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Abstract— Current methods for fall risk assessment rely on
Quantitative Gait Analysis (QGA) using costly optical tracking
systems, which are often only available at specialized laboratories
that may not be easily accessible to rural communities. Radar
placed in a home or assisted living facility can acquire continuous
ambulatory recordings over extended durations of a subject’s
natural gait and activity. Thus, radar-based QGA has the
potential to capture day-to-day variations in gait, is time efficient
and removes the burden for the subject to come to a clinic,
providing a more realistic picture of older adults’ mobility.
Although there has been research on gait-related health
monitoring, most of this work focuses on classification-based
methods, while only a few consider gait parameter estimation. On
the one hand, metrics that are accurately and easily computable
from radar data have not been demonstrated to have an
established correlation with fall risk or other medical conditions;
on the other hand, the accuracy of radar-based estimates of gait
parameters that are well-accepted by the medical community as
indicators of fall risk have not been adequately validated. This
paper provides an overview of emerging radar-based techniques
for gait parameter estimation, especially with emphasis on those
relevant to fall risk. A pilot study that compares the accuracy of
estimating gait parameters from different radar data
representations — in particular, the micro-Doppler signature and
skeletal point estimates — is conducted based on validation against
an 8-camera, marker-based optical tracking system. The results of
pilot study are discussed to assess the current state-of-the-art in
radar-based QGA and potential directions for future research that
can improve radar-based gait parameter estimation accuracy.

Index Terms—Fall risk assessment, gait parameter estimation,
micro-Doppler, radar, skeleton estimation

Impact Statement— Quantitative Gait Analysis (QGA) relies
on expensive optical tracking systems in specialized laboratories,
whereas radar-based in-home QGA can capture daily gait
variations, providing more realistic, continuous assessment of
mobility. [max 30 words]

I. INTRODUCTION

HUMAN gait is an important health indicator, especially for
older adults, who may increasingly experience issues with
balance and stability as a normal part of the aging process.
Monitoring of gait can provide early warning of diseases or
important information on post-treatment recovery. As such, gait
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parameter estimation is an important task for any remote health
monitoring system installed either in-home or in an assisted
living facility in support of aging-in-place. Falls especially
remain a significant threat to the health of older adults:
according to the U.S. Center for Disease Control, each year,
roughly 1,800 older adults suffer fall-related fatalities in
assisted living facilities [1]. Thus, fall prevention and fall risk
assessments are critical to preventing debilitating injury and
fall-related fatalities.

Falls often occur during walking [2]-[5] and although fall risk
is influenced by a variety of intrinsic and extrinsic factors [6],
gait and balance disorders have been consistently identified as
one of the strongest risk factors. Not surprisingly, many studies
suggest that gait features are associated with a history of falls
and are good predictors of prospective falls [7]. Consequently,
standardized gait assessments are commonly used in the clinical
practice guidelines to evaluate and prevent fall risk [8]-[11].
Numerous approaches have been taken to quantify gait and its
relation to falls. Clinical rating scales usually integrate a
cumulative score based on performance across multiple tasks.
Accordingly, they are useful in evaluating mobility limitations
and fall risk, but do not identify the specific mechanics that are
associated with falls. Moreover, they may lack of discriminant
ability, especially in healthy populations that have not started to
fall frequently [12].

Quantitative gait analysis (QGA) may not only provide an
indication of an individual's risk of falling, but also highlight
specific modifiable gait characteristics that can be targeted with
interventions to reduce the risk of future falls. Gait assessment
can be altered to increase the level of difficulty (e.g., dual-task
paradigms, turning, backward walking, and walking at a fast
pace). Current methods for fall risk assessment with QGA rely
on gait parameters extracted from optoelectronic motion
capture systems, such as Vicon, which utilize markers on the
participant to accurately estimate the position vs. time of each
marker with multiple cameras. Such optical tracking systems
are currently used in most gait analysis laboratories for both
clinical and research purposes and provide a “gold standard” for
gait analysis [13]. However, reliance on motion-capture based
QGA systems involves expensive equipment, raising the cost of
health care, while not being readily accessible as they are few,
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predominantly operated by medical schools in large cities, and
thus distant from rural populations. These barriers can result in
infrequent assessments and delays in diagnosis, especially for
underserved or low-income adults. Moreover, QGA labs are
controlled environments that preclude the assessment of natural
gait: people invariably alter their behavior when they know
they are being observed. This phenomenon is known as the
Hawthorne effect and has been shown to influence gait [14].
For example, in the presence of an observer, limping was less
pronounced and double support time more symmetrical in the
gait of lower limb prosthesis users [15].

As a result, there has recently been great interest in the
development of in-home QGA to enable continuous monitoring
of gait in an uncontrolled environment, paving the way for
reduced health care costs, more widespread access to gait
assessments, and improved health outcomes. Both wearable
and camera-based systems have been proposed for fall risk
assessment [16], while radio frequency (RF) sensing — or radar
— is a more recently proposed, emerging modality due to its
ability to operate ambiently and in a non-contact fashion from
a distance without requiring any light [17][18]. This makes
radar particularly well suited for monitoring in indoor settings,
such as private homes and senior living communities, operating
either in a stand-alone or complementary fashion with
wearables, which may be forgotten to be worn, and cameras,
which may not be preferred for ambient use as it may be
intrusive of private moments and spaces. As such, radar can
potentially offer continuous assessments even in sensitive
settings without any burden on the user and operates ambiently
without batteries. The RF emissions of typical radars are safe
for humans, with levels at least 100 times less than that of a
typical cell phone.

A radar placed in a home or assisted living facility can
acquire continuous ambulatory recordings over extended
durations of a subject’s natural gait and activity. Radar-based
QGA can capture day-to-day variations in gait, is time efficient
and removes the burden for the subject to come to a clinic,
providing a more realistic picture of older adults’ mobility. This
can aid in identifying psychological conditions, such as
depression, which are marked by low activity levels,
environmental factors that may be a cause of aberrations in gait,
and early warning signs of neuromuscular disorders and
potential fall risk — before a debilitating fall occurs.

Over the past decade, research on gait-related health
monitoring with radar has focused on classification-based
methods for fall detection [19]-[22], gait/activity recognition
[23]-[34], aided/unaided ambulation discrimination [35]-[37],
or detection of gait abnormalities [38]-[41]. However, there
have been fewer works that consider gait parameter estimation
for QGA. On the one hand, many metrics that are accurately
and easily computable from radar data have not yet been
demonstrated to have an established correlation with fall risk or
other medical conditions. On the other hand, the accuracy of
estimated gait parameters that are well-accepted by the medical
community as indicators of fall risk have not been adequately
validated. Often, many works report the accuracy of the

proposed radar-based estimation methods in comparison to the
Kinect sensor or an assortment of web cameras; however, such
markerless systems are more prone to significant estimation
errors and thus offer inadequate assessment and benchmarking
of true accuracy.

This paper provides an overview of emerging radar-based
techniques for gait parameter estimation, especially with
emphasis on those relevant to fall risk. The results of a pilot
study comparing different radar-based estimation approaches
are provided in conjunction with detailed discussion to provide
comprehensive assessment of the current state-of-the-art and
highlight areas requiring future research.

II. RADAR-BASED GAIT PARAMETER ESTIMATION

The received signal of a typical frequency modulated
continuous wave (FMCW) radar system for the backscatter
from a point target is a time-shifted, frequency modulated
version of the transmitted signal.  Thus, the received
backscatter, s(t), from the entire human body can be
represented as the superposition of reflections from each point
on the surface of the body,
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where fj is the center transmit frequency, 4 is the wavelength,
t is time, R;(t) is the time-varying range of each point on the
body to the radar transceiver, and a; amplitude for the it" point
as computed from the radar range equation [42],
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Here G is the antenna gain, P; is the transmitter power, o;, is the
radar cross section (RCS) for each point target, and L represents
losses, such as electronic noise.

Nowadays many commercially available radar systems also
have multiple channels, or elements in their antenna array, so
that the received multi-channel RF data stream can be reshaped
into a 3D array: fast-time (number of analog-digital converter
samples) x slow-time (number of pulses) x channel number. If
the radar system has both a vertical and horizontal linear array,
then the resulting RF data stream can be formed into a 4D array
of fast-time, slow-time, vertical and horizontal channels.

Using radar signal processing, various 2D data
representations may be computed [42]-[44]: micro-Doppler
(uD) signatures, range-Doppler (RD) and range-Angle (RA)
maps. RD maps are computed by taking a 2D Fast Fourier
Transform (FFT) of the slow-time/fast-time data matrix for a
single array element, while RA maps are found by computing
the direction of arrival (angle) of the radar backscatter using
methods such us the MUItiple Signal Classification (MUSIC)
algorithm [45][46]. Application of MUSIC for each coherent
processing interval (CPI) during which N pulses are transmitted
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Figure 1. Micro-Doppler signatures of a person walking as acquired from (a) 5.8 GHz pulsed doppler (PD) radar, (b) 10 GHz ultra-wide band
impulse radar (UWB-IR), (c¢) 24 GHz continuous wave (CW) radar, and (d) 77 GHz FMCW radar with 4 GHz bandwidth.

will result in a time-series of RA maps.

Most works on radar-based QGA derive the estimates from
the radar puD signature [43], a representation of the velocity of
the backscatter from each point of the body as a function of
time. Micro-Doppler signatures are computed by applying a
time-frequency transformation, such as the short-time Fourier
Transform (STFT), across the slow-time samples of the radar
data cube. To ensure that uD signatures are independent of the
subject’s range, cell averaging constant false alarm rate (CA-
CFAR) detection [42] can be applied on RD maps to identify
the range bins that include subject motion. Then, only these
detected range bins are used in the computation of the puD
signature.

The frequency, bandwidth and pulse repetition interval
(PRI) of the transmitted signal can affect the accuracy of the
gait parameter estimates derived from uD signatures. The depth
resolution (Ar) of an FMCW radar reflects the ability of the
radar to differentiate between the radial distance, or slant range,
between two point scatterers and is computed as Ar = ¢ /20,
where c is the speed of light and £ is the transmitted signal
bandwidth. The velocity resolution Av = A/(N - PRI), where
N is the number of pulses transmitted over a CPI. Thus, the
higher the transmit frequency of the radar, the shorter the
wavelength, and the smaller the differences in velocity that can
be resolved. Note that range and velocity resolution differ from
the size of the range and velocity bins, which indicate size of
each pixel. The size of a range bin is given by 1, = (¢/2)t,,
where t; is the sampling interval of the analog-to-digital
converter of the radar. The size of a velocity bin is computed
as v, = A/(2 - PRI - Ngg¢), where Ny, is the number of FFT
points utilized. The angular resolution of a multi-channel radar
depends on the beamwidth of the main lobe of the antenna beam
pattern, and can be computed as 6 = KA/D, where K is the
beamwidth factor and D 1is the size of the aperture.
Beamforming techniques [47] can be utilized to form larger
virtual arrays and improve the angular resolution of a radar.

The impact of different radar transceiver parameters may be
observed from the sample puD signatures shown in Figure 1 for
a person walking as acquired by four different radars: a 5.8 GHz
pulsed doppler (PD) radar, 10 GHz ultra-wide band impulse
radar (UWB-IR), 2.4 GHz continuous wave (CW) radar, and 77
GHz FMCW radar with 4 GHz bandwidth. The ground clutter

returns, which result from backscatter from stationary
objects/surfaces in the environment, result in a horizontal line
at 0 Hz. This is most clearly observed in the 77 GHz uD
signature shown in Figure 1(d), where the oscillatory
characteristics of the gait cycle in the human return can be
clearly visually differentiated from the 0 Hz clutter line. These
clutter returns can be filtered out using a Butterworth low pass
filter or techniques such as Moving Target Indication (MTI)
[42], as illustrated with the signatures of Figure 1(a)-(c).

The torso response is often the body part that results in the
strongest backscatter and may be identified as a reddish
sinusoidal curve in the uD signature. At low frequencies, such
as the 5.8 GHz, the periodicities of the gait cycle are not as
clearly observed as in the higher frequencies. Moreover, the
average velocity of the gait signature appears at lower Doppler
shift frequencies when the transmit frequency is lower. This
increases the likelihood of the clutter returns masking the low
frequency components of the gait signature — an effect that can
degrade the accuracy of gait parameter estimates or gait
classification algorithms. While millimeter wave frequency
transmissions result in data with the most evident limb
trajectories, higher frequencies also suffer from more
significant atmospheric attenuation, as may be seen by the
inverse relationship between the signal amplitude a; and
frequency (since f = c/A) captured in Eq. (2).

The pulse repetition frequency (PRF), which is the inverse
of the PRI, also determines the maximum Doppler shift that can
be acquired by a radar unambiguously. If the PRF is lower than
the Doppler shift incurred by the maximum speed of movement,
aliasing occurs in which the high frequency parts of the
signature will wrap around to the bottom of the image. Such
effects are highly detrimental to gait analysis algorithms, which
typically rely on capture of unaliased uD signatures.

Note that as the cost of a radar system often depends on the
transmit frequency, bandwidth and number of antenna elements
in azimuth and elevation, an important question that merits
further investigation is what the minimum transmission
requirements are to achieve a certain level of accuracy in gait
parameter estimates for QGA in real-world conditions. The
radar transmission also affects the sample size in each of the
dimensions of the radar data tensor; thus, the transmission
parameters also influence computational complexity and may
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be a limiting factor in situations requiring real-time QGA.

A key limitation of uD-based gait parameter estimation is
that the uD signatures represent the aggregate backscatter from
the entire human body — not a specific body part or joint. This
makes recent advancements in RF skeleton estimation
interesting to consider from the perspective of QGA. However,
most RF skeleton estimation methods utilize deep neural
networks (DNNG5) to learn a mapping between various types of
radar representations to skeletal key points. Thus, the methods
are very data greedy and have been primarily considered in the
broad context of monitoring activities of daily living — a task
that does not require the same level of estimation accuracy as
gait parameter estimation for QGA. The pilot study presented
in Section IV provides a gold standard comparison of
estimation accuracy from both puD signatures and RF skeletons
under a moderate amount of data. Relevant results from the
literature are discussed next.

A. QGA using RF Micro-Doppler Signatures

Early works on radar-based gait analysis [48] [49] focused
on the estimation of walking speed by averaging the speed
corresponding the strongest (peak) return in the uD signature,
which typically results from torso backscatter. Later, when it
was shown that backscatter from a person could be well
approximated by Eq. (1) utilizing superposition [50] [51],
biomechanical models — such as the Boulic walking model [52],
which provided parametric equations and graphs representing
body part trajectories and joint angles — were exploited to
estimate the height and speed of a person walking [53] [54].

While early works did not involve gold standard
comparisons, in 2014, a study [55] was conducted that
investigated the estimation accuracy of walking speed and step
time, comparing the estimation accuracy attained over a 17-ft
walkway using a 5.8 GHz foot-level and torso-level radar with
that of a Vicon-based optical tracking system. Excellent
agreement between radar and Vicon-based estimates were
found for step time estimation using the foot-level radar;
however, for walking speed, the impact of aspect angle on
velocity-estimates was noted as a cause for an offset between
radar and Vicon-based estimates. This offset was less in the
torso-level radar data and more pronounced in the foot-level
radar data. This result is not surprising, considering that the
Doppler shift is proportional to radial velocity, not absolute
velocity.

To mitigate the impact of aspect angle in QGA methods
based solely on uD signatures, researchers have proposed
utilizing radar systems for gait analysis in hallways, which
would preclude significant angular deviation from the radar line
of sight. For example, in [56], walking speed, step points, step
time, step length, and step count are estimated from a radar
monitoring a 14 m. hallway. Alternatively, [57] has proposed
utilizing radar for walking tests administered by physical
therapists, whereby the subject would walk along a straight path
away from the radar, turn around, and then walk back towards
the radar. Analysis of radar uD signatures was utilized to
segment the data into three segments: an acceleration zone, a

measured-gait zone, and a deceleration zone. The resulting gait
speed estimate was validated against a Vicon motion capture
system and found to have an error of 0.076 m/s.

More advanced signal processing techniques have also been
proposed to track limb motion during ambulation and enable
angle-agnostic pD-based QGA. In[58], a 1-D block processing
method is proposed to use CW radar to track the arm, elbow,
hand, torso, knees, calf or ankle under various types of walking
— walking without hands moving and walking with one arm or
both arms swinging. The maximum speed of tracked body parts
is reported in comparison with that obtained using the Boulic
model. While the method appeared effective in extracting
lower limb motion during ambulation, tracking the hand and
arm movements was less reliable. Aside from CW radar,
researchers have also proposed using Stepped-Frequency CW
(SFCW) radar with a rapid pulse repetition frequency (PRF) to
track fast motions of various parts of the body [59].

Despite the limitations of angular dependence, pD-based
QGA has been shown to have great potential in extracting a
much broader range of gait parameters than just gait speed. In
[60], an ultrawide-band impulse radar (IR-UWB) was used to
estimate not just walking speed, but also step length, cadence,
stride length, step frequency, lower limb orientation, and total
traversed distance. The IR-UWB radar estimates were seen to
correspond well with estimates obtained from the accelerometer
and gyroscopic sensors on a smartphone. Using the peak of the
puD signature as reflective of the trunk velocity profile, [61]
compared the estimation accuracy of stride time, step time, step
length, swing time and stance time for a 24 GHz CW radar and
Vicon systems. A comparison of the impact of having a single
versus multi-channel FMCW radar system on an analysis of gait
variability is given in [62], while also showing the assessment
accuracy in comparison with Vicon data. This work was
extended in [63] to consider step time variability via radar data
acquired over continuous streams of activity data collected in
an unconstrained environment. The continuous data is
segmented and sequentially classified to extract the intervals
over which the subjects are walking. The impact of
segmentation accuracy on step time variability is discussed.

While these aforementioned works focused on estimation
based on the trunk profile, other works have proposed the
estimation of gait parameters from the envelopes of the puD
signatures. The envelopes represent the speed of maximum
(forward or backward) movement on the body, which is
typically caused by the movement of the feet. Thus, without
explicitly tracking the feet, several researchers [64] have
estimated a broader range of gait parameters by extracting
envelopes of the toe, ankle and knee from the uD signature:
stride time, stance time, flight time, step time, cadence, stride
length, step length, maximal foot velocity, maximal ankle
velocity, maximal knee velocity, and time instant of maximal
knee velocity. Based on comparisons against a 3D motion
capture system with 12 infrared cameras, radar-based estimates
were found to match well for most of the gait parameters
extracted. Furthermore, it was proposed that symmetry (or
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asymmetry) in the micro-Doppler signature could be
characterized as an indicator of gait abnormality [39].

Similarly, simulation-based studies [65][66] have proposed
extraction of twelve different gait metrics from the torso profile
and envelopes of the uD signature, including 1) mean body
velocity (gait speed), 2) degree of variation in body velocities,
3) maximum body velocity, 4) minimum body velocity, 5)
mean leg velocity in swing phase, 6) degree of variation of leg
velocities in swing phase, 7) maximum leg velocity, 8)
minimum leg velocity in swing phase, 9) mean leg velocity in
stance phase, 10) degree of variation of leg velocity in stance
phase, 11) maximum leg velocity in stance phase, and 12)
minimum leg velocity. These metrics were then utilized to
categorize participants as fallers or non-fallers.

Subsequently, a study [67][68] experimentally validating
these simulation results was conducted by recruiting older
adults aged 65 and above, who are able to walk without
assistance of another person or walking aide, from a senior day
care center and rural community center. The participants were
given a questionnaire about their fall history within the past
year, based upon which they were divided into one group of
non-fallers (19 people, mean age 78.8) and fallers (14 people,
mean age 82.5). Participants were then asked to walk for 10
meters, during which time their gait was measured using a
micro-Doppler radar. Four gait parameters (1, 5, 6, 10) were
extracted from the micro-Doppler signatures and used to
classify participants as fallers or non-fallers with an accuracy of
78.8%. In another study [68] involving 74 older adults aged 75
years and above, a subset of these radar-based gait parameters
(1,5,6,7,9, and 10) were also shown to correlate well with the
results of four cognitive function tests — the Mini Mental State
Examination (MMSE), Digit Symbol Substitution Test (DSST),
Scenery Picture Memory Test (SPMT), and Verbal Fluency
Test (VFT) — and were used to classify participants according
to high / low cognitive function.

More recently, automation of the Timed Up and Go (TUG)
test, which is an established, standardized test used in clinical
practice for assessing mobility and fall risk, has been proposed
using radar. In [69], an ultra-wide band (UWB) radar was
utilized to segment and estimate the stride length during
execution of a TUG test, comparing the accuracy of radar
estimates against those acquired from sensors placed in the
insole of a shoe. This study found that the risk scores obtained
using an insole containing three force sensors and y-axis of
acceleration were comparable to that attained using a single
radar and two force sensors. In another study [70], also using
UWB, measurements of walking duration, turning duration, and
gait speed acquired during a TUG test were shown to correlate
well to measurements acquired from a video-based system.

In 2023, the first radar-based system to fully automate the
TUG test measurements was proposed [71] in which data from
a CW Doppler radar was processed to segment the continuous
data steam according to “transfer” and “walk” phases as well as
“walk” and “turn” phases. Afterwards, gait parameters, such as
the number of steps, step time, gait cycle duration, swing time,
average walking speed, cadence, TUG walking speed duration,

TUG duration, step time, and stride length were computed from
the radar micro-Doppler signature. The study was conducted
on 26 healthy subjects, aged between 22 and 60, who performed
three TUG trials at slow, normal and fast speed, leading to a
total of 9 trials per subject. Data was acquired simultaneously
from the CW radar and a Vicon motion capture system to
validate radar-based measurements. High correlation
coefficients were obtained for the torso speed, limb oscillations,
initial and final indices of the TUG phases and extracted gait
parameters. As such, this work represents the first to show
experimental results indicating the feasibility of automating
TUG tests using radar.

B. QGA using Joint RF Data Representations

Although uD-based QGA has the benefit of being applicable
to any kind of radar, including the lowest-cost, least complex
CW radars, the limitations brough by aspect angle dependency
and the increasing availability of multi-channel RF transceivers
at lower and lower costs has driven research into QGA based
on joint RF domain representations, such as the radar data cube,
which captures not just velocity information, but also
information about range and angle as a function of time.
Techniques such as multi-dimensional principal component
analysis (PCA) have been proposed for exploiting the radar data
cube for activity recognition [72] and fall detection [73]. In
[74], a joint domain multi-input, multi-task learning (JD-
MIMTL) network is proposed that takes not just stacked
snapshots of uD, but also range-Doppler and range-Angle maps
as input to identify when a person is walking and subsequently
extract the torso velocity and acceleration to assess gait
variability.

In [75], a FMCW radar is used to track subjects [76] as they
move freely in the home, extracting the stable phase of walking
intervals (which excludes acceleration and deceleration
phases), so as to monitor the gait speed of 50 participants, with
and without Parkinson’s disease, for up to a year. The study
showed that at-home gait speed, as estimated using radar,
strongly correlates with gold-standard assessments of
Parkinson’s disease, such as the Movement Disorder Society-
Sponsored Revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) part III sub-score and total score.

Beyond just estimation of gait speed and torso profile,
several studies have also exploited the range, angle and velocity
information of the radar to improve limb tracking. For
example, [77] separately recognized the legs in the range-
Doppler map and extracted the range and velocity profile for
each leg. Using these profiles, stride time, stance time, flight
time, step time, cadence, maximum foot velocity and its interval
were estimated. A new metric, the Gait Asymmetry Indicator
(GAI), computed as

GAI =

MFVp | 3)
MFV,

where MFV; and MFV} represents the maximum foot velocity
of the left (L) and right (R) legs, respectively, was proposed to
detect gait abnormality. The results were validated through
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comparison with Inertial Measurement Unit (IMU) data over 15
participants in 4 scenarios (walking, running, left leg limping,
and right leg limping) using the intraclass correlation value,
which showed good agreement except for flight time.

Another study [78] utilizing synthetic range-Doppler versus
time data simulated from a skeletal model proposes trajectory
tracking using Kalman filtering and weighted joint nearest
neighbor algorithm for data association. Trajectory tracking
accuracies ranging of as much as 99.6% is reported, while the
estimates of kinematic gait features — such as step length, stride
speed, stride frequency, gait phase, step length symmetry, phase
symmetry, acceleration time constant of forearms, and
skewness of thighs — are reported to have 91.9% - 93.8%
accuracy. While limb tracking techniques show promise, the
accuracy of current methods on real radar data has not yet been
adequately evaluated. Advancement of more effective methods
for limb tracking remains an open area of research.

C. QGA using RF Skeletons

The task of tracking limbs through micro-Doppler data
encounters obstacles due to human motion's intricate and
dynamic properties, where distinguishing between overlapping
signals and the slight movements of minor limbs poses accuracy
challenges. Yet, the potential of leveraging high-dimensional
RF data (spanning range, angle, and Doppler) for radar-based
pose estimation in limb motion tracking is promising. Progress
in signal processing and machine learning, particularly with the
integration of Convolutional Neural Networks (CNNs),
enhances accuracy and the capacity to detect minor movements,
bringing non-invasive, real-time limb tracking closer to reality.

Initially explored with the proposal of RF-Capture [79] in
2015, radar-based human skeleton estimation utilizes 5.4 to 7.2
GHz FMCW signals via an antenna array to detect coarse body
part positions, subsequently reconstructing a human figure by
piecing together these detected parts. In 2018, RF-Pose3D [80]
advanced this framework by employing a T-shaped 12-element
antenna array for FMCW signal transmission and reception at a
6.3 GHz center frequency and 1.8 GHz bandwidth. This system
feeds range-azimuth and range-elevation heatmaps into a
Resnet-based encoder neural network, coupled with 12 camera
nodes capturing RGB video to collect label key points from
OpenPose for training a region proposal network (RPN) and a
ResNet-architecture CNN. This network focuses on RF data
from individual persons to extract 3D skeletons from regions of
interest, reporting average localization errors of 4.2, 4.0, and
49 cm in the x, y, z axes, respectively, with OpenPose
estimated key points. Despite its groundbreaking demonstration
of RF skeleton estimation's feasibility, the method's reliance on
over 17 million data samples and 16 hours of recordings
underscored its significant data and computational demands,
limiting practical application.

In 2020, mmPose [81] was proposed, which predicted more
than 15 joints using two specially oriented IWR1443 radars.
This method, feeding point clouds into a bifurcated CNN, did
not utilize the radar's Doppler and signal intensity data, leading
to jitter in skeleton animation. Attempts in 2022 with additional

filters [82] sought to reduce jitter for a more stable skeleton
representation but did not fundamentally enhance accuracy. In
2021, another approach, MARS [83], was proposed, which
employed IWR 1443 radar and standard software for point cloud
data, including Doppler and intensity information, reporting
average MAE of 5.8cm accuracies in 19-point predictions
compared to Microsoft Kinect v2 camera estimates. They
further investigated joint angle estimation from the predicted
skeleton and reported the average MAE of MARS in estimating
left elbow angle, right elbow angle, left knee angle, and right
knee angles are 12°, 13°, 7°, and 6°, respectively.

In recent years, there has been a significant surge in
publications focused on mm-wave-based human pose
estimation [84-92]. Generally, these studies employ radar-
generated range-azimuth and range-elevation heatmaps, with
some also incorporating radar point clouds, as data inputs for
training their deep neural network (DNN) models. For
validating their findings, the bulk of these studies have
predominantly leaned on either the Kinect system or the multi-
camera-based OpenPose model for ground truth. This approach
presents substantial challenges in the realm of RF skeleton
estimation. On one hand, the Kinect system, when employed as
a benchmark for ground truth, is problematic due to its
considerable errors in skeleton tracking. One study [93] showed
that Kinect tends to provide an oversimplified version of the
actual skeleton, with its estimates often deviating from those
obtained through marker-based tracking methods. On the other
hand, systems employing multiple cameras, such as OpenPose,
introduce their own complexities. While Kinect's limitations
stem from its inherent technology, the use of OpenPose, which
relies on a multi-camera setup, is cumbersome and less practical
for deployment. Furthermore, reliance on OpenPose has been
shown [94] to introduce specific inaccuracies, including
consistent biases in the estimation of knee and ankle joints, and
relative biases in trunk and hip joints, in comparison to the
estimations derived from optoelectronics motion capture
systems, a more precise skeletal tracking method.

Hence, current QGA using RF skeleton has been limited to
only estimating the skeleton coordinates. These efforts are
constrained by key challenges, including the poor elevation
angular resolution of the available off-the-shelf RF sensors,
inappropriate use of Kinect for ground truth due to significant
estimation errors, the impracticality of bulky multi-camera
systems, and inaccuracies introduced by relying on the
OpenPose model. Moreover, the dependency on complex, data-
intensive models necessitates the exploration of more efficient
models requiring less data, crucial for enabling practical
skeletal estimation on mobile computing platforms.

III. PILOT STUDY

To evaluate and compare different radar-based QGA
techniques, a pilot study was conducted in which both radar and
motion capture data were simultaneously acquired from
participants who walked back and forth in an indoor lab at the
University of Alabama.
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A. Experimental Design and Data Collection

Five healthy, right-foot males (25.6 + 1.9 years, 70.6 £ 17.5 kg,
1.75 £ 0.093 m) completed the experiment. All participants (i)
had no known history of neurological or musculoskeletal
disorders; (ii) were naive to the experimental conditions; (iii)
had a normal or corrected-to-normal vision. Study procedures
were approved by the Institutional Review Board at the
University of Alabama under Protocols #18-06-1271, #21-10-
5055 and #23-04-6553.

The RF data were acquired using a Texas Instruments (TI)
IWR2243 Cascade radar, operating in the 77 GHz - 81 GHz
frequency band with 12 Tx and 16 Rx antennas, positioned at
the start of the walkway at about 1 meter height and aligned
with the direction of walking, as shown in Figure 2. The TI
radar was configured to utilize Time Division Multiplexing
(TDM) to create 192 virtual Multi-Input Multi-Output (MIMO)
channels. Out of these, 58 elements overlap in the azimuth
plane, leaving only 86 non-overlapping channels designated for
azimuth virtual antennas. Regarding the elevation, there are 7
elevation planes comprise an aperture size of 6 1/2. However,
within this aperture, 3 planes are empty, and only 4 active
elements/channels are allocated for elevation measurements.
Additionally, there are 44 redundant elements in the elevation
that do not comprise aperture larger than 6 A/2, therefore
remain unused. Here A is the wavelength of the transmitted
signal. Figure 3 illustrates the virtual antenna array for this
radar. Each radar chirp was comprised of 256 analog-to-digital
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Figure 2. Experimental setup during data acquisition.

Bio Marker

converter (ADC) samples, with a total of 128 chirp-loops per
frame being transmitted. Consequently, the raw ADC data was
organized into range-azimuth (256x86), range-elevation
(256x7), and range-Doppler (256x128) planes.

Participants walked for five minutes at self-selected speed
up and down a 6-meter walkway. A total of 41 reflective
markers (MRKs) were attached to the whole body to record 3-
D position data with an 8-camera motion capture system at a
sample frequency of 100 Hz (NEXUS software and VERO
infra-red Cameras, Vicon Motion Systems). To establish basic
synchronization between the two recording systems, we
initiated recordings simultaneously with a voice command
while participants performed a fast "air punching" movement,
clearly detected by both systems. Subsequently, we identified
the radar frame displaying this rapid movement from the radar
range-Doppler maps. Similarly, we pinpointed the frame in the
Vicon skeleton data showing the hand punching forward. By
aligning these two frames, we synchronized the two systems.
Given that the radar operates at 10Hz and Vicon operates at
100Hz, we down sampled the Vicon frame to match the radar
frame rate, ensuring we have a ground truth Vicon frame for
each radar frame.

B. RF Skeleton Estimation under Limited Data

In this work, we consider RF skeleton estimation when a
limited amount of data is available for training. To quantify the
estimation uncertainty due to the trained deep neural network
(DNN) utilized for skeleton estimation versus other sources of
estimation error, such as the resolution of the RF sensor or real-
world effects, such as multipath reflections, we compare the
skeleton estimation accuracy obtained when using simulated
(SkelS) versus real (SkelR) RF data. In particular, we
synthesize [95]-[97] the expected radar return using eq. (1) and
eq. (2), where the time-varying ranges R; to the i*" point are
derived from the concurrently acquired Vicon motion capture
measurements. When generating the simulated data, we
deliberately restricted ourselves to using only 20 azimuth
antenna elements/planes instead of the full 86 elements found
in the real radar. This choice was made because the azimuth
angular resolution in the real data is already quite high, enabling
the deep neural network (DNN) model to effectively learn from
it. Consequently, we reduced the number of azimuth antenna
elements in the simulation to avoid generating an
overwhelming amount of data. Conversely, we used 7 elevation
planes with a 6 A/2 aperture, ensuring no empty elements. This
provides finer angular resolution in elevation compared to the
real data's 4 elevation channels. Pre-training with this higher-
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Figure 3: Virtual antena array for TI AWR 2243 cascade radar.
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resolution data helps set DNN weights at favorable local
minima, improving feature representation learning during fine-
tuning with coarse-resolution real data.

To reduce the dimensionality of both the measured and
simulated RF data so that the resulting DNN for skeleton
estimation is less complex and requires less data for training,
we developed a 'max per range bin' and 'max per angle bin'
method to capture the main features from the RF heatmaps. As
the name suggests, this process finds the maximum intensity
value at each range/angle bin to capture the variations of the
return signal’s strength over range and angle bins. This
approach offers several benefits: first, it enables the
representation of a 2D heatmap with just two vectors. For
example, a 256x256 range-azimuth heatmap can be condensed
into a 256x2 size array. Here, one vector represents the
maximum per range bin (256x1), and the other captures the
maximum per azimuth angle bin (256x1), markedly simplifying
the challenge of managing extensive data matrices in DNNSs.
Consequently, for a set comprising both range-azimuth and
range-elevation heatmaps, the result is a compact array sized
256x4. Second, this approach accurately maintains the gross
velocity information by correctly capturing the movement of
the target's peaks from one frame to the next. Third, as the
dimensionality of the data is reduced, it enables a simpler neural
network to effectively extract the necessary information for
determining range, azimuth, and elevation. Thus, after
aggregating all frames, the data's total size becomes
27,408x256x4. This is subsequently reshaped to
2,284x12x256x4 to incorporate the time dimension, the size of
which was determined through empirical methods.

Next, a lightweight 3D CNN + Long Short-Term Memory
(LSTM) model is designed to capture both the temporal and
spatial characteristics for predicting the 3D coordinates of 14
skeleton joints. The architecture is comprised of a 3D
convolutional layer, followed by batch normalization, max

pooling, dropout, and two bi-directional LSTM layers. It
culminates in a time-distributed dense layer equipped with 42
neurons (reflecting 14 joints times 3 coordinates per joint) and
employs a linear activation function.

The Huber loss function [98]

1 2
(= f@)", forly—f@I<s,
L8 (v, f(x)) = 2

5 3)
ly - F()l =5

otherwise

is utilized for model optimization. It offers robust regression by
being less affected by data outliers compared to the squared
error loss. The Huber loss switches between Mean Squared
Error (MSE) for small prediction errors and Mean Absolute
Error (MAE) for large prediction errors, with the switch
occurring at a specified threshold, delta (3). When the
prediction error is within the delta range, it utilizes MSE, which
penalizes small errors more heavily and aids in fine-tuning the
model's predictions. If the error exceeds delta, indicating a
potentially large or outlier error, it uses MAE, which treats all
errors linearly, thereby reducing the impact of outliers. This
creates a more robust model by combining the sensitivity of
MSE to small errors with the outlier resistance of MAE for large
errors. For this key point regression model, 6=1 was used.

Among other hyperparameters, a learning rate of 0.0021,
batch size of 32, and the model was trained for 80 epochs. The
training was conducted using a leave-one-out approach, which
was applied across the data from all subjects. On average, each
subject's data consisted of approximately 5,600 pairs of radar
frames. For every frame, the model was designed to predict 42
key points.

Initially, the model was trained and tested with simulated
data with a leave-one-subject-out method, resulting in Mean
Absolute Errors (MAE) of 3.15 cm for the medio-lateral (ML)
axis, 4.37 cm for the vertical (V) axis, and 1.4 cm for the antero-
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Figure 4. (a) Representative trajectories of the left ankle, right ankle, and midpoint of the hips along the Antero-Posterior (AP), Medio-
Lateral (ML), and Vertical (V) axes for the three measurement systems. (b) Frontal and sagittal views of the 3D skeleton reconstruction of the
three measurement systems for a single time frame. Motion capture (MRK, red line), Skeleton from simulated radar data (SkelS, blue line),

and Skeleton from real radar data (SkelR, black line).
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posterior (AP) axis. Subsequently, when this model pre-trained  from real data (SkelR), and RF skeleton from simulated data
using simulated data was further refined (fine-tuned) using  (SkelS) by low-pass filtering at 10 Hz (zero-lag, fourth-order
measured radar data, the MAEs increased to 5.63 cm for the ML Butterworth low-pass filter). For MRK, heel strikes were
axis, 7.30 cm for the V axis, and 7.81 cm for the AP axis. After  estimated by finding the farthest anterior position of the heels
predicting the RF based skeleton trajectories for all subjects, we  position relative to the sacrum. For SkelR and SkelS, heel
increased its sampling rate to 100 Hz using linear interpolation.  grikes were estimated by finding the farthest anterior position

This adjustment was made to align the RF based skeleton ¢ he ankles position relative to the mid-point of the hips. Step
trajectories with the original frame rate of the Vicon system, length was estimated as the absolute distance in the AP

which operates at 100 Hz. It's worth noting that interpolation direction of the ankle markers from heel-strike to heel-strike.

wasn't necessary for the Vicon data itself, given its native . . .
sampline rate of 100 Hz The uD signature was computed as in our previous works
ping ' [62][63]. The trunk radial velocity (Vrr) was estimated by

Figure 4(a) illustrates the 3D trajectories of the midpoint . . . . S
. . finding the peak uD signature intensity, which indicates the
between the hips, left ankle, and right ankle extrapolated from . )
highest reflected energy. Indeed, it can be assumed that the

the simulated radar data (SkelS), the actual radar data (SkelR), ) . ) ] )
strongest signal in the pD signature is due to the trunk motion,

and the motion capture data (MRK) during four laps of a X X
representative subject’s trial. Figure 4(b) illustrates the 35 the trunk comprises the largest radar cross-section of the

reconstructed skeleton from the three measurement systems for body. High-frequency noise was removed by low-pass filtering
a single time frame. Vrr data at 5 Hz [61]. Trunk acceleration was calculated as the

It's important to note that, for this application, minor first derivative of Vrr using a central finite difference method.
misalignment between the RF and Vicon trajectories wasn't a  Heel strikes were estimated by finding the zero-crossing points
significant concern. Our focus was primarily on gathering of the trunk acceleration curve, after low-pass filtering at 2 Hz
discrete gait parameters, such as step time and step length, by  [99]. The absolute value of Vrr was subdivided into steps. Step
considering the time difference between corresponding points  length was estimated as the area under the curve of Vrr over a
in each system. step cycle.

For each run, the middle 5 steps were included in the analysis
to ensure a steady walking state. For all methods, step time was
computed as the time interval between consecutive heel strikes.
Then, step time (ST), step length (SL), and their variabilities

C. Data analysis for gold standard comparison

High-frequency related noise was removed from position
data estimated with markers’ coordinates (MRK), RF skeleton

TABLEI
CONCURRENT VALIDITY
MRK Vs. uD MRK Vs. SkelR MRK Vs. SkelS

Variable MD MPD [%] LOA MD MPD [%] LOA MD MPD [%] LOA
(Mean £+ STD) (Mean £ SD) [%] (Mean = STD) (Mean = SD) [%] (Mean £+ STD) (Mean = SD) [%]

ST [s] 0.007 +£0.011 1.00+£1.71 33 -0.004 + 0.007 -0.54 £ 1.09 2.1 -0.001 £+ 0.005 -0.12+0.76 1.5

SL [m] -0.068 £ 0.022 -13.03 +£4.52 8.9 0.010 + 0.006 1.84 +£1.05 2.0 0.005 £ 0.004 0.90+0.72 1.4
STV [%] 10.79 £+ 3.87 105.65 +33.74 66.1 12.29 +£2.57 113.59 +£9.06 17.8 8.85+1.77 97.95 £26.51 52.0
SLV [%] 11.70 £4.17 95.13+£19.17 37.6 23.74+5.72 130.35 £ 16.53 324 12.65 +0.94 101.58 £9.49 18.6

Measurement method: Markers (MRK), RF micro doppler (uD), RF skeleton from real data (SkelR), RF skeleton from simulated data (SkelS).
Gait Parameters: Stride Time (ST), Step Length (SL), ST Variability (STV), and SL Variability (SLV).

Concurrent Validity: Mean difference (MD), mean percentage difference (MPD), and 95% ratio limits of agreement (LOA) between the gait
parameters obtained with the MRK and the three RF methods. A positive sign indicates larger values for the RF method.
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Figure 5: (a) Stride Time (ST), (b) Step Length (SL), (c) ST Variability (STV), and (d) SL Variability (SLV) obtained for Markers (MRK), RF
micro doppler (uD), RF skeleton from real data (SkelR), RF skeleton from simulated data (SkelS). Bars refer to the standard error.
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(STV, SLV) were defined as the mean and the coefficient of
variation of all accounted steps over the five minutes of
walking. The coefficient of variation was computed as the
percentage of the ratio between standard deviation and mean
value. Differences between the MRK method and the three
types of RF methods were expressed as mean of the differences
(MD), mean percent difference (MPD), and 95% ratio limits of
agreement (LOA). LOA was calculated as 1.96 times the
standard deviation of MPD. |MPD+LOA| values >50% were
interpreted as poor, 10%—-50% as moderate, 5%—10% as good,
and < 5% as excellent agreement [100].

D. Results

Figure 5 shows the mean and standard deviation of the
outcome variables extracted from each measuring system (i.e.,
MRK, uD, SkelR, SkelS). Table 1 reports the summary metrics
for the differences between the gait parameters extracted with
MRK and each RF method.

Independently by the RF method used, ST showed excellent
agreement ((MDJ|<0.007s; |MPD+LOA|<3.3%) with the pD
method overestimating ST while both skeleton methods slightly
underestimating ST. SL showed good agreement when
estimated with the uD (IMD}=0.068m; [MPD+LOA|=8.9%),
and excellent agreement when estimated with the SkelR and
SkelS methods (|MDJ|<0.010m; [MPD+LOA|<2%). The uD
method underestimated SL while both skeleton methods
slightly overestimated SL. STV showed poor agreement when
estimated with the puD and SkelS methods ((MD|<10.8%;
IMPD+LOA[>52.0%) and moderate agreement when estimated
with the SkelR method (MD=12.3%; [MPD+LOA|=17.8%)
with values obtained with RF methods systematically larger
than those obtained with the MRK method. Noticeably, SkelS
showed the lowest absolute error (MD=8.85%) but resulted in
poorer agreement due to a larger standard deviation. For all
methods, SLV showed moderate agreement (IMD|<23.7%;
IMPD+LOA|<37.6%), with values obtained with RF methods
systematically larger than those obtained with the MRK
method.

IV. DISCUSSION

The aim of this study was to provide an overview of emerging
radar-based techniques for gait parameter estimation, the results
of a pilot study in which we compared the accuracy of different
radar-based QGA techniques, and a discussion to highlight
areas requiring future research.

Depending on the available technology, gait variables
associated with fall risk can range from very simple to complex.
Most radar-based gait parameters estimation studies focused on
estimating gait speed [55][56][61][64][101]. Perhaps, gait
speed is the most common and simple outcome sensitive to
pathology and can be considered as the final common
expression of locomotor control [102], with higher risk for falls
associated with slower self-selected walking speed. However,
gait speed cannot reveal the underlying impairments and
measurement of spatio-temporal and biomechanical parameters
of gait are useful to augment diagnostic capabilities. The gait

pattern in older people at higher risk for falls is usually stiffer,
less coordinated, and characterized by poorer postural control,
shorter stride length and height, wider step width, and greater
propensity of landing flatfoot.

After gait speed, step time is the spatio-temporal parameter
that most radar-based studies tried to estimate. The results from
this study and other studies show that excellent agreement in
average step time recognition is achieved between RF and the
Vicon systems [55], independently by the RF processing
technique. To the best of our knowledge, few radar-based
studies have attempted to validate step length estimation
[55][61]. However, both estimated step length by multiplying
step time by the average walking [61] or treadmill [64] speed.
Both studies reported small estimation errors of about 2-3%.
Instead, we proposed to estimate step length by directly
calculating the distance between ankle markers when
reconstructing the skeleton or integrating the approximated
trunk velocity curve over a step when using the pD. When
attempting to estimate spatial components of gait, we observed
an underestimation of the average step length of about 13%
when using the pD method. Using either of the RF skeleton
methods significantly improved the estimation performance.
Using SkelR, we obtained an overestimation of only 2% of step
length. When using SkelS, estimation can be further improved
to 1% of error. It should be taken into account that estimating
spatiotemporal parameters using body point locations allow
researchers to estimate a large number of spatio-temporal
parameters such as step width, joint angles, and others.

Although the significant differences in the gait pattern of
fallers and non-fallers, few quantitative studies have found
measures of gait that can predict fall risk. A promising method
to assess fall risk is the evaluation of gait stability parameters
derived from biomechanics and dynamical systems theories
[103]-[106]. Briefly, repetitive motor tasks, like walking, can
be treated as a nonlinear dynamic system where variables have
a cyclic behavior and recur iteratively with almost the same
pattern during the temporal evolution of the task. This pseudo-
periodic behavior can be exploited to quantify gait variability
and nonlinear analysis. Alternatively, from a biomechanical
point of view, dynamic stability can be defined as a measure of
the distance between the center of mass and the base of support
[107]-[109]. Features describing the variability and complexity
of gait are the most sensible in assessing fall risk, as compared
with standard quantitative measures of gait [110]-[113].

Accurate estimation of gait parameters at each gait cycle is
fundamental to estimate gait dynamics. In radar research, this
has been attempted in a few studies [55][56][61][64][114], but
they did not systematically analyze gait variability. To the best
of our knowledge, our group has been the first to evaluate the
performance of RF sensors in estimating gait stability
[62][63][70]. The pilot study in this work reveals that both
micro-Doppler and skeleton estimation-based RF data analysis
methods result in measures of variability that show poor to
moderate agreement and overestimations of about 100% with
respect to the Vicon system. To put this in perspective, it should
be noted that previous studies that determined the concurrent



‘? IEEE Open Journal of
EMB Engineering in Medicine and Biology

—o—

Emerging Topics

validity of gait variability measures obtained with inertial
sensors [100][115]-[118] also showed that IMU-based
measures have poor to moderate validity [119].

Although the small sample of young participants limited the
power of the statistical tests and the generalization of our results
to other populations at risk of falling, the pilot study was
intended to provide an initial comparison of radar-based
techniques for gait analysis and inform the reader about the
current limitations of radar technology and the relationship
between the specific radar hardware and accuracy. Even if this
preliminary study did not provide real evidence that the system
could properly identify signature gait characteristic of faller vs.
non faller, the analysis of healthy young adults is the first step
in developing a base for further studies on vulnerable
populations. Future studies will focus on fall-prone older adults
with diagnosed balance problems.

Next, we discuss the limitations of the specific commercially
available radar used in the pilot study and aspects of current
estimation techniques that adversely affected the accuracy of
gait variability measures.

Hardware Limitations: The TI IWR2243 Cascade radar has
the advantage of high angular resolution in the azimuth
direction due to the ability of exploiting TDM to form a large
192 element virtual array — the more the number of virtual array
elements, the finer the angular resolution. However, TDM
requires multiple sweeps, which greatly increases the time
required to form the virtual array (also known as a coherent
processing interval, or CPI) and lowers the overall sample rate.
In the pilot study, while the Vicon had a data rate of 100 Hz, the
radar was operated at a data rate of just 10 Hz. Our results show
that this rate is too low for adequate assessment of gait
variability. Furthermore, it should be noted that the TI
IWR2243 Cascade radar is able to achieve high angular
resolution in just the azimuth direction: with only a few array
elements in elevation, the elevation resolution is extremely
poor. In depth, the 4 GHz bandwidth of the TI ITWR2243
Cascade radar results in 3.75 cm depth resolution. Our results
show that the accuracy of estimating skeletal key points is
correlated with the radar’s resolution; thus, the best accuracy
was obtained in estimating position along the azimuth — the
direction along which the radar had the highest resolution.
Ideally, the optimal radar for gait parameter estimation would
have both a low CPI, high bandwidth, and a large number of
physical array elements in both the azimuth and elevation. Such
a radar, however, results in such a large amount of data from
the resulting 4D radar tensor that real-time processing on the
edge becomes challenging. To resolve this dilemma in
automotive applications, radar design companies have
developed RF-system-on-a-chip (RF-SoC) that integrates the
RF transceiver circuits with memory blocks, microprocessors
and digital signal processing as a complex single-chip system.
However, automotive RF-SoCs typically generate real-time
point clouds, and do not provide developers access to the raw
radar 1/Q data required for computation of the micro-Doppler
signature or accurate skeleton estimation. Moreover, there is a
cost versus performance trade-off in commercially available

radar sensors — the larger the antenna arrays and greater the
bandwidth, the higher the resolution and performance, but also
the greater the cost. Thus, an open research question for gait
parameter estimation is whether it would be better to use
multiple, low-cost single-channel radars of high bandwidth or a
single, more expensive multi-channel, high bandwidth radar.

Processing Constraints: The RF data representation from
which gait parameter estimates are derived impacts both
accuracy and the parameters that can be estimated. Established
metrics for fall risk are based on accurate estimation of skeletal
keypoints, which our study also shows offers improved
estimation despite hardware limitations. An examination of the
RF skeleton estimation literature shows that the more physical
variables measured by the radar are used in the estimation
process, the greater the accuracy of the resulting estimates.
Thus, we have seen an improvement in accuracy when both
range, angle, and Doppler are considered relative to range,
angle, or micro-Doppler only. Here we should also make a
distinction between methods that take as input the radar data
tensor (range-frequency-angle vs. time) versus methods that
directly use radar point clouds. While the use of point clouds
may seem expedient given its ready availability from
commercially available RF-SoCs, the point cloud is itself a
derived data representation based on the constant false-alarm
rate (CFAR) detection applied to the radar data tensor.
Although more recently developed RF-SoCs provide not just
(x,y,z) coordinates for each point but also a Doppler shift (fp)
measurement, it should be noted that these measurements are
provided every CPI, which is the duration that N pulses can be
transmitted at a pulse repetition interval (PRI) for each pulse.
In contrast, a micro-Doppler signature contains a Fast Fourier
Transform (FFT)-based estimate of micro-Doppler frequency
(radial velocity) at an interval of PRI /Ny, where Ny, is the
number of FFT points utilized. As such, the micro-Doppler
represents a much richer source of kinematic information than
that embodied by point clouds. Thus, an open area of research
is how to best process the RF data tensor to maximally exploit
the complete set of measurements by a radar system for gait
parameter estimation — and how to accomplish this in real-time
to minimize latency and maximize sample rate.

DNN Design Considerations: The most widely used DNNs
are networks that were proposed for the applications of
computer vision and speech processing. However, radar data is
not inherently an image, nor does it possess the same frequency-
dependent properties as speech signals [120]. Consequently,
from a DNN design perspective as well the RF data
representation utilized at the input of a DNN will have a great
impact on the resulting performance [121] both in terms of
accuracy and latency. For example, direct utilization of the
complex I/Q radar data at the input of a CNN can reduce
computation time, enabling real-time applications, but has
greatly degraded performance relative to that of utilization of
the micro-Doppler signature at the input. Recently, the
inclusion of complex sinc filtering layers prior to the
convolutional layers has been proposed to attain comparable
performance with low latency [122]. Another disadvantage of
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CNN-based skeleton estimation methods is that they do not
consider the spatial correlation inherent to human movement.
Although the CNN+LSTM model does incorporate sample-to-
sample correlations, our pilot study examining results on
simulated data is evidence that there remains a significant
amount of estimation uncertainty due to network design and
training. Finally, it should be noted that deep learning-based
methods are very data greedy, and that not just the amount of
data but also how the data was collected — under what scenarios,
sensor positions, environment, and the mobility characteristics
of the participants utilized — will impact model training and
resulting estimation accuracy. Thus, there remains much
opportunity for future research in DNN design that can
contribute to improved radar-based gait parameter estimation
accuracy.

Environmental Factors: In application of radar-based QGA
technologies in home, signal processing and AI/ML algorithms
must also take into consideration dynamic environmental
factors, such as the separation of radar signatures from multiple
people [123]-[125] and potential presence of obstacles or other
sources of motion in the scene being illuminated by the radar,
such as a fan or pet. Thus, while on the one hand researchers
are developing more advanced signal processing and micro-
Doppler decomposition [126]-[128] algorithms, on the other
hand some researchers have proposed positioning the radar in
hallways [56], where obstacles are not expected and motion is
automatically constrained by the walls, or utilizing the radar in
a cognizant fashion by potential users, such as the case would
be if conducting an in-home TUG test. Dynamic environmental
factors, including sensor positioning, will also impact the
ability of DNNs to generalize across environments and thus
must be accounted for during training and network design.

V. CONCLUSION

This paper has provided an overview of emerging radar-based
techniques for gait parameter estimation, especially with
emphasis on those relevant to fall risk. A pilot study was
conducted that compares the accuracy of gait parameters
estimation from different radar data representations (i.e., micro-
Doppler signature and skeletal point estimates) against an 8-
camera, marker-based optical tracking system. The results of
this study show that while there is excellent agreement between
radar and optical tracking estimates of step time and step length,
gait variability measures show poor to moderate agreement.
The limitations of current radar-based technology that
adversely affect the accuracy of radar-based gait variability
measures — such as trade-offs between transceiver architecture,
transmit waveform parameters, and cost, processing
constraints, and DNN design considerations — are discussed.
We conclude by pointing out areas for future research that can
address current limitations and enable the realization of radar-
based QGA as a promising emerging technology for
continuous, non-intrusive fall risk assessment.
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