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Abstract— Throughput is a main performance objective in
communication networks. This paper considers a fundamental
maximum throughput routing problem — the All-or-Nothing
Multicommodity Flow (ANF) problem — in arbitrary directed
graphs and in the practically relevant but challenging setting
where demands can be (much) larger than the edge capacities,
mandating the need for splittable flows (i.e., flows may not
follow a single path). Formally, the input for the ANF problem
is an edge-capacitated directed graph where we have a given
number of source-destination node-pairs with their respective
demands and strictly positive weights. The goal is to route a
maximum weight subset of the given pairs (i.e., the weighted
throughput), respecting the edge capacities: A commodity is
routed if all of its demand is routed from its respective source
to destination (this is the all-or-nothing aspect). We present a
polynomial-time bi-criteria approximation randomized rounding
framework for this NP-hard problem that yields an arbitrarily
good approximation on the weighted throughput while violating the
edge capacity constraints by at most a sublogarithmic multiplicative
factor. We present two non-trivial linear programming relax-
ations that can be used in the framework; the first uses a novel
edge-flow formulation and the second uses a packing formulation.
We demonstrate the “equivalence” of these formulations and
then highlight the advantages of each of the two approaches.
We complement our theoretical results with a proof of concept
empirical evaluation, considering a variety of network scenarios.

Index Terms— Multicommodity flows, randomized and

approximation algorithms, network optimization.

I. INTRODUCTION
HE study of routing and multicommodity flow problems
is motivated by many real-world applications, such as
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in the optimization of communication and traffic networks,
as well as by the crucial role flows and cuts play in com-
binatorial optimization [11]. In this paper, we are interested
in throughput optimization in the context of communica-
tion networks serving multiple commodities. Throughput is a
most fundamental performance metric in many networks [27],
and we are particularly interested in the practically relevant
scenario where flows have certain minimal performance or
quality-of-service requirements, in the sense that they need to
be served in an all-or-nothing manner with respect to their
demands.

Our problem belongs to the family of all-or-nothing (split-
table) multicommodity flow problems. In contrast to most
existing literature, we consider a more realistic model in the
following respects:

o The underlying communication graph can be directed.
This is motivated by the fact that in most practical com-
munication networks (e.g., optical networks or wireless
networks), the available capacities in the different link
directions can differ.

o A single commodity demand can be larger than the capac-
ity of any single link or path. Consider for example a bulk
transfer, or the fact that traffic patterns are often highly
skewed, with a small number of elephant flows consum-
ing a significant amount of bandwidth resources [34].
Only splittable flows can serve such demands.

o The total demand can be larger than the network capacity.
To make efficient use of the given network resources,
we hence need a clever admission control mechanism,
in addition to a routing algorithm.

We define the All-or-Nothing (Splittable) Multicommodity
Flow (ANF) problem as follows: It takes as input a flow
network modeled as a capacitated directed graph G(V, E),
where V' is the set of nodes, E is the set of edges, and each
edge e has a capacity c. > 0; we are also given a set of
source-destination pairs (s;,t;), where s;,t; € V, i € [k],!
each with a demand d; > 0 and weight w; > 0. Let n = |V|
and m = |E|. The edge capacities c., the demands d; and the
weights w; can be arbitrary positive functions on n and k, for
any e € F and i € [k]. A valid set of flows for commodities
1,...,k in G (i.e., a valid multicommodity flow), must satisfy
standard flow conservation constraints for each commodity :—
which imply that the amount of flow for commodity ¢ entering
a node v has to be equal to the flow for commodity 7 leaving
v, if v # s;,t;—and also that the load of any edge e, given
by the sum of the flows for all commodities on e, must not
exceed the edge’s capacity c.. Commodity ¢ is satisfied if d;
units of flow of this commodity are successfully routed from
s; to t; in the network. These constraints are reflected in our
mixed integer program edge-flow formulation in Figure 1.

ILet [z] denote the set {1,...,z}, for any positive integer z.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

. . o See htg)s://WWW.ieé;e.or}%/publications/ri§hts/index.html for more information. o
Authorized licensed use limited to: Arizona State University. Downloaded on July 22,2024 at 02:09:55 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-4071-0467
https://orcid.org/0000-0003-3035-1699
https://orcid.org/0000-0002-2321-2669
https://orcid.org/0000-0003-3592-3756
https://orcid.org/0000-0002-2380-0284
https://orcid.org/0000-0002-7798-1711
https://orcid.org/0000-0002-9573-1783

1436

k
maxZwifi (D
i=1
D fitsew) = fi 1<i<k ()
(si,v)eE
S hwm = Y Sy 1SSk eV (s} 3)
(u,v)eE (v,u)€E

k
d; Zfi,(u,v) < C(u,y) (u,v) € E (4)
i=1

di* fi,(uv) < Cuy) " fi 1<i<k,(u,v)€E (5
Ji.uy) 20 1<i<k,(u,v)eE (6)
fi €{0,1} l<i<k (7)
Fig. 1. Compact Edge-Flow ANF Formulation; its LP relaxation is obtained
simply by relaxing the variables f; to be drawn from the unit interval [0, 1].

We aim to maximize the total profit of a subset of
commodities that can be concurrently satisfied in a valid
multicommodity flow. Specifically, the goal is to find a subset
K’ C [k] of commodities to be concurrently satisfied such that
the (weighted) throughput, given by 3., w;, is maximized
over all possible K'. The flow can be splir arbitrarily along
many branching routes (subject to flow conservation and edge
capacity constraints) and needs not to be necessarily integral.

The ANF problem was introduced in [14] as a relaxation of
the classical Maximum Edge-Disjoint Paths problem (MEDP)
and is known to be NP-Hard and APX-hard even in the
restricted setting of unit demands and when the underlying
graph is a tree [14], [21]. In directed grag)hs, the problem
is hard to approximate to within an n(1/¢) factor, even
when restricted to unit demands and when edge capacities
are allowed to be violated by a factor ¢ [15]. When demands
can exceed the minimum capacity, strong lower bounds exist
in even more restricted settings [35].

Given the hardness of approximating the ANF problem
the literature has followed a bi-criteria optimization approach
where edge capacities can be violated slightly. Moreover,
augmentation, in the context of network resource availability,
is often relevant in practice, especially in virtualized and cloud
environments. Distributed systems are increasingly virtualized,
and users typically rent or buy a certain share of the physical
resources. Accordingly, extra resources can be bought when
needed [2], [20], [36]. In addition, we can view augmentation
analysis as some kind of sensitivity analysis: if with a little
augmentation of the edge capacities, we are as good as an
optimal algorithm, it means that the algorithm is robust and
intuitively provides good approximations.

In this paper, we seek an («, 3)-approximation algorithm:
For parameters « € (0, 1] and 8 > 1, we seek a polynomial-
time algorithm that outputs a solution to the ANF problem
whose throughput is at least an « fraction of the maximum
throughput and whose load on any edge e is at most 3 times
the edge capacity c,., with high probability.” The parameter 3
hence provides an upper bound on the edge capacity violation
ratio (or congestion) incurred by the algorithm.

A. Our Contributions

This paper revisits a fundamental maximum throughput
routing problem, the all-or-nothing multicommodity flow
(ANF) problem, considering a more general and practical set-
ting where the network topology can be an arbitrary directed
graph, with arbitrary, non-uniform commodity demands that

2With probability at least 1 — 1/n°, where ¢ > 0 is a constant.
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can be much larger than the edge capacities, in contrast to most
of the existing work in the literature. This model is challenging
as it not only requires a clever algorithm to efficiently route
the splittable commodities across the directed and capacitated
network, but also an admission control policy.

We make several contributions. On the theoretical side,
we present a bi-criteria approximation randomized round-
ing framework for this NP-hard problem that achieves an
arbitrarily good approximation of the throughput while only
violating the edge capacities by a sublogarithmic factor. More
specifically,

e We present two non-trivial ANF linear programming
relaxations: One is a strengthened relaxation of a com-
pact edge-flow mixed integer program (MIP) formulation
that allows for easy solving via standard LP solvers, while
the other is an exponential-size formulation (solvable in
polynomial time using a separation oracle) that considers
a “packing” view and allows for simpler proofs and a
more flexible approach. We prove the non-trivial equiva-
lence of the two relaxations and highlight the advantages
of each of the two approaches.

o Via these relaxations, we obtain a polynomial-time ran-
domized rounding algorithm that yields an (1 — ¢)
throughput approximation, for any 1/m < e < 1,
with an edge capacity violation ratio (or congestion) of
O(min{k,logn/loglogn}), with high probability.

o We also present a deterministic rounding algorithm by
derandomization, using the method of pessimistic esti-
mators. Contrary to most algorithms obtained this way,
our derandomized algorithm is simple enough to be also
of relevance in practice.

In addition, our packing framework for ANF has interesting
networking applications, beyond the specific model consid-
ered in this paper. We discuss different examples, related to
unsplittable flows, flows that are split into a small number of
paths, routing along disjoint paths for fault-tolerance, using
few edges for the flow, or routing flow along short paths.

As a proof of concept, we show how to engineer our
algorithms for practical scenarios. To this end, we couple
three algorithms that allow one to compute the relaxed LP
solutions efficiently, in terms of time and space, with both our
randomized and derandomized algorithms. The first algorithm
directly solves the compact ANF formulation using an off-
the-shelf solver, in our case CPLEX; the second algorithm
approximately solves the packing LP relaxation via a well-
known multiplicative weight update (MWU) approach, based
on Lagrangean relaxation; the last and third algorithm is
a faster MWU-based heuristic called permutation routing.
We provide general guidelines about the relative efficacy of
these algorithms in specific real-world networks. As a contri-
bution to the research community, to ensure reproducibility
and facilitate follow-up work, our implementation (source
code) and experimental artifacts is available at [9].

B. Novelty and Related Work

We presented preliminary results leading to this jour-
nal article at two conferences, IEEE INFOCOM 2019 [26]
and PERFORMANCE 2021 [10]. In particular, our compact
edge-flow LP formulation first appeared in [26] and led to
(1/3,0(v/klogn))-approximation guarantees for the ANF
problem for the case of uniform demands and weights in
directed graphs (note that while [26] considered the case
of uniform demands, there was also no restriction on how
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large these demands could be). In this article, we significantly
improve and generalize the randomized rounding framework
outlined in [26], in several ways: (a) We are able to achieve
an arbitrarily good throughput approximation bound; (b) our
bound on the edge capacity violation ratio does not depend
on the number of commodities k,® and significantly improves
on the bound of O(v/klogn)in [26]; and (¢) we were able to
accommodate arbitrary non-uniform demands and commodity
weights. In addition, we provide a derandomized algorithm for
the ANF problem and a more flexible packing MIP formu-
lation for the ANF problem that leads to several interesting
extensions of practical interest. Some of these ideas were
sketched in our previous short paper [10], however, without
any technical details, proofs or evaluations.

Other work on bicriteria («, 3)-approximation schemes for
the ANF problem that are closely related to ours aim at
keeping (3 constant, while letting o be a function of n. The
work of Chekuri et al. [13], [14] is the most relevant and
was also the first to formalize the ANF problem. Their work
implies an approximation algorithm for the general (weighted,
non-uniform demands) ANF problem in undirected graphs
with o = Q(1/log®k) and 8 = 1. A requirement of their
algorithm is that max; d; < min, c.. This is a strong assump-
tion, since it eliminates all (undirected) networks G where the
above assumption fails, such as for example complete graphs
with unit edge capacities and demands 2 < d; < n — 1,
for all i. Hence, besides the fact that our approximation
guarantees differ from those of [14] (we have an arbitrarily
good throughput approximation for any 0 < o < 1—1/m and
logarithmic (3, while they achieve constant (3 at the expense of
a polylogarithmic 1/«), our results also apply to any directed
graph G, without any assumptions on how d; compares to
individual edge capacities. We note that even in undirected
graphs and unit demands, the ANF problem does not admit
a constant factor approximation if only constant congestion is
allowed [4]. Thus, obtaining a good throughput approximation
even in restricted settings requires w(1) congestion violation.

The ANF problem gets considerably more challenging in
directed graphs. Chuzhoy et al. [15] show that, even if
restricted to unit demands, the throughput is hard to approx-
imate to within polynomial factors in directed graphs when
constant congestion is allowed. In [11], Chekuri and Ene
consider a variation of the ANF problem — the Symmetric
All or Nothing Flow (SymANF) problem — in directed graphs
with symmetric unit demand pairs and unit edge capaci-
ties, also aiming at constant 3 and polylogarithmic 1/a.
In SymANF, the input pairs are unordered and a pair s;,1;
is routed if and only if both the ordered pairs (s;,t;) and
(ti,s;) are routed; the goal is to find a maximum subset
of the given demand pairs that can be routed. The authors
provide a poly-logarithmic throughput approximation with
constant congestion for SymANF, by extending the well-linked
decomposition framework of [13] to the directed graph setting
with symmetric demand pairs. However, their approach, like
the one for undirected graphs is limited to the setting where
max; d; < min,c.. As explained above, our work considers
a more general network setting where demand pairs need not
be symmetric and demands values can exceed the capacities.
Further, our goal is to obtain an arbitrarily good approximation

3Unless k is very small, o(logn/loglogn), in which case we get an
approximation bound of k.

1437

of the throughput while relaxing the capacity violation which
is a different regime.

The Maximum Edge-Disjoint Paths (MEDP) [19] problem
considers a set of pairs of nodes to be routable if they can
be connected using edge-disjoint paths and aims at finding
the largest number of routable pairs. The Unsplittable Flow
Problem (UFP) is a generalization of MEDP to non-uniform
demands while requiring that all flow for a pair is routed
along a single path. MEDP and UFP are classical routing
problems and have been extensively studied in VLSI routing
where the constraint of using a single path for connecting
pairs is particularly important. MEDP and UFP tend to be
harder to approximate than ANF. For instance, even for unit
demands and undirected graphs, MEDP is hard to approximate
to almost a polynomial factor [16], and in directed graphs the
problem is hard to approximate to within an Q(ml/ 2=¢)factor
[23]. MEDP and UFP have been mostly considered under the
no-bottleneck assumption, that is, when max; d; < min, ce.
Without this assumption, UFP becomes hard to approximate to
within an m!/2~¢ factor even in very restricted settings [35].

Finally, our work leverages randomized rounding techniques
presented by Rost et al. [32], [33] in the different context of
virtual network embedding problems (i.e., when flow end-
points are subject to optimization).

C. Organization

The remainder of the paper is organized as follows.
We introduce our ANF compact edge-flow and packing MIP
formulations in Section II. We then present our approxima-
tion guarantees based on a randomized rounding approach
for the packing MIP in Section IIl. Section IV presents
the randomized rounding algorithm based on the compact
LP and its derandomization, while Section V describes the
MWU algorithm. We discuss more general applications of our
packing framework in Section VI. We report on simulation
results in Section VII, and conclude in Section VIIIL.

II. MIXED INTEGER PROGRAMMING FORMULATIONS

In this section, we present two non-trivial mixed integer
programming (MIP) formulations for the ANF problem, one
based on a compact edge-flow formulation and one based on
a flow packing formulation. We then show that their linear
programming (LP) relaxations are equivalent in the sense that
if one formulation has a feasible flow routing with throughput
z, so does the other formulation. This allows us to use either
formulation, as convenient, to present, prove, and empirically
evaluate the approximation guarantees of our randomized
rounding approach for the ANF problem.

Recall that the input is a directed graph G = (V, E), with
n = |V| and m = |E|, edge capacities ¢ : E — Z4 and k
demand pairs (or commodities) (s;,t;), @ € [k], each with a
non-negative weight w; and a non-negative integer demand d;.
We say that f : E — R, is a valid flow for pair ¢ if f routes
d; units from s; to t; in G and respects the edge capacities.
Note that if pair ¢ cannot be routed in isolation in G, then we
may as well discard it (since there are no valid flows for ¢; this
can be checked in polynomial time for each commodity, via
a max-flow algorithm). Thus, w.l.o.g.* we assume that each
commodity i admits some valid flow in G.

4Without loss of generality.
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A. Compact Edge-Flow Formulation

We present our general compact edge-flow based MIP
formulation for the ANF problem® in Figure 1. We use an
indicator variable f; € {0,1} to indicate whether a commodity
i is successfully routed through G. Next, we denote f; . €
[0,1] as the fraction of flow for commodity ¢ allocated to a
particular edge e € E. The total flow assigned to a fixed edge
e is given by > . d; - fi . and the total weighted throughput
is given by > . w; f;. Constraints (2-4) define the value of the
total flow for each commodity %, enforce flow conservation
for each ¢, and stipulate that no edge capacity is violated by
the flow assignments. Constraint (5) ensures that for a fixed
commodity 7, the ratio of flow assigned to an edge e to the
total flow of that commodity does not exceed the capacity of
e: These constraints are actually redundant for the compact
MIP formulation, but will strengthen the LP relaxation of
the formulation in Figure 1, obtained by allowing each f; to
assume any real value in [0, 1]. In fact, Constraint (5) is crucial
to establishing the equivalence between the LP relaxation of
the compact edge-flow and the ANF packing formulations in
Section II-C.

The compact edge-flow LP relaxation has size polynomial
in n and k and hence can be solved in polynomial time (e.g.,
using the Ellipsoid method). Moreover, given the compact
nature of the LP, one can often use a standard LP solver such
as CPLEX in practice.

B. A Packing Framework for ANF

In this section, we describe a packing view of the ANF
problem that allows for a more flexible approach, as we discuss
below and in Section VI. In this formulation, we will be pack-
ing an entire flow assignment for each commodity ¢, selected
from the set of all possible valid flows between s; and ¢;. This
approach is akin to using the path formulation for flows rather
than the edge-based flow formulation. Such a perspective
allows one to see why the randomized rounding framework
for rounding paths [31] generalizes to rounding flows, and
thus allows us to leverage previous work on rounding paths in
the literature. We prove the approximation guarantees of our
randomized rounding approach in Section III-B.

Let F; denote the set of all valid flows for pair 7. Each
F; is not necessarily a finite set. However, we can restrict
attention to a finite set of flows by considering the polyhedron
of all feasible s;-t; flows in G and considering only the
finitely many vertices of that polyhedron; any valid flow can
be expressed as a convex combination of the flows defined
by the polyhedron’s vertices. Since the number of vertices
(and corresponding flows) of the packing polyhedron can be
exponential, this formulation may have exponential size, but
we show that its LP relaxation can still be solved in polynomial
time via a separation oracle.

We now describe a mixed integer programming formulation
that captures the ANF problem. This formulation is very large:
In general it can be exponential in n,m and k. For each ¢,
we have a binary variable z; to indicate whether commodity
i is routed or not. For each 7 and each valid flow F € F;,
we have a variable yp to indicate the fraction of x; that is
routed using the flow F'. For a flow F' we let F, denote the
amount of flow on e used by F; note that F is fixed, for each
F and e, and hence is not a variable.

3The compact MIP formulation presented here generalizes the one in our
conference version [26] to accommodate arbitrary demands and commodity
weights.
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Fig. 2. (a) Mixed integer programming formulation for ANF based on “flow”
variables; (b) its LP relaxation.

The formulation shown in Figure 2(a) is an exact formu-
lation for the ANF problem. We show this by expanding
upon the constraints and the reasoning behind them. We are
trying to maximize the weighted subset of commodities being
routed where x; corresponds to the variable denoting whether a
commodity is routed or not. Constraint (9) ensures that the sum
of fractional flows of a commodity is equal to x;. Constraint
(10) is to ensure the capacity constraints are satisfied for all
edges. Constraints (11) and (12) are just to clarify that z; can
only be 0 or 1 since it is an all-or-nothing formulation and that
the corresponding yr’s are the fractional flows variables that
actually sum up to be the respective x;. In this formulation,
flow conservation constraints are automatically satisfied, since
each flow F' € F,—or when we scale ' down uniformly
by yr—is in itself a valid flow for commodity ¢. Note that
the LP relaxation in Figure 2(b), has been simplified, for
convenience, by replacing x; by > .. F, YF, thus projecting
out the variables x;.

C. Equivalence of the Two Formulations

Here we prove that the LP relaxation of the packing
formulation (Figure 2(b)) is equivalent to the LP relaxation
of the compact formulation given in Figure 1. By equivalent,
we mean the following: Given a feasible solution to one
LP we can obtain a feasible solution to the other LP of
the same value. One possible way of showing this might be
by establishing that the packing formulation can be obtained
through a Dantzig-Wolfe decomposition [17], [18] of the
compact LP. However, we opted for the simpler proof below.
We prove both directions.

First, consider a feasible solution to the compact formu-
lation. For commodity ¢, let f; € [0, 1] be the total fraction
of d; that is routed from s; to ¢;, and let f;. € [0,1] be
fraction of f; that is assigned to edge e € FE, satisfying
flow conservation and capacity constraints. We first construct
a flow G; : E — R4 of d; units from s; to ¢;: We set
Gi(e) = difie/fi, for all e € E. It is easy to verify that
G; is a flow of d; units from s; to ¢;. Moreover by the
strengthening constraint (Constraint ((5)) in Figure 1, we see
that G;(e) < ¢, for all e and hence G; is a feasible flow in the
capacities. Putting together these facts, G; € F;. We obtain
a feasible solution to the packing formulation as follows. Let

yr be the fraction routed for commodity ¢ in the
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packing solution. For each i we set x; = f; and we set yp = x;
for F = G; and yrr = 0 for every other F’ € F;. In other
words we are using only one flow for each commodity i. The
only non-trivial fact to check is that this solution is feasible.
For this we need to verify that >, yr - F,. < c. but this easily
follows from our definition of F' = (; and Constraint (4) in
Figure 1. Since z; = ZF,eﬂ yrr = f; for all ¢, we see that
the two solutions have the same value.

Second, consider a feasible solution y to the packing for-
mulation in Figure 2(b). Let x; be the fraction of d; routed
for commodity ¢ and for each flow F' € F;, yp is the fraction
routed on F' with > FeF, YF = Ti. We construct a feasible
solution to the compact LP as follows. For each commodity
i we set fi = x;. For each e € F and each i € [k], we set
fie =g ZFGJ__ F, - yp. Note that f; . is simply scaling by
d; the total flow on e from all F' € F;. Since each F' € F; is a
flow of d; units from s; to t; and ZFeﬂ yr = x; we see that
fie» € € E, corresponds to sending a total fraction z; of d;
units of flow from s; to t;. We focus on Constraints (4) and (5)
in Figure 1. We observe that >, d; fi. = >, did% e, Fe
Yr = ZFefi yr - I, and the last term is at most ¢, from
the feasiblity of given solution for the packing formulation.
This proves that Constraint (4) in Figure 1 is satisfied for the
solution we constructed. We observe that for each ' € F; and
each e € E we have F, < ¢, since F' is a feasible flow in
the capacities. Thus F./d; < ¢./d; and since yr > 0 for each
F € F;, we have ZFE}- yr-Fe/d; <c./d; ZFE}- yr which
1mphes that f; .d; < fzce Thus the solution also satisfies 5
in Figure 1. This finishes the proof of the equivalence.

Hence, the proofs and results in Section III that lead to
Theorem 3.5 and Corollary 5.1 also apply to a randomized
rounding approach based on the compact formulation, as we
explain in Section IV.

III. SOLVING THE PACKING LP RELAXATION

In this section, we show how to round a (fractional) solution
to the primal packing ANF LP relaxation to get our (1 —
€, min{k, log n/ loglog n})-approximation guarantees, for any
1/m < e < 1. Given the equivalence of the two ANF LP
formulations, and the fact that the set of feasible solutions
of the compact LP can be viewed as a subset of the feasible
solutions of the packing LP, all the approximation guarantees
in this section also hold if we were to round an optimal
solution of the LP relaxation of the compact formulation, as we
will do in Section IV and in our implementations.

We first show that there exists a polynomial-time algorithm
for directly solving the packing LP, in spite of its exponential
size. This will be useful since it will allow us to use a
multiplicative weight update (MWU) approach for efficiently
approximating the packing LP (Section V), which will in
turn allow us to solve the interesting extensions of the ANF
problem we present in Section VI in practice.

A. Solving the Packing LP in Polynomial Time

It is not at first obvious that the LP relaxation of the
ANF MIP can be solved in polynomial time. There are two
ways to see why this is indeed possible. One would be to
simply solve the equivalent compact (polynomial-size) edge-
flow formulation; another would be to show via the Ellipsoid
method that the dual has an efficient separation oracle. In this
section we focus on the latter, which gives us a more flexible
formulation that can also handle the extensions in Section VI.
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k
min Z Cele + Z Zi
i=1

ecE

zi + Z Fele > w;
ecE

1<i<k,FeF

1<i<k

Fig. 3. Dual of the LP relaxation for ANF.

In Figure 3, we present the dual LP to the formulation in
Figure 2(b). Note that the LP relaxation in Figure 2(b), has
already been simplified, for convenience, by projecting out
the variables ;. There are two types of variables in the dual:
First, for each of the capacity constraints, we associate a dual
variable /. and for each constraint limiting the total flow to
1 we associate a dual variable z;. (Recall that the value F, is
a constant and not a variable.)

The following lemma shows that one can use a
polynomial-time separation oracle for solving the dual LP.

Lemma 3.1: There is a polynomial-time separation oracle
for the dual LP.

Proof: The dual LP is easily seen to reduce to s-
t minimum-cost flow. Given non-negative values for the
variables /.,e € FE and 2;,1 < i < k we compute the
minimum-cost flow for each pair (s;,t;) of d; units with edge
costs given by /.,e € E. Let this cost be g;. The values are
feasible for the dual if and only if z; +¢q; > w; for 1 < i < k.
If there is an ¢ for which z; + ¢; < w; the corresponding
minimum cost flow F' for pair ¢ defines the violated constraint.
The minimum-cost flow problem is solvable in polynomial
time and hence there is a polynomial-time separation oracle
for the dual LP. |

Hence, standard techniques allow one to solve the primal
LP from an optimum solution to the dual LP in polynomial
time. However, since it would be impractical to solve the dual
LP using the Ellipsoid method, we present and implement an
efficient MWU algorithm for solving the ANF packing LP.

B. Rounding the Packing LP Relaxation

In this section, we show how to round a (fractional)
solution of the primal packing ANF LP relaxation to get
our (1 — e, min{k,logn/loglogn})-approximation, for any
1/m < e < 1. We will need the following standard Chernoff
bound [28]:

Theorem 3.2: Let Xi,...,X, be n independent random
variables (not necessarily distributed identically), with each
variable X; taking a value of 0 or v; for some value 0 <
v; < 1. Let X = Z?:l X, be their sum. Then the following
hold:

o For u > E[ﬁX] and 6 > 0, Pr[X > (1 + 0)u] <

(1+56)(1+5)

o For0<pu<E[X]and§ € (0,1), Pr[X < (1 -] <

e—87n/2,

Randomly rounding a feasible solution to the LP relaxation
is straightforward, and is very similar to the standard rounding
via the path formulation for the Maximum Edge Disjoint
Problem (MEDP) pioneered in the work of Raghavan and
Thompson [31]. We consider the support of the solution to
the LP relaxation: For each i, the LP relaxation identifies
some h; flows F; , F; , Fy, € F; along with non-negative

11912y 0
values yr, ... TYF, such that their sum is at most 1. The
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randomized algorithm simply picks for each 7 independently,
at most one of the flows in its support where the probability
of picking Fj, is exactly yr,, . Note that the probability that
one chooses to route pair ¢ 1s exactly Z rer, YF <1

We will analyze the algorithm with respect to the weight of
the LP solution Zle w; Z?le yr, . We refer to this quantity
as Wip. We refer to the value of an optimum solution to the
LP as OPTLp and the value of an optimum integer solution as
OPTIP. We observe that OPTLP Z OPTIP and OPTLP Z WLP-
Note that when solving the formulation in Figure 2(b) or the
compact LP relaxation of the formulation in Figure 1, the LP
solution obtained will be optimal and hence Wip = OPTpp;
however, the solution obtained via the multiplicative-weight
update algorithm of Section V may only approximate OPTyp
and hence one could indeed have OPT p > Wip. We will
also assume that OPTp > wpyax, Since we can discard from
consideration any commodity 7 that cannot be routed alone in
the network, as it will never be part of a feasible solution of
the MIP formulation, and hence wy.x < OPTp < OPTyp.

The following two lemmas bound the throughput approxi-
mation and the edge capacity violation ratio of the algorithm:

Lemma 3.3: Let Z be the (random) weight of the pairs
chosen to be routed by the algorlthm Then E[Z] = Wyip

and Pr[Z < (1 —0)Wpp] <e “T particular, Pr[Z <
(1 — 6)WLP] < 6_62/2.

Proof: Let Y, be the 1nd1cat0r for pair ¢ being chosen to
be routed. We have Z = Z _, w;Y;. The rounding algorithm
implies that Pr[Y; = 1] = > ;.- yr. Hence, by linearity
of expectation, ElZ] =3, w;B[Y;] = Wi per, YF =
Wip. Let Z; = “: Y; and let Z' = )", Z;. Note that Z; <
1land ) . Z; w4 Since Z' is a sum of independent
random varlables each of which is in [0,1], we can apply

the lower-tail Chernoff bound for Z’, and obtain a lower-tail
bound for Z:

Pr[Z < (1 - 6)Wip] = Pr[Z' < (1 — 6)Wip/Wnmax]
= Pr[Z' < (1 - 0)E[Z']] < e (Win/wmas)

O
Lemma 3.4: For m > 9 and b > 1 the probability that
the total flow on an edge e is more than (3bInm/Inlnm)c,
is at most e~ 15 PInm—RRE 1 Vg the union bound, the
probability that the total flow on any edge e is more than
(3bInm/ Inlnm)c, is ar most e~ (1:5 b=1) Inm— 3yt —1
Proof: Let X. be the random variable indicating the
total flow on edge e. Let X, ; be the flow on e from the flow
chosen for pair . We have X, = Zle X, ; and moreover the
variables X ;, 1 <7 < k, are independent by the algorithm.
Note that 0 < X.; < ¢, since each flow in F; is valid by
definition. Further

k
Xe] :ZE[XeL] :Z Z Fe.-yr < ce.

i=1 FEF;

We now apply the Chernoff bound to see that Pr[X, >
s

(3blnm/lnlnm)ce] < m where (1 + (5) =

3blnm/Inlnm; we note that the standard bound has all

variables bounded in [0,1] while all our variables are in

[O,cel but we can simply scale all variables by c.. We have

7(1”6)(1”) = 0~ (1+9)In(1+9) We consider the expression
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d—(1+9)In(1+ ), where (1 +0) = 3blnm/Inlnm:
d—(1+0)In(l+9) =
=141 —-1In(1+9)) -
= (3blnm/Inlnm)(1 — In(3blnm/Inlnm))) — 1
=(3blnm/Inlnm)(1— In3— Inbd —

(3blnm/Inlnm)(—Inb — %lnlnm) -1
< —-15blnm —3blnblnm/Inlnm — 1.

Inlnm+ Inlnlnm)—1

IN

In the above, we used the fact that Inlnm — Inlnlnm >
L Inlnm for m > 9.

The second part follows easily via the union bound over all
the m edges. |

We can now put together the preceding lemmas to derive our
bicriteria approximation. We will henceforth assume that m >
9. Let S be the random set of pairs routed by the algorithm.
Let & be the event that w(.S) < (1—0)Wip. From Lemma 3.3,
Pr[&] < e9°/2 Let & be the event that there is some edge
e such that the flow on e is more than (3blnm/Inln m)ce
From Lemma 3.4, PI‘[EQ] < e~ 15 blnm— 3blnblnm/Inlnm—
For b =1 and m > 9 we see that Pr[&y] < e 4% < 0. 0138.
Choosing § = 1/2, Pr[&1] < 0.8825. Thus Pr[&; or &] <
0.9. This implies that with probability at least 0.1, the set
S of routed pairs satisfies the property that w(S) > 0.5Wpp
and the congestion of every edge is at most 31nm/Inlnm.
In other words, if Wip = OPTp < OPTjp, we obtain a
(1/2,31Inm/ Inlnm)-bicriteria approximation with probabil-
ity at least 0.1. One can boost the success probability by
repetition. If the rounding is repeated 10c In m times, then with
probability at least 1 — (1 — 0.1)10¢n™ > 1 — m;m=¢ (in other
words with high probability), one of the rounded solutions is
a (1/2,31Inm/ Inlnm)-bicriteria approximation

We now refine the preceding argument to show that the
quality of the rounded solution can get arbitrarily close to Wip
but with lower probability, and examine the trade-off required
in the congestion and number of repetitions required. Suppose
we want w(S) > (1—¢)Wip for some small 0 < € < 1/2. Let
&1 be the event that this does not happen. From Lemma 3.3,
we have that Pr[€;] < e=<*/2. Let &, be the event that some
edge congestion exceeds 3bln m/Inlnm. Lemma 3.4 allows
us to upper bound this probability. Suppose we choose b such
that Pr[&;] < €2/6. Then

Pl‘[gl N (cjg} =1- Pl“[gl @] 82] > — PI‘[(‘:” —
>1—e /2 /6> €/6.

PI[SQD

This would yield a (1 —€,3blnm/ Inlnm) bicriteria approx-
imation with probability at least ¢2/6 and one can boost
this via repeating O(Ei2 Inm) times to get the approximation
with high probability. Thus it remains to estimate b such that
Pr[&;] < €?/6. From Lemma 3.4, it suffices to choose b such
that (1.5b — 1) Inm +3bInblnm/ lnmln m+1>1n(6/€?).

In particular, it suffices to have b > ¢ 15117/, f) for some fixed
constant c¢. Thus for all € > 1/m, a fixed constant b (e.g., b =
1.85) suffices! Note however that the number of repetitions
grows as (1/€?) to guarantee a good solution with high
probability. This completes the proof of our main theorem:
Theorem 3.5: For m > 9 and any 1/m < € < 1,
there is a polynomial-time randomized algorithm that yields a
(1—¢,0(nm/Inlnm +1n(1/e)/ Inm))-approximation with
high probability. Moreover, by setting ¢ = 1/m, we guaran-
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Algorithm 1 Randomized Rounding Algorithm

Input: Directed graph G(V,E) with edge capacities c. >
0,Ve € E; set of k pairs of commodities (s;,t;), each with
demand d; > 0 and weight w; > 0; € € (0, 1].
Outp~ut:~ The final values of f; and f; . and > w; f;.

1: Let fi, fie, Vi € [k],Ve € E, be a feasible solution to compact
LP.

2: For each i € [k], independently, set f; = 1 with probability f;,
otherwise set f; = 0. _

3: Rescale the fractional flow f; . from the LP solution on edge e

f}e - f; and the flow for

i

for commodity i by % Le., fie =
commodity ¢ on e is gfven by fiedi.
4: If ZZ w,fl > (1 — E)Zwlfl and ZZ fiyedi <
(3blnm/Inlnm)c. for all e € E, return the corresponding
flow assignments given by f; and f;.,Vi € [k] and e € E.
Otherwise, repeat steps 2 and 3, O((Inm)/e?) times.

tee a (1 — 1/m,O(lnm/Inlnm))-approximation with high
probability.

Noting that it is trivial to get a (1, k)-approximation by
simply routing all the commodities at full demand, we get the
following corollary, stating our full approximation guarantees:

Corollary 5.1: For m > 9 and any 1/m < e < 1,
there is a polynomial-time randomized algorithm that yields
a (1—¢,min{k, O(Inm/ Inlnm)}))-approximation with high
probability.

For completeness, we describe a different rounding scheme
in [8] using an alteration approach, that may also be of interest
in certain settings and gives a better tradeoff in terms of
repetitions.

IV. RANDOMIZED ROUNDING OF THE COMPACT LP

In this section, we describe the randomized rounding
algorithm that we will use in our simulations. Algorithm 1
performs randomized rounding on the k total flow variables
of the compact LP and can be viewed as a simpler and more
efficient case of the randomized rounding algorithm outlined
in Section III-B. Another advantage of Algorithm 1 is that it
leads to a surprisingly simple derandomized algorithm.

A. Randomized Rounding Algorithm

We use randomized rounding to round the total fraction f;
of d; that the compact LP routes for commodity i to f; = 1,
with probability f;, and to O otherwise. If we set f; to 1, then in
order to satisfy flow conservation constraints (i.e., Constraint
(3) of Figure 1), we need to re-scale all the f; . values by
1/f;, obtaining the flows f;. (f f; = 0 then f;. = 0, for
all e € E). We repeat Steps 2-3 of Algorithm 1 O((Inm)/€?)
times or until we obtain the desired ((1—¢),3blnm/Inlnm)-
approximation bounds, amplifying the probability of getting a
desired outcome.

Given the equivalence that we showed between the packing
and the compact LP, which implied among other things that
the two LPs have optimal solutions of the same value and that
Algorithm 1 corresponds to the packing randomized rounding
approach described in Section II-B when restricted to the
subset of solutions to the compact LP, we get the following
corollary to Theorem 3.5:

Corollary 11.6.2: Algorithm 1, when run on an opti-
mal solution to the compact LP, achieves a ((1 — ¢€),
min{k, 3bInm/Inlnm})-approximation for the ANF prob-
lem on arbitrary directed networks with high probability, for
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a suitable constant b > 1/m, e.g. b = 1.85, and any 1/m <
e<l

B. An Efficient Derandomized Algorithm

In this section, we show how to derandomize Algorithm 1.
Our derandomized algorithm is particularly attractive for
its simplicity and efficiency in practice (see Section VII),
unlike most other derandomized algorithms in the literature,
whose implementations are cumbersome and ineffective. Our
deterministic algorithm leverages the method of pessimistic
estimators first introduced by Raghavan [30] to efficiently
compute conditional expectations, which will guide the con-
struction of the (a, 3)-approximate solution.

We first introduce the following notation. Let z; = 0 if
Algorithm 1 has not selected commodity ¢ to be routed, and
let z; = 1 if ¢ was admitted. Now, let fail(zy,...,25) —
{0, 1} denote the failure function of not constructing an («, (3)-
approximate solution, i.e., fail(z1,...,2;) = 1 if and only if
the constructed solution either does not achieve an a-fraction
of the LP’s (weighted) throughput or the capacity of some edge
is exceeded by a factor larger than 3. We use Z; to denote
the {0, 1}-indicator random variable for whether commodity
¢ is routed in one execution of Steps 3-4 of Algorithm 1,
ie., Pr[Z; = 1] = f; and Pr[Z; = 0] = 1 — f;. We have
shown in Section III-B that E[fail(Z1, ..., Z)] < 1 holds (cf.
Theorem 3.5), implying the existence of an («, 3)-approximate
solution. Given the above definitions, we employ the following
notation to denote the conditional expectation of a function

f:{0,1}* — {0, 1}:
E[f(z,..

Pl (71,

As computing E[fail(z1,. .., 2, Zit1,. .., Zk)] is generally

computationally prohibitive, we will now derive a pessimistic
estimator est : {0, 1}* — Rxq, such that the following holds

.7Zi,Zi+1,...,Zk)] =

'7Zk):1 | lezla"'7Zi:Z’i]'

for all i € [k] and all (z1,...,2;) € {0,1}%
Upper Bound Elfail(z1,...,2;, Zit1,...,Zk)] <
E[est(zl, ey Ziy DLy ey Zk)]
Efficiency Flest(z1,..., 2, Zit1,...,2%)] can be com-

puted efficiently.

Furthermore, the estimator’s value must initially be strictly
less than 1 for the derandomization:

Base Case  Elest(Z1,...,Z;)] < 1 holds initially.

In the following, we discuss how such a pessimistic
estimator is used to derandomize the decisions made by
Algorithm 1 before introducing the actual estimator est$
in Lemma 4.1. Algorithm 2 first computes an LP solution
just as Algorithm 1, but then uses the pessimistic estimator
to guide its decision towards deterministically constructing
an approximate solution. Specifically, each commodity is
either routed or rejected such that the conditional expecta-
tion Elest§(21,...,%i, Zi,...,Zy)| is minimized. Given that
initially Efest3(Z1,...,2Zy)] < 1, this procedure terminates
with a solution (z1,...,2;) such that the failure function

fail(z1, ..., zx) is strictly upper bounded by 1. Specifically,
1> E[estg(Zl, ey Zk)] > E[estg(zl, Zoy e, Zk)] > ... 2
E [estg (21,...,2x)] is guaranteed and therefore, for the binary

function fail, fail(zy, ..., zx) = 0 must hold. Furthermore, the
algorithm is efficient (i.e., runs in polynomial time) as long as
estj can be evaluated in polynomial time.
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Algorithm 2 Deterministic Approximation for ANF

Input: Directed graph G(V,E) with ¢ > 0,Ve € E and
m > 9; (si,ti), di,wy > 0,Vi € [k]; a = 1—1/m,3 =
3blnm/Inlnm, b = 1.85; estimator est§ : {0, 1}* — Rx,.
Output: The final values 01: fi and fi . and > w; f;
: Compute optimal solution fto compact edge-flow LP. _
: Let Z; € {0,1} bes.t. Pr[Z; = 1] = f; and Pr[Z; = 0] = 1— f;,
for i € [k].

N o—

3: Compute fail_est «— Elest3(Z1,...,Zi1,Zi,..., Zn)].

4: for each i € [k] do

5: if Elest(z1,...,2i-1,0,Zit1,..., Zn)] < fail_est then
6: Set z; «— 0.

7: else

8: Set z; «— 1.

9:

Update fail_est « FElest3 (21, .. s Zn)]-

10: return solution given by z: if z; = 1, then f; = 1 and f; . =
fie/ fis else fi = fie =0, Vi € [k].

.,Zi,ZH_l,...

Lemma 4.1 introduces the specific pessimistic estimator
estj for which the above three correctness criteria (upper
bound, efficiency, base case) are proven. We assume a =
1—1/m and 8 =3blnm/Inlnm, for m > 9 and b = 1.85.

Lemma 4.1 (Pessimistic Estimator): The function estg is a
pessimistic estimator for the ANF:

L Z) = estalZ, ., Zk)

+ Z estg“’)(Zl, s Zh),
(u,v)EE

estz(Z1,..

w,;

’Zk) — 6*001(1*5&)[" H E[eeazimL
le€[k]

where esto(Z1,. ..

1
with 0o = —, ji = ILE , and 0, =In(1 —6,);

m wmax
and EStg‘v“)(Zh AN

<f11, u,v /f.z)
— ¢ 0s(1+3p)0 H E[eaﬁziﬁ ,
le[k]
with 65
3blnm
T =1. L = — .
i b =185.i=1, and 05 = In(1 + )

For the proof of Lemma 4.1, we restate Theorem 3.2 as
Theorem 4.2, since we will need the intermediate inequalities
(a) and (c):

Theorem 4.2 ( [28]): Let X be the sum of k random vari-
ables Xq,..., X, with X; € [0,1] for | € [k], and let
w = E[X)). If fy > w, for each | € k], the following holds
for any 6 > 0 with 0 =1n(6 + 1) and f1 = 37y fu:

PrIX > (146) ] ©

—~

o—0-(14+8) 4

(b) e’ "
. H E[ee'Xz] < <(1+5)1+5>

le[k]

Moreover, if fiy < w, for each l € [k], the following holds
for any 6 € (0,1) with 6 = In(1 — 0) and fuo =3 fu:
ge—a‘(l—é)ﬂ. H E[eg'Xl] (%) 6—62./1/2

le[k]
Proof: [Proof of Lemma 4.1] The following three proper-
ties are to be shown: (i) upper bound, (ii) efficiency, and (iii)
base case. We first discuss properties (i) and (iii).

Corollary I1.6.2 showed that the probability of obtaining

an (o, 8)-approximate solution via randomized rounding is

—~

PHX < (1-6) i
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at least 1/(6 - m?). To obtain this result, a union bound
argument was employed, which used probabilistic bounds on
not achieving at least an « fraction of the optimal throughput
or on exceeding the capacity of some edge by a factor of 3.

For the throughput, we apply the first part of Theorem 4.2,
while for each edge’s capacity violation, we apply the second
part of Theorem 4.2, deriving the following pessimistic esti-
mators: Estimator est,, is obtained from the application of the
bounds in Theorem 4.2 within the proof of Lemma 3.3. Specif-
ically, the application of the Chernoff bound in Lemma 3.3
yields the following — restated over the variables Z; — with
the parameters d,, 0, and [ as specified above. The middle
expression below directly yields the throughput pessimistic
estimator.

PI'[Z wy - 2 < Oé-lULp] <
le[k]
676'1'(176)"7‘ . H E[eea'Zi-wl‘/wmax] < 671/(2-m2)

i€ (k]

The estimator est'") is analogously obtained by applying
the bounds in Theorem 4.2 within Lemma 3.4 for each edge
(u,v) € E. Specifically, for a single edge (u, v), the following
is obtained, where again, the middle expression is used to

obtain the pessimistic estimator est(ﬁ"’v) for (u,v) € E.
PI'[Z fi,(u,v) > B : C(u,v)} <
i€[k]

e 98- (1+d5)-01 HE[€95'Zi'fi,(u,v)/c(u,v)] < 5 1 i
A cm

?

Revisiting the union bound argument, we obtain that est$
indeed yields an upper bound on the failure probability to
construct an (a, 3)-approximate solution, and that initially
Elest}(Z1,...,21)] <1—1/(6-m?) <1 holds for m > 9.
This shows that properties (i) and (iii) are satisfied.

Considering the efficiency property, we note the following.
Both est, and est(u’v) consist of products of k factors, where
the expectations for different commodities can be computed
independently. Due to the binary nature of the variables Z;,
these expectations can be computed in constant time. ]

Given the above outlined derandomization process and the
correctness of the pessimistic estimator in Lemma 4.1, the
following main theorem of this section is obtained.

Theorem 4.3: Using esty as a pessimistic estimator,
Algorithm 2 is a deterministic («, 3)-approximation algorithm
for the ANF problem with a« = 1 — 1/m and § =
3blnm/Inlnm, with b = 1.85, for m > 9.

V. MWU ALGORITHM

While the compact edge-flow LP relaxation can always be
solved in polynomial time, one may run into space issues
when attempting to solve it in practice: The disadvantage of
using a standard LP solver to solve the compact edge-flow
LP relaxation is that the number of variables is km which
is quadratic in the input size, and the number of constraints
is m. Standard LP solvers often require space proportional to
km? which can be prohibitive even for moderate instances
(since it is almost cubic in the input size). One advantage
of the packing LP formulation over the compact formulation
is that one can use well-known multiplicative weight update
(MWU)-based Lagrangean relaxation approaches to obtain a
(1 — ~)-approximation, for any 0 < v < 1. Although the
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k

(a) max ) w; Z VF
i=l  Fe%
k
ZZFe-yFSce ecE
i=l Fef;
yr 20 Fefi,1<i<k.
(b) min Z Cele
ecE
DFlezwi  1<i<kFef
eckE
20 ecE
Fig. 4. (a) LP Relaxation with no constraint on total amount routed per

commodity; (b) its dual.

convergence time can be slow depending on the accuracy
required, the space requirement for the MWU approach is
O(k + m), which is linear in the input size. In addition,
there are several optimization heuristics based on the MWU
algorithm that can result in very efficient implementations in
practice. Since the MWU framework is standard, we only
describe and explain the algorithm here and state the known
guarantees on the number of iterations and time complexity,
referring the reader to standard treatments in the literature [5]
for a formal analysis on the correctness guarantees.

In our implementations, we will also run Algorithm 1
starting from the fractional solution output obtained from the
MWU algorithm, which only guarantees a (1 — ) approxi-
mation on the throughput of the LP relaxation for v € (0,1).
In that case, we let f; in Algorithm 1 be the total fraction
of commodity ¢ routed by the MWU algorithm and f; . be
the fraction of the flow for commodity ¢ going through edge
e—namely, f; = fi (s ;) and fie = fi., for all e, where s}
and the variables ﬁe’s are as defined in Algorithm 3. Hence
the throughput approximation guarantee for Algorithm 1 when
rounding the MWU solution will be (1 — €)(1 — 7).

A. Algorithm Description

MWU-based algorithms are iterative and provide a way to
obtain arbitrarily good relative approximation algorithms for a
large class of linear programs such as packing, covering and
mixed packing and covering LPs. In particular we can apply
it to the packing LP in Fig 2(b). The LP has two types of
packing constraints, one involving the capacities, and the other
involving the total amount of flow routed for each commodity.
It is useful to simplify the LP further in order to apply a
clean packing framework and so we alter the given graph G =
(V, E) as follows. For each given demand pair (s;,t;) we add
a dummy source s; and connect it to s; with an edge (s}, s;) of
capacity equal to d;. We replace the pair (s;,t;) with the pair
(8%, t;), which ensures that the total amount of flow for the pair
is at most d;, and further allows us to eliminate the first set of
constraints in Figure 2(b). In the modified instance, we hence
only have edge capacity constraints and the problem becomes
a pure maximum throughput problem that does not limit the
total flow for each commodity. The dual LP also simplifies in
a corresponding fashion. These are shown in Figure 4.

The MWU Algorithm 3 solves the primal LP in Fig 4
in an iterative fashion as follows. It takes as input an error
parameter v € (0,1) and its goal is to output a feasible
solution of value at least (1—-y) times the optimum LP solution
value. Note that the primal LP has an exponential number
of variables but only m non-trivial constraints corresponding
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Algorithm 3 MWU for Multi-Commodity ANF Problem

Input: Directed graph G(V, E), ¢ : E — R*, a set S of k
commodity pairs (s;,t;), each with demand d; and v € RT.
Output: Total flow F., for each edge e, and flows f; . on each
edge e for each commodity ¢

1: Change G by adding dummy terminal s} and edge (s}, s;) with
capacity d;. This ensures that we don’t route more than d; units
for pair . We will assume this has been done and simply use
(ss,t;) instead of (s}, ;).

2: Define a length/cost function £ : E — RT, initialize . «
1,Vee E

3: Define a function F': E — R, initialize F. «— 0,Ve € E
4: Let f; e < O be the fractional flow assignment for commodity ¢
onedge e, foralli € S;ee E

5: Define 1 «— h’ly—m

6: repeat

7: for each commodity ¢ € S do

8: Compute min-cost flow of d; units from s; to t;
with capacities c. and cost given by ¢ (if no
feasible flow then pair ¢ can be dropped). Let this
flow be defined by G, e € E and let cost of this
flow be p(i) = >, LcGie

9: Set ¢* « argmin, g qu;?

10:  Compute § + min, 7 - G;—:e

11: for each e do

12: if [, +0Gi o > c. then

13: Output F and fie,Ve € E,¥i € S and halt

14:  Update F. «— F. 4+ 6Gix ., Ve € E
15: Update fix e < fix e +0Gix c/dix,Ve € E
16: Update £. «— exp(nFe/ce), Ve € E

17: until termination

to the edges, so it maintains only an implicit representation
of the primal variables. The MWU algorithm can be viewed
as a primal-dual algorithm as well and as such it maintains
“weights” (hence the name multiplicative weights update) for
each edge e, which together correspond to the dual variables
£.. To avoid confusion with the weights of commodities we use
the term lengths. The algorithm maintains lengths l.,e € E
which are initialized to 1. The algorithm roughly maintains
the invariant that /. is exponential in the current total flow
F, on edge e; more formally, for a parameter n = Inm/~y
the algorithm maintains the invariant that . ~ exp(nFe/c.)
where F, is the total flow on e. In each iteration the goal
is to find a good commodity/pair to route. To this end, the
algorithm computes for each commodity (s;,¢;) a minimum-
cost s;-t; flow of d; units where the cost on e is equal to
L. Let this cost be p(¢). It then chooses the commodity ¢*
that has the smallest p(¢)/w; ratio among all pairs, as the
currently best commodity to route. The algorithm then routes
a small amount for ¢* along the minimum cost flow computed
in that iteration. This corresponds to the step size § which is
chosen to be sufficiently small (but not too small) to ensure
the correctness of the algorithm. After routing the flow for ¢*,
the lengths on the edges are updated to reflect the increase in
flow on the edges. The algorithm proceeds in this fashion for
several iterations until termination. One can terminate using
several different criteria while ensuring correctness. Here we
stop the algorithm if we route a commodity with the given
step size and it violates some edge capacity.

B. Analysis of Iterations, Run-Time and Space

The algorithm’s running time is dependent on the time
to compute a minimum-cost flow and on the total num-
ber of iterations. It is known that the MWU algorithm,

Authorized licensed use limited to: Arizona State University. Downloaded on July 22,2024 at 02:09:55 UTC from IEEE Xplore. Restrictions apply.



1444

as suggested above, terminates in O(mlogm/~?) iterations.
Each iteration requires computing k£ minimum-cost flows.
Many algorithms are known for minimum-cost flow ranging
from strongly polynomial-time algorithms to polynomial-time
scaling algorithms, as well as practically fast algorithms based
on network-simplex. Instead of listing these, we can upper
bound the run-time by O(MCF(n, m)kmlogm/v?) where
MCF(n,m) is the min-cost flow algorithm’s running time
on a graph with n nodes and m edges. In terms of space,
we observe that the algorithm only maintains, for each edge,
the total flow and length on the edge, and the total flow
routed for each commodity: This is O(k +m). The algorithm
also needs space to compute a minimum-cost flow and that
depends on the algorithm used for it. Most algorithms for
minimum-cost flow use space near-linear in the input graph.

The algorithm as described above is a plain “vanilla”
implementation of the general MWU algorithm. As such the
running time is rather high and computing & minimum-cost
flows in each iteration is expensive. Several optimizations can
be done from both a theoretical and a practical point of view.
We do not discuss these issues in detail since this is not the
main focus of this paper. We develop a simple heuristic — the
permutation routing heuristic — based on these ideas that has
also theoretical justification, and that will be discussed and
used for the simulations in Section VII.

VI. POTENTIAL PROBLEM EXTENSIONS

The packing formulation for the ANF was introduced in
Section II-B together with a simple randomized rounding
algorithm. Besides the practical tractability established in
Section V, the proposed packing framework for the ANF has
further advantages. Specifically, it can be easily adapted to
cater for problem extensions such as when flows are restricted
to k-splittable flows, must obey fault-tolerance criteria, or are
restricted to shortest paths.

In the following we describe some of these extensions and
how the packing formulation may be adapted together with the
separation procedure. Notably, some problem extensions allow
for compact LP formulations, however, casting the problems in
terms of the packing formulation is generally less complex and
therefore helps in establishing whether a problem extension
can be efficiently approximated in the first place.

Henceforth, our goal is to solve the maximum throughput
problem in the all-or-nothing model while restricting the
nature of flows that are allowed for each commodity. The ANF
allows flow for each commodity to be split in arbitrary ways
while unsplittable flow requires all the flow for a commodity
to use a single path. However, there are several intermediate
settings of interest, and other constraints, that occur in practice.
Recall that in setting up the formulation in Figure 2, F; for
each pair ¢ is the set of valid s;-t; flows in G. This is a large
implicit set, and the way we solve the LP relaxation is via the
separation oracle. The separation oracle corresponds to finding
a minimum-cost flow from F; given some edge lengths/costs.
The MWU algorithm can be viewed as an efficient, albeit
approximate, way to solve the large implicit LP relaxation
via the separation oracle. Moreover, once the LP is solved,
the randomized rounding step picks one of the flows per
commodity. This flexibility allows us to solve the LP and
round even when F; is restricted in some fashion. We outline
a few extensions that can be addressed via this framework.

Integer flows: Recall that in ANF we allow splittable flows.
However in some settings it is useful to have flow for each

commodity on each ec}jge to be inte/ger valued; here we assume
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that d; is an integer for each 7. In order to handle this we can
set F; to be the set of all integer s;-t; flows. Now the min-cost
flow routine needs to find an integer flow between s; and ;
of d; units. This is easy to ensure since there always exists an
integer valued min-cost flow as long as the demands and the
edge capacities are all integer valued. We reduce each c. to
|ce] without loss of generality.

Splitting into a small number of paths: In some applica-
tions it is important that the flow for each pair is not split by
too much. How do we quantify this? One way is to consider
h-splittable flows where & is an integer parameter. This means
that flow for each pair can be decomposed into at most h paths.
When h = 1 we obtain unsplittable flow and if we set h = |E]|
we obtain ANF. We can handle the special case where each
of the h flow paths has to be used to send the same amount of
flow which is d;/h. For this purpose we define F; to be the
set of all such flows. To compute a min-cost flow in F; we
simply need to find a min-cost flow of h units from s; to ¢; in
the graph with capacities adjusted as follows: for each edge e
with capacity ¢, we change it to |h - c./d;|. Baeier et al. [6]
considered this maximum throughput problem, however, they
only considered uni-criteria approximation algorithms and pro-
vided a reduction to the unsplittable case; the approximation
ratios that one can obtain without violating capacities are very
poor while our focus here is on bicriteria approximation that
achieve close to optimum throughput.

Fault-tolerance and routing along disjoint paths: In some
settings the flow for a pair (s;, ;) needs to be fault-tolerant
to edge and/or node failures. There are several ways this is
handled in the networking literature. One common approach
is to send the flow for each commodity along & disjoint paths,
each carrying d; units. This can be handled by an approach
very similar to the preceding paragraph where we compute
min-cost flow on h disjoint paths; note that in the preceding
paragraph the h paths could share edges. Another approach
to fault-tolerance is to use what are called h-route flows [1],
[25]. One can find a min-cost A-route flow in polynomial
time [1]. Hence, one can also use the framework to maximize
throughput while each routed pair uses an h-route flow.

Using few edges or short paths: We now consider the
setting when the flow for a commodity is required to use a
small number of edges or the flow has to be routed along
paths with small number of hops. These constraints not only
arise in practice but also help improve the theoretical bounds
on congestion. One can show that if each flow uses only
d edges then the bicriteria approximation can be improved;
the congestion required for a constant factor approximation
becomes O(log d/loglog d) rather than O(logm/ loglogm);
for single paths the analysis can be seen from [7] and we
can generalize it to our setting. Suppose we wish to route
flow for each commodity whose support consists only of some
given number h of edges. As above we need to solve for min-
cost s;-t; flow that satisfies this extra constraint. However this
additional constraint is no longer so easy to solve and in some
cases can be NP-Hard. However, if one allows for a constant
factor relaxation for the number of edges h, and an additional
constant factor in the edge congestion, one can address this
more complex constraint by using linear programming based
ideas (see [12] for an example).

VII. SIMULATION RESULTS

In this section we study the performance of our approxima-

tion alégorithms for the ANF Eroblem on real-world networks.
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Our proof of concept computational evaluation is meant to
provide general guidelines about the relative efficacy of the
algorithms in terms of the achieved throughput approxima-
tion factor o and the edge capacity violation ratio 3. The
achieved throughput approximation ratio is taken as the solu-
tion obtained by the run divided by the optimal LP solution
(which is a lower bound on the exact approximation ratio based
on the optimal MIP solution rather than its LP relaxation).
Notably, due to the bi-criteria nature of our approximations
with solutions being allowed to exceed edge capacities (by at
most a factor of (), solutions may yield empirical throughput
approximation factors of o > 1.

Beyond analyzing the performance of our randomized
rounding and derandomized algorithms, we also investigate the
impact of varying the methodology by which the LP is solved.
Specifically, we study the performance of solving the compact
LP formulation directly; of solving the multiplicative weight
update algorithm (MWU); and of solving the MWU-based
Permutation Routing (PR) heuristic described below. While the
run-time of our prototypical MWU implementation generally
exceeds the run-time of solving the compact LP formulation
using a commercial solver, our MWU implementation serves
as a proof of concept of its practical applicability and will also
enable the extensions outlined in Section VI, which depend on
the packing formulation. In addition, we remark that MWU
may be useful for larger networks in practice (such as for the
random network instance that we address in Section VII-C), as
it does not suffer from the same space complexity limitations
as solving the compact LP via standard LP solvers.

Note that the simulation results for the prior state-of-the-
art algorithm for constant-throughput approximations for the
ANF problem [26]—originally designed to handle uniform
demands, edge capacities and weights—have been reproduced
in this paper when running the randomized rounding algorithm
with the compact edge-flow LP, since this algorithm is in
essence the same as the algorithm in [26], now adapted to
handle non-uniform demands, edge capacities and weights (in
addition to some fine tuning optimizations). Our theoretical
approximation results in this paper actually also validate
the simulation results in [26], since the simulations in [26]
already suggested that the edge capacity violations incurred by
randomized rounding based on the compact edge-flow LP were
logarithmic (and not polynomial as the theoretical guarantees
of [26] suggested).

A. Permutation Routing Heuristic

Without proper optimization, the run-time of the MWU
algorithm can be slow due to the computation of k
minimum-cost flows as a separate procedure in each iteration.
As a practical solution, we introduce a heuristic based on
Algorithm 3 that provides a significant reduction in computa-
tional cost, while still yielding solutions comparable to those
by MWU in practice. We refer to this as the Permutation
Routing (PR) algorithm. In the following we outline how
this new algorithm differs from the original MWU algorithm
and we refer the reader to Algorithm 4 for the complete
pseudocode description.

Our algorithm is motivated by theoretical algorithms for
maximum throughput packing problems in the online arrival
model and the random arrival order models. It is known that
for packing problems, in the random arrival model, one can
obtain arbitrarily good performance compared to the offline
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Algorithm 4 Permutation Routing Algorithm

Input: v € R, Directed Graph G(V,E), c: E — R*", aset S
of k pairs of commodities (s;, ;) each with demand d;, weight
wj, an estimate E'st of the optimal fractional ANF solution for
(G,9)
Output: Total flow Fe, Ve € E, and fractional flow assignment
fie, Vi€ S,ee E

1: Change G by adding dummy terminal s} and edge (s}, s;) with
capacity d;. This ensures that we don’t route more than d; units
for pair . We will assume this has been done and simply use
(si,t:) instead of (si,t;).

: Initialize an empty flow F. «— 0,Ve € E

Set n «— In|B]

In|B|
2

Set r
: Let fi, «— 0 be the fractional flow assignment for commodity i
on edges e forall i € S,e € £
: Define edge costs {. = 1,Ve €
7: Make r copies of the & commodities of .S and let A be a list of
these rk commodity pairs.
8: Let B = (z1,%1),-.-, (®rk,yrk) be a random permutation of

=)

9: for j =1 to rk do

10: Let (s;,t:),% € S be the commodity associated with
pair (z;,;).

11: Compute min-cost flow of d; units from s; to t;
with edge costs defined by ¢ and obtain flow
assignment F” and solution cost p = >___ . (. Fy.

12: Compute 7 = LeCe.

13: if%z%and FE+FTé§cE,Ve€Ethen

14: Update F, «— Fe + FTéNe €eE
15: Update fie < fie+ L,Ve€E

(”fc)NeGE

ecE

16: Update £, < exp

17: Output F. and f; ., Ve € E,Vi € S

optimal solution if the resource requirements of the arriving
items (these correspond to flows in our setting) are sufficiently
small when compared to the capacities [3], [22], [24]. The
analytical ideas are related to online learning and MWU.

We develop our heuristic as follows: Recall that we are
seeking a fractional solution. We take each commodity pair ¢
with demand d; and split it into r “copies,” each with a demand
of d;/r. Here r is a sufficiently large parameter to ensure the
property that d; /r is “small” compared to the capacities. From
the MWU analysis, and also the analysis in random arrival
order models, one sees that r = Q(Inm/~?) suffices. Given
the k original commodity pairs, we create k- r total pairs from
the copies. We now randomly permute these pairs and consider
them one-by-one. When considering a pair, the algorithm
evaluates the “goodness” of the pair in a fashion very similar
to that of the MWU algorithm. It maintains a length for each
edge that is exponential in its current loads, and computes a
minimum cost flow for the current pair (note that the pair’s
demand is only a 1/r fraction of its original demand); it
accepts this pair if the cost of the flow is favorable compared
to an estimate of the optimum solution. If it accepts the pair,
it routes its entire demand (which is the 1/r’th fraction of
the original demand). Otherwise this pair is rejected and never
considered again. Thus the total number of minimum cost flow
computations is O(k-r) when compared to O(k-m-logm/v?)
in the MWU algorithm. As mentioned above, a worst-case
theoretical analysis requires 7 = Q(logm/4?) to guarantee a
(1 —~)-approximation, however, in practice a smaller value of
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Fig. 5. Flowchart showing our experimental methodology. A directed path
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Fig. 6. Experimental results on the Atlanta and Germany50 networks with
uniform edge capacities, weights and demands.

r can be chosen. Note that an original pair (s;, t;) with demand
d; is routed to a fraction r; /r where r; is the number of copies
of 4 that are admitted by the random permutation algorithm.
The algorithm requires an estimate of the optimum solution
which can be obtained via binary search or other methods.

B. Methodology

We now describe the problem instances and the implemen-
tations of our approximation algorithms. Our code is publicly
available at [9].

1) Problem Instances: Following [26], we study real-world
networks together with corresponding real-world source-sink
pairs obtained from the survivable network design library
(SNDIib) [29]. Our choice of networks from the SNDIib is
given in Table I, covering several general scenarios, e.g. a
small network with large number of commodities, or a dense
network with low number of commodities. We randomly
perturb the uniform weights, demands and edge capacities of
the chosen networks in SNDIib to test our algorithms’ ability
to accommodate variable weights and demands on networks
with varying edge capacities. Namely, we independently chose
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Fig. 7. Experimental results on the Atlanta and Germany50 networks with

varied edge capacities, weights and demands.

TABLE I

LIST OF STUDIED INSTANCES FROM SNDLIB [29] WHERE n IS THE
NUMBER OF NODES, m IS THE NUMBER OF EDGES, k IS THE NUMBER
OF COMMODITIES IN THE ORIGINAL NETWORK AND k'’ IS THE
NUMBER OF ROUTABLE COMMODITIES IN
THE VARIED NETWORK

Network |(n |m | k | K’
Atlanta | 15] 44 [210] 193
Germany50 | 50 | 176 | 662 | 627
Di-yuan |11| 84 | 22 | 22
Dfn-gwin | 11| 94 | 110|107

General Description
Small network, high commodity count
Sparse network, high commodity count
Dense network, low commodity count
Dense network, high commodity count

uniformly random edge capacities from 20 to 60, commodity
demands from 25 to 75, and commodity weights from 1 to 10
(the benchmark SNDIib data has all edge capacities at 40,
demands at 50, and weights at 1). After these changes, we find
that only a fraction of the given commodities can be satisfied
if routed alone in the network: We discard any commodity that
cannot be routed on its own and let k&’ denote the number of
remaining commodities.

2) Algorithms: We have implemented both the random-
ized and derandomized rounding algorithms detailed in
Sections IV-A and IV-B on an Apple M1 processor with
16GB RAM. We solve the compact formulation via CPLEX
V22.1.1 and approximately solve the packing LP via the
MWU algorithm or the faster permutation routing heuristic.
We choose ¢ = % and b = 1.85 in Algorithms 1 and 2,
implying a target throughput approximation factor of a >
1—¢€= % and target edge capacity violation ratio of § <
3blnm/Inlnm = 5.55Inm/In1lnm, where m is the number
of network edges, for the algorithms. More specifically, for
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Fig. 8. Experimental results on the Dfn-gwin and Di-yuan networks with
uniform edge capacities, weights and demands.

the Atlanta and Germany50 networks, we target edge capacity
violations 3 < 15.78 and 17.47, respectively.

We define an experiment as the execution of a higher level
algorithm (either randomized or derandomized rounding) in
concert with an LP-solving subroutine (CPLEX for compact
LP or our MWU and PR implementations) on a particular net-
work. We summarize our methodology through the flowchart
in Figure 5. For an experiment that includes randomized
rounding, we execute this algorithm 10 times to obtain a total
of 10 different samples per experiment. For each of these
10 executions, 100 rounds of rounding are recorded and of
these rounded solutions, we report on the solution of highest
throughput whose capacity violations lie below our theoretical
bounds. We consider three different v values, namely 0.15,
0.2, and 0.3, to study performance vs. run-time trade-offs of
the MWU algorithm and the PR heuristic. Due to the slow
convergence of MWU, we introduce speed-up mechanisms
where (i) during any iteration, if the post-update smallest
mincost flow solution is not at least 50 percent larger than
the pre-update smallest min-cost flow solution, then we do
not recompute this in the subsequent iteration, and (ii) the
maximum number of iterations is capped at 10,000.

C. Experimental Results

In this section, we expand upon our computational results.
We first focus our attention on the performance of two sparse
networks, Atlanta and Germany50, and then move to two
smaller but comparatively denser networks, Di-yuan and Dfn-
gwin. We report results in terms of the achieved throughput
factor «, edge capacity violation factor 8 and wall-clock run-
times.
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Fig. 9. Experimental results on the Dfn-gwin and Di-yuan networks with
varied edge capacities, weights and demands.

Our experiments are summarized visually in two kinds of
plots. The qualitative plots in Figures 6-9 show the empirical
throughput and edge capacity violation ratios obtained by
executions of the various algorithms for each network sep-
arately. Note that we report on 10 data points when applying
randomized rounding in contrast to the single data point for
the derandomized algorithm using the compact LP solution.
In the figures, we use RR to denote randomized rounding and
DR to denote the derandomized algorithm, followed by the
specific LP used (compact LP, MWU or PR) and choice of v
for MWU and PR. For reference, we include a red star data
point indicating the optimal LP solution, which corresponds
to « = § = 1. In Figures 10-13, we show how the run-times
compare among different algorithms.

Figures 6 summarizes the results on networks Atlanta and
Germany50 under the default uniform weights, demands and
edge capacities given by [29]. This figure also replicates
experiments from [26], though here we additionally test Algo-
rithms 3 and 4 in conjunction with Algorithm 1. We also
test the modified form of the original networks—where we
randomly perturb the weights, demands and edge capacities
as described in Section VII-B—in Figure 7. Figures 8 and 9
present experimental results on the additional networks from
[29], namely Dfn-gwin and Di-yuan, respectively for uniform
and varied weights, demands and edge capacities. Note that in
Figures 8-9, the values for the compact LP-based randomized
rounding and the derandomized solution for the Di-yuan
network have very close values of o and (3 and hence overlap
in the plots.

The compact LP solution combined with both the ran-
domized and derandomized algorithms produces in general
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(3 < 2.5, which is much smaller than our established the-
oretical bounds. We see noticeably larger values of o and
marginally larger values of 3 with the derandomized algorithm
(at the expense of a higher run-time). With respect to
MWU-based randomized rounding solutions, the values of «
and (3 obtained are concentrated around their means. For the
PR subroutines, we observe more variance over the parameter
space, and we typically see much higher capacity violations
without a significant gain in throughput. The value of PR over
MWU shows up in the run-time plots, but PR still loses to
the compact LP. We expand on our run-time discussions next.
As for the impact of - on the quality of the solutions obtained
using MWU and PR, the general trend is that the lower the ~,
the lower the edge capacity violation 3 with an increase in a.

Figures 10—13 show that the compact LP-based randomized
rounding run-times are at least two orders of magnitude faster
than the implementations using MWU and at least one order
of magnitude faster than those using PR in general, with the
exception of Dfn-gwin with varied network parameters. The
varied Dfn-gwin run-times for RR+PR (for all +’s) are in fact
better than the run-times for solving the compact LP with
CPLEX and then applying randomized rounding. The ran-
domized rounding algorithm outperforms our derandomized
algorithm based on the compact LP solution (see the leftmost
plots in Figures 10-13). We believe this to be in part due to
our naive implementation of the pessimistic estimators, which
does not cache intermediate results.

Regarding the performance of the permutation routing
algorithm, we see a run-time decrease by a factor of at least
one half compared to the “vanilla” MWU algorithm, while
slightly compromising on the generally less favorable higher
capacity violations, for any network and any . For the MWU
algorithm, we expect in general to see the run-time increase
as vy decreases, however, due to our speed-up mechanisms,
the opposite may be true. This is attributed to the fact that
with a smaller v, the increase in flow is likewise smaller, and
thus the updates to edge costs are smaller, implying that the
threshold for skipping min-cost flow calculations is met more
often. Thus, the run-time is reduced for smaller values of ~,
though at the expense of throughput approximation quality.

We further report on our implementations of the derandom-
ized algorithm in conjunction with MWU and PR. In general,
the run-times of the derandomized algorithm based on an
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MWU solution produced very similar graphs to what we have
for the run-times of the randomized rounding approach based
on MWU in Figures 10-13. With respect to the approxima-
tion bounds on throughput and edge capacity violation, the
derandomized approach based on MWU or PR produced a
much wider set of values, with, for example, o = 34.2 and
B = 17.5 for PR, and a = 10.7 and 3 = 5.3 for MWU,
both for v = 0.15 on the Germany network with uniform
demands. In general, the derandomized algorithm with MWU
or PR produced significantly higher values of « and 3 for
the Atlanta, Germany and Dfn-gwin networks (both for the
uniform and varied capacities and demands cases) when com-
pared to the respective runs with the randomized rounding
approach, while the MWU and PR derandomized results for
the Di-yuan network were more comparable to the respective
randomized rounding results. See [8] for additional plots, with
the simulation results for all instances of the derandomized
algorithm in conjunction with MWU and PR.

To validate the need for approximation algorithms for the
ANF problem in practice, we tried to directly solve the com-
pact MIP formulation (Figure 1(a)) for the different uniform
network instances we considered. While the smaller networks
such as Atlanta and Di-yuan finished within a minute, the
Germany50 network failed to terminate after 24 hours. For
comparison, we were able to solve the compact LP relaxation
for the Germany50 network in less than 240 seconds. For
completeness, the MIP solutions for both Atlanta and Di-yuan
routed 21 commodities, while the compact LP solution had an
optimal value of 26.84 and 21.6, respectively.

Concluding, we see our results as a first step towards
efficiently approximating the ANF and its potential exten-
sions. While randomized rounding wins in terms of run-time,
the deterministic rounding generally achieves slightly higher
throughputs at the expense of higher edge capacity violations.
Furthermore, while solving the compact LP is shown to be
much quicker in practice, the proposed MWU algorithm will
render tackling the problem extensions of Section VI tractable
and our proposed permutation routing heuristic can in practice
substantially reduce run-times. With respect to space, it is least
efficient to solve the compact LP directly. In fact, it may be
impossible to do so if the network instance is very large. The
MWU and Permutation Routing algorithms rely on repeated
and discarded computations of single commodity min-cost
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flow, whose corresponding LPs exhibit much fewer constraints
than ANF for the same network instances. To illustrate this,
we generated a random network with n = 449, m = 15856,
and k£ = 48: While solving the compact LP with CPLEX
crashed due to memory errors for this instance, we ran MWU
for up to 1500 iterations and did not observe any memory
issues.

VIII. CONCLUSION

We presented a novel and significantly improved bi-criteria
approximation of the maximum throughput routing prob-
lem for all-or-nothing multiple commodities with arbitrary
demands, which we paired with a proof of concept on efficient
implementations of our algorithms in practice. We showed that
our packing framework is very flexible and may hence be of
interest beyond the specific model considered in this paper,
e.g., in scenarios where flows should only be split into a small
number of paths or use few edges. In future research, it would
be interesting to develop improved rounding approaches,
e.g., using resampling ideas from the Lovasz-Local-Lemma,
to explore the additional applications introduced by our pack-
ing framework, as well as to study opportunities for algorithm
engineering, further improving the performance of our algo-
rithms in practice.
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