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ABSTRACT

Effective disaster debris management requires reasonable predic-
tions pre-hazard and estimates post-hazard of debris for
a community to get back to normal sooner. However, there is a lack
of data related to post-disaster waste quantities that could validate
and improve debris predictions. This knowledge gap can be
addressed by using remote sensing technology to quantify disaster
debris promptly following a hazard. This study aimed to demonstrate
and compare multiple remote sensing tools available for quantifying
disaster debris using post-disaster data collected following Hurricane
Ida. The tools used in this study are satellite imagery, emergency
response airborne imagery, unmanned aerial vehicles (UAVs), and
terrestrial laser scanning (TLS). We found that satellite imagery is
useful for quantifying vegetative debris generation and transporta-
tion across vast areas, however it is often limited by spatial and
temporal resolutions. Emergency response airborne imagery, col-
lected within days following the hazard, is well-suited for quantifying
transported vegetative debris and can assist debris clearance of
emergency service routes across large areas, although it can be
limited spatially and temporally to the interests of the acquiring
agency. UAVs and TLS can provide precise volumes of debris but
UAVs may be a better option due to their lower cost and computa-
tional demand. Guidance is provided for selecting a remote sensing
tool based on the desired application and available resources, which
can assist decision making for disaster waste managers.

1. Introduction
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Natural hazards generate tremendous amounts of disaster debris streams that subse-
quently cause cascading economic, social, and environmental losses and impact response
and recovery efforts (Brown, Milke, and Seville 2011; Luther 2017). Disaster debris removal
is laborious, and inadequate management results in increased costs, clean-up delays, and
adverse environmental and human health consequences (Brown, Milke, and Seville 2011;
Luther 2017; USEPA 2019). An effective disaster debris management plan requires reason-
able predictions of the type, quantity, and location of debris that will be generated by the
hazard to efficiently deploy response and recovery resources (FEMA 2007; USEPA 2019).
Additionally, debris predictions are necessary to determine the size and number of
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required Temporary Debris Managements Sites (TDMS), or temporary locations where
disaster debris is stored until it is reduced in volume and/or taken to a final disposition site
(FEMA 2007; NASEM 2014). However, there is a lack of data collected during and post-
disaster of waste quantities to validate and improve pre-disaster debris predictions
(Brown, Milke, and Seville 2011; Jalloul et al. 2022).

The state-of-the-art in evaluating debris quantities are summarized in Marchesini et al.
(2021), and Zhang et al. (2019) and can primarily be divided into predictive statistical
models, technology-based observational tools, such as remote sensing, or a combination
of these. Multiple federal agencies have developed statistical debris estimation models
that are primarily based on type and severity of the hazard (e.g. hurricane intensity,
earthquake magnitude) and characteristics of the affected area (e.g. square footage of
buildings, building/tree/population density) (Marchesini, Beraud, and Barroca 2021;
F. Zhang et al. 2019). However, statistical models can be off by orders of magnitude due
to their generality and inherent uncertainty (Bekkaye and Jafari 2023; Marchesini, Beraud,
and Barroca 2021). Many statistical models are heavily dependent on national or regional
databases and are developed from historical data, which may not be available in many
countries and limits the ability of those countries to apply existing statistical models for
their location or develop their own estimation methods (Marchesini, Beraud, and Barroca
2021). Additionally, many statistical models are unable to account for the variety in types
of waste material in disaster debris, which can drastically differ in mass and volume,
increasing the uncertainty of estimates (Marchesini, Beraud, and Barroca 2021). Statistical
methods are further limited by the lack of post-disaster waste quantities to validate
estimations. Efforts have been made to collect post-disaster waste quantities more
accurately. For example, Jafari et al. (2019) acquired post-disaster waste data collected
from the monitor consultants hired to remove debris in Beaumont, Texas, U.S.A., following
Hurricane Harvey in 2017. However, post-disaster waste tonnage linked to origin location
is often unavailable and inconsistent as emergency management officials work to remove
debris in a timely manner (Brown, Milke, and Seville 2011; F. Zhang et al. 2019). This
problem can be alleviated by quantifying debris in the midst of a disaster using remote
sensing technologies.

Remote sensing technology such as satellite imagery, airborne (airplane) imagery,
unmanned aerial vehicle (UAV) imagery, and lidar can be used to spatially identify and
quantify debris. These tools assist in areas without historical post-disaster waste data
(Marchesini, Beraud, and Barroca 2021; F. Zhang et al. 2019) and provide an alternative for
estimating debris quantities when ground-truthed post-disaster waste data is unavailable.
Optical satellite, airborne, or UAV imagery can be utilized to identify and measure the
spatial extent and location of damage and debris, and countless studies have explored
these tools for various disasters and locations. For instance, Jiang and Friedland (2016)
utilize IKONOS panchromatic satellite and National Oceanic and Atmospheric
Administration (NOAA) emergency response airborne imagery to detect building damage
debris zones following Hurricane Katrina in 2005. Similarly, Shirai et al. (2016) utilize
RapidEye satellite imagery acquired before and after the Great East Japan Earthquake
and Tsunami in 2011 to estimate the disaster building domain. To estimate vegetative
debris (tree stumps, branches, trunks, and other leafy material) from downed trees,
Szantoi et al. (2012) couple post-event airborne imagery with statistical modelling from
tree stem diameter-volume bulking factors and field measured estimates of downed tree
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debris volume. Satellite imagery alone can provide a quick evaluation of damage and
debris across large areas. However, they are affected by cloud cover, spatial resolution,
and acquisition is limited temporally depending on the satellite. Several similar studies
have been conducted on damage and debris detection using just UAV imagery (e.g.
Hanifa et al. 2022; Yeom et al. 2019), a combination of satellite and UAV imagery (e.g.
Ghaffarian and Kerle 2019; Kakooei and Baleghi 2017), and a combination of airborne
imagery and lidar (e.g. Pham et al. 2014). These studies primarily detect damage and
debris in imagery using image classification techniques and more recently deep learning
techniques (e.g. Chowdhury et al. 2020; Duarte et al. 2018; Hamdi, Brandmeier, and Straub
2019; Hong et al. 2022; Pi, Nath, and Behzadan (2020a, 2020b); Wang et al. 2021). The
numerous studies using UAV imagery have primarily focused on damage and debris
detection rather than debris quantification. The chaotic nature of disaster recovery
operations presents challenges for debris quantification, such as deploying to locations
with accumulated disaster debris, deploying at the right time because debris moves
quickly (e.g. from homes to curbsides, curbsides to TDMS), safety and access concerns
due to unstable structures, blocked infrastructure, and hazardous conditions, and coordi-
nating with emergency managers without disrupting their operations.

Point clouds produced by lidar or photogrammetry provide elevation and volume
information, making the technique extremely suitable for disaster debris volume estima-
tion. In 2007, lidar was employed by the United States Geological Survey (USGS) to
estimate debris volumes from Hurricane Katrina in coastal Mississippi, U.S.A., using
a combination of NOAA emergency response imagery and airborne lidar data (Hansen
et al. 2007). This approach performs image classification to identify locations with debris
and subsequently uses the lidar data to measure debris volumes (Hansen et al. 2007).
Similarly, Labiak et al. (2011) utilize post-disaster airborne lidar data to quantify building
damage and debris in Port-au-Prince, Haiti following the 2010 earthquake, and Axel et al.
(2016) employ post-disaster airborne lidar data to quantify roadway debris. These tools
are able to swiftly quantify debris prior to being collected and brought to TDMS. Koyama
et al. (2016) utilize Synthetic Aperture Radar (SAR) data to estimate the volume of debris
brought to a TDMS following the Great East Japan Earthquake and Tsunami, demonstrat-
ing another approach for quantifying debris volumes. Another potential lidar tool is
terrestrial laser scanning (TLS). TLS can be advantageous over airborne lidar due to its
higher point densities, portability for more frequent surveys, and applications for survey-
ing sides of buildings or objects that may be obscured from aerial view such as in urban
environments. TLS for disaster management has primarily focused on structural damage
assessments following a hazard, e.g. 2008 Wenchuan earthquake in China (Dai et al. 2018;
Jiao, Jiang, and Li 2019), 2010 Chile Earthquake and Tsunami (Olsen et al. 2012), and
Hurricane Michael in 2018 (Berman et al. 2020). Acquisition and access to SAR, airborne
lidar, and TLS data near the time of a disaster is typically constrained by cost and logistics
(Jalloul et al. 2022).

UAVs can provide an alternative to post-event SAR and lidar and are less limited by
spatial and temporal resolutions compared to satellite imagery, although spatial limita-
tions still exist due to airspace restrictions and flight time. Nonetheless, they can still serve
as a feasible option for estimating waste volumes at the roadside curb and disposal
facilities. Saffarzadeh et al. (2017, 2019) employ UAVs to quantify disaster debris volumes
at TDMS following earthquakes in Japan in 2016 and Iran in 2017. Son et al. (2019) and Yoo
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et al. (2017) propose methods and optimal UAV parameters for estimating disaster waste
volumes by using landfills as a testbed. Filkin et al. (2022) and Sliusar et al. (2022) estimate
waste quantities at landfills but during normal operations and not by disasters.

The frequency of disaster events and their impacts is increasing (CRED 2022; NOAA
2022), highlighting the growing need to further establish the feasibility of using remote
sensing tools to quantify disaster debris during the response and recovery phases. This
should be investigated across the variety of hazards (wildfires, floods, windstorms, coastal
storms, landslides, earthquakes) because each hazard creates different debris types (FEMA
2007; USEPA 2019). Furthermore, collecting post-disaster debris quantities has been
identified as a high priority for sustainable disaster debris management (Jalloul et al.
2022) and more standardized workflows need to be established for using remote sensing
technologies to quantify debris. Although several studies have been performed using
remote sensing technologies to quantify disaster debris, no studies have been found that
apply and compare the effectiveness and performance of multiple technologies. To our
knowledge, no studies were found beyond Saffarzadeh et al. (2017, 2019) that utilize UAVs
to estimate disaster debris volumes at TDMS. Additionally, no studies were found that use
TLS to estimate debris volumes at TDMS. As a result, the objective of this study is to
demonstrate and compare multiple remote sensing tools available for quantifying dis-
aster debris using post-disaster data collected following Hurricane Ida in 2021, including
UAV and TLS data collected at a TDMS. The tools used in this study are satellite imagery,
emergency response airborne imagery, UAV, and TLS, and were selected based on their
ease of access for disaster management contexts and availability to the authors at the
time of the disaster. This approach aims to ascertain the appropriate application of each
tool based on performance metrics (time for fieldwork, time for processing raw data, time
for quantitative analyses, spatial coverage, spatial resolution, temporal resolution, cost,
and operational effort) and provide recommendations for selecting one or multiple tools
for debris quantification based on the desired application and available resources.

2. Materials and methods
2.1. Study area and hazard

Hurricane Ida made landfall on 29 August 2021 in southeastern Louisiana, U.S.A., near the
town of Port Fourchon as a Category 4 hurricane on the Saffir-Simpson scale (wind speeds
of 58.5-69.3 m/s) (Beven, Hagen, and Berg 2022). Hurricane Ida underwent rapid intensi-
fication as it approached the Louisiana coast, reaching maximum sustained windspeeds of
67 m/s (150 mph) at landfall (Beven, Hagen, and Berg 2022). The heaviest precipitation
was concentrated on the eastern side of the storm, resulting in over 25.4cm (10 in) of
precipitation over portions of southeastern Louisiana and storm surge flooding up to 3m
(10 ft) between Golden Meadow and Grand Isle, Louisiana (Beven, Hagen, and Berg 2022).
Southeastern Louisiana, primarily the Barataria Basin, was chosen as a testbed for this
study due to the tremendous amount of wind and flood damage and resulting debris
generated. As part of a collaborative National Science Foundation (NSF) Nearshore
Extreme Events Reconnaissance (NEER) and Geotechnical Extreme Events
Reconnaissance (GEER) Associations effort, a weeklong deployment was conducted in
southeast Louisiana from October 10 to 15 to assess the extent and impact of damage,
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Figure 1. Study area, survey locations, TDMS, and time-stamped (UTC) path of the center of Hurricane
Ida, overlaid with Sentinel-2 satellite (colourized map) and NOAA airborne (colourized, rectangular
swaths) imagery used in the study. (Basemap: ©2022 Maxar Technologies.)

especially to coastal infrastructure. Various equipment was utilized to characterize and
quantify storm impacts, including UAVs and TLS. A TDMS in Grand Isle was of particular
interest, and the UAV and TLS surveys conducted at this location are the primary focus of
the deployment for this study. Figure 1 illustrates the survey locations, the TDMS, and the
path of the centre of Hurricane Ida, overlaid with the satellite and airborne imagery
employed in this study.

2.2. Instrumentation and data collection

To assess large-scale vegetative debris transportation and quantities following Hurricane
Ida, Sentinel-2 satellite imagery covering the Barataria Basin was acquired from the
Copernicus Open Access Hub. Sentinel-2 imagery was chosen because it has the highest
spatial resolution among publicly available satellite imagery (10 m) and orbits frequently
enough (5-10 days) to investigate pre- and post-hazard conditions of the observed land.
Publicly available imagery was selected because it is easily and openly accessible to
everyone, making it more practical to emergency management officials and local govern-
ments with a limited amount of resources for disaster management, which is quite often
the case (Jalloul et al. 2022). Demonstrating that publicly available imagery is applicable
validates that fee-based imagery would also be. Imagery collected on 5 August 2021 was
utilized to assess pre-hazard conditions and imagery collected on 19 October 2021 was
employed for post-hazard conditions. Imagery was selected on these days because they
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showed the least amount of cloud cover closest to the landfall of Hurricane Ida. The
Sentinel-2 imagery was trimmed to exclude clouds as much as possible and focus
primarily on Barataria Bay and surrounding communities up to the city of New Orleans
(colourized map in Figure 1).

To further investigate vegetative debris transportation and quantities, emergency
response airborne imagery collected on August 30 through 2 September 2021 by the
NOAA Remote Sensing Division was employed. This imagery was chosen due to its public
availability, high spatial resolution (15-30 cm), and acquisition immediately following the
landfall of Hurricane Ida. The NOAA imagery (colourized, rectangular swaths in Figure 1)
covers areas that support NOAA interests including safety of navigation, hazardous spills,
marine debris impacts, and impacts to coastal zone management interests (NOAA 2022),
and thus does not encompass the entire area that Sentinel-2 imagery covers.

A UAV survey was conducted over a TDMS in Grand Isle on 14 October 2021 to
calculate disaster debris volumes. A DJI Matrice 210 equipped with a MicaSense Altum
multispectral sensor was utilized to capture aerial imagery to be processed into a point
cloud using SfM photogrammetry techniques. The UAV survey was planned using
Pix4Dcapture, a commercial software application developed for creating and executing
autonomous UAV flight plans. A DJI Matrice 210 was flown in a grid pattern of parallel
flight lines with 80% frontal overlap and 70% side overlap from an approximate altitude of
40 m and a camera angle set at 70°, resulting in a Ground Sampling Distance (GSD) of 1.85
cm/pixel and the collection of 1,620 images. Images were geotagged during capture
through the UAV's on-board GPS. To improve georeferencing, three ground control points
(GCPs) were placed around the debiris piles, surveyed with a Leica GS18 T GNSS RTK rover.
A base station was set up at the beginning of the day to record positional information
with more accurate triangulation. The GNSS RTK rover remained on GCPs for 8 minutes to
collect corrections from the base station and calculate the position measurements.
Figure 2 shows the GCP surveying (Figure 2a) and their locations (Figure 2b).

A TLS survey was conducted over the TDMS at the same time as the UAV survey to
calculate disaster debris volumes and compare the results to the UAV data. The Leica

Figure 2. UAV data collection: (a) GCP surveying; and (b) their locations.
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RTC360 3D Laser Scanner was employed to capture full 360° scans at close range (<65 m)
to develop a high-resolution point cloud. The TLS survey was executed using Cyclone
FIELD 360, a mobile-device application developed for use with the Leica RTC360 to link
the point cloud data directly in the field and provide immediate data visualization. The
TLS survey was conducted using a high point density mode (3 mm resolution at 10 m
distance up to a range of 65 m). Point cloud resolution decreases as range increases and
can vary substantially across the area due to obstructions and further objects, which
increase noise. The decrease in resolution at further ranges is resolved by moving the
scanner around the area of interest and taking multiple scans that are initially aligned in
the field and validated in the processing stage. In this case, 15 total scans were taken at
the TDMS. Figure 3 shows the Leica RTC360 during one of the scans (Figure 3a) and an
image of the site captured by the Leica RTC360 (Figure 3b).

2.3. Data processing and debris quantification

To quantify vegetative debris created by Hurricane Ida across Barataria Basin as a result of
coastal wetland loss, supervised image classification using a Support Vector Machine (SVM)
algorithm was performed on the pre- and post-lda Sentinel-2 imagery in ArcGIS Pro. SVM
constructs a decision boundary, or hyperplane, that optimally separates different classes
based on pixel value. Training data containing manually labelled pixels are provided to the
algorithm along with the image to be classified. The algorithm then finds an optimal
hyperplane in an iterative manner until a maximum margin is achieved, which is the
distance between the hyperplane and the nearest data point from each class. False colour
imagery in the form of near infrared, red, and green spectral bands mapped to the RGB
colour space was utilized because it allows vegetation to be easily distinguished from water
and other surroundings by the human eye, assisting classification of training and validation
samples. Training and validation samples were collected from the Sentinel-2 imagery across
two classes, land and water, via stratified random sampling and accuracy assessments were
performed. Evident misclassified pixels were manually reclassified and accuracy assess-
ments were performed on the reclassified maps. Vegetative debris generated was roughly
estimated as the change in land area between the pre- and post-lda imagery.

To determine the quantities and locations of transported vegetative debris, areas with
vegetative debris in the NOAA imagery were identified and delineated in QGIS open-

Figure 3. TLS data collection: (a) TLS during scan; and (b) image of site captured via TLS.
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source software, with a main focus on navigation networks, such as roads and waterways,
infrastructure, and locations that would require debris removal. The delineated vegetative
debris locations are limited to the coverage of the NOAA imagery. However, the NOAA
imagery primarily covers towns and transportation networks, making it suitable for this
analysis.

UAV image processing was executed using SfM photogrammetry techniques in
Pix4Dmapper. SfM photogrammetry utilizes the camera position and orientation of
each image collected and distinct features or keypoints to extract and match features
that are recognizable in multiple images. Using the matched features and known position
and orientation of the camera in each image, the software estimates the 3D coordinates of
the matched features by triangulation. Bundle adjustment is performed, which iteratively
minimizes errors in the estimated camera positions and feature locations through camera
self-calibration. Camera self-calibration refines the intrinsic parameters and poses of the
camera during each iteration to improve the overall consistency and accuracy of the 3D
reconstruction. After bundle adjustment and camera self-calibration, the software gen-
erates a point cloud by interpolating between the 3D coordinates and additionally an
orthomosaic of the imagery. To use the GCPs in the UAV imagery processing, base station
coordinates were first corrected using the On-line Positioning User Service from the
National Geodetic Survey, which provides free access to high-accuracy National Spatial
Reference System Coordinates. The corrected base station position was used to compute
a post-processed phase-fixed solution of the rover points, resulting in a 3D coordinate
quality of 0.2 mm. The post-processed coordinates were loaded into the software to
improve georeferencing of the model. A root mean square error of 0.6 cm was reported
corresponding to the difference between the PPK measured coordinates of the GCPs and
their calculated position in the reconstructed model based on their marking in images in
the software. This value serves as a local indicator of how well Pix4Dmapper fitted the
model to the GCPs. At a GSD of 1.85 cm/pixel and with the placement of GCPs, the
maximum range of accuracy is estimated to be within 1.8-5.5 cm. This range is sufficient
for disaster debris quantification applications, and thus does not affect our study’s
findings. The imagery covers approximately 38,000 m? and four separate debris piles. To
calculate disaster debris pile volumes, the UAV point cloud was analysed in
CloudCompare open-source software. The debris piles were segmented into four indivi-
dual piles and 3D meshes were created for each segmented point cloud to compute the
volume of each pile. A 3D mesh consists of a collection of vertices, edges, and faces that is
generated based on the points within a point cloud and defines the shape and structure
of a three-dimensional object. The volumes for each pile are the summation of the
volumes of each individual polygon in the 3D mesh using its base and height. Height is
calculated as the difference between the horizontal plane at the base of the debris pile
(ground level) and the z-coordinate of the vertex.

To process the TLS data, Cyclone REGISTER 360 was utilized to register all
captured scans together to create one composite point cloud. During this process,
the alignments created in the field using Cyclone FIELD 360 were reviewed and
adjusted as needed, the composite point cloud was colourized, and any mixed or
oversaturated pixels were filtered out. A point cloud with 1cm resolution was
generated in addition to the 3 mm point cloud to facilitate point cloud rendering
due to the high computational demands of the 3 mm point cloud. Similar to the
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UAV point cloud, the TLS point cloud was analysed and segmented into four
individual debris piles in CloudCompare and the volume of each debris pile was
calculated based on the 3D mesh created for each segmented debris pile. Figure 4
presents the methodologies for quantifying disaster debris using satellite imagery,
emergency response airborne imagery, UAV imagery, and TLS, respectively.

3. Results

Figure 5 presents the pre-Ida false colour Sentinel-2 satellite imagery collected on
5 August 2021 (Figure 5a), the post-lda imagery collected on 19 October 2021
(Figure 5b), and the 19 October 2021 classification map overlaid with the change in
land cover from 5 August 2021 (Figure 5¢). The classification accuracy for both pre- and

Reclassify
Preprocessed !
Multiband Image Image Accuracy Pixel Count by Change
Imagery Segmentation Classification Assessment Classification Analysis
Training
Samples
(a) satellite Imagery for Debris Quantification
Preprocessed Vegetative Vegetative
Airborne  — Debris — Debris
Imagery Detection Measurement
(b) Emergency Response Airborne Imagery for Debris Quantification
Flight TLS
Planning Planning
GNSS Base GCP Flight TLS
Station Measurement Campaign Campaign
| i Registration
GCP Processing — Photogrammetric 9
: of Scans
Processing
Point Cloud Point Cloud
Debris Volume Debris Volume
Measurement Measurement
(¢) UAV Imagery for Debris Quantification (d) TLS for Debris Quantification

Figure 4. Workflow for debris quantification using multiple remote sensing tools. Data collection steps
are yellow, data processing steps are blue, and debris quantification steps are green.
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Figure 5. Sentinel-2 imagery: (a) false colour pre-Ida (08/05/21); (b) false colour post-lda (10/19/21); (c)
10/19/21 classification map overlaid with change in land cover from 08/05/21.

post-lda imagery was estimated at 96% based on 500 stratified random samples. The high
accuracy is likely contributed to having only two classes, land and water, in the classifica-
tion maps. The distribution of land cover change is illustrated in Figure 5c. Land loss is
significant in northwest Barataria Bay, which overlaps with the occurrence of peak surge
and waves. Land gain is noticeable on lakeshores northwest of Barataria Bay. The differ-
ence in land class pixels between the pre-lda and post-Ida classification maps translate to
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an approximate area of 329 km? of vegetative debris generated and transported else-
where. A preliminary USGS study conducted following Hurricane Ida reported the loss of
approximately 274 km? (106 mi?) of wetlands in the Barataria Bay region (Schleifstein
2021). There are likely many reasons for the difference in these quantities, one of which is
different spatial coverages. The imagery employed for this study has a spatial coverage of
approximately 6,392 km?, which appears larger than the coverage in the images pre-
sented in Schleifstein (2021). There may also be sources of uncertainty in this study’s
estimate, such as the resolution, cloud cover, shadows, and map accuracies. The 10 m
resolution of the imagery illustrates that one misclassified pixel creates an error of 100 m?.
Cloud cover, which is apparent in Figure 5(a, b), also affects the classifications and can
result in misclassified pixels. Although the accuracy of both classification maps is high at
96%, the accuracies are based on 500 random samples. Increasing training samples across
the region could reduce misclassifications.

The NOAA emergency response airborne imagery surrounding Barataria Bay and
delineations of vegetative debris requiring immediate removal are presented in
Figure 6, along with Hurricane Ida’s track. Figure 7 illustrates areas identified in Figure 6
with vegetative debris blocking infrastructure and transportation networks. Transported
vegetative debris was not found in imagery north of Lake Salvador (Figure 6). Located
west of Barataria Bay are multiple communities, including Golden Meadow (Figure 6), that
have various flood protection infrastructure that forms a polder. This appeared to protect
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ha

1/

(b) Lafitte -
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Figure 6. NOAA imagery with vegetative debris locations outlined and the time-stamped (UTC) path of
the center of Hurricane Ida. Areas labelled a — d in Figure 6 are enlarged in Figure 7 and illustrate
locations with large amounts of vegetative debris on infrastructure (Basemap: ©2022 Maxar
Technologies.)
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Figure 7. Areas within white boxes in Figure 6, following the same labelling and illustrating vegetative
debris blocking: (a) levees and flood protection in Golden Meadow; (b) residential homes and
infrastructure in Lafitte; and (c-d) roads and residential homes in Davant.

the communities from collecting vegetative debris, as debris was only found on the flood
side (Figure 7a). North of Barataria Bay, vegetative debris was found piled against sheet
pile walls. Vegetative debris was found to be especially prominent in Lafitte (Figure 6),
where vegetative debris overtopped the seawalls and loaded on residential homes and
infrastructure (Figure 7b). Communities east of Barataria Bay experienced the most
instances of vegetative debris on infrastructure and transportation networks. Figures 7
(¢, d), located in Davant (Figure 6), illustrate the severity of the transported vegetative
debris. Figure 7c shows at least 0.58 km of Louisiana Highway 23 (LA-23) completely
encompassed in vegetative debris, and Figure 7d shows another portion of LA-23 blocked
and numerous residences entirely surrounded by vegetative debris. The severity of
transported vegetative debris with respect to its impacts on infrastructure and transpor-
tation networks appears to be the greatest east of Barataria Bay, which ultimately affects
the recovery time for these communities and individuals.

The orthomosaic produced from the UAV imagery is presented in Figure 8 (Figure 8a),
along with the segmented point cloud (Figure 8b) and 3D meshes with debris piles labelled
and coloured by height (Figure 8c). Height is relative to the ground surface which was set to
zero. A histogram on the right of the colour scale indicates the proportion of points at each
height. The UAV point cloud consists of 5,936,585 points, with a mean point cloud density of
173.88 points/m? The volumes calculated for debris piles 1, 2, 3, and 4 are 4,238 m?, 3,509 m?,
167 m?, and 1,080 m?, respectively. This imagery was collected on 14 October 2021, demon-
strating that approximately 8,994 m* of disaster debris was collected and staged at this site
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Figure 8. UAV Imagery: (a) orthomosaic; (b) segmented point cloud with white outlines around
subsections extracted for analysis; and (c) 3D meshes with debris piles labelled and coloured by height.

over 46 days following Hurricane Ida’s landfall on August 29. The debris is most likely all from
Grand Isle due to its location at the entrance of the island (see Figure 1) and the fact that
debris is likely not being brought from inland to the island. Thus, on average ~196 m*/day was
collected from Grand Isle and brought to this TDMS.

The point cloud produced from the TLS survey is presented in Figure 9 (Figure 9a), along
with the segmented point cloud (Figure 9b) and 3D meshes with debris piles labelled and
coloured by relative elevation (Figure 9¢). Height was established in the same manner as the
UAV point cloud. The TLS point cloud scaled to 1 cm resolution consists of 92,972,859 points,
with a mean point cloud density of 6,100 points/m?. The volumes calculated for debris piles 1,
2,3,and 4 are 4978 m?, 3,726 m?, 183 m?, and 1,091 m®, respectively. Gaps with missing data
are apparent in the point cloud — primarily in debris piles 1 and 2 (Figure 9b). Using the UAV
point cloud for reference, the gaps appear to be located in pile locations where the exterior is
taller than the interior or there are obstructions. This is likely a consequence of the TLS survey
being conducted on the ground and unable to scan through obstructions.

To directly compare UAV and TLS, subsections of debris piles without data gaps were
extracted in both point clouds (white outlines in Figures 8 and 9). Figure 10 compares debris
pile volumes derived from the UAV and TLS point clouds for both the entire piles (Figure 10a) and
just the extracted subsections (Figure 10b). Figure 10a reveals differences in UAV and TLS
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Figure 9. TLS Point Cloud: (a) composite point cloud; (b) segmented point cloud with white outlines around
subsections extracted for analysis; and (c) 3D meshes with debris piles labelled and coloured by height.
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Figure 10. UAV and TLS debris volume comparisons: (a) entire debris piles; and (b) subsections within
white outlines in Figure 8(b) and Figure 9(b).

computed volumes ranged from 1% to 16%, with an average of 8%. These disparities may stem
from variations in the segmented debris pile boundaries between the UAV and TLS point clouds,
which were segmented independently. The surface area of the segmented UAV point cloud is
4,484 m?, whereas the surface area of the TLS point cloud is 4,714 m% Additionally,
CloudCompare’s interpolation method may inaccurately capture elevation gradients across
TLS data gaps, assuming a near-constant elevation, while the UAV point cloud exhibits varying
elevations in these gaps (see Figures 8 and 9). This could explain the higher debris volumes in the
TLS point cloud. In the subsections, the differences in UAV and TLS computed volumes ranged
from 2% to 6%, with an average of 4%. The differences only range from 6 to 42 m?, which is
relatively small in the context of disaster debris. Independent topography surveys conducted
before and after the UAV and TLS surveys would allow for an accuracy assessment, but due to the
lack of such data during disaster debris collection, this information is unavailable.

4. Discussion

Effective disaster debris management requires a reasonable understanding of the locations
and quantities of debris generated by a disaster. This assists emergency management officials
and local governments in all phases of a disaster and allows communities to promptly return
to normal. This is becoming more important with the increasing prevalence of extreme events
and their resulting disasters (CRED 2022). Remote sensing tools can provide valuable initial
estimates of disaster debris quantities, offer insights into the spatial distribution of debris, and
track the evolution of debris accumulation. Possible discrepancies between disaster debris
estimates from remote sensing tools and statistical models can arise due to many factors, such
as data sources and constraints, debris types, temporal and spatial resolutions, and model
accuracy. By comparing remote sensing estimates with statistical model predictions, discre-
pancies can be identified and used to refine the model’s parameters and assumptions, guide
the adaptation of statistical models over time, and help keep statistical models current and
responsive to changing conditions. This can be extremely valuable for emergency manage-
ment officials and local governments that have limited technological resources.

Based on the debris quantification demonstrations, Figure 11 summarizes the perfor-
mance of each remote sensing tool with respect to the following metrics: time for field-
work, time for processing raw data, time for quantitative analyses, spatial coverage, spatial
resolution, temporal resolution, cost, and operational effort. Relative values of highest,
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Figure 11. Summary of criteria for each remote sensing technology for debris quantification. Metrics
are categorized into different colour groups based on similarities and colour hues correspond to the
magnitude of the results.

high, medium, low, or none were assigned for each tool and metric based on their
performance. Thus, Figure 11 serves as a guide for selecting a remote sensing tool for
debris quantification based on the desired application and available resources.

Satellite imagery can be useful for quantifying vegetative debris generated across vast
areas by identifying areas where vegetation from wetlands has been relocated, such as
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lakeshores and canals, as well as across the broader landscape. This can help identify
priority areas for restoration efforts in areas like coastal Louisiana that experience intense
land loss and high storm frequency. An advantage of satellite imagery is that it requires no
fieldwork or deployments to collect the imagery, and both raw and pre-processed
imagery can be publicly available, allowing for much less time spent collecting and
processing the imagery. The most time is spent performing image classification to
quantify debris, which was also found in Jiang and Friedland (2016). The Sentinel-2
satellite collects imagery across the world every 5-10 days, making it possible to down-
load 1,000s km? of imagery at a time. However, with regard to debris quantification it is
limited by spatial and temporal resolutions and unable to adequately detect debris at
smaller scales (e.g. transportation networks, TDMS, and landfills). Satellite imagery is also
prone to cloud cover, which makes it difficult to obtain cloudless imagery near a storm'’s
landfall and adds uncertainty to debris quantification analyses. Conversely, imagery
collected soon after hurricane landfall may have many areas with storm surge floodwater,
resulting in inaccurate estimates of land lost versus inundated land (Schleifstein 2021).
Satellite imagery with better spatial and temporal resolutions is available from commer-
cial satellites. Jiang and Friedland (2016) and Shirai et al. (2016) utilize higher-resolution
commercial satellite imagery (1-2 m) to estimate building damage debris zones, which
was effective for their goals. However, commercial imagery comes at a cost of 14-25 USD/
km? depending on the commercial agency (AAAS 2022). This may be reasonable for
smaller study areas but may become quite expensive for larger study areas, such as the
area employed in this study. Additionally, emergency management officials and local
governments may have a limited amount of resources available to them for disaster
management, especially for disaster debris specifically (Jalloul et al. 2022). Validating
the applicability of publicly accessible imagery demonstrates that fee-based imagery,
with its higher resolution, will also be applicable and perform better. As a result, it is
suggested that agencies capable of acquiring fee-based imagery would do so. However,
fee-based imagery with higher spatial resolutions may require more rigorous but time-
consuming approaches, such as object-based image classification. Sentinel-2 satellite
imagery does not appear to be the most effective remote sensing tool for debris quanti-
fication. However, depending on available resources, commercial satellite imagery may be
more effective given computing time trade-offs.

Emergency response airborne imagery is suitable for identifying areas that require
debris clearance to facilitate the provision of emergency services and locations that will
need more debris removal and management resources. Multiple studies have effectively
employed it for debris identification or quantification in combination with other data,
such as panchromatic satellite imagery (Jiang and Friedland 2016), statistical modelling
and field measurements (Szantoi et al. 2012), and airborne lidar (Hansen et al. 2007).
Similar to satellite imagery, no fieldwork is required by the user to obtain the imagery.
Emergency response airborne imagery is typically collected by government agencies, in
this case by NOAA. The imagery is mosaicked and orthorectified prior to download,
allowing for little time spent processing the imagery. The most time is spent identifying
and delineating debris requiring removal across the extent of the airborne imagery. An
advantage of airborne imagery is its higher spatial resolution compared to public satellite
imagery (15cm vs. 10 m), validating its suitability for quantifying debris that requires
removal, such as on transportation networks and emergency service routes. Although the
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resolution may be fine enough to discern debris at TDMS, NOAA emergency response
airborne imagery is only provided as processed orthomosaics that do not include the raw
imagery or metadata that would allow for SfM photogrammetric processing for volume
quantifications. Other sources of emergency response airborne imagery may provide such
data. Additionally, TDMS may not be located in the coverage obtained by the acquiring
agency. Emergency response airborne imagery has much lower spatial coverage than
satellite imagery due to its specific acquisition for extreme event impacts and the interests
of the acquiring agency. Emergency response airborne imagery is collected immediately
following a disaster, often resulting in a better temporal resolution than satellite imagery
in the post-disaster scenario. However, in the U.S.A. the NOAA Remote Sensing Division
only collects airborne imagery post-disaster and no pre-event imagery is acquired from
this source. Adequate pre-disaster images may be available in countries with more
frequent airborne surveys. This imagery is publicly available at no cost and is typically
acquired below cloud ceilings, resulting in cloudless aerial imagery. Thus, emergency
response airborne imagery appears to be an effective remote sensing tool for debris
quantification to assist debris clearance on emergency service routes but can be limited
spatially and temporally to the acquiring agency’s interests.

UAVs are highly effective for quantifying disaster debris volumes. Furthermore, they
can be employed for pre- and post-disaster surveys. Due to their limited spatial coverage,
survey areas need to be predetermined using satellite or airborne imagery or ground
campaigns. In contrast to satellite and emergency response airborne imagery, UAVs
require field deployments and the imagery requires more time spent processing.
Volumes were computed based on the 3D meshes created for each debris pile point
cloud, which was almost immediate. Some other approaches have been utilized to
calculate waste volumes from UAV imagery, i.e. using digital elevation maps (Son et al.
2019) and Python-based algorithms (Yoo et al. 2017), although the methods are all nearly
identical. Python-based algorithms serve as the backbone for CloudCompare functions
and digital elevation maps are created from the point cloud generated from SfM photo-
grammetric processing. Although volume calculations in this study were almost immedi-
ate, the time for processing and quantification analyses is dependent on computational
resources and regular desktops may require more time to render dense point clouds
based on the available CPU, GPU, or RAM. UAV surveys have low spatial coverage
compared to satellite and airborne imagery, but spatial coverage from UAVs is dependent
on the type of UAV and available battery. A quadcopter UAV, which was used in this study,
has much lower spatial coverage than a fixed-wing UAV due to the mechanics of
a quadcopter compared to a fixed-wing. UAVs have high spatial resolutions, typically 1-
2 cm, and surveys can be performed at any temporal resolution desired by the user. For
example, depending on the size and type of UAV, a user can conduct daily UAV surveys at
TDMS to determine the volume of debris being brought in each day, providing emer-
gency management officials with knowledge of the precise volumes of debris being
collected over time. This application was demonstrated in Saffarzadeh et al. (2017), who
reported 10,258 m? stored at a TDMS one month after an earthquake and 17,417 m? less
than 2 months later. These efforts can assist efficient allocation and deployment of debris
management resources, such as providing guidance for how many trucks should be
deployed for debris removal, how much land is required to continue storing the debris,
and where operations can be improved in the midst of the disaster. UAV surveys can also
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assist characterization of the primary debris streams being generated due to the ability to
discern objects in the imagery.

A disadvantage of UAVs is that they can be significantly more expensive than satellite
and airborne imagery, although this depends on the use and type of UAV. Quadcopter UAVs
are available across a range of prices: they begin at 1,000-2,000 USD for multiple quadcop-
ter models and quickly jump to a range of 5,000-15,000 USD. The prices increase as more
features are desired, such as higher-quality cameras, alternating payloads, and georeferen-
cing capabilities. The DJI Matrice 210 used in this study is priced at 15,000 USD (NSF NHERI
RAPID Experimental Facility, pers. comm., 2023). The range of prices for fixed-wing UAVs are
higher due to their large-scale mapping abilities and often range from 15,000 to 20,000
USD. UAVs require much more operational effort than satellite or emergency response
airborne imagery, where the only effort was in data processing and quantification analyses.
UAV surveys require a licenced remote pilot to operate the UAV, a visual observer to
constantly keep sight of the UAV, and if a survey needs to be expedited, an additional
person to place and survey GCPs. An advantage of UAVs is that the pilot can conduct the
survey a short distance away from the study site, allowing flexibility for safe operations
around debris collection trucks, heavy equipment, and debris waste that may also contain
hazardous materials. This is especially advantageous for areas that are not accessible on the
ground due to obstructions from damage or debris. However, there are airspace and
permission considerations depending on the country and respective regulations, such as
not flying near airports or over bystanders without their permission. Depending on the
available services, these obstacles can be overcome, for example, through the use of
unmanned traffic management systems that facilitate UAV flights in restricted zones.
Nonetheless, UAVs appear to be a highly effective remote sensing tool for debris quanti-
fication when debris is piled at TDMS and can provide precise volumes.

Similar to UAVs, TLS is highly effective for quantifying debris and can additionally
provide precise volumes. TLS requires a similar amount of time spent in the field, proces-
sing data, and quantifying debris as UAVs. However, rendering the TLS point cloud at full
resolution requires more computational resources than the UAV imagery due to the much
higher density of the TLS point cloud. This study used a scaled-down TLS point cloud (3
mm to 1cm) to facilitate analyses due to available computational resources. Spatial
coverage for TLS is similar to quadcopter UAVs, but it may have less complete coverage
than a UAV survey based on obstructions (see Figures 8-9). Heavy equipment and
machinery moving debris was also present during the survey, which may have contrib-
uted to poor scan registrations and gaps in the point cloud. TLS has the highest spatial
resolution out of all methods (3 mm), which allows for significantly less uncertainty with
regard to debris quantification and can assist debris characterization efforts. The higher
resolution of the TLS point cloud has higher computational demands and may have
trouble rendering on a regular computer setup. It should be noted that UAVs can still
achieve millimetre resolution based on factors such as flight height, UAV model, and
sensor type; however, centimetre level resolutions are the most common (Z. Zhang and
Zhu 2023). TLS surveys can be performed at any temporal resolution desired by the user,
making it another useful method for determining volumes of debris being brought in to
TDMS each day.

A disadvantage of TLS is the high cost of the equipment. TLS equipment is
significantly more expensive than all other remote sensing tools, ranging from
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approximately 20,000 USD to greater than 100,000 USD. The Leica RTC360 used in
this study is priced at 88,000 USD (NSF NHERI RAPID Experimental Facility, pers.
comm., 2023). A TLS survey requires slightly less operational effort than a UAV
survey, as GCPs are not critical for the purpose of debris quantification. If a UAV
with RTK/PPK solutions was used, GCPs would not be necessary, further simplifying
UAV operations. UAVs with RTK/PPK solutions and lidar sensors were not employed
in this study because of their high cost and inaccessibility to the authors at the
time of the disaster. These tools should also be explored because they may
provide more accurate results at the expense of more data processing time.
Even so, the conclusions of the study would remain true with or without these
technologies. A TLS survey is performed on the ground, directly in front of the
debris at the study area, which may not be feasible for obstructed areas. Similar to
a UAV survey, there are permission considerations depending on the site. TLS
appears to be an effective remote sensing tool for disaster debris quantification,
as it can provide precise volumes of debris. However, it may not be as efficient as
a UAV due to the cost and computational demands of TLS. An application TLS may
be better suited for than UAVs is assessing building damage and resulting debris,
which was effectively demonstrated in Berman et al. (2020) and Zaragoza et al.
(2017). This is because a typical UAV survey may be limited to only damage visible
from an aerial view.

Understanding the best applications of multiple remote sensing tools can assist
decision making for emergency management officials and disaster waste managers
interested in quantifying disaster debris. The comparisons and demonstrated work-
flows presented in this study can help emergency management officials decide which
tool to employ based on their desired application and available resources. The
metrics utilized in the comparisons may have different values to various users, and
thus including multiple metrics allows users to choose a remote sensing tool based
on the criteria and applications most important to them. A key finding of this study
was that remote sensing tools can be employed for diverse applications with regard
to disaster debris quantification. Additionally, the lack of information on post-disaster
waste quantities can be effectively addressed using remote sensing tools. In parti-
cular, the UAV and TLS data in this study serve as examples by providing volume
quantities of collected disaster debris. Future studies can employ these approaches
together to conduct repeat surveys to determine debris generation over time. UAVs
and TLS are easy to transport, making them well-suited for reconnaissance investiga-
tions to collect post-disaster waste data.

Based on the demonstrations and comparisons in this study, Figure 12 summarizes
suitable applications of the remote sensing tools across the primary phases of
disaster management (pre-disaster, response, recovery) and demonstrates how appli-
cations in one phase can inform the subsequent phase. The pre-disaster phase could
be similar to the planning phase, but it is defined herein to also include the time
pre-hazard (e.g. predictions of hurricanes, floods, sediment debris) such that perish-
able data collection can occur. In the pre-disaster phase, efforts are focused on
planning for debris collection, forecasting potential debris quantities, and determin-
ing suitable locations for TDMS (FEMA 2007; USEPA 2019). Remote sensing tools
employed in this stage will be most useful for determining TDMS locations and
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Figure 12. Suitable applications of remote sensing tools in different disaster management phases.

surveying sites forecasted to be impacted by the event, which will facilitate direct
before and after comparisons. The response phase occurs immediately after an event
and is primarily focused on clearing debris from emergency service routes (FEMA
2007). In this phase, remote sensing tools will be most beneficial for quantifying
debris that must be removed to restore critical infrastructure and emergency service
routes. The recovery phase begins once emergency service routes are cleared and
debris is brought to public rights-of-way, collected, and transported to TDMS (FEMA
2007). Remote sensing tools utilized in this phase will be most useful for quantifying
debris volumes and determining areas that may require more debris management
resources, which can improve operations and speed up recovery. The applications of
the remote sensing tools are not limited to those listed in Figure 12, but rather serve
as suitable examples for emergency management officials, stakeholders, researchers,
and users interested in quantifying disaster debris.

This study utilizes each remote sensing tool individually to address the knowledge gap
on the performance, advantages, and shortcomings of each individual tool for disaster
debris quantification. Through this approach, the results of the comparisons can not only
help for selecting a tool but can guide future studies for combining multiple tools based
on their performance, specifications, and application. Further studies that use remote
sensing tools to quantify disaster debris are critical for validating the results of this study,
especially studies that combine multiple tools to improve disaster debris estimates and
mitigate discrepancies and uncertainty in the data.
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5. Conclusions

The aim of this study was to demonstrate and compare multiple remote sensing tools
available for quantifying disaster debris using post-disaster data collected following
Hurricane Ida. These measures will assist disaster debris quantification and management
efforts for future disasters. The results of this study found that satellite imagery is useful
for identifying where vegetative debris was created and transported across expansive
spatial areas, although publicly available imagery is limited by spatial and temporal
resolutions. Emergency response airborne imagery is well-suited for quantifying trans-
ported vegetative debris and determining areas that need immediate debris manage-
ment resources, such as emergency service routes that require debris clearance. However,
it can be limited spatially and temporally to the interests of the acquiring agency. UAVs
and TLS are highly effective for quantifying debris and can provide precise volumes. This
provides emergency management officials with workflows for calculating debris volumes,
which will contribute to the lack of data on post-disaster waste quantities. Furthermore,
UAVs may be a better option for quantifying debris volumes rather than TLS due to their
lower cost and computational demand. A framework was developed to evaluate remote
sensing technologies and their efficacy in debris management, which will assist debris
quantification efforts and decision making for disaster waste managers.
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