
A Novel Scheme for Cache-aided Multiuser Private
Information Retrieval with User-to-user Privacy

Xiang Zhang∗, Kai Wan†, Hua Sun‡, Mingyue Ji∗, and Giuseppe Caire§
Department of Electrical and Computer Engineering, University of Utah∗

School of Electronic Information and Communications, Huazhong University of Science and Technology†
Department of Electrical Engineering, University of North Texas‡

Department of Electrical Engineering and Computer Science, Technische Universität Berlin§
Email: ∗{xiang.zhang, mingyue.ji}@utah.edu, †kai wan@hust.edu.cn, ‡hua.sun@unt.edu, §caire@tu-berlin.de

Abstract—Cache-aided Multiuser Private Information Re-
trieval (MuPIR) is an approach to achieve efficient file retrieval
while ensuring multiuser demand privacy against curious servers
in multiuser cache-aided PIR systems. More specifically, the
demands of the users should be protected from any individ-
ual server (i.e., server privacy) during the two-phase retrieval
procedure which consists of a cache placement phase and a
private delivery phase. One limitation of the MuPIR model is
that the users’ demands are exposed to each other which is
highly undesirable in modern-day distributed retrieval systems
where user-to-user privacy has also become an important con-
sideration. Motivated by this, we propose cache-aided MuPIR
with user privacy (MuPIR-U), a new problem formulation that
simultaneously enforces server privacy and user-to-user privacy.
Besides server privacy, it is also required that each user should
be prevented from learning other users’ demands. We present an
optimal scheme for the case of two files and an arbitrary number
of users and servers which leverages private cache to achieve
demand privacy among users. Interestingly, it is shown that the
inclusion of user-to-user privacy incurs no extra download cost
in the large memory regime when comparing to MuPIR.

I. INTRODUCTION

Private Information Retrieval (PIR) [1] seeks efficient ways
for a user to privately retrieve a file from a set of distributed
and noncolluding servers while hiding the identity of the
requested file from any individual server (referred to as server
privavy). The information-theoretic capacity of PIR was shown
to be (

∑K
i=1 1/N

i−1)−1, with N and K being the number
of servers and files respectively, by Sun and Jafar [2]. Later,
many variants of PIR have been proposed and studied. This
includes PIR with colluding servers [3] where subsets of
servers can communicate, coded and/or storage-constrained
PIR [4]–[6] where the servers store MDS-encoded files or
the server is storage-limited and can only store a fraction
of the file library, symmetric PIR [7] where the user gains
no knowledge beyond the requested file, and multi-message
PIR [8] to explore joint retrieval benefits, etc. In addition, the
role of user-side cache (sometimes referred to as side infor-
mation) has been investigated in cache-aided PIR systems. For
example, single-user cache-aided PIR has been studied under
various types of restrictions on the form of the cache content
(coded/uncoded/linear combinations of files, known/unknown
by servers etc.) [9]–[17]. Moreover, cache-aided multiuser PIR
(MuPIR) [18] takes advantage of the (privacy-constrained)

global caching gain identified in coded caching [19], [20] to
improve retrieval efficiency due to the inclusion of multiple
users.

In addition to server privacy in PIR, user-to-user privacy was
considered in private coded caching [21]–[23] with multiple
users and a single server where each user is prevented from
learning the demands of other users. Private coded caching
relies on private cache, i.e., the cache placement is carried out
in a way such that each user does not know the cached contents
of other users, to achieve user-to-user privacy. Although server
privacy and user-to-user privacy has been studied separately
in either the single-user multiserver setting (i.e., PIR) or
the multiuser single-server setting (i.e., coded caching), it
is unclear how to optimally incorporate user-to-user privacy
into MuPIR in order to design efficient MuPIR-U algorithms.
MuPIR-U is of particular interest in the design of large-scale
information retrieval systems where requests of clients should
be protected from both the database servers and other untrusted
clients. Unfortunately, the original MuPIR scheme proposed
in [18] does not naturally achieve user-to-user privacy due
to the exposure of the queries/answers to the users and each
user’s awareness of the global cache placement. To illustrate,
let us look at an example with two files A = (a1, a2, a3) and
B = (b1, b2, b3), two users and two servers that achieves the
memory-load pair (2/3, 1). User 1 and 2 store {a1, b1} and
{a2, b2} respectively in the cache placement phase1. In the
private delivery phase, each server n ∈ {1, 2} generates an
answer A[(θ1,θ2)]

n as follows:

A
[(θ1,θ2)]
1 = (u1, u2, 1)(a1, a2, a3)

T + (v1, v2, 1)(b1, b2, b3)
T,

A
[(θ1,θ2)]
2 =

[
(g1, g2, 1)(a1, a2, a3)

T, (h1, h2, 1)(b1, b2, b3)
T
]

(1)

where ui, vi, gi, hi, ∀i are the (binary) query coefficients
which are chosen by the users based on the their demands
(θ1, θ2) ∈ {1, 2}2. For example, the coefficients corresponding
to (θ1, θ2) = (1, 2) are chosen in a way that 1) u1 = g1
and v2 = h2 are chosen randomly and independently from

1It is assumed that each user knows which bits are stored by the other users
although it may not know the exact values of these bits. For example, user 1
knows that the second bit of both files are stored by user 2, but it does not
know the values of a2 and b2.

Authorized licensed use limited to: University of North Texas. Downloaded on April 24,2024 at 10:26:37 UTC from IEEE Xplore. Restrictions apply.

{0, 1}, and 2) (u2, g2) and (v1, h1) are chosen as two random
permutations of (0, 1). Because the queries and answers (1)
are fully observable by both users, it leaks information about
the other user’s demand to each user. More specifically, from
user 1’s view, due to the specific alignment of the coefficients
between the servers, it knows that b1 and b3 are decodable
by user 2 but a1 and a3 are not. Hence, user 1 knows that
user 2 wants file B, implying that the above MuPIR scheme
fails to guarantee user-to-user privacy. More generally, each
user’s knowledge of other users’ cached contents, combined
with its full observation of the queries and answers, helps the
user to infer the demands of other users. Therefore, the MuPIR
scheme of [18] does not guarantee user-to-user privacy.

In this paper, we propose cache-aided MuPIR with user
privacy (MuPIR-U), a novel problem formulation which takes
into consideration both server and user-to-user privacy in mul-
tiuser PIR systems. In the proposed model (See Fig. 1), mul-
tiple cache-equipped users are connected to multiple servers
with a replicated file library. The retrieval process consists
of two phases, the cache placement phase where the users
fulfill their cache memories without knowing their future
demands of the files, and the private delivery phase where
the user’s demands are revealed and collected by a trusted
server (through private upload links) which then generates
a set of queries for the servers. Each server responds with
an answer that is broadcast to all users. With the received
answers and its cache, each user should be able to recover
its desired file. Both server and user-to-user privacy should
be enforced, that is, we aim to design delivery schemes with
minimal download cost while ensuring that 1) each server
should be prevented from knowing the joint demands of the
users, and 2) each user should not be able to infer the demands
of other users. For the case of two files and an arbitrary number
of users and servers, we present a novel cache placement and
private delivery scheme that achieves the optimal load when
the memory size is above a certain threshold. To achieve user-
to-user privacy, we leverage techniques used in private coded
caching [21] to hide the stored contents of each user from other
users so that each potential cache configuration corresponds
to a different set of user demands, therefore hiding the the
remaining demands from each user’s perspective.

Notation: For i ≤ j, denote [i : j]
Δ
= {i, i + 1, · · · , j},

Ai:j
Δ
= {Ai, · · · , Aj} and A(i:j)

Δ
= (Ai, · · · , Aj). Write [1 : j]

as [j] for brevity. Let Sn
Δ
= (Si)

2n

i=1 denote a vector containing
all the subsets of [n] arranged in lexicographic order. Denote
ϕn(Si)

Δ
= i as the index of Si in Sn. For example, if n = 2,

we have S1 = ∅,S2 = {1},S3 = {1, 2},S4 = {2} and thus
S2 = (∅, {1}, {1, 2}, {2}), ϕ2(∅) = 1, ϕ2({1}) = 2 etc. An
(n, k)-MDS generator matrix M ∈ R

n×k has the property that
every (k, k) submatrix of M is invertible.

II. PROBLEM FORMULATION

Consider a (K,Ku, N) cache-aided MuPIR system as
shown in Fig. 1 which consists of N servers each holding a
library of K independent and equally sized files W1, · · · ,WK

Fig. 1. System model of cache-aided MuPIR-U. In the private delivery phase,
the trusted server collects the users’ demands through private upload links and
then generate a query for each server.

where H(Wk) = L, ∀k, H(W1:K) =
∑K

k=1 H(Wk), and Ku

cache-equipped users each may request a random file. Each
server is connected to the users through an error-free broadcast
channel. Each user k ∈ [Ku] is equipped with a cache memory
Zk that can store up to ML bits of data. The system works
in two phases, a cache placement phase followed by a private
delivery phase. In the placement phase, the users fill up their
cache memory as a function of the files W1:K without the
knowledge of their future demands. It is assumed that the
cached contents of the users are known by the servers but each
user’s cache is kept secret from other users2. In the private
delivery phase, the users reveal their file requests represented
by the demand vector θ Δ

= (θ1, · · · , θKu
) where user k wants

Wθk , ∀k. In order to retrieve the desired files, a trusted server
first collects each user’s demand through a private upload link
and then generates a set of queries Q

[θ]
1 , · · · , Q[θ]

N each to
be sent to a different server.3 Upon receiving Q

[θ]
n , server n

responds with an answer A
[θ]
n that is broadcast to all users.

Using the answers downloaded from the servers and the cached
content, each user k should be able to recover its desired file,
which expressed in terms of conditional entropy, is

H
(
Wθk

∣∣Q[θ]
1:N , A

[θ]
1:N , Zk

)
= 0, ∀k ∈ [Ku]. (2)

Meanwhile, the server and user-to-user privacy constraints
should be satisfied. Server privacy requires the user demands
to be protected from any individual server, i.e., θ should be
independent of the queries and answers seen by each server,
i.e.,

I
(
θ;Q[θ]

n , A[θ]
n

∣∣W1:K , Z1:Ku

)
= 0, ∀n ∈ [N] (3)

2This can be achieved by employing a random cache placement for the
users such that each user is unable to know the cache of other users.

3The query generation procedure is further explained in Remark 1.

Authorized licensed use limited to: University of North Texas. Downloaded on April 24,2024 at 10:26:37 UTC from IEEE Xplore. Restrictions apply.

The conditioning on Z1, · · · , ZKu
reflects the assumption of

the servers’ awareness of the users’ cache. User-to-user privacy
requires that each user should be prevented from inferring
other users’ demands, i.e.,

I
(
θ\{k};Q

[θ]
1:N , A

[θ]
1:N

∣∣θk, Zk

)
= 0, ∀k ∈ [Ku] (4)

where θ\{k}
Δ
= (θi)i �=k denotes the demands of all users except

user k. It is assumed that the queries from the trusted server
and the answers from the servers are fully accessible by each
user as implied by (4).

Let D =
∑N

n=1 H(A
[θ]
n) denote the total number of bits

downloaded from the servers. The load, denoted by R, is
defined as the normalized download cost, i.e., R Δ

= D/L. A
memory-load pair (M,R) is said to be achievable if there
exists a cache-aided MuPIR-U scheme that achieves the load
R at memory size M . Let R� denote the minimum achievable
load. We aim to design the cache placement and private
delivery phases to achieve a load as small as possible while
ensuring both server and user privacy.

Remark 1 (Trusted server & query generation): The reason
that we employ a trusted server to perform query generation
is explained as follows. The first thing to notice is that the
queries have to be generated based on the users’ joint demands
and their cached contents. Hence, as opposed to MuPIR [18]
where the users cooperatively generate the queries, here the
users are not suitable to perform query generation as they are
not allowed to collect other users’ demands. As a result, a
trusted server is used to collect the users’ individual demands
via private upload links (See Fig. 1) so that θ\{k} is kept
secret from user k, ∀k. The trusted server also knows the users’
cache which is necessary for query generation. One more thing
to notice is that the set of queries {Q[θ]

n }Nn=1 and answers
{A[θ]

n }Nn=1 are fully accessible to the users because each user
cannot infer other users’ demands by solely observing the
queries/answers without knowing their cache.

III. MAIN RESULT

Theorem 1: For cache-aided MuPIR-U with two files, Ku ≥
2 users and N ≥ 2 servers, the memory-load pair

(M+, R+) =

(
2Ku(N − 1)

L
,
N + 1

L

)
(5)

where L
Δ
= (2Ku−1 + 1)(N − 1) + 1 is achievable. When

M ≥ M+, the optimal load is given by

R� = (1−M/2)(1 + 1/N), ∀M ∈ [M+, 2]. (6)

Proof: The load of (6) can be achieved by memory shar-
ing [19] between the achievable points (M+, R+) and (2, 0)
which is trivially achievable. Conversely, the optimal load R�

should be lower bounded by R� ≥ R̂
Δ
= (1−M/2)(1+1/N)

where R̂ denotes the optimal load for cache-aided PIR with a
single user [9]. Because the multiuser privacy requirement (3)
implies the demand privacy for each user, and the incorpora-
tion of user-to-user privacy (4) can only incur possibly higher
load, any converse bound of [9] is also a valid converse for

Fig. 2. Comparison with MuPIR for (K,Ku, N) = (2, 2, 2).

MuPIR-U. Since the achievable load (6) matches the lower
bound R̂ when M ≥ M+, it is optimal. In Section IV, we
present a novel scheme that achieves the memory-load pair
(M+, R+).

Remark 2: Theorem 1 revealed an interesting fact that
there is no extra penalty on the optimal load when adding
user-to-user privacy to MuPIR if the memory size is above
a certain threshold. In addition, memory sharing between
(M+, R+) and the trivially-achievable point (0, 2) implies the
achievability of R = 2 − (1 + 1/2Ku)M , M ∈ [0,M+]. A
comparison of the achievable load with the optimal load of
cache-aided MuPIR [18] for (K,Ku, N) = (2, 2, 2) is given
in Fig. 2.

IV. PROPOSED SCHEME

In this section, we present the proposed scheme which
achieves the memory-load pair (5) in Theorem 1. An example
with 2 users and 2 servers is provided to highlight the design
idea before proceeding to the description of the general scheme
for arbitrary Ku and N .

A. A Motivating Example

Example 1: Consider (K,Ku, N) = (2, 2, 2) for which
we show that (1, 3/4) is achievable. Let A and B denote
the two files each consisting of L = 4 bits, i.e., A =
(A1, A2, A3, A4), B = (B1, B2, B3, B4). Let M be a (binary)
(4, 3)-MDS generator matrix defined as

M
Δ
=

⎡⎢⎣1 0 0
0 1 0
0 0 1
1 1 1

⎤⎥⎦. (7)

Encode the files using the above MDS matrix as follows:⎡⎢⎢⎣
Ã1

Ã2

Ã3

Ã4

⎤⎥⎥⎦ = M

[
A1
A2
A3

]
,

⎡⎢⎢⎣
B̃1

B̃2

B̃3

B̃4

⎤⎥⎥⎦ = M

[
B1
B2
B3

]
. (8)

Authorized licensed use limited to: University of North Texas. Downloaded on April 24,2024 at 10:26:37 UTC from IEEE Xplore. Restrictions apply.

Note that any three out of the four encoded bits can recover
the three original uncoded bits due to the MDS property. Also
note that the last bit of each file has not been encoded. The
above encoding process (i.e., M) is publicly known by all
users and servers.

1) Cache placement phase: The servers first gener-
ate an independent and random permutation pi

Δ
=

(pi,1, pi,2, pi,3, pi,4)(i = 1, 2) of (1, 2, 3, 4) for each file. These
permutations are known by the servers but kept secret from the
users. We define a subfile AS as a small piece of A that is
stored exclusively by a set of users S ⊆ [Ku] in the placement
phase. The MDS-encoded bits are then assigned to the subfiles
as follows:

A∅ = Ãp1,1 , A{1} = Ãp1,2 , A{1,2} = Ãp1,3 , A{2} = Ãp1,4 ;

B∅ = B̃p2,1 , B{1} = B̃p2,2 , B{1,2} = B̃p2,3 , B{2} = B̃p2,4 .
(9)

Each user k stores all subfiles AS , BS where k ∈ S , i.e., the
user cache (from the servers’ view) is

[Server view] Z1 =
{
A{1}, A{1,2}, B{1}, B{1,2}

}
,

Z2 =
{
A{1,2}, A{2}, B{1,2}, B{2}

}
. (10)

Alternatively, from each user’s view, the cache becomes

[User view] Z1 =
{
Ãp1,2 , Ãp1,3 , B̃p2,2 , B̃p2,3

}
,

Z2 =
{
Ãp1,3 , Ãp1,4 , B̃p2,3 , B̃p2,4

}
. (11)

Because the users do not know the permutations p1,p2, each
user only sees two randomly chosen MDS-encoded bits of
each file in its cache. For example, from user 1’s view, the
cache is Z1 = {Ãp1,2 , Ãp1,3 , B̃p2,2 , B̃p2,3}. User 1 knows it
has stored Ãp1,2 and Ãp1,3 , but cannot tell which of them
is assigned to which of A{1} and A{1,2}. In this case, we
say that user 1 cannot distinguish A{1} from A{1,2}. User 1
cannot distinguish B{1} from B{1,2} either. Similarly, user 2
cannot distinguish A{1,2} from A{2}, and B{1,2} from B{2}
respectively. A direct consequence of this inability to identify
the stored subfiles is that each user does know which MDS-
encoded bits have been stored by the other user, which is
crucial to achieving user-to-user privacy. Since each MDS
symbol has only one bit, we have M = 1.

2) Private delivery phase: The task of this phase is to
design the query to each server in order for the users to
correctly recover their requested files as well as ensuring both
server and user-to-user privacy. In particular, the answers of
the servers take the form of linear combinations of the (MDS-
encoded and uncoded) bits of the files. The answer of server 1
is a linear combination A

[θ]
1 =

∑4
i=1

(
uiÃi+viB̃i

)
+A4+B4,

and the answer of server 2 consists of two linear combinations
A

[θ]
2 = (A

[θ]
2,1, A

[θ]
2,2) where A

[θ]
2,1 =

∑4
i=1 giÃi + A4 and

A
[θ]
2,2 =

∑4
i=1 hiB̃i + B4. These answers can be written in

TABLE I
CHOICE OF COEFFICIENTS UNDER DIFFERENT θ

θ (1, 1) (1, 2) (2, 1) (2, 2)
˜A1
˜A2
˜A3
˜A4

u1 �= g1
u2 = g2
u3 = g3
u4 = g4

u1 = g1
u2 = g2
u3 = g3
u4 �= g4

u1 = g1
u2 �= g2
u3 = g3
u4 = g4

u1 = g1
u2 = g2
u3 �= g3
u4 = g4

˜B1
˜B2
˜B3
˜B4

v1 = h1

v2 = h2

v3 �= h3

v4 = h4

v1 = h1

v2 �= h2

v3 = h3

v4 = h4

v1 = h1

v2 = h2

v3 = h3

v4 �= h4

v1 �= h1

v2 = h2

v3 = h3

v4 = h4

a matrix form as⎡⎢⎣A
[θ]
1

A
[θ]
2,1

A
[θ]
2,2

⎤⎥⎦ =

⎡⎣u1 u2 u3 u4 1 v1 v2 v3 v4 1
g1 g2 g3 g4 1 0 0 0 0 0
0 0 0 0 0 h1 h2 h3 h4 1

⎤⎦
⎡⎢⎢⎣
ÃT

(1:4)

A4

B̃T
(1:4)

B4

⎤⎥⎥⎦. (12)

The binary coefficients ui, vi, gi, hi, ∀i need to be chosen
depending on θ. Recall that Ã(1:4)

Δ
= (Ã1, · · · , Ã4). The query

structure of (12) is fixed regardless of θ, i.e., the coefficients ui

and vi always correspond to the MDS-encoded bits Ãi and B̃i

respectively, ∀i ∈ [4]. This fixed query structure is necessary
to achieve privacy as will be shown later. Since three bits are
downloaded, the achieved load is R = 3/4.

Suppose θ = (1, 2). To illustrate the query design, without
loss of generality, let us assume p1 = p2 = (1, 2, 3, 4). A spe-
cific mapping can then be established in (9) and the user cache
becomes Z1 = {Ã2, Ã3, B̃2, B̃3}, Z2 = {Ã3, Ã4, B̃3, B̃4}.
The query coefficients are chosen as follows: Let u1 =
g1, u2 = g2, u3 = g3, v1 = h1, v3 = h3, v4 = h4 be chosen
randomly and independently from {0, 1}. Also let (u4, g4) and
(v2, h2) be chosen as two independent random permutations
of (0, 1). With such a choice, we show that the users can
correctly recover their desired files while maintaining server
and user-to-user privacy at the same time.

Decodability. Let us look at user 1. First, by subtracting
A

[θ]
2,1 and A

[θ]
2,2 from A

[θ]
1 , both users obtain Ã4 + B̃2 (i.e.,

A{2} + B{1} from the server’s view). Since B̃2 ∈ Z1, user
1 can decode Ã4. Now user 1 has Ã2, Ã3, Ã4, from which
A1, A2, A3 can be recovered due to the MDS property. Ã1

can also be decoded by repeating the MDS encoding (8) one
more time. Moreover, removing all Ãi, i ∈ [4] from A

[θ]
2,1, user

1 decodes A4. Hence, user 1 correctly decodes all the 4 bits
of file A. Similarly, user 2 can decode B̃2 from Ã4 + B̃2

since Ã4 ∈ Z2. With B̃2, B̃3, B̃4, it can recover B1, B2, B3

and B̃1. By removing all B̃i, i ∈ [4] from A
[θ]
2,2, user 2 obtains

B4. Therefore, both users can recover their desired files. For
other user demands, the choice of coefficients are listed in
Table I.4 The general rule to choose the query coefficients
under arbitrary permutations p1 and p2 is that a specific
summation of two MDS-encoded bits can be recovered by

4For the two coefficients corresponding to the same MDS-encoded bit in
(12), if they are equal, the value is chosen randomly from {0, 1}; if they are
not equal, they are chosen as a random permutation of (0, 1).

Authorized licensed use limited to: University of North Texas. Downloaded on April 24,2024 at 10:26:37 UTC from IEEE Xplore. Restrictions apply.

subtracting A
[θ]
2,1+A

[θ]
2,2 from A

[θ]
1 . In particular, the recovered

summation should be A{2}+B{1} for θ = (1, 2), A∅+B{1,2}
for θ = (1, 1), A{1} + B{2} for θ = (2, 1) and A{1,2} + B∅
for θ = (2, 2).

Server privacy. Because each server does not know the
query sent to the other server, it does not know which coeffi-
cients are aligned (i.e., being equal) among the two servers
and which are not. For whichever alignment pattern, the
coefficients {ui, vi, ∀i} appear to be randomly i.i.d. over {0, 1}
from the view of server 1, regardless of θ. Therefore, server
1 cannot determine θ. Similarly, server 2 cannot determine θ
either.

User-to-user privacy. We show that the above scheme is
private from user 1’s perspective, i.e., user 1 cannot determine
θ2 by observing the queries/answers. Due to the unawareness
of the random permutations generated by the servers, user 1
cannot distinguish between the two stored subfiles Ãp1,2

(i.e.,
A{1} from server view) and Ãp1,3 (A{1,2}), and between the
two unstored subfiles Ãp1,1 (A∅) and Ãp1,4 (A{2}). For the
case of θ1 = 1, the query coefficients are chosen to recover
A{2} + B{1} if θ2 = 2, and A∅ + B{1,2} if θ2 = 1 (See
Table I). Intuitively, user 1 cannot distinguish A{2} + B{1}
from A∅ +B{1,2} as it cannot distinguish A{2} from A∅, and
B{1} from B{1,2}. Therefore, user 1 cannot tell if the query
is generated for θ = (1, 2) or (1, 1), implying its ignorance of
θ2. For θ1 = 2, the summation to be recovered is A{1}+B{2}
if θ2 = 1, and A{1,2} + B∅ if θ2 = 2. Again, since user
1 cannot distinguish A{1} from A{1,2}, and B{2} from B∅, it
cannot distinguish between A{1}+B{2} and A{1,2}+B∅. This
implies that user 1 cannot determine if the demand vector is
(2, 1) or (2, 2). As a result, the above scheme is private from
user 1’s view. It can be verified that the scheme is also private
from user 2’s view. ♦

Remark 3: On a higher level, server privacy in Example 1 is
achievable due to each server’s unawareness of the alignment
pattern of the query coefficients between the two servers,
which is the key ingredient for PIR to achieve privacy. User-
to-user privacy is achievable due to each user’s unawareness
of the random permutations pi’s applied to different files.
In particular, the unawareness of the mapping (9) from the
MDS-encoded bits to the subfiles means that each user does
not know what the cached contents of remaining users are.
From any user’s view, each different cache realization of the
remaining users can possibly correspond to a different sets
of demands. Therefore, that user is unable to infer other
users’ demands. This is a technique used in private coded
caching [21] to achieve inter-user privacy. Here, we provide
an optimal way to combine the existing techniques to achieve
server and user-to-user privacy simultaneously.

B. General Scheme

In this section, we present the scheme to achieve (M+, R+)
in Theorem 1 for two files and an arbitrary number of users
and servers. The proposed scheme leverages MDS encoding
and is formally described as follows.

Let W1,W2 be the two files each consisting of L =
(2Ku−1+1)(N−1)+1 symbols over some finite field Fq . For
ease of notation, let U Δ

= 2Ku−1 + 1. Wk is split into U + 1
smaller pieces, i.e., Wk = (Wk,1, · · · ,Wk,U ,Wk,U+1), k ∈
{1, 2}. Each of the first U pieces contains N − 1 symbols,
i.e., Wk,i

Δ
= (Wk,i(1), · · · ,Wk,i(N − 1)), ∀i ∈ [U] for which

Wk,i(j) ∈ Fq, ∀j. The last piece Wk,U+1 contains only one
symbol. We first prepare the files through MDS encoding.

File preparation: An MDS encoding is applied to the first
U pieces of each file:(

W̃k,1, · · · , W̃k,2Ku

)T
= M(Wk,1, · · · ,Wk,U)

T (13)

where M is a (2Ku , U)-MDS generator matrix whose elements
are chosen from some finite field5. Each MDS-encoded piece
W̃k,i, i ∈ [2Ku] contains N−1 symbols from Fq . Note that the
last piece Wk,U+1 is not encoded. After the MDS encoding,
the servers generate an independent random permutation pk

Δ
=

(pk,1, · · · , pk,2Ku) of (1 : 2Ku) for each file Wk, ∀k. These
permutations are kept secret from the users but known by all
servers and the trusted server. The MDS-encoded pieces are
then assigned to the subfiles {Wk,S ,S ⊆ [Ku]} according to

Wk,S = W̃k,pk,ϕKu
(S)

, ∀S ⊆ [
2Ku

]
. (14)

Recall that ϕKu
(S) denotes the index of the subset S in the

power set of [Ku] arranged in a lexicographic order.
1) Cache placement phase: Each user u stores all subfiles

Wk,S if u ∈ S , i.e., Zu = {Wk,S , ∀S s.t. u ∈ S, k ∈ {1, 2}}.
Hence, the memory size is M = 2

∑Ku−1
i=0

(
Ku−1

i

)
(N −

1)/L = 2Ku(N − 1)/(U(N − 1) + 1). Note that each user
stores 2Ku−1 MDS-encoded pieces of each file, but does not
know which of them are assigned to which subfiles due to its
unawareness of the server-generated random permutations.

2) Private delivery phase: The answers of the servers
are linear combinations of the file pieces as given by (15).
un
i ,v

n
i , gi,hi ∈ {0, 1}1×(N−1) represent the binary co-

efficient vectors. Each server n’s answer has one symbol
A

[θ]
n =

∑2Ku

i=1

(
un
i W̃

T
1,i+vn

i W̃
T
2,i

)
+W1,U+1+W2,U+1, ∀n ∈

[N − 1] and server N ’s answer has two symbols: A
[θ]
N =

(A
[θ]
N,1, A

[θ]
N,2) where A

[θ]
N,1 =

∑2Ku

i=1 giW̃
T
1,i + W1,U+1 and

A
[θ]
N,2 =

∑2Ku

i=1 hiW̃
T
2,i + W2,U+1. Since a total of N + 1

linear combinations (each containing one symbol over Fq) are
downloaded, the achieved load is R = (N+1)/(U(N−1)+1).

Suppose θ = (θ1, · · · , θKu). Denote Dk as the set of users
which request file Wk, i.e., Dk

Δ
= {u ∈ [Ku] : θu = k}, k ∈

{1, 2}. Denote

Yn
Δ
=

[
In
0

]
∈ F

(n+1)×n
2 (16)

as a binary matrix consisting of the n× n identify matrix In
and an extra row of zeros. Let Yn denote a set containing all
the n+1 rows of Yn. Let ik

Δ
= ϕKu

([Ku]\Dk), k = 1, 2, i.e.,

5The existence of M is guaranteed if the field size is large enough.

Authorized licensed use limited to: University of North Texas. Downloaded on April 24,2024 at 10:26:37 UTC from IEEE Xplore. Restrictions apply.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[θ]
1

A
[θ]
2
...

A
[θ]
N−1

A
[θ]
N,1

A
[θ]
N,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1
1 u1

2 · · · u1
2Ku 1 v1

1 v1
2 · · · v1

2Ku 1
u2
1 u2

2 · · · u2
2Ku 1 v2

1 v2
2 · · · v2

2Ku 1
...

...
...

...
...

...
...

...
uN−1
1 uN−1

2 · · · uN−1
2Ku

1 vN−1
1 vN−1

2 · · · vN−1
2Ku

1
g1 g2 · · · g2Ku 1 0 0 · · · 0 0
0 0 · · · 0 0 h1 h2 · · · h2Ku 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

(N+1)×L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̃T
1,1
...

W̃T
1,2Ku

W1,U+1

W̃T
2,1
...

W̃T
2,2Ku

W2,U+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

ik denotes the lexicographic index of the subset [Ku]\Dk of
[Ku]. The query coefficients are chosen as follows: Let⎡⎢⎢⎢⎣

u1
i1...

uN−1
i1
gi1

⎤⎥⎥⎥⎦,
⎡⎢⎢⎢⎣

v1
i2...

vN−1
i2
hi2

⎤⎥⎥⎥⎦ (17)

be chosen independently as two random row permutations
of YN−1. Also let gi = un

i , ∀n ∈ [N − 1], ∀i �= i1 and
hi = vn

i , ∀n ∈ [N − 1], ∀i �= i2 be chosen randomly and
independently from YN−1. The purpose of such a choice of
the query coefficients is to recover a linear combination of
W̃1,i1 and W̃2,i2 from which each user in D1 can decode
W̃1,i1 while each user in D2 can decode W̃2,i2 . Then with
the aid of the cache, the users can recover their desired files
which is proved as follows.

Decodability. First of all, each user can obtain N−1 linear
equations by subtracting A

[θ]
N,1 + A

[θ]
N,2 from each A

[θ]
n , n ∈

[N − 1], which are

A[θ]
n − (

A
[θ]
N,1 +A

[θ]
N,2

)
=(

un
i1 − gi1

)
W̃T

1,i1 +
(
vn
i2 − hi2

)
W̃T

2,i2 , ∀n ∈ [N − 1]. (18)

Note that W1,[Ku]\D1
= W̃1,i1 , W2,[Ku]\D2

= W̃2,i2 . Now let
us look at user 1. Suppose θ1 = 1. Because W̃2,i2 has been
stored by user 1 as 1 ∈ [Ku]\D2, user 1 can further obtain
N − 1 linear combinations of W̃1,i1 which are⎡⎢⎣ y1 − x1

...
yN−1 − xN−1

⎤⎥⎦ =

⎡⎢⎣ u1
i1
− gi1
...

uN−1
i1

− gi1

⎤⎥⎦W̃T
1,i1 (19)

where xn
Δ
= (vn

i2
−hi2)W̃

T
2,i2

, yn
Δ
= A

[θ]
n −(A

[θ]
N,1+A

[θ]
N,2), n ∈

[N − 1]. Due to the special choice of the coefficients in (17),
it can be easily verified that the coefficient matrix on the RHS
of (19) has full rank. Hence, user 1 can decode W̃1,i1 by
matrix inversion. Together with the 2Ku−1 stored subfiles, user
1 now has U = 2Ku−1+1 MDS-encoded pieces of W1, from
which the U original uncoded file pieces {W1,i, i ∈ [U]}
can be recovered due to the MDS property. Moreover, user 1
can obtain all the MDS-encoded pieces {W̃1,i, i ∈ [2Ku]} by
repeating the encoding process of (13). Finally, the last symbol
W1,U+1 can be decoded by removing the interference of the

MDS-encoded pieces from A
[θ]
N,1. As a result, user 1 correctly

recovers W1.

In fact, for any user k, it is either in [Ku]\D1 or [Ku]\D2.
This means one of W̃1,i1 and W̃2,i2 is stored (but not
requested) by user k while the other is not stored but requested
by user k. Therefore, user k can obtain N − 1 linearly inde-
pendent equations of the desired MDS-encoded piece W̃θk,iθk

according to (18) from which W̃θk,iθk
(i.e., Wθk,[Ku]\Dθk

) can
be decoded. Together with the 2Ku−1 stored subfiles, user k
can recover the first U uncoded pieces {Wθk,i, i ∈ [U]} of
Wθk . User k can then construct all the MDS-encoded pieces
{W̃θk,i, i ∈ [2Ku]} by repeating (13). Finally, the last piece
Wθk,U+1 can be decoded by removing the interference of the
MDS-encoded pieces from A

[θ]
N,θk

. As a result, we have proved
that all users can correctly recover their desired files.

Server privacy. Server privacy is rather straightforward.
Since each server only sees a subset of the coefficient vectors
corresponding to each MDS-encoded piece, it is not sure if
the coefficients are aligned or not across the servers. Because
different choices of the coefficients correspond to different
user demands, each server is unable to determine what θ is.
Therefore, server privacy is satisfied.

User privacy. Let us focus on user 1. User privacy means
that, given any θ1 ∈ {1, 2}, user 1 cannot determine what
(θ2, · · · , θKu

) is. Suppose θ1 = 1. Note that the query
coefficients are fully observable by the users, so user 1 knows
if the coefficient vectors corresponding to each MDS-encoded
file piece are aligned across the servers or not. In particular,
there is always one MDS-encoded piece of each file (W̃1,i1 of
file W1 and W̃2,i2 of file W2) whose coefficient vectors are not
aligned according to (17). Since 1 /∈ [Ku]\D1, 1 ∈ [Ku]\D2,
we know that W̃2,i2 (i.e., W2,[Ku]\D2

) is stored by user 1 while
W̃1,i1 (i.e., W1,[Ku]\D1

) is not stored by user 1 for whatever
(θ2, · · · , θKu

) ∈ {1, 2}1×(Ku−1). Note that D1,D2 and i1, i2
are different for different (θ2, · · · , θKu). Intuitively, if user 1
cannot distinguish among the pieces {W̃1,i1 , ∀(θ2, · · · , θKu)}
and among the pieces {W̃2,i2 , ∀(θ2, · · · , θKu)}, it will not be
able to tell what (θ2, · · · , θKu) is. This is actually achieved
by the secret random mapping of the MDS-encoded pieces to
the subfiles in (14). More specifically, the random mapping
ensures that each user cannot distinguish among the set of
the stored MDS-encoded pieces and among the set of the

Authorized licensed use limited to: University of North Texas. Downloaded on April 24,2024 at 10:26:37 UTC from IEEE Xplore. Restrictions apply.

unstored MDS-encoded pieces of each file. As a result, user 1
cannot distinguish among {(W̃1,i1 , W̃2,i2), ∀(θ2, · · · , θKu

)}.
Therefore, user 1 cannot determine the demands of other users.
For θ1 = 2, it can be proved that the delivery scheme is private
from user 1’s view in a similar way. Due to symmetry, the
above scheme is also private from any other user’s perspective.

V. CONCLUSION

In this work, we introduced cache-aided multiuser PIR
with user privacy (MuPIR-U), a new problem formulation
that incorporates user-to-user privacy into conventional cache-
aided multiuser PIR systems. A novel scheme was proposed
for the case of two files with an arbitrary number of users and
servers. The proposed scheme was shown to achieve optimal
load in the large memory regime. Finding the optimal memory-
load trade-off of MuPIR-U for an arbitrary number of files,
users and servers can be challenging, which is left as future
work.

ACKNOWLEDGMENT

The work of X. Zhang and M. Ji was supported through
NSF CAREER Award 2145835 and NSF grant 2312227.
The work of K. Wan was partially funded by the National
Natural Science Foundation of China (NSFC-12141107). The
work of H. Sun was supported in part by NSF under Grant
CCF-2007108, Grant CCF-2045656 and Grant CCF-2312228.
The work of G. Caire was partially funded by the European
Research Council under the ERC Advanced Grant N. 789190,
CARENET.

REFERENCES

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in Proceedings of IEEE 36th Annual Foundations of
Computer Science. IEEE, 1995, pp. 41–50.

[2] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–
4088, 2017.

[3] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Transactions on Information
Theory, vol. 64, no. 4, pp. 2361–2370, 2018.

[4] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1945–1956, 2018.

[5] M. A. Attia, D. Kumar, and R. Tandon, “The capacity of private
information retrieval from uncoded storage constrained databases,” arXiv
preprint arXiv:1805.04104, 2018.

[6] N. Woolsey, R.-R. Chen, and M. Ji, “An optimal iterative placement
algorithm for pir from heterogeneous storage-constrained databases,”
arXiv preprint arXiv:1904.02131, 2019.

[7] H. Sun and S. A. Jafar, “The capacity of symmetric private information
retrieval,” IEEE Transactions on Information Theory, vol. 65, no. 1, pp.
322–329, Jan 2019.

[8] K. Banawan and S. Ulukus, “Multi-message private information re-
trieval: Capacity results and near-optimal schemes,” IEEE Transactions
on Information Theory, vol. 64, no. 10, pp. 6842–6862, Oct 2018.

[9] R. Tandon, “The capacity of cache aided private information retrieval,”
in 2017 55th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). IEEE, 2017, pp. 1078–1082.

[10] Y.-P. Wei, K. Banawan, and S. Ulukus, “Fundamental limits of cache-
aided private information retrieval with unknown and uncoded prefetch-
ing,” IEEE Transactions on Information Theory, vol. 65, no. 5, pp. 3215–
3232, 2018.

[11] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson,
“Private information retrieval with side information,” IEEE Transactions
on Information Theory, vol. 66, no. 4, pp. 2032–2043, 2020.

[12] Y. Wei, K. Banawan, and S. Ulukus, “Private information retrieval
with partially known private side information,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS), March 2018,
pp. 1–6.

[13] A. Heidarzadeh, S. Kadhe, S. El Rouayheb, and A. Sprintson, “Single-
server multi-message individually-private information retrieval with side
information,” in 2019 IEEE International Symposium on Information
Theory (ISIT), 2019, pp. 1042–1046.

[14] A. Heidarzadeh, B. Garcia, S. Kadhe, S. E. Rouayheb, and A. Sprintson,
“On the capacity of single-server multi-message private information re-
trieval with side information,” in 2018 56th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2018, pp. 180–
187.

[15] A. Heidarzadeh, F. Kazemi, and A. Sprintson, “Capacity of single-server
single-message private information retrieval with private coded side
information,” in 2019 IEEE International Symposium on Information
Theory (ISIT), 2019, pp. 1662–1666.

[16] F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, “Single-
server single-message online private information retrieval with side
information,” in 2019 IEEE International Symposium on Information
Theory (ISIT), 2019, pp. 350–354.

[17] A. Heidarzadeh, F. Kazemi, and A. Sprintson, “The role of coded
side information in single-server private information retrieval,” IEEE
Transactions on Information Theory, vol. 67, no. 1, pp. 25–44, 2021.

[18] X. Zhang, K. Wan, H. Sun, M. Ji, and G. Caire, “On the fundamental
limits of cache-aided multiuser private information retrieval,” IEEE
Transactions on Communications, vol. 69, no. 9, pp. 5828–5842, 2021.

[19] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Information Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856–
2867, 2014.

[20] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” Networking, IEEE/ACM Transactions on, vol. 23, no. 4, pp.
1029–1040, Aug 2015.

[21] K. Wan and G. Caire, “On coded caching with private demands,” IEEE
Transactions on Information Theory, vol. 67, no. 1, pp. 358–372, 2020.

[22] C. Gurjarpadhye, J. Ravi, S. Kamath, B. K. Dey, and N. Karamchandani,
“Fundamental limits of demand-private coded caching,” IEEE Transac-
tions on Information Theory, 2022.

[23] V. R. Aravind, P. Sarvepalli, and A. Thangaraj, “Subpacketization in
coded caching with demand privacy,” arXiv preprint arXiv:1909.10471,
2019.

Authorized licensed use limited to: University of North Texas. Downloaded on April 24,2024 at 10:26:37 UTC from IEEE Xplore. Restrictions apply.

