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Abstract— Current methods for fall risk assessment rely on 

Quantitative Gait Analysis (QGA) using costly optical tracking 
systems, which are often only available at specialized laboratories 
that may not be easily accessible to rural communities.  Radar 
placed in a home or assisted living facility can acquire continuous 
ambulatory recordings over extended durations of a subject’s 
natural gait and activity.  Thus, radar-based QGA has the 
potential to capture day-to-day variations in gait, is time efficient 
and removes the burden for the subject to come to a clinic, 
providing a more realistic picture of older adults’ mobility.  
Although there has been research on gait-related health 
monitoring, most of this work focuses on classification-based 
methods, while only a few consider gait parameter estimation.  On 
the one hand, metrics that are accurately and easily computable 
from radar data have not been demonstrated to have an 
established correlation with fall risk or other medical conditions; 
on the other hand, the accuracy of radar-based estimates of gait 
parameters that are well-accepted by the medical community as 
indicators of fall risk have not been adequately validated. This 
paper provides an overview of emerging radar-based techniques 
for gait parameter estimation, especially with emphasis on those 
relevant to fall risk.  A pilot study that compares the accuracy of 
estimating gait parameters from different radar data 
representations – in particular, the micro-Doppler signature and 
skeletal point estimates – is conducted based on validation against 
an 8-camera, marker-based optical tracking system. The results of 
pilot study are discussed to assess the current state-of-the-art in 
radar-based QGA and potential directions for future research that 
can improve radar-based gait parameter estimation accuracy. 
 

Index Terms—Fall risk assessment, gait parameter estimation, 
micro-Doppler, radar, skeleton estimation 
 

Impact Statement— Quantitative Gait Analysis (QGA) relies 
on expensive optical tracking systems in specialized laboratories, 
whereas radar-based in-home QGA can capture daily gait 
variations, providing more realistic, continuous assessment of 
mobility. [max 30 words] 

I. INTRODUCTION 
UMAN gait is an important health indicator, especially for 
older adults, who may increasingly experience issues with 

balance and stability as a normal part of the aging process.  
Monitoring of gait can provide early warning of diseases or 
important information on post-treatment recovery. As such, gait 
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parameter estimation is an important task for any remote health 
monitoring system installed either in-home or in an assisted 
living facility in support of aging-in-place. Falls especially 
remain a significant threat to the health of older adults:  
according to the U.S. Center for Disease Control, each year, 
roughly 1,800 older adults suffer fall-related fatalities in 
assisted living facilities [1].  Thus, fall prevention and fall risk 
assessments are critical to preventing debilitating injury and 
fall-related fatalities. 

Falls often occur during walking [2]-[5] and although fall risk 
is influenced by a variety of intrinsic and extrinsic factors [6], 
gait and balance disorders have been consistently identified as 
one of the strongest risk factors. Not surprisingly, many studies 
suggest that gait features are associated with a history of falls 
and are good predictors of prospective falls [7]. Consequently, 
standardized gait assessments are commonly used in the clinical 
practice guidelines to evaluate and prevent fall risk [8]-[11]. 
Numerous approaches have been taken to quantify gait and its 
relation to falls. Clinical rating scales usually integrate a 
cumulative score based on performance across multiple tasks. 
Accordingly, they are useful in evaluating mobility limitations 
and fall risk, but do not identify the specific mechanics that are 
associated with falls.  Moreover, they may lack of discriminant 
ability, especially in healthy populations that have not started to 
fall frequently [12]. 

Quantitative gait analysis (QGA) may not only provide an 
indication of an individual's risk of falling, but also highlight 
specific modifiable gait characteristics that can be targeted with 
interventions to reduce the risk of future falls. Gait assessment 
can be altered to increase the level of difficulty (e.g., dual-task 
paradigms, turning, backward walking, and walking at a fast 
pace). Current methods for fall risk assessment with QGA rely 
on gait parameters extracted from optoelectronic motion 
capture systems, such as Vicon, which utilize markers on the 
participant to accurately estimate the position vs. time of each 
marker with multiple cameras.  Such optical tracking systems 
are currently used in most gait analysis laboratories for both 
clinical and research purposes and provide a “gold standard” for 
gait analysis [13].  However, reliance on motion-capture based 
QGA systems involves expensive equipment, raising the cost of 
health care, while not being readily accessible as they are few, 
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predominantly operated by medical schools in large cities, and 
thus distant from rural populations. These barriers can result in 
infrequent assessments and delays in diagnosis, especially for 
underserved or low-income adults.  Moreover, QGA labs are 
controlled environments that preclude the assessment of natural 
gait:  people invariably alter their behavior when they know 
they are being observed.  This phenomenon is known as the 
Hawthorne effect and has been shown to influence gait [14].  
For example, in the presence of an observer, limping was less 
pronounced and double support time more symmetrical in the 
gait of lower limb prosthesis users [15]. 
     As a result, there has recently been great interest in the 
development of in-home QGA to enable continuous monitoring 
of gait in an uncontrolled environment, paving the way for 
reduced health care costs, more widespread access to gait 
assessments, and improved health outcomes.  Both wearable 
and camera-based systems have been proposed for fall risk 
assessment [16], while radio frequency (RF) sensing – or radar 
– is a more recently proposed, emerging modality due to its 
ability to operate ambiently and in a non-contact fashion from 
a distance without requiring any light [17][18].  This makes 
radar particularly well suited for monitoring in indoor settings, 
such as private homes and senior living communities, operating 
either in a stand-alone or complementary fashion with 
wearables, which may be forgotten to be worn, and cameras, 
which may not be preferred for ambient use as it may be 
intrusive of private moments and spaces. As such, radar can 
potentially offer continuous assessments even in sensitive 
settings without any burden on the user and operates ambiently 
without batteries. The RF emissions of typical radars are safe 
for humans, with levels at least 100 times less than that of a 
typical cell phone.   
     A radar placed in a home or assisted living facility can 
acquire continuous ambulatory recordings over extended 
durations of a subject’s natural gait and activity.  Radar-based 
QGA can capture day-to-day variations in gait, is time efficient 
and removes the burden for the subject to come to a clinic, 
providing a more realistic picture of older adults’ mobility. This 
can aid in identifying psychological conditions, such as 
depression, which are marked by low activity levels, 
environmental factors that may be a cause of aberrations in gait, 
and early warning signs of neuromuscular disorders and 
potential fall risk – before a debilitating fall occurs.  
     Over the past decade, research on gait-related health 
monitoring with radar has focused on classification-based 
methods for fall detection [19]-[22], gait/activity recognition 
[23]-[34], aided/unaided ambulation discrimination [35]-[37], 
or detection of gait abnormalities [38]-[41].  However, there 
have been fewer works that consider gait parameter estimation 
for QGA.  On the one hand, many metrics that are accurately 
and easily computable from radar data have not yet been 
demonstrated to have an established correlation with fall risk or 
other medical conditions.  On the other hand, the accuracy of 
estimated gait parameters that are well-accepted by the medical 
community as indicators of fall risk have not been adequately 
validated.  Often, many works report the accuracy of the 

proposed radar-based estimation methods in comparison to the 
Kinect sensor or an assortment of web cameras; however, such 
markerless systems are more prone to significant estimation 
errors and thus offer inadequate assessment and benchmarking 
of true accuracy. 
     This paper provides an overview of emerging radar-based 
techniques for gait parameter estimation, especially with 
emphasis on those relevant to fall risk.  The results of a pilot 
study comparing different radar-based estimation approaches 
are provided in conjunction with detailed discussion to provide 
comprehensive assessment of the current state-of-the-art and 
highlight areas requiring future research. 

II. RADAR-BASED GAIT PARAMETER ESTIMATION 
     The received signal of a typical frequency modulated 
continuous wave (FMCW) radar system for the backscatter 
from a point target is a time-shifted, frequency modulated 
version of the transmitted signal.  Thus, the received 
backscatter, 𝑠𝑠(𝑡𝑡), from the entire human body can be 
represented as the superposition of reflections from each point 
on the surface of the body, 
 

𝑠𝑠(𝑡𝑡) = �𝑎𝑎𝑖𝑖𝑒𝑒
−𝑗𝑗[2𝜋𝜋𝑓𝑓0𝑡𝑡+

4𝜋𝜋
𝜆𝜆 𝑅𝑅𝑖𝑖(𝑡𝑡)]

𝐾𝐾

𝑖𝑖=1

 (1) 

 
where 𝑓𝑓0 is the center transmit frequency, 𝜆𝜆 is the wavelength, 
𝑡𝑡 is time, 𝑅𝑅𝑖𝑖(𝑡𝑡) is the time-varying range of each point on the 
body to the radar transceiver, and 𝑎𝑎𝑖𝑖 amplitude for the 𝑖𝑖𝑡𝑡ℎ point 
as computed from the radar range equation [42], 
 

𝑎𝑎𝑖𝑖 =
𝐺𝐺𝐺𝐺�𝑃𝑃𝑖𝑖𝜎𝜎𝑖𝑖

(4𝜋𝜋)3 2⁄ 𝑅𝑅𝑖𝑖2(𝑡𝑡)√𝐿𝐿
 (2) 

 
Here 𝐺𝐺 is the antenna gain, 𝑃𝑃𝑖𝑖  is the transmitter power, 𝜎𝜎𝑖𝑖, is the 
radar cross section (RCS) for each point target, and 𝐿𝐿 represents 
losses, such as electronic noise. 
     Nowadays many commercially available radar systems also 
have multiple channels, or elements in their antenna array, so 
that the received multi-channel RF data stream can be reshaped 
into a 3D array: fast-time (number of analog-digital converter 
samples) × slow-time (number of pulses) × channel number.  If 
the radar system has both a vertical and horizontal linear array, 
then the resulting RF data stream can be formed into a 4D array 
of fast-time, slow-time, vertical and horizontal channels. 
     Using radar signal processing, various 2D data 
representations may be computed [42]-[44]: micro-Doppler 
(µD) signatures, range-Doppler (RD) and range-Angle (RA) 
maps.  RD maps are computed by taking a 2D Fast Fourier 
Transform (FFT) of the slow-time/fast-time data matrix for a 
single array element, while RA maps are found by computing 
the direction of arrival (angle) of the radar backscatter using 
methods such us the MUltiple Signal Classification (MUSIC) 
algorithm [45][46].  Application of MUSIC for each coherent 
processing interval (CPI) during which 𝑁𝑁 pulses are transmitted 
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will result in a time-series of RA maps. 
     Most works on radar-based QGA derive the estimates from 
the radar µD signature [43], a representation of the velocity of 
the backscatter from each point of the body as a function of 
time.  Micro-Doppler signatures are computed by applying a 
time-frequency transformation, such as the short-time Fourier 
Transform (STFT), across the slow-time samples of the radar 
data cube.  To ensure that µD signatures are independent of the 
subject’s range, cell averaging constant false alarm rate (CA-
CFAR) detection [42] can be applied on RD maps to identify 
the range bins that include subject motion.  Then, only these 
detected range bins are used in the computation of the µD 
signature. 
     The frequency, bandwidth and pulse repetition interval 
(PRI) of the transmitted signal can affect the accuracy of the 
gait parameter estimates derived from µD signatures. The depth 
resolution (∆𝑟𝑟) of an FMCW radar reflects the ability of the 
radar to differentiate between the radial distance, or slant range, 
between two point scatterers and is computed as ∆𝑟𝑟 = 𝑐𝑐/2𝛽𝛽, 
where 𝑐𝑐 is the speed of light and 𝛽𝛽 is the transmitted signal 
bandwidth.  The velocity resolution ∆𝑣𝑣 = 𝜆𝜆/(𝑁𝑁 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃), where 
𝑁𝑁 is the number of pulses transmitted over a CPI.  Thus, the 
higher the transmit frequency of the radar, the shorter the 
wavelength, and the smaller the differences in velocity that can 
be resolved.  Note that range and velocity resolution differ from 
the size of the range and velocity bins, which indicate size of 
each pixel.  The size of a range bin is given by 𝑟𝑟𝑏𝑏 = (𝑐𝑐 2⁄ )𝑡𝑡𝑠𝑠, 
where 𝑡𝑡𝑠𝑠 is the sampling interval of the analog-to-digital 
converter of the radar.  The size of a velocity bin is computed 
as 𝑣𝑣𝑏𝑏 = 𝜆𝜆/(2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓), where 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 is the number of FFT 
points utilized. The angular resolution of a multi-channel radar 
depends on the beamwidth of the main lobe of the antenna beam 
pattern, and can be computed as 𝜃𝜃 = 𝐾𝐾𝐾𝐾/𝐷𝐷, where 𝐾𝐾 is the 
beamwidth factor and D is the size of the aperture.  
Beamforming techniques [47] can be utilized to form larger 
virtual arrays and improve the angular resolution of a radar. 
     The impact of different radar transceiver parameters may be 
observed from the sample µD signatures shown in Figure 1 for 
a person walking as acquired by four different radars: a 5.8 GHz 
pulsed doppler (PD) radar, 10 GHz ultra-wide band impulse 
radar (UWB-IR), 2.4 GHz continuous wave (CW) radar, and 77 
GHz FMCW radar with 4 GHz bandwidth. The ground clutter 

returns, which result from backscatter from stationary 
objects/surfaces in the environment, result in a horizontal line 
at 0 Hz.  This is most clearly observed in the 77 GHz µD 
signature shown in Figure 1(d), where the oscillatory 
characteristics of the gait cycle in the human return can be 
clearly visually differentiated from the 0 Hz clutter line.  These 
clutter returns can be filtered out using a Butterworth low pass 
filter or techniques such as Moving Target Indication (MTI) 
[42], as illustrated with the signatures of Figure 1(a)-(c).   
     The torso response is often the body part that results in the 
strongest backscatter and may be identified as a reddish 
sinusoidal curve in the µD signature. At low frequencies, such 
as the 5.8 GHz, the periodicities of the gait cycle are not as 
clearly observed as in the higher frequencies.  Moreover, the 
average velocity of the gait signature appears at lower Doppler 
shift frequencies when the transmit frequency is lower.  This 
increases the likelihood of the clutter returns masking the low 
frequency components of the gait signature – an effect that can 
degrade the accuracy of gait parameter estimates or gait 
classification algorithms.  While millimeter wave frequency 
transmissions result in data with the most evident limb 
trajectories, higher frequencies also suffer from more 
significant atmospheric attenuation, as may be seen by the 
inverse relationship between the signal amplitude 𝑎𝑎𝑖𝑖 and 
frequency (since 𝑓𝑓 = 𝑐𝑐/𝜆𝜆) captured in Eq. (2). 
     The pulse repetition frequency (PRF), which is the inverse 
of the PRI, also determines the maximum Doppler shift that can 
be acquired by a radar unambiguously.  If the PRF is lower than 
the Doppler shift incurred by the maximum speed of movement, 
aliasing occurs in which the high frequency parts of the 
signature will wrap around to the bottom of the image.  Such 
effects are highly detrimental to gait analysis algorithms, which 
typically rely on capture of unaliased µD signatures. 
     Note that as the cost of a radar system often depends on the 
transmit frequency, bandwidth and number of antenna elements 
in azimuth and elevation, an important question that merits 
further investigation is what the minimum transmission 
requirements are to achieve a certain level of accuracy in gait 
parameter estimates for QGA in real-world conditions.  The 
radar transmission also affects the sample size in each of the 
dimensions of the radar data tensor; thus, the transmission 
parameters also influence computational complexity and may 

Figure 1. Micro-Doppler signatures of a person walking as acquired from (a) 5.8 GHz pulsed doppler (PD) radar, (b) 10 GHz ultra-wide band 
impulse radar (UWB-IR), (c) 24 GHz continuous wave (CW) radar, and (d) 77 GHz FMCW radar with 4 GHz bandwidth. 
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be a limiting factor in situations requiring real-time QGA. 
     A key limitation of µD-based gait parameter estimation is 
that the µD signatures represent the aggregate backscatter from 
the entire human body – not a specific body part or joint.  This 
makes recent advancements in RF skeleton estimation 
interesting to consider from the perspective of QGA.  However, 
most RF skeleton estimation methods utilize deep neural 
networks (DNNs) to learn a mapping between various types of 
radar representations to skeletal key points.  Thus, the methods 
are very data greedy and have been primarily considered in the 
broad context of monitoring activities of daily living – a task 
that does not require the same level of estimation accuracy as 
gait parameter estimation for QGA.  The pilot study presented 
in Section IV provides a gold standard comparison of 
estimation accuracy from both µD signatures and RF skeletons 
under a moderate amount of data.  Relevant results from the 
literature are discussed next. 

A. QGA using RF Micro-Doppler Signatures 
     Early works on radar-based gait analysis [48] [49] focused 
on the estimation of walking speed by averaging the speed 
corresponding the strongest (peak) return in the µD signature, 
which typically results from torso backscatter.  Later, when it 
was shown that backscatter from a person could be well 
approximated by Eq. (1) utilizing superposition [50] [51], 
biomechanical models – such as the Boulic walking model [52], 
which provided parametric equations and graphs representing 
body part trajectories and joint angles – were exploited to 
estimate the height and speed of a person walking [53] [54]. 
     While early works did not involve gold standard 
comparisons, in 2014, a study [55] was conducted that 
investigated the estimation accuracy of walking speed and step 
time, comparing the estimation accuracy attained over a 17-ft 
walkway using a 5.8 GHz foot-level and torso-level radar with 
that of a Vicon-based optical tracking system.  Excellent 
agreement between radar and Vicon-based estimates were 
found for step time estimation using the foot-level radar; 
however, for walking speed, the impact of aspect angle on 
velocity-estimates was noted as a cause for an offset between 
radar and Vicon-based estimates.  This offset was less in the 
torso-level radar data and more pronounced in the foot-level 
radar data.  This result is not surprising, considering that the 
Doppler shift is proportional to radial velocity, not absolute 
velocity.  
     To mitigate the impact of aspect angle in QGA methods 
based solely on µD signatures, researchers have proposed 
utilizing radar systems for gait analysis in hallways, which 
would preclude significant angular deviation from the radar line 
of sight.  For example, in [56], walking speed, step points, step 
time, step length, and step count are estimated from a radar 
monitoring a 14 m. hallway.  Alternatively, [57] has proposed 
utilizing radar for walking tests administered by physical 
therapists, whereby the subject would walk along a straight path 
away from the radar, turn around, and then walk back towards 
the radar.  Analysis of radar µD signatures was utilized to 
segment the data into three segments: an acceleration zone, a 

measured-gait zone, and a deceleration zone.  The resulting gait 
speed estimate was validated against a Vicon motion capture 
system and found to have an error of 0.076 m/s.   
     More advanced signal processing techniques have also been 
proposed to track limb motion during ambulation and enable 
angle-agnostic µD-based QGA.  In [58], a 1-D block processing 
method is proposed to use CW radar to track the arm, elbow, 
hand, torso, knees, calf or ankle under various types of walking 
– walking without hands moving and walking with one arm or 
both arms swinging.  The maximum speed of tracked body parts 
is reported in comparison with that obtained using the Boulic 
model.  While the method appeared effective in extracting 
lower limb motion during ambulation, tracking the hand and 
arm movements was less reliable. Aside from CW radar, 
researchers have also proposed using Stepped-Frequency CW 
(SFCW) radar with a rapid pulse repetition frequency (PRF) to 
track fast motions of various parts of the body [59]. 
     Despite the limitations of angular dependence, µD-based 
QGA has been shown to have great potential in extracting a 
much broader range of gait parameters than just gait speed.  In 
[60], an ultrawide-band impulse radar (IR-UWB) was used to 
estimate not just walking speed, but also step length, cadence, 
stride length, step frequency, lower limb orientation, and total 
traversed distance.  The IR-UWB radar estimates were seen to 
correspond well with estimates obtained from the accelerometer 
and gyroscopic sensors on a smartphone. Using the peak of the 
µD signature as reflective of the trunk velocity profile, [61] 
compared the estimation accuracy of stride time, step time, step 
length, swing time and stance time for a 24 GHz CW radar and 
Vicon systems. A comparison of the impact of having a single 
versus multi-channel FMCW radar system on an analysis of gait 
variability is given in [62], while also showing the assessment 
accuracy in comparison with Vicon data.  This work was 
extended in [63] to consider step time variability via radar data 
acquired over continuous streams of activity data collected in 
an unconstrained environment.  The continuous data is 
segmented and sequentially classified to extract the intervals 
over which the subjects are walking.  The impact of 
segmentation accuracy on step time variability is discussed. 
     While these aforementioned works focused on estimation 
based on the trunk profile, other works have proposed the 
estimation of gait parameters from the envelopes of the µD 
signatures.  The envelopes represent the speed of maximum 
(forward or backward) movement on the body, which is 
typically caused by the movement of the feet.  Thus, without 
explicitly tracking the feet, several researchers [64] have 
estimated a broader range of gait parameters by extracting 
envelopes of the toe, ankle and knee from the µD signature:  
stride time, stance time, flight time, step time, cadence, stride 
length, step length, maximal foot velocity, maximal ankle 
velocity, maximal knee velocity, and time instant of maximal 
knee velocity.  Based on comparisons against a 3D motion 
capture system with 12 infrared cameras, radar-based estimates 
were found to match well for most of the gait parameters 
extracted.  Furthermore, it was proposed that symmetry (or 
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asymmetry) in the micro-Doppler signature could be 
characterized as an indicator of gait abnormality [39].   
     Similarly, simulation-based studies [65][66] have proposed 
extraction of twelve different gait metrics from the torso profile 
and envelopes of the µD signature, including 1) mean body 
velocity (gait speed), 2) degree of variation in body velocities, 
3) maximum body velocity, 4) minimum body velocity, 5)  
mean leg velocity in swing phase, 6) degree of variation of leg 
velocities in swing phase, 7) maximum leg velocity, 8) 
minimum leg velocity in swing phase, 9) mean leg velocity in 
stance phase, 10) degree of variation of leg velocity in stance 
phase, 11) maximum leg velocity in stance phase, and 12) 
minimum leg velocity.  These metrics were then utilized to 
categorize participants as fallers or non-fallers.   
     Subsequently, a study [67][68] experimentally validating 
these simulation results was conducted by recruiting older 
adults aged 65 and above, who are able to walk without 
assistance of another person or walking aide, from a senior day 
care center and rural community center.  The participants were 
given a questionnaire about their fall history within the past 
year, based upon which they were divided into one group of 
non-fallers (19 people, mean age 78.8) and fallers (14 people, 
mean age 82.5).  Participants were then asked to walk for 10 
meters, during which time their gait was measured using a 
micro-Doppler radar.  Four gait parameters (1, 5, 6, 10) were 
extracted from the micro-Doppler signatures and used to 
classify participants as fallers or non-fallers with an accuracy of 
78.8%.  In another study [68] involving 74 older adults aged 75 
years and above, a subset of these radar-based gait parameters 
(1, 5, 6, 7, 9, and 10) were also shown to correlate well with the 
results of four cognitive function tests – the Mini Mental State 
Examination (MMSE), Digit Symbol Substitution Test (DSST), 
Scenery Picture Memory Test (SPMT), and Verbal Fluency 
Test (VFT) – and were used to classify participants according 
to high / low cognitive function. 
     More recently, automation of the Timed Up and Go (TUG) 
test, which is an established, standardized test used in clinical 
practice for assessing mobility and fall risk, has been proposed 
using radar.  In [69], an ultra-wide band (UWB) radar was 
utilized to segment and estimate the stride length during 
execution of a TUG test, comparing the accuracy of radar 
estimates against those acquired from sensors placed in the 
insole of a shoe.  This study found that the risk scores obtained 
using an insole containing three force sensors and y-axis of 
acceleration were comparable to that attained using a single 
radar and two force sensors.  In another study [70], also using 
UWB, measurements of walking duration, turning duration, and 
gait speed acquired during a TUG test were shown to correlate 
well to measurements acquired from a video-based system.  
     In 2023, the first radar-based system to fully automate the 
TUG test measurements was proposed [71] in which data from 
a CW Doppler radar was processed to segment the continuous 
data steam according to “transfer” and “walk” phases as well as 
“walk” and “turn” phases.  Afterwards, gait parameters, such as 
the number of steps, step time, gait cycle duration, swing time, 
average walking speed, cadence, TUG walking speed duration, 

TUG duration, step time, and stride length were computed from 
the radar micro-Doppler signature.  The study was conducted 
on 26 healthy subjects, aged between 22 and 60, who performed 
three TUG trials at slow, normal and fast speed, leading to a 
total of 9 trials per subject.  Data was acquired simultaneously 
from the CW radar and a Vicon motion capture system to 
validate radar-based measurements. High correlation 
coefficients were obtained for the torso speed, limb oscillations, 
initial and final indices of the TUG phases and extracted gait 
parameters.  As such, this work represents the first to show 
experimental results indicating the feasibility of automating 
TUG tests using radar. 
 

B. QGA using Joint RF Data Representations 
     Although µD-based QGA has the benefit of being applicable 
to any kind of radar, including the lowest-cost, least complex 
CW radars, the limitations brough by aspect angle dependency 
and the increasing availability of multi-channel RF transceivers 
at lower and lower costs has driven research into QGA based 
on joint RF domain representations, such as the radar data cube, 
which captures not just velocity information, but also 
information about range and angle as a function of time.  
Techniques such as multi-dimensional principal component 
analysis (PCA) have been proposed for exploiting the radar data 
cube for activity recognition [72] and fall detection [73].  In 
[74], a joint domain multi-input, multi-task learning (JD-
MIMTL) network is proposed that takes not just stacked 
snapshots of µD, but also range-Doppler and range-Angle maps 
as input to identify when a person is walking and subsequently 
extract the torso velocity and acceleration to assess gait 
variability. 
     In [75], a FMCW radar is used to track subjects [76] as they 
move freely in the home, extracting the stable phase of walking 
intervals (which excludes acceleration and deceleration 
phases), so as to monitor the gait speed of 50 participants, with 
and without Parkinson’s disease, for up to a year.  The study 
showed that at-home gait speed, as estimated using radar, 
strongly correlates with gold-standard assessments of 
Parkinson’s disease, such as the Movement Disorder Society-
Sponsored Revision of the Unified Parkinson’s Disease Rating 
Scale (MDS-UPDRS) part III sub-score and total score. 
     Beyond just estimation of gait speed and torso profile, 
several studies have also exploited the range, angle and velocity 
information of the radar to improve limb tracking.  For 
example, [77] separately recognized the legs in the range-
Doppler map and extracted the range and velocity profile for 
each leg.  Using these profiles, stride time, stance time, flight 
time, step time, cadence, maximum foot velocity and its interval 
were estimated. A new metric, the Gait Asymmetry Indicator 
(GAI), computed as 

𝐺𝐺𝐺𝐺𝐺𝐺 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅
𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿

− 1� (3) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 represents the maximum foot velocity 
of the left (L) and right (R) legs, respectively, was proposed to 
detect gait abnormality.  The results were validated through 
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comparison with Inertial Measurement Unit (IMU) data over 15 
participants in 4 scenarios (walking, running, left leg limping, 
and right leg limping) using the intraclass correlation value, 
which showed good agreement except for flight time. 
     Another study [78] utilizing synthetic range-Doppler versus 
time data simulated from a skeletal model proposes trajectory 
tracking using Kalman filtering and weighted joint nearest 
neighbor algorithm for data association.  Trajectory tracking 
accuracies ranging of as much as 99.6% is reported, while the 
estimates of kinematic gait features – such as step length, stride 
speed, stride frequency, gait phase, step length symmetry, phase 
symmetry, acceleration time constant of forearms, and 
skewness of thighs – are reported to have 91.9% - 93.8% 
accuracy.  While limb tracking techniques show promise, the 
accuracy of current methods on real radar data has not yet been 
adequately evaluated.  Advancement of more effective methods 
for limb tracking remains an open area of research. 

C. QGA using RF Skeletons 
     The task of tracking limbs through micro-Doppler data 
encounters obstacles due to human motion's intricate and 
dynamic properties, where distinguishing between overlapping 
signals and the slight movements of minor limbs poses accuracy 
challenges. Yet, the potential of leveraging high-dimensional 
RF data (spanning range, angle, and Doppler) for radar-based 
pose estimation in limb motion tracking is promising. Progress 
in signal processing and machine learning, particularly with the 
integration of Convolutional Neural Networks (CNNs), 
enhances accuracy and the capacity to detect minor movements, 
bringing non-invasive, real-time limb tracking closer to reality. 
     Initially explored with the proposal of RF-Capture [79] in 
2015, radar-based human skeleton estimation utilizes 5.4 to 7.2 
GHz FMCW signals via an antenna array to detect coarse body 
part positions, subsequently reconstructing a human figure by 
piecing together these detected parts. In 2018, RF-Pose3D [80] 
advanced this framework by employing a T-shaped 12-element 
antenna array for FMCW signal transmission and reception at a 
6.3 GHz center frequency and 1.8 GHz bandwidth. This system 
feeds range-azimuth and range-elevation heatmaps into a 
Resnet-based encoder neural network, coupled with 12 camera 
nodes capturing RGB video to collect label key points from 
OpenPose for training a region proposal network (RPN) and a 
ResNet-architecture CNN. This network focuses on RF data 
from individual persons to extract 3D skeletons from regions of 
interest, reporting average localization errors of 4.2, 4.0, and 
4.9 cm in the x, y, z axes, respectively, with OpenPose 
estimated key points. Despite its groundbreaking demonstration 
of RF skeleton estimation's feasibility, the method's reliance on 
over 17 million data samples and 16 hours of recordings 
underscored its significant data and computational demands, 
limiting practical application.  
     In 2020, mmPose [81] was proposed, which predicted more 
than 15 joints using two specially oriented IWR1443 radars. 
This method, feeding point clouds into a bifurcated CNN, did 
not utilize the radar's Doppler and signal intensity data, leading 
to jitter in skeleton animation. Attempts in 2022 with additional 

filters [82] sought to reduce jitter for a more stable skeleton 
representation but did not fundamentally enhance accuracy. In 
2021, another approach, MARS [83], was proposed, which 
employed IWR1443 radar and standard software for point cloud 
data, including Doppler and intensity information, reporting 
average MAE of 5.8cm accuracies in 19-point predictions 
compared to Microsoft Kinect v2 camera estimates. They 
further investigated joint angle estimation from the predicted 
skeleton and reported the average MAE of MARS in estimating 
left elbow angle, right elbow angle, left knee angle, and right 
knee angles are 12°, 13°, 7°, and 6°, respectively. 
     In recent years, there has been a significant surge in 
publications focused on mm-wave-based human pose 
estimation [84-92]. Generally, these studies employ radar-
generated range-azimuth and range-elevation heatmaps, with 
some also incorporating radar point clouds, as data inputs for 
training their deep neural network (DNN) models. For 
validating their findings, the bulk of these studies have 
predominantly leaned on either the Kinect system or the multi-
camera-based OpenPose model for ground truth. This approach 
presents substantial challenges in the realm of RF skeleton 
estimation. On one hand, the Kinect system, when employed as 
a benchmark for ground truth, is problematic due to its 
considerable errors in skeleton tracking. One study [93] showed 
that Kinect tends to provide an oversimplified version of the 
actual skeleton, with its estimates often deviating from those 
obtained through marker-based tracking methods. On the other 
hand, systems employing multiple cameras, such as OpenPose, 
introduce their own complexities. While Kinect's limitations 
stem from its inherent technology, the use of OpenPose, which 
relies on a multi-camera setup, is cumbersome and less practical 
for deployment. Furthermore, reliance on OpenPose has been 
shown [94] to introduce specific inaccuracies, including 
consistent biases in the estimation of knee and ankle joints, and 
relative biases in trunk and hip joints, in comparison to the 
estimations derived from optoelectronics motion capture 
systems, a more precise skeletal tracking method.  
     Hence, current QGA using RF skeleton has been limited to 
only estimating the skeleton coordinates. These efforts are 
constrained by key challenges, including the poor elevation 
angular resolution of the available off-the-shelf RF sensors, 
inappropriate use of Kinect for ground truth due to significant 
estimation errors, the impracticality of bulky multi-camera 
systems, and inaccuracies introduced by relying on the 
OpenPose model. Moreover, the dependency on complex, data-
intensive models necessitates the exploration of more efficient 
models requiring less data, crucial for enabling practical 
skeletal estimation on mobile computing platforms. 

III. PILOT STUDY 
     To evaluate and compare different radar-based QGA 
techniques, a pilot study was conducted in which both radar and 
motion capture data were simultaneously acquired from 
participants who walked back and forth in an indoor lab at the 
University of Alabama.   
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A. Experimental Design and Data Collection 
Five healthy, right-foot males (25.6 ± 1.9 years, 70.6 ± 17.5 kg, 
1.75 ± 0.093 m) completed the experiment. All participants (i) 
had no known history of neurological or musculoskeletal 
disorders; (ii) were naïve to the experimental conditions; (iii) 
had a normal or corrected-to-normal vision. Study procedures 
were approved by the Institutional Review Board at the 
University of Alabama under Protocols #18-06-1271, #21-10-
5055 and #23-04-6553. 

The RF data were acquired using a Texas Instruments (TI) 
IWR2243 Cascade radar, operating in the 77 GHz - 81 GHz 
frequency band with 12 Tx and 16 Rx antennas, positioned at 
the start of the walkway at about 1 meter height and aligned 
with the direction of walking, as shown in Figure 2. The TI 
radar was configured to utilize Time Division Multiplexing 
(TDM) to create 192 virtual Multi-Input Multi-Output (MIMO) 
channels.  Out of these, 58 elements overlap in the azimuth 
plane, leaving only 86 non-overlapping channels designated for  
azimuth virtual antennas. Regarding the elevation, there are 7 
elevation planes comprise an aperture size of 6 𝜆𝜆/2. However, 
within this aperture, 3 planes are empty, and only 4 active 
elements/channels are allocated for elevation measurements. 
Additionally, there are 44 redundant elements in the elevation 
that do not comprise aperture larger than 6 𝜆𝜆/2,  therefore 
remain unused. Here 𝜆𝜆 is the wavelength of the transmitted 
signal. Figure 3 illustrates the virtual antenna array for this 
radar.  Each radar chirp was comprised of 256 analog-to-digital 

converter (ADC) samples, with a total of 128 chirp-loops per 
frame being transmitted. Consequently, the raw ADC data was 
organized into range-azimuth (256x86), range-elevation 
(256x7), and range-Doppler (256x128) planes.  

 Participants walked for five minutes at self-selected speed 
up and down a 6-meter walkway. A total of 41 reflective 
markers (MRKs) were attached to the whole body to record 3-
D position data with an 8-camera motion capture system at a 
sample frequency of 100 Hz (NEXUS software and VERO 
infra-red Cameras, Vicon Motion Systems). To establish basic 
synchronization between the two recording systems, we 
initiated recordings simultaneously with a voice command 
while participants performed a fast "air punching" movement, 
clearly detected by both systems. Subsequently, we identified 
the radar frame displaying this rapid movement from the radar 
range-Doppler maps. Similarly, we pinpointed the frame in the 
Vicon skeleton data showing the hand punching forward. By 
aligning these two frames, we synchronized the two systems. 
Given that the radar operates at 10Hz and Vicon operates at 
100Hz, we down sampled the Vicon frame to match the radar 
frame rate, ensuring we have a ground truth Vicon frame for 
each radar frame.    

  

B. RF Skeleton Estimation under Limited Data 
     In this work, we consider RF skeleton estimation when a 
limited amount of data is available for training.  To quantify the 
estimation uncertainty due to the trained deep neural network 
(DNN) utilized for skeleton estimation versus other sources of 
estimation error, such as the resolution of the RF sensor or real-
world effects, such as multipath reflections, we compare the 
skeleton estimation accuracy obtained when using simulated 
(SkelS) versus real (SkelR) RF data.  In particular, we 
synthesize [95]-[97] the expected radar return using eq. (1) and 
eq. (2), where the time-varying ranges 𝑅𝑅𝑖𝑖 to the 𝑖𝑖𝑡𝑡ℎ point are 
derived from the concurrently acquired Vicon motion capture 
measurements. When generating the simulated data, we 
deliberately restricted ourselves to using only 20 azimuth 
antenna elements/planes instead of the full 86 elements found 
in the real radar. This choice was made because the azimuth 
angular resolution in the real data is already quite high, enabling 
the deep neural network (DNN) model to effectively learn from 
it. Consequently, we reduced the number of azimuth antenna 
elements in the simulation to avoid generating an 
overwhelming amount of data. Conversely, we used 7 elevation 
planes with a 6 λ/2 aperture, ensuring no empty elements. This 
provides finer angular resolution in elevation compared to the 
real data's 4 elevation channels. Pre-training with this higher-

 
Figure 2.  Experimental setup during data acquisition. 

 
Figure 3: Virtual antena array for TI AWR 2243 cascade radar. 
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resolution data helps set DNN weights at favorable local 
minima, improving feature representation learning during fine-
tuning with coarse-resolution real data.  
     To reduce the dimensionality of both the measured and 
simulated RF data so that the resulting DNN for skeleton 
estimation is less complex and requires less data for training, 
we developed a 'max per range bin' and 'max per angle bin' 
method to capture the main features from the RF heatmaps. As 
the name suggests, this process finds the maximum intensity 
value at each range/angle bin to capture the variations of the 
return signal’s strength over range and angle bins. This 
approach offers several benefits: first, it enables the 
representation of a 2D heatmap with just two vectors. For 
example, a 256x256 range-azimuth heatmap can be condensed 
into a 256x2 size array. Here, one vector represents the 
maximum per range bin (256x1), and the other captures the 
maximum per azimuth angle bin (256x1), markedly simplifying 
the challenge of managing extensive data matrices in DNNs. 
Consequently, for a set comprising both range-azimuth and 
range-elevation heatmaps, the result is a compact array sized 
256x4.  Second, this approach accurately maintains the gross 
velocity information by correctly capturing the movement of 
the target's peaks from one frame to the next.  Third, as the 
dimensionality of the data is reduced, it enables a simpler neural 
network to effectively extract the necessary information for 
determining range, azimuth, and elevation.  Thus, after 
aggregating all frames, the data's total size becomes 
27,408x256x4. This is subsequently reshaped to 
2,284x12x256x4 to incorporate the time dimension, the size of 
which was determined through empirical methods. 
     Next, a lightweight 3D CNN + Long Short-Term Memory 
(LSTM) model is designed to capture both the temporal and 
spatial characteristics for predicting the 3D coordinates of 14 
skeleton joints. The architecture is comprised of a 3D 
convolutional layer, followed by batch normalization, max 

pooling, dropout, and two bi-directional LSTM layers. It 
culminates in a time-distributed dense layer equipped with 42 
neurons (reflecting 14 joints times 3 coordinates per joint) and 
employs a linear activation function. 
     The Huber loss function [98] 

𝐿𝐿δ (y, f(x)) = �
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is utilized for model optimization. It offers robust regression by 
being less affected by data outliers compared to the squared 
error loss.  The Huber loss switches between Mean Squared 
Error (MSE) for small prediction errors and Mean Absolute 
Error (MAE) for large prediction errors, with the switch 
occurring at a specified threshold, delta (δ). When the 
prediction error is within the delta range, it utilizes MSE, which 
penalizes small errors more heavily and aids in fine-tuning the 
model's predictions. If the error exceeds delta, indicating a 
potentially large or outlier error, it uses MAE, which treats all 
errors linearly, thereby reducing the impact of outliers. This 
creates a more robust model by combining the sensitivity of 
MSE to small errors with the outlier resistance of MAE for large 
errors. For this key point regression model, δ=1 was used.  
     Among other hyperparameters, a learning rate of 0.0021, 
batch size of 32, and the model was trained for 80 epochs. The 
training was conducted using a leave-one-out approach, which 
was applied across the data from all subjects. On average, each 
subject's data consisted of approximately 5,600 pairs of radar 
frames. For every frame, the model was designed to predict 42 
key points. 
     Initially, the model was trained and tested with simulated 
data with a leave-one-subject-out method, resulting in Mean 
Absolute Errors (MAE) of 3.15 cm for the medio-lateral (ML) 
axis, 4.37 cm for the vertical (V) axis, and 1.4 cm for the antero-

 
(a) 

 
(b) 

Figure 4.  (a) Representative trajectories of the left ankle, right ankle, and midpoint of the hips along the Antero-Posterior (AP), Medio-
Lateral (ML), and Vertical (V) axes for the three measurement systems. (b) Frontal and sagittal views of the 3D skeleton reconstruction of the 
three measurement systems for a single time frame. Motion capture (MRK, red line), Skeleton from simulated radar data (SkelS, blue line), 
and Skeleton from real radar data (SkelR, black line). 
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posterior (AP) axis. Subsequently, when this model pre-trained 
using simulated data was further refined (fine-tuned) using 
measured radar data, the MAEs increased to 5.63 cm for the ML 
axis, 7.30 cm for the V axis, and 7.81 cm for the AP axis. After 
predicting the RF based skeleton trajectories for all subjects, we 
increased its sampling rate to 100 Hz using linear interpolation. 
This adjustment was made to align the RF based skeleton 
trajectories with the original frame rate of the Vicon system, 
which operates at 100 Hz. It's worth noting that interpolation 
wasn't necessary for the Vicon data itself, given its native 
sampling rate of 100 Hz.  
     Figure 4(a) illustrates the 3D trajectories of the midpoint 
between the hips, left ankle, and right ankle extrapolated from 
the simulated radar data (SkelS), the actual radar data (SkelR), 
and the motion capture data (MRK) during four laps of a 
representative subject’s trial. Figure 4(b) illustrates the 
reconstructed skeleton from the three measurement systems for 
a single time frame.  

It's important to note that, for this application, minor 
misalignment between the RF and Vicon trajectories wasn't a 
significant concern. Our focus was primarily on gathering 
discrete gait parameters, such as step time and step length, by 
considering the time difference between corresponding points 
in each system. 

C. Data analysis for gold standard comparison  
High-frequency related noise was removed from position 

data estimated with markers’ coordinates (MRK), RF skeleton 

from real data (SkelR), and RF skeleton from simulated data 
(SkelS) by low-pass filtering at 10 Hz (zero-lag, fourth-order 
Butterworth low-pass filter). For MRK, heel strikes were 
estimated by finding the farthest anterior position of the heels 
position relative to the sacrum. For SkelR and SkelS, heel 
strikes were estimated by finding the farthest anterior position 
of the ankles position relative to the mid-point of the hips. Step 
length was estimated as the absolute distance in the AP 
direction of the ankle markers from heel-strike to heel-strike. 

The µD signature was computed as in our previous works 
[62][63]. The trunk radial velocity (VRF) was estimated by 
finding the peak µD signature intensity, which indicates the 
highest reflected energy. Indeed, it can be assumed that the 
strongest signal in the µD signature is due to the trunk motion, 
as the trunk comprises the largest radar cross-section of the 
body. High-frequency noise was removed by low-pass filtering 
VRF data at 5 Hz [61]. Trunk acceleration was calculated as the 
first derivative of VRF using a central finite difference method. 
Heel strikes were estimated by finding the zero-crossing points 
of the trunk acceleration curve, after low-pass filtering at 2 Hz 
[99]. The absolute value of VRF was subdivided into steps. Step 
length was estimated as the area under the curve of VRF over a 
step cycle. 

For each run, the middle 5 steps were included in the analysis 
to ensure a steady walking state. For all methods, step time was 
computed as the time interval between consecutive heel strikes. 
Then, step time (ST), step length (SL), and their variabilities 

TABLE I 
CONCURRENT VALIDITY 

 MRK Vs. µD MRK Vs. SkelR  MRK Vs. SkelS 

Variable MD 
(Mean ± STD) 

MPD [%] 
(Mean ± SD) 

LOA 
[%] 

MD 
(Mean ± STD) 

MPD [%] 
(Mean ± SD) 

LOA 
[%] 

MD 
(Mean ± STD) 

MPD [%] 
(Mean ± SD) 

LOA 
[%] 

ST [s] 0.007 ± 0.011 1.00 ± 1.71 3.3 -0.004 ± 0.007 -0.54 ± 1.09 2.1 -0.001 ± 0.005 -0.12 ± 0.76 1.5 

SL [m] -0.068 ± 0.022 -13.03 ± 4.52 8.9 0.010 ± 0.006 1.84 ± 1.05 2.0 0.005 ± 0.004 0.90 ± 0.72 1.4 

STV [%] 10.79 ± 3.87 105.65 ± 33.74 66.1 12.29 ± 2.57 113.59 ± 9.06 17.8 8.85 ± 1.77 97.95 ± 26.51 52.0 

SLV [%] 11.70 ± 4.17 95.13 ± 19.17 37.6 23.74 ± 5.72 130.35 ± 16.53 32.4 12.65 ± 0.94 101.58 ± 9.49 18.6 

Measurement method: Markers (MRK), RF micro doppler (µD), RF skeleton from real data (SkelR), RF skeleton from simulated data (SkelS).  
Gait Parameters: Stride Time (ST), Step Length (SL), ST Variability (STV), and SL Variability (SLV).  
Concurrent Validity: Mean difference (MD), mean percentage difference (MPD), and 95% ratio limits of agreement (LOA) between the gait 
parameters obtained with the MRK and the three RF methods. A positive sign indicates larger values for the RF method. 

 
(a)                                                  (b)                                                     (c)                                                     (d) 

Figure 5: (a) Stride Time (ST), (b) Step Length (SL), (c) ST Variability (STV), and (d) SL Variability (SLV) obtained for Markers (MRK), RF 
micro doppler (µD), RF skeleton from real data (SkelR), RF skeleton from simulated data (SkelS). Bars refer to the standard error. 
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(STV, SLV) were defined as the mean and the coefficient of 
variation of all accounted steps over the five minutes of 
walking. The coefficient of variation was computed as the 
percentage of the ratio between standard deviation and mean 
value. Differences between the MRK method and the three 
types of RF methods were expressed as mean of the differences 
(MD), mean percent difference (MPD), and 95% ratio limits of 
agreement (LOA). LOA was calculated as 1.96 times the 
standard deviation of MPD.  |MPD+LOA| values >50% were 
interpreted as poor, 10%–50% as moderate, 5%–10% as good, 
and < 5% as excellent agreement [100]. 

D. Results 
Figure 5 shows the mean and standard deviation of the 

outcome variables extracted from each measuring system (i.e., 
MRK, µD, SkelR, SkelS). Table 1 reports the summary metrics 
for the differences between the gait parameters extracted with 
MRK and each RF method. 

Independently by the RF method used, ST showed excellent 
agreement (|MD|<0.007s; |MPD+LOA|<3.3%) with the µD 
method overestimating ST while both skeleton methods slightly 
underestimating ST. SL showed good agreement when 
estimated with the µD (|MD|=0.068m; |MPD+LOA|=8.9%), 
and excellent agreement when estimated with the SkelR and 
SkelS methods (|MD|<0.010m; |MPD+LOA|<2%). The µD 
method underestimated SL while both skeleton methods 
slightly overestimated SL. STV showed poor agreement when 
estimated with the µD and SkelS methods (|MD|<10.8%; 
|MPD+LOA|>52.0%) and moderate agreement when estimated 
with the SkelR method (MD=12.3%; |MPD+LOA|=17.8%) 
with values obtained with RF methods systematically larger 
than those obtained with the MRK method. Noticeably, SkelS 
showed the lowest absolute error (MD=8.85%) but resulted in 
poorer agreement due to a larger standard deviation. For all 
methods, SLV showed moderate agreement (|MD|<23.7%; 
|MPD+LOA|<37.6%), with values obtained with RF methods 
systematically larger than those obtained with the MRK 
method. 

IV. DISCUSSION 
The aim of this study was to provide an overview of emerging 

radar-based techniques for gait parameter estimation, the results 
of a pilot study in which we compared the accuracy of different 
radar-based QGA techniques, and a discussion to highlight 
areas requiring future research. 

Depending on the available technology, gait variables 
associated with fall risk can range from very simple to complex. 
Most radar-based gait parameters estimation studies focused on 
estimating gait speed [55][56][61][64][101]. Perhaps, gait 
speed is the most common and simple outcome sensitive to 
pathology and can be considered as the final common 
expression of locomotor control [102], with higher risk for falls 
associated with slower self-selected walking speed. However, 
gait speed cannot reveal the underlying impairments and 
measurement of spatio-temporal and biomechanical parameters 
of gait are useful to augment diagnostic capabilities. The gait 

pattern in older people at higher risk for falls is usually stiffer, 
less coordinated, and characterized by poorer postural control, 
shorter stride length and height, wider step width, and greater 
propensity of landing flatfoot.  

After gait speed, step time is the spatio-temporal parameter 
that most radar-based studies tried to estimate. The results from 
this study and other studies show that excellent agreement in 
average step time recognition is achieved between RF and the 
Vicon systems [55], independently by the RF processing 
technique. To the best of our knowledge, few radar-based 
studies have attempted to validate step length estimation 
[55][61]. However, both estimated step length by multiplying 
step time by the average walking [61] or treadmill [64] speed. 
Both studies reported small estimation errors of about 2-3%. 
Instead, we proposed to estimate step length by directly 
calculating the distance between ankle markers when 
reconstructing the skeleton or integrating the approximated 
trunk velocity curve over a step when using the µD. When 
attempting to estimate spatial components of gait, we observed 
an underestimation of the average step length of about 13% 
when using the µD method. Using either of the RF skeleton 
methods significantly improved the estimation performance. 
Using SkelR, we obtained an overestimation of only 2% of step 
length. When using SkelS, estimation can be further improved 
to 1% of error. It should be taken into account that estimating 
spatiotemporal parameters using body point locations allow 
researchers to estimate a large number of spatio-temporal 
parameters such as step width, joint angles, and others.  

Although the significant differences in the gait pattern of 
fallers and non-fallers, few quantitative studies have found 
measures of gait that can predict fall risk. A promising method 
to assess fall risk is the evaluation of gait stability parameters 
derived from biomechanics and dynamical systems theories 
[103]-[106]. Briefly, repetitive motor tasks, like walking, can 
be treated as a nonlinear dynamic system where variables have 
a cyclic behavior and recur iteratively with almost the same 
pattern during the temporal evolution of the task. This pseudo-
periodic behavior can be exploited to quantify gait variability 
and nonlinear analysis. Alternatively, from a biomechanical 
point of view, dynamic stability can be defined as a measure of 
the distance between the center of mass and the base of support 
[107]-[109].  Features describing the variability and complexity 
of gait are the most sensible in assessing fall risk, as compared 
with standard quantitative measures of gait [110]-[113]. 

Accurate estimation of gait parameters at each gait cycle is 
fundamental to estimate gait dynamics. In radar research, this 
has been attempted in a few studies [55][56][61][64][114], but 
they did not systematically analyze gait variability. To the best 
of our knowledge, our group has been the first to evaluate the 
performance of RF sensors in estimating gait stability 
[62][63][70]. The pilot study in this work reveals that both 
micro-Doppler and skeleton estimation-based RF data analysis 
methods result in measures of variability that show poor to 
moderate agreement and overestimations of about 100% with 
respect to the Vicon system. To put this in perspective, it should 
be noted that previous studies that determined the concurrent 
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validity of gait variability measures obtained with inertial 
sensors [100][115]-[118] also showed that IMU-based 
measures have poor to moderate validity [119].   

Although the small sample of young participants limited the 
power of the statistical tests and the generalization of our results 
to other populations at risk of falling, the pilot study was 
intended to provide an initial comparison of radar-based 
techniques for gait analysis and inform the reader about the 
current limitations of radar technology and the relationship 
between the specific radar hardware and accuracy. Even if this 
preliminary study did not provide real evidence that the system 
could properly identify signature gait characteristic of faller vs. 
non faller, the analysis of healthy young adults is the first step 
in developing a base for further studies on vulnerable 
populations. Future studies will focus on fall-prone older adults 
with diagnosed balance problems. 

Next, we discuss the limitations of the specific commercially 
available radar used in the pilot study and aspects of current 
estimation techniques that adversely affected the accuracy of 
gait variability measures.  

Hardware Limitations: The TI IWR2243 Cascade radar has 
the advantage of high angular resolution in the azimuth 
direction due to the ability of exploiting TDM to form a large 
192 element virtual array – the more the number of virtual array 
elements, the finer the angular resolution.  However, TDM 
requires multiple sweeps, which greatly increases the time 
required to form the virtual array (also known as a coherent 
processing interval, or CPI) and lowers the overall sample rate.  
In the pilot study, while the Vicon had a data rate of 100 Hz, the 
radar was operated at a data rate of just 10 Hz.  Our results show 
that this rate is too low for adequate assessment of gait 
variability. Furthermore, it should be noted that the TI 
IWR2243 Cascade radar is able to achieve high angular 
resolution in just the azimuth direction:  with only a few array 
elements in elevation, the elevation resolution is extremely 
poor.  In depth, the 4 GHz bandwidth of the TI IWR2243 
Cascade radar results in 3.75 cm depth resolution.  Our results 
show that the accuracy of estimating skeletal key points is 
correlated with the radar’s resolution; thus, the best accuracy 
was obtained in estimating position along the azimuth – the 
direction along which the radar had the highest resolution.  
Ideally, the optimal radar for gait parameter estimation would 
have both a low CPI, high bandwidth, and a large number of 
physical array elements in both the azimuth and elevation.  Such 
a radar, however, results in such a large amount of data from 
the resulting 4D radar tensor that real-time processing on the 
edge becomes challenging.  To resolve this dilemma in 
automotive applications, radar design companies have 
developed RF-system-on-a-chip (RF-SoC) that integrates the 
RF transceiver circuits with memory blocks, microprocessors 
and digital signal processing as a complex single-chip system. 
However, automotive RF-SoCs typically generate real-time 
point clouds, and do not provide developers access to the raw 
radar I/Q data required for computation of the micro-Doppler 
signature or accurate skeleton estimation.  Moreover, there is a 
cost versus performance trade-off in commercially available 

radar sensors – the larger the antenna arrays and greater the 
bandwidth, the higher the resolution and performance, but also 
the greater the cost.  Thus, an open research question for gait 
parameter estimation is whether it would be better to use 
multiple, low-cost single-channel radars of high bandwidth or a 
single, more expensive multi-channel, high bandwidth radar. 

Processing Constraints: The RF data representation from 
which gait parameter estimates are derived impacts both 
accuracy and the parameters that can be estimated.  Established 
metrics for fall risk are based on accurate estimation of skeletal 
keypoints, which our study also shows offers improved 
estimation despite hardware limitations.  An examination of the 
RF skeleton estimation literature shows that the more physical 
variables measured by the radar are used in the estimation 
process, the greater the accuracy of the resulting estimates.  
Thus, we have seen an improvement in accuracy when both 
range, angle, and Doppler are considered relative to range, 
angle, or micro-Doppler only.  Here we should also make a 
distinction between methods that take as input the radar data 
tensor (range-frequency-angle vs. time) versus methods that 
directly use radar point clouds.  While the use of point clouds 
may seem expedient given its ready availability from 
commercially available RF-SoCs, the point cloud is itself a 
derived data representation based on the constant false-alarm 
rate (CFAR) detection applied to the radar data tensor.  
Although more recently developed RF-SoCs provide not just 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) coordinates for each point but also a Doppler shift (𝑓𝑓𝐷𝐷) 
measurement, it should be noted that these measurements are 
provided every CPI, which is the duration that N pulses can be 
transmitted at a pulse repetition interval (PRI) for each pulse.  
In contrast, a micro-Doppler signature contains a Fast Fourier 
Transform (FFT)-based estimate of micro-Doppler frequency 
(radial velocity) at an interval of 𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓⁄ , where 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 is the 
number of FFT points utilized.  As such, the micro-Doppler 
represents a much richer source of kinematic information than 
that embodied by point clouds.  Thus, an open area of research 
is how to best process the RF data tensor to maximally exploit 
the complete set of measurements by a radar system for gait 
parameter estimation – and how to accomplish this in real-time 
to minimize latency and maximize sample rate. 

DNN Design Considerations:  The most widely used DNNs 
are networks that were proposed for the applications of 
computer vision and speech processing.  However, radar data is 
not inherently an image, nor does it possess the same frequency-
dependent properties as speech signals [120].  Consequently, 
from a DNN design perspective as well the RF data 
representation utilized at the input of a DNN will have a great 
impact on the resulting performance [121] both in terms of 
accuracy and latency.  For example, direct utilization of the 
complex I/Q radar data at the input of a CNN can reduce 
computation time, enabling real-time applications, but has 
greatly degraded performance relative to that of utilization of 
the micro-Doppler signature at the input.  Recently, the 
inclusion of complex sinc filtering layers prior to the 
convolutional layers has been proposed to attain comparable 
performance with low latency [122].  Another disadvantage of 
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CNN-based skeleton estimation methods is that they do not 
consider the spatial correlation inherent to human movement.  
Although the CNN+LSTM model does incorporate sample-to-
sample correlations, our pilot study examining results on 
simulated data is evidence that there remains a significant 
amount of estimation uncertainty due to network design and 
training.  Finally, it should be noted that deep learning-based 
methods are very data greedy, and that not just the amount of 
data but also how the data was collected – under what scenarios, 
sensor positions, environment, and the mobility characteristics 
of the participants utilized – will impact model training and 
resulting estimation accuracy.  Thus, there remains much 
opportunity for future research in DNN design that can 
contribute to improved radar-based gait parameter estimation 
accuracy. 

Environmental Factors:  In application of radar-based QGA 
technologies in home, signal processing and AI/ML algorithms 
must also take into consideration dynamic environmental 
factors, such as the separation of radar signatures from multiple 
people [123]-[125] and potential presence of obstacles or other 
sources of motion in the scene being illuminated by the radar, 
such as a fan or pet.  Thus, while on the one hand researchers 
are developing more advanced signal processing and micro-
Doppler decomposition [126]-[128] algorithms, on the other 
hand some researchers have proposed positioning the radar in 
hallways [56], where obstacles are not expected and motion is 
automatically constrained by the walls, or utilizing the radar in 
a cognizant fashion by potential users, such as the case would 
be if conducting an in-home TUG test.  Dynamic environmental 
factors, including sensor positioning, will also impact the 
ability of DNNs to generalize across environments and thus 
must be accounted for during training and network design.   

V. CONCLUSION 
This paper has provided an overview of emerging radar-based 
techniques for gait parameter estimation, especially with 
emphasis on those relevant to fall risk. A pilot study was 
conducted that compares the accuracy of gait parameters 
estimation from different radar data representations (i.e., micro-
Doppler signature and skeletal point estimates) against an 8-
camera, marker-based optical tracking system.  The results of 
this study show that while there is excellent agreement between 
radar and optical tracking estimates of step time and step length, 
gait variability measures show poor to moderate agreement.  
The limitations of current radar-based technology that 
adversely affect the accuracy of radar-based gait variability 
measures – such as trade-offs between transceiver architecture, 
transmit waveform parameters, and cost, processing 
constraints, and DNN design considerations – are discussed.  
We conclude by pointing out areas for future research that can 
address current limitations and enable the realization of radar-
based QGA as a promising emerging technology for 
continuous, non-intrusive fall risk assessment.  
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