar sensors were not employed 
in this study because of their high cost and inaccessibility to the authors at the 
time of the disaster. These tools should also be explored because they may 
provide more accurate results at the expense of more data processing time. 
Even so, the conclusions of the study would remain true with or without these 
technologies. A TLS survey is performed on the ground, directly in front of the 
debris at the study area, which may not be feasible for obstructed areas. Similar to 
a UAV survey, there are permission considerations depending on the site. TLS 
appears to be an e!ective remote sensing tool for disaster debris quanti#cation, 
as it can provide precise volumes of debris. However, it may not be as e"cient as 
a UAV due to the cost and computational demands of TLS. An application TLS may 
be better suited for than UAVs is assessing building damage and resulting debris, 
which was e!ectively demonstrated in Berman et al. (2020) and Zaragoza et al. 
(2017). This is because a typical UAV survey may be limited to only damage visible 
from an aerial view.

Understanding the best applications of multiple remote sensing tools can assist 
decision making for emergency management o"cials and disaster waste managers 
interested in quantifying disaster debris. The comparisons and demonstrated work-
$ows presented in this study can help emergency management o"cials decide which 
tool to employ based on their desired application and available resources. The 
metrics utilized in the comparisons may have di!erent values to various users, and 
thus including multiple metrics allows users to choose a remote sensing tool based 
on the criteria and applications most important to them. A key #nding of this study 
was that remote sensing tools can be employed for diverse applications with regard 
to disaster debris quanti#cation. Additionally, the lack of information on post-disaster 
waste quantities can be e!ectively addressed using remote sensing tools. In parti-
cular, the UAV and TLS data in this study serve as examples by providing volume 
quantities of collected disaster debris. Future studies can employ these approaches 
together to conduct repeat surveys to determine debris generation over time. UAVs 
and TLS are easy to transport, making them well-suited for reconnaissance investiga-
tions to collect post-disaster waste data.

Based on the demonstrations and comparisons in this study, Figure 12 summarizes 
suitable applications of the remote sensing tools across the primary phases of 
disaster management (pre-disaster, response, recovery) and demonstrates how appli-
cations in one phase can inform the subsequent phase. The pre-disaster phase could 
be similar to the planning phase, but it is de#ned herein to also include the time 
pre-hazard (e.g. predictions of hurricanes, $oods, sediment debris) such that perish-
able data collection can occur. In the pre-disaster phase, e!orts are focused on 
planning for debris collection, forecasting potential debris quantities, and determin-
ing suitable locations for TDMS (FEMA 2007; USEPA 2019). Remote sensing tools 
employed in this stage will be most useful for determining TDMS locations and 
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surveying sites forecasted to be impacted by the event, which will facilitate direct 
before and after comparisons. The response phase occurs immediately after an event 
and is primarily focused on clearing debris from emergency service routes (FEMA 
2007). In this phase, remote sensing tools will be most bene#cial for quantifying 
debris that must be removed to restore critical infrastructure and emergency service 
routes. The recovery phase begins once emergency service routes are cleared and 
debris is brought to public rights-of-way, collected, and transported to TDMS (FEMA 
2007). Remote sensing tools utilized in this phase will be most useful for quantifying 
debris volumes and determining areas that may require more debris management 
resources, which can improve operations and speed up recovery. The applications of 
the remote sensing tools are not limited to those listed in Figure 12, but rather serve 
as suitable examples for emergency management o"cials, stakeholders, researchers, 
and users interested in quantifying disaster debris.

This study utilizes each remote sensing tool individually to address the knowledge gap 
on the performance, advantages, and shortcomings of each individual tool for disaster 
debris quanti#cation. Through this approach, the results of the comparisons can not only 
help for selecting a tool but can guide future studies for combining multiple tools based 
on their performance, speci#cations, and application. Further studies that use remote 
sensing tools to quantify disaster debris are critical for validating the results of this study, 
especially studies that combine multiple tools to improve disaster debris estimates and 
mitigate discrepancies and uncertainty in the data.

Figure 12. Suitable applications of remote sensing tools in different disaster management phases.
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5. Conclusions

The aim of this study was to demonstrate and compare multiple remote sensing tools 
available for quantifying disaster debris using post-disaster data collected following 
Hurricane Ida. These measures will assist disaster debris quanti#cation and management 
e!orts for future disasters. The results of this study found that satellite imagery is useful 
for identifying where vegetative debris was created and transported across expansive 
spatial areas, although publicly available imagery is limited by spatial and temporal 
resolutions. Emergency response airborne imagery is well-suited for quantifying trans-
ported vegetative debris and determining areas that need immediate debris manage-
ment resources, such as emergency service routes that require debris clearance. However, 
it can be limited spatially and temporally to the interests of the acquiring agency. UAVs 
and TLS are highly e!ective for quantifying debris and can provide precise volumes. This 
provides emergency management o"cials with work$ows for calculating debris volumes, 
which will contribute to the lack of data on post-disaster waste quantities. Furthermore, 
UAVs may be a better option for quantifying debris volumes rather than TLS due to their 
lower cost and computational demand. A framework was developed to evaluate remote 
sensing technologies and their e"cacy in debris management, which will assist debris 
quanti#cation e!orts and decision making for disaster waste managers.
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