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Abstract—Hardware-assisted Fault Isolation (HFI) is a minimal extension to current
processors that supports secure, flexible, and efficient in-process isolation. HFI
addresses the limitations of software-based fault isolation (SFI) systems including:
runtime overheads, limited scalability, vulnerability to Spectre attacks, and limited
compatibility with existing code and binaries. HFI can be seamlessly integrated into
exisiting SFI systems (e.g. WebAssembly), or directly sandbox unmodified native
binaries. To ease adoption, HFI proposes incremental changes to existing
high-performance processors.

Introduction

L ightweight in-process isolation can change how
we organize software systems for improved
security, flexibility, and performance. In recent

years, in-process isolation has become ubiquitous
thanks to the emergence of WebAssembly (Wasm). In
the browser, Wasm powers applications used by billions
of people daily (e.g. Zoom, Figma, Photoshop). Beyond
the browser, Wasm is enabling isolation in novel use
cases where existing hardware-based protection can’t —
from hyper-consolidated FaaS platforms and high-
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performance data planes, to data streaming platforms1.

Wasm makes these novel use cases possible by
enforcing isolation in software — using Software-based
Fault Isolation (SFI). SFI enforces isolation through a
combination of compiler instrumentation and virtual
memory tricks. Thus, it allows Wasm to avoid the
high context-switch overheads, slow cold-starts, scaling
limits, etc. of primitives such as processes, containers
and VMs that rely on existing hardware protection
mechanisms (e.g., page tables2,3).

For example, Wasm context switches are very fast —
in the low 10s of cycles4, roughly the same as a
function call — and orders of magnitude cheaper than
a hardware context switch, let alone IPC. Fast context-
switches enable tight integration with high performance
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applications, allowing Wasm to provide safe extensibility
in micro-service dataplanes (Istio), realtime databases
(SingleStore) data streaming platforms (RedPanda),
and SaaS applications (Shopify); it also enables sand-
boxing to be retrofitted into existing applications without
requiring costly re-architecting, for example, to sandbox
potentially vulnerable third-party C libraries in Firefox5.

Similarly, context creation is also very fast — produc-
tion FaaS systems can spin up a new Wasm instance
in 5µs1, instead of the tens to hundreds of milliseconds
it takes to spin up a container or VM. Along with
low context-switch overheads, this has enabled a new
class of high-concurrency, low-latency edge computing
platforms from Fastly, Cloudflare, Akamai, etc.

While these unique capabilities have opened the
door to many new use cases — Wasm’s utility is also
hampered by limitations that are intrinsic to SFI today
including: performance overheads, scaling limitations,
limited compatibility with existing code and binaries,
and Spectre Safety.

These limitations are not inherent to in-process
isolation, rather, they are a byproduct of SFI’s attempts
to bridge, in software, the gap between past models of
hardware protection and the current needs of software
systems. To overcome these limitations, we developed
hardware-assisted fault isolation (HFI)–a minimal set
of non-intrusive architecture extensions that bring first-
class support for in-process isolation to modern pro-
cessors.

HFI offers primitives that systematically eliminate
typical software (and hardware) isolation overheads
by design: it imposes near-zero overhead on sandbox
setup, tear-down, and resizing; it can support an
arbitrary number of concurrent sandboxes; it offers
context switch overheads on the same order as a
function call; it can share memory between sandboxes
at near-zero cost; it provides flexible low-cost mitigations
for Spectre, and near-zero cost system call interposition
(for native binaries).

HFI provides first-class assistance for Wasm and
similar systems by offering secure, scalable, and ef-
ficient hardware primitives that can be used as a
drop-in replacement for SFI—it also provides first-class
support for backwards compatible in-process isolation,
allowing it to sandbox existing native binaries and
dynamically generated code. HFI achieves this with
minimal additional hardware and minor changes to the
control and data paths of existing processors, making
it easy to adopt.

Several key design choices enable these unique
properties:

1) HFI does everything in userspace; thus, there are
no overheads from ring transitions or system calls when

changing memory restrictions, or entering and leaving
a sandbox.

2) HFI does not rely on the MMU for in-process
isolation — instead, sandboxing is enforced via a new
mechanism called regions; regions enable coarse-grain
isolation (e.g., heaps) and fine-grain sharing (e.g.,
objects) within a processes’ address space.

3) HFI only keeps on-chip state for the currently
executing sandbox; thus, it can scale to an arbitrary
number of concurrent sandboxes — in contrast, many
other systems hit a hard limit as they keep on-chip state
for all active sandboxes2,6.

SFI and its Limitations
SFI is the dominant (and in terms of practical deploy-
ment, the only) technology for fine grain in-process
isolation today. This is, in part, because isolation that re-
lies on modern page-based protection (e.g. processes,
VMs) are poorly suited to fine grain isolation for a variety
of well known reasons3 including: expensive context
switches due to protection ring transitions, heavy weight
context saves and restores4, increased TLB flushes
and contention as concurrency scales, etc.

SFI7 — and by extension, Wasm — avoids these
costs by using compiler-added instrumentation, rather
than hardware protection—to enforce isolation by in-
terposing on all memory access. Conceptually, SFI
is simple: memory is viewed as a set of contiguous
memory regions with a base (starting address) and a
size—a compiler adds the base address of a sandbox
to the operand of any memory operation, e.g., load,
then checks that the result is in-bounds, rather like a
poor man’s version of segmentation.

Naively, we could imagine implementing this by
adding explicit bounds checks to each memory
load/store and instruction fetch, however, this can easily
slow down code by a factor of 2×7. Instead, Wasm
and other modern SFI systems (e.g., Native Client)
rely on a faster technique which relies on the MMU
to enforce bounds implicitly using a system of large
address spaces and guard regions.

Wasm runtimes accomplish this by allocating a
4 GiB address space (called a linear memory in Wasm),
followed by a 4 GiB guard region (unmapped address
space) for each sandbox. When accessing linear mem-
ory, each Wasm load/store instructions instruction takes
two 32-bit unsigned operands. A Wasm compiler will
generate code to add these operands, resulting in a
33 bit address—and add the result to a 64bit base
address—the starting address of a linear memory. By
construction, any 33 bit unsigned offset plus a base
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address will be within 8GB of the base; thus, access
beyond the first 32-bit (4GB) address space will trap.
To isolate control flow, Wasm also relies on software
control flow integrity8.

Despite this clever design, Wasm still has many lim-
itations, some fundamental to SFI, and others specific
to Wasm’s design:

32-bit address spaces. Guard region based SFI only
works for 32-bit address spaces on 64-bit architec-
tures — supporting larger Wasm sandboxes, or smaller
processors, requires falling back to explicit bounds
checks with the high overheads (up to 2x) this implies.

Performance overheads. Even with these tricks, Wasm
can still easily impose performance overheads of 40% —
sometimes less, and sometimes a lot more5. Some
costs are fundamental to SFI, such as restrictions on
the formats of memory instructions and added register
pressure2. Some are specific to Wasm, such as the
cost of software CFI, and limited access to SIMD
instructions.

Spectre. Wasm cannot protect itself against Spec-
tre attacks without performance penalties — to wit —
software-based mitigations add an additional 62% to
100% of overhead9.

Compatibility. A compiler must explicitly target Wasm
to use it. Thus, assembly language, platform specific
compiler intrinsics, dynamically generated code, and
existing binaries (e.g. precompiled libraries) are not
supported.

Scaling (Virtual memory consumption). As previously
noted, every Wasm instance consumes 8 GiB of virtual
address space, even if it only uses only a few 100 MB
or less, as most serverless edge workloads do today.

This limits scaling as virtual address space is finite —
typical x86-64 CPUs provide 247 (128 TiB) worth of user-
accessible virtual address space1. Thus, at 8 GiB (233)
per-instance we can run at most 16K (214) instances
concurrently per-process. High performance edge com-
puting platforms are already running up against this
limit today. These systems spin up a new instance in
µ-seconds for every incoming network request, and
requests often block for I/O; thus massive concurrency
is the norm.

At present, their only recourse is to spin up more
processes, and load balance requests between them.
Unfortunately, this leads to load imbalances and expen-
sive context switch overheads as processes contend
for physical cores. Also, applications that use FaaS

1Intel supports 52/57-bit address spaces in certain high-end
server CPUs.

platforms don’t always consist of just one function, they
can be multiple functions that want to communicate
(function chaining). In a single address space, this
communication is as fast as a function call, however,
this is easily 1000× to 10000× slower across process
boundaries (IPC)4.

The main reason FaaS providers use Wasm is
to avoid these overheads in the first place. FaaS
providers would rather schedule more instances in fewer
processes — ideally one. If used efficiently, 128 TiB
really does support a lot of Wasm instances; not
only is this more efficient, it makes systems easier to
understand, which in turn makes them easier to deploy,
debug, and optimize.

Design Overview
Hardware-assisted Fault Isolation (HFI) is a minimal
extension to current processors for secure, flexible, and
efficient in-process isolation. For this, HFI introduces
architecture primitives to create one or more in-process
sandboxes. These can be either hybrid sandboxes, that
integrate HFI’s primitives into existing SFI compilers like
Wasm, for increased performance, scalability, security,
etc. or native sandboxes, that can confine arbitrary
untrusted binaries.

A sandboxing runtime enables HFI with the
hfi_enter enter instruction, resulting in sandboxing
constraints (memory and control isolation) being en-
forced until the hfi_exit instruction is invoked, at
which time HFI returns control back to the runtime.
The runtime is responsible for saving and restoring the
sandbox’s context (e.g. general purpose registers), and
can multiplex many sandboxes across cores, scheduling
them as it sees fit.

A sandbox’s semantics are dictated by a set of per-
core HFI registers consisting of: (a) region registers
that grant access to memory, (b) a register with the
sandbox exit handler—where system calls and sandbox
exits are redirected—supporting full control of privileged
instructions and control flow, and (c) a register with
sandbox option flags, e.g. whether the sandbox is a
hybrid or native sandbox.

Efficient Memory Access Control with Regions.
HFI’s memory and control isolation is configured using
a finite set of regions. Regions in HFI are base and
bound pairs that identifies a range of memory that can
be accessed (e.g. stack, heap, code), and permissions
(read, write, execute) that apply to that range.

Notably, a central aspect of HFI’s design is using
region specialization to minimize the hardware required
to bounds check regions, as these checks are located
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in the heart of the processor’s control and datapath,
where every additional gate matters.

Concretely, an approach that uses two 64-bit com-
parators (per region) would be the obvious design
choice for ensuring memory accesses are restricted
to the configured regions; however, these are large
circuits that would add unacceptable delay and power
consumption to a processors critical path. Instead, HFI
offers multiple region types, each of which reduces
hardware complexity by being specialized to a particular
task. We will describe the different region types, then
discuss how they are used.

HFI uses implicit regions to apply checks to every
memory access, and grant access on a first-match
basis. For example, if sandboxed code executes an
instruction — load address X into register Y — HFI will
check if any region register has a range that includes
X in parallel, then apply the permissions from the first
matching region. If the first match has read permission,
the operation will proceed, else HFI will trap.

Implicit regions are essential for situations when
every memory operation in an application must be
checked. In exchange for this power, they assume
some constraints on a region’s size and alignment,
in particular, implicit regions require a region’s address
to occupy an aligned location and have a size which is
a power of 2.

This restriction typically requires developers to only
make slight modifications to how memory allocation
occurs; however, it allows hardware to implement the
region checks as simple, fast masking operations.
Again, for hardware simplicity, implicit regions are
further specialized into code and data regions. In total,
HFI provides 4 implicit data regions, and 2 implicit code
regions for a sandbox.

HFI also provides 4 explicit data regions, that
trade the generality of implicit regions for precision.
Specifically, all loads and stores to explicit regions are
region-relative, i.e., name the region they apply to in
using the new hmov[1-4] instruction, a variant of the
x86-64 mov instruction, with the region number encoded
in the instruction.

In exchange for this constraint, the size and align-
ment constraints of implicit regions are relaxed, allowing
more precise control over memory layout. There are
two types of explicit regions, small—that support byte
granular sizes alignment, and are limited to a max of
4GB, and large—which are 64K-aligned and can be
any multiple of 64K in size. This added specialization
again supports simpler hardware; explicit regions can
be supported with just a single 32-bit comparator. In
total, HFI provides 4 explicit data regions for a sandbox.

Using Regions. By default, a sandbox cannot ac-

cess any memory—region registers must be set
before sandbox entry (hfi_enter), to grant mem-
ory access to a sandbox using a handful of new
instructions—hfi_set_region, hfi_get_region,
hfi_clear_region.

Using the above instructions to configure HFI’s
explicit and implicit regions meets a diverse set of needs.
HFI’s implicit regions are ideal for sandboxing unmod-
ified native binaries, where large regions of memory
(e.g. the stack, heap, code) are not as particular about
their size or alignment. While the added precision of
explicit regions makes them well suited to supporting
heaps for SFI systems like Wasm — where heaps grow
in fixed size increments, and all operations are already
explicitly relative to a region of memory — as well as for
fine-grain, zero-copy sharing of objects between two
different sandboxes.
System call interposition is another important feature
of HFI. Architecture support makes this every efficient
(syscall instructions are optionally converted to jumps
to a specified location in the processor’s decode stage),
simple, and accessible at user level. With this, HFI
can sandbox unmodified native binaries, while ensuring
sandboxing is not bypassed or disabled10. System call
interposition is used by setting a flag in the HFI option
register prior to sandbox entry, as well as providing
an exit handler — the location where system calls are
redirected to.

HFI offers a variety of other features to enable secure
and efficient sandboxing, for example, to mitigate
certain classes of Spectre attacks. Please consult our
full paper for more details11.

µArchitecture design
Five overarching goals guide and constrain the design
of HFI’s µ-architecture:

1) Fast. Minimizing overhead is a central goal of HFI.
Thus, HFI should add any new circuits such that they
are run concurrently with existing operations such as
TLB lookups.

2) Secure. HFI must be robust to Spectre, and free
from Meltdown-style flaws that could compromise ex-
isting software. To avoid this, HFI must not update
microarchitectural state (such as the dtb, branch predic-
tor, and data/instructions caches) based on data that
is secret (i.e., data outside the sandboxed region).

3) Scalable. HFI must not store any state on-chip that
scales with the number of sandboxes. This could restrict
the total number of concurrent sandboxes or require
expensive state spills on overflow, resulting in perfor-
mance that scales down as concurrency increases. It
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Figure 1. HFI Impact on the x86 data pipeline. We see the x86 data pipeline with added HFI components in Green. HFI adds no
additional overhead to the data path — no new pipeline stages are added — and all new operations take place in parallel with the
dtb (dTLB) lookup or instruction decode stages.

must also minimize context switch overheads by limiting
on-chip state for the current sandbox.

4) Minimal. HFI enforces region bounds checks in
the neighborhood of critical pipeline structures such
as the address generation unit, and the TLB; thus it
must not add new large structures (even if the new
structures are not on the critical timing path, it can
push components physically further apart, which in turn
affects timings and the CPU frequency). Thus, HFI must
avoids components like 64-bit comparators that would
otherwise be natural design choices.

5) Tax-free. HFI should not impose slowdowns on
code that doesn’t use it, given that most code today is
not sandboxed. Thus, HFI must not add extra pipeline
stages, nor timing delays to existing stages on the
critical timing path of the processor.

Given these constraints, we now briefly outline the
implementation of HFI’s essential components — the
regions (implicit data and code regions, and explicit data
regions), sandbox setup, and system call interposition.

Implicit Regions. HFI allocates two registers for each
implicit region, for the lsb_mask and base_prefix.
If this is an implicit data region, checks are applied to
all load and store operations on the data path if this
is an implicit code region, checks are applied to the
program counter.

Concretely, these checks work by prefix matching —
the region’s lsb_mask is first used to remove the least
significant bits of the effective address (with an AND
operation), and then the base_prefix is compared
for equality with the remaining bits of the address. To
ensure efficiency, checks for the implicit data region
occur in parallel with the dtb and cache index lookup;

checks for the implicit code region are applied in parallel
with the decode stage.

If prefix-checking fails for all regions, or the first
matched region does not have adequate permissions
(e.g., no read permission for a load operation), HFI
triggers a segmentation fault, similar to a memory
access to unmapped memory.

Explicit Data Regions. Explicit data regions are
regions accessed with the new hmov (hmov0, hmov1,
hmov2, hmov3) instructions, that confines data ac-
cesses to the specified region. hmov operates like
a standard x86 mov, including complex addressing
modes where scale, index, base and displacement
operands are added/combined to form the effective
address. In our paper11, we proposed implementing
hmov by adding three additional steps that: (1) choose
an HFI region (encoded in the instruction), (2) replace
the base operand with the base address of the chosen
HFI region, and (3) perform checks on the remaining
operands and the resulting effective address of hmov
to ensure that the memory access remains within the
region (Figure 1). However, step (2) limits the flexibility
of the mov instruction. In subsequent research, we
realized we can recover this flexibility by using the
segment operand (which is rarely used) rather than the
base operand for addressing our region.

Explicit bounds checks are implemented with a
single 32-bit comparator and a few cheap bit-level
checks. Specifically, HFI checks that: (1) the 32 most
significant bits of the effective address is smaller than
the upper bound specified in the HFI region metadata
registers, (2) the displacement and index sign bits are
non-negative, and (3) effective address calculation does
not cause an overflow. The second and third check
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ensure it is impossible to generate an effective address
lower than the base. Thus, we check both base and
bound with a single compare (and three trivial single-bit
checks).

This approach works well as long as applications
create regions that follows some simple constraints:
for large regions, HFI works as long as the base and
bounds are aligned to 64K (216) on the typical x86
CPUs that support using 48-bits out of the 64-bit virtual
address space2; for small regions (upto 4 GiB), HFI
only checks the bottom 32-bits of the effective address
against the base, and can thus support arbitrary bounds
as long as the region does not span across an address
that is a multiple of 4 GiB.

Sandbox setup. HFI adds region configuration instruc-
tions previously discussed (e.g. hfi_set_region)
that manipulate internal region registers, as well as
hfi_enter and hfi_exit to enable and disable
sandboxing. The hfi_enter instruction saves its
parameters — the exit handler and flags to internal
configuration registers, enables HFI mode. On exit, HFI
disables the sandboxing, and records the reason for the
exit (e.g., executed an hfi_exit instruction, executed
a syscall, traps) in an MSR, and finally jumps to an exit
handler if one is specified.

System call interposition. HFI can be configured
to redirect syscalls executed by sandboxed code. To
implement this, HFI modifies the decode stage of the
syscall instruction and its variations to perform a
microcode check and redirect control flow to the HFI
exit handler if this is the case. The syscall instruction
is otherwise unmodified. The single cycle penalty this
imposes on syscall instructions is amoritized by the
typical costs of standard system calls.

Evaluation
We implemented the HFI in the Gem5 simulator for
detailed performance analysis. We also used compiler-
based emulation (that emits instructions such as
cpuid, lfence etc. to insert appropriate slowdowns)
to efficiently evaluate longer running workloads and
validated that our emulator has similar performance
characteristics as our Gem5 simulator. Please consult
our full paper for more details11.

Performance Evaluation
We evaluated the performance of HFI in four use cases:
long-running applications (SPEC), library sandboxing

2On Intel server CPUs that support 52/57-bit address spaces,
a larger 36/41-bit comparator would be necessary
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Figure 2. SPEC INT 2006 results normalized against guard
pages.

in a browser, a JIT-based FaaS, and native sandboxing
in a server workload (NGINX).

SPEC 2006 Benchmark Suite. We evaluate HFI on
the subset of SPEC06 that is compatible with Wasm.
Figure 2 shows the performance Wasm with explicit
bounds checks, guard pages, and HFI—relative to the
cost of guard pages.

These long-running applications do not test HFI’s
fast transitions, but do show its low cost in steady
state. We see that HFI (geomean speedup of 3.2% over
guard pages) is far less costly than bounds checking
(geomean slowdown of 34.7% over guard pages), and
HFI on average is modestly faster than guard pages.
The 445.gobmk benchmark takes a little longer with HFI
as it puts heavy pressure on the instruction cache, and
in this case, we see that the hmov instructions for which
we used longer encodings, impacts HFI performance.
However, HFI is the only scheme of these three that
also offers Spectre protection, and mitigating Spectre
without HFI, incurs a 62% to 100% penalty9.

Wasm Sandboxing in Firefox. To understand the
end-to-end performance impact of HFI, we evaluate
the performance of HFI in sandboxing font rendering
and sandboxed image rendering in Firefox. Notably,
both these benchmarks stress HFI’s transitions as the
code rapidly jumps from the sandboxed code to Firefox
code — one per glyph/letter for font rendering, and
once per row for image rendering. The font rendering
benchmark reflows the text on a page ten times via the
sandboxed libgraphite, and takes 1823 ms when
using Wasm with guard pages; 2022 ms when using
Wasm with bounds-checking; and 1677 ms when Wasm
powered by HFI — a 17% and 8% speedup respectively.
For Wasm-sandboxed libjpeg, we measure decode
time for JPEG-format test images from the Image
Compression benchmark suite. We use images of three
resolutions and three compression levels. Figure 3
shows the median decode times for each configuration
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Figure 3. Firefox image rendering. HFI offers a significant
speedup for image rendering — the biggest increase for larger
images that amortize the cost of hfi_enter. More com-
pressed images — that are more compute intensive — also see
greater benefits, as a result of decreased register pressure.

out of 1000 runs. As expected, HFI offers the fastest
sandboxing compared to the typical software-based
enforcement of Wasm.

HFI and Scalability. As HFI eliminates the need for
guard regions, it can support far more concurrent in-
stances in a process’ address space, a highly desirable
trait in high scale serverless settings. To exercise this,
we modified Wasmtime, a Wasm runtime popular in
serverside settings, to use HFI instead of guard regions,
and spun up as many 1 GiB sandboxes as it would
support. As expected, it could create up to 256,000
1 GiB sandboxes in a single process, making full use
of the process’ address space 3.

HFI for Sandboxing Native Binaries. We used HFI
to sandbox a native binary and compared it ERIM6,
a state-of-the-art system for sandboxing. ERIM uses
Intel Memory Protection Keys (MPK) for sandboxing
memory accesses, and Linux’s seccomp-BPF to filter
system calls.

We first compare the overhead of ERIM’s seccomp-
BPF system call filter to HFI’s microarchitectural support
for the same. For this, we ran a custom syscall
benchmark that opens a file, reads it, and closes it
100,000 times. We found that using seccomp-BPF
version imposes an overhead of 2.1%, over HFI.

Next, we modify the NGINX webserver to estimate
the performance of sandboxing crypto functions and
session keys in OpenSSL, similar to ERIM6. We used
this to measure the costs of integrating HFI in existing
applications versus the benefits (e.g., blocking attacks
like Heartbleed and Spectre).

HFI’s native sandbox by design does not impose
any execution overhead, as there is no modification of

3Wasmtime normally supports up to 21,504 sandboxes. It
is able to slightly exceed the 16K limit through a sophisticated
combination of guard regions and bounds checks.

the instruction stream and region checks execute in
parallel with address translation. Instead, overheads
only appear during sandbox enters and exits, metadata
manipulation (e.g., hfi_set_region), and traps. We
compare the throughput of the NGINX web server
delivering content when protecting session keys with
HFI and MPK respectively. HFI’s overhead ranges
from 2.9% to 6.1%. compared to MPK’s range from
1.9% to 5.3% — a slight increase due to the cost of
HFI’s metadata manipulation as well as serialization on
hfi_enter and hfi_exit for Spectre protection.

Spectre Evaluation
We use proof-of-concept attacks from the TransientFail
(the in-place Spectre-PHT attack) and Google SafeSide
(the in-place Spectre-BTB attack) test suites to ensure
HFI is resistance to Spectre attacks. HFI prevents
both these attacks ensuring sandboxed code cannot
speculatively access secret data (stored in a global
variable in the host application for this examples).

We compared HFI’s Spectre protection overheads,
to the performance of Swivel9, the fastest known
compiler-based approach to mitigating Spectre in Wasm.
We evaluated this by measuring costs of Spectre
protection on several common FaaS Wasm workloads
running in the Rocket webserver. We compiled our
Wasm workloads with a Lucet Wasm compiler without
Spectre protections, Lucet+Swivel-SFI protections, and
with Lucet+HFI using native sandbox. Finally, we also
record the binary sizes of all three builds.

Table 1 shows that HFI guards against Spectre
with very low drop in tail-latency and no noticeable
binary bloat, while Swivel incurs noticeable overheads
for the same. In fact, the only overheads imposed by
native sandbox HFI are due to region construction and
sandbox state transitions (two per connection), and
these costs are amortized by the cost of the workload.

Path to Adoption
HFI offers a unique solution for hardware-assisted
isolation that balances novel acceleration capabilities
with practical adoption.

Previous approaches to sandboxing that re-purpose
existing hardware6 such as Memory Protection Keys,
consistently fall short with respect to scaling, perfor-
mance, security10, etc. On the other hand, ambitious
novel architectures such as CHERI impose high costs
in terms of hardware complexity, and modifying existing
software stacks, that pose significant barriers to adop-
tion. HFI illustrates a middle path between these two
extremes, offering dedicated hardware acceleration for
isolation that is timely, relevant, and easy to adopt.
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Table 1. Impact of HFI Spectre protection on tail latency. We compared HFI and Swivel — the fastest software-based Spectre
mitigation, on several Wasm FaaS workloads. Swivel increased tail latency by 9%–42%. HFI’s increased tail latency by 0%–2%.

HFI Protection
XML to JSON Image classification Check SHA-256 Templated HTML

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Lucet(Unsafe) 421 ms 466 ms 231 3.5 MiB 12.2 s 14.7 s 1.62 34.3 MiB 589 ms 667 ms 161 3.9 MiB 45.6 ms61.8 ms2.19k 3.6 MiB
Lucet+HFI 431 ms 480 ms 227 3.5 MiB 12.2 s 14.7 s 1.62 34.3 MiB 602 ms 647 ms 165 3.9 MiB 45.7 ms61.2 ms2.18k 3.6 MiB
Lucet+Swivel 559 ms 616 ms 174 4.1 MiB 11.5 s 12.8 s 1.72 34.5 MiB 645 ms 709 ms 150 4.6 MiB 78.9 ms97.9 ms1.26k 4.2 MiB

In recent years, SFI, in the form of Wasm, has
seen broad adoption on the web; in edge computing
platforms; for sandboxing of buggy C libraries5; and
providing safe extensibility in numerous applications,
and by web3 platforms to run decentralized applications.
Beyond its use in Wasm, SFI is also used by Chrome
to isolate their V8 JavaScript Engine; and by the Linux
kernel (eBPF) to provide extensibility, performance
analysis, and security monitoring.

This widespread use of SFI allows HFI to avoid
the classic chicken-and-egg problem faced by new
hardware security features — there is already a huge
base of software using SFI that can (with minor
changes) immediately benefit from the added security,
performance, scalability, etc. that HFI offers.

Further, HFI was refined through numerous itera-
tions of feedback from architects at Intel to determine
what changes are practical in existing high-performance
processors. As a result, HFI offers precisely what is
needed to support in-process isolation with a minimal
hardware bill of materials.

Additionally, HFI requires very little support from
the OS (on the order of tens of lines of code), again
informed by the reality that getting OS kernel support is
a significant barrier to rolling out new hardware features.

Our work with HFI is just beginning, engineers
who develop Chrome and Firefox are excited about
the benefits that HFI can bring to their hardening
efforts12; engineers at edge computing companies are
excited about its potential to improve scalability, security,
and performance on their platforms. And processor
architects are excited about enabling these benefits
with minimal hardware costs.
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