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Abstract

In this paper, we present a Deep Neural Network (DNN) based framework that employs Radio Frequency (RF) hologram ten-
sors to locate multiple Ultra-High Frequency (UHF) passive Radio-Frequency Identification (RFID) tags. The RF hologram
tensor exhibits a strong relationship between observation and spatial location, helping to improve the robustness to dynamic
environments and equipment. Since RFID data is often marred by noise, we implement two types of deep neural network
architectures to clean up the RF hologram tensor. Leveraging the spatial relationship between tags, the deep networks effec-
tively mitigate fake peaks in the hologram tensors resulting from multipath propagation and phase wrapping. In contrast to
fingerprinting-based localization systems that use deep networks as classifiers, our deep networks in the proposed framework
treat the localization task as a regression problem preserving the ambiguity between fingerprints. We also present an intu-
itive peak finding algorithm to obtain estimated locations using the sanitized hologram tensors. The proposed framework is
implemented using commodity RFID devices, and its superior performance is validated through extensive experiments.

KEYWORDS: Radio-Frequency Identification (RFID), Ultra-High Frequency (UHF) passive RFID tag, RF hologram tensor,
Indoor localization, Deep Learning (DL), Swin Transformer, Self-supervised learning.

1. Introduction

Radio-frequency identification (RFID) is a radio-
based identification technology, where a reader inter-
rogates RFID tags and identifies each tag through its
response. It has been widely used in a variety of ap-
plications, including supply chain management, in-
ventory tracking, access control, toll collection, and
animal management. Due to its widespread use and
the low-cost tags, the RFID technology has recently
been expanded to fields such as healthcare and en-
vironmental monitoring, thanks to the rapid develop-
ment of the Internet of Things (IoT). By exploiting the
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measurements in RFID readings, an increasing variety
of functions and applications are emerging based on
RFID, e.g., localization [1], gesture recognition [2],
vital sign monitoring [3, 4], three-Dimensional (3D)
human pose tracking [5, 6], remote temperature sens-
ing [7], and material recognition [8].

Indoor localization has consistently remained a
popular research topic among both existing and
emerging applications, owing to its pivotal role in
solving position-related problems such as gesture
recognition and human pose tracking. The RFID-
based localization system is primarily based on two
types of measurements: the Received Signal Strength
Indicator (RSSI) and the phase angle. SpotOn [9]
used RSSI along with a path loss model to perform
trilateration. LANDMARC [10] leveraged RSSI read-
ings from reference tags as fingerprints to estimate an
unknown tag position via fingerprint matching. The
RFID phase angle is extremely sensitive to environ-
mental changes, particularly, to the variations in tag-
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antenna distance. Recent applications have achieved
centimeter-level localization by predicting the Direc-
tion of Arrival (DoA) with the received RFID phase
angle. SparseTag [1] used a spatial smoothing-based
method with a novel sparse RFID tag array to pre-
dict angles. RF-Wear [11] achieved a mean error of
8◦ − 12◦ in tracking angles with a uniform linear ar-
ray. Moreover, RF-Kinect [12] added a body geometry
model to the RF hologram to determine limb orienta-
tion and human joint location.

On the other hand, Deep Neural Networks (DNN)
have sparked a lot of interest and promise in do-
mains like Computer Vision (CV) and Natural Lan-
guage Processing (NLP). To take advantage of the su-
perior classification performance of deep networks, re-
searchers integrate deep networks into fingerprinting
systems. Deep autoencoders, for example, have been
used to extract WiFi CSI features as fingerprints [13,
14, 15, 16]. With a deep residual sharing learning ap-
proach, ResLoc [17] further enhanced localization ac-
curacy. CiFi [18] was the first work to leverage a Deep
Convolutional Neural Network (DCNN) for indoor lo-
calization, where measured AoA images were utilized
for training a 6-layer DCNN.

Although the introduction of deep networks im-
proves the efficacy of such indoor localization sys-
tems, the inherent challenges of fingerprinting-based
localization systems remain unaddressed. To begin
with, a huge number of fingerprints are required for
mapping the signal characteristics over space. The
granularity of fingerprints determines the lowest po-
sitioning inaccuracy of the localization system [19].
Even when a classifier predicts the label correctly, er-
rors can still occur due to the coverage gap between
two fingerprints when the target is positioned in their
middle. On the other hand, collecting a large amount
of fingerprints would be time-consuming or even im-
practical in certain public places, such as shopping
malls or airports [20]. Second, the fingerprints uti-
lized in such systems are highly dependent on the
equipment configuration. The AoA images utilized in
CiFi, for example, are defined by the configuration and
setup of the receivers. The measurement offset could
not be eliminated clearly [21]. The network must be
trained from scratch when a different setup or equip-
ment is deployed. As a result, the transferability of
CiFi could be poor. In this paper, we try to decou-
ple data creation from the hardware setup and to find a
deep network that can process data from various RFID
device configurations. The tag position will be esti-
mated with the deep network using data collected from
any type of devices.

In this paper, we propose MulTLoc, a framework
for Multiple RFID Tag localization utilizing RF Holo-
gram tensors with DNNs, This approach aims to al-
leviate the fundamental difficulties of fingerprinting-
based methods and to fully leverage the potential of
deep neural networks. Radio Frequency (RF) holo-

gram tensors are created using phase readings from
antenna pairs of the reader. To generate ground truth
tensors for supervised learning, a computer vision sen-
sor (e.g., a Kinect V2) is used. Based on DCNN
and Swin Transformer [22], two representative holo-
gram filter networks are investigated with the sug-
gested framework to clean the noisy input hologram
tensors by exploiting the spatial relationship between
tags. An intuitive peak detection technique will be
used to infer the location of RFID tags.

The main contributions made in this paper are sum-
marized as follows.

• To the best of our knowledge, this is the first
study to utilize RF hologram tensors to train deep
networks for locating multiple tags in a 3D space.
The use of RF hologram tensor renders deep
networks independent of environmental changes,
thus considerably improving the robustness and
transferability of the proposed system.

• We implemented two novel deep networks to
clean up noisy RF hologram tensors. In the net-
works, the spatial information between multiple
tags is leveraged to suppress the fake peaks that
exist in original RF hologram tensors. We begin
by introducing a DCNN-based network for clean-
ing RF hologram tensors. Then a Swin Trans-
former based network [22] is also proposed to fil-
ter RF hologram tensors. When the Swin Trans-
former is being trained, self-supervised learning
is utilized to extract general features from holo-
gram tensors. Position estimation is reduced to a
simple peak detection problem that can be solved
quickly with the sanitized hologram tensor.

• A prototype of the proposed MulTLoc frame-
work is created using Commercial Off-The-Shelf
(COTS) RFID devices. With extensive joint lo-
calization experiments, the performance of the
proposed framework is evaluated. The experi-
mental results show that the MulTLoc framework
is capable of simultaneously localizing multiple
tags in a 3D space with high accuracy.

The remainder of this paper is organized as follows.
We present an overview of related works in Section 2.
Section 3 introduces the preliminaries and motivation
of our approach. We present the MulTLoc design in
Section 4 and our experimental study in Section 5.
Section 6 concludes this paper.

2. Related Works

With the development of mobile communication
technology over the last decade, academia and indus-
try have paid close attention to location-based ser-
vices. Signal processing has long been used to de-
termine the position of a signal source by estimat-
ing the Time-of-Flight (ToF), Angle-of-Arrival (AoA),
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or a third signal parameter such as Doppler shift and
Angle-of-Departure (AoD) [23, 24, 25, 26, 27]. The
accuracy of parameter estimate, however, is governed
by the number of antennas (for AoA) and the trans-
mission bandwidth (for ToF), which are often fixed
in a certain wireless communication system. As a re-
sult, the cost of improving parameter estimate would
be prohibitively high.

On the other hand, the fingerprinting method, with
its convenience and effectiveness, transforms the lo-
calization problem into a feature matching one. Re-
searchers are working on two tracks to increase the
accuracy of fingerprinting-based localization. First,
more and more powerful classification algorithms are
introduced. For example, K-Nearest Neighbors al-
gorithm (KNN) and its modifications are commonly
leveraged in indoor localization systems [28, 29, 30,
31]. Machine learning algorithms, such as Random
forest [32, 33] and AdaBoost [34, 35], are often used
in promoting the performance of classification as well.
Another important aspect influencing the localization
accuracy of the fingerprinting-based localization sys-
tem is the quality of fingerprints. Principal Compo-
nent Analysis (PCA) is a common tool to extract fea-
tures from the original fingerprints [36, 37] for en-
hancing the fingerprint quality. Recently, with the
development of deep learning, deep autoencoder has
been implemented as feature extractors [15, 38]. Mo-
tivated by the superior performance of DNNs for im-
age classification tasks, feature extraction and classifi-
cation can be unified in fingerprinting-based localiza-
tion systems using DNNs. For example, features from
AoA images were extracted and classified in CiFi [18]
and ResLoc [39] in one effort. Despite the continuous
development of new techniques aimed at enhancing
performance, the inherent limitation of the fingerprint-
ing method still needs to be addressed. The localiza-
tion accuracy of this method is reliant on the resolution
of fingerprints, and any changes in fingerprints would
necessitate an update of the system. In this research,
we attempt to present a novel framework to overcome
fingerprint-related issues.

DNN, as previously stated, has been frequently used
in indoor localization systems because of its excellent
feature extraction and classification capabilities. It has
evolved over the last decade to meet the needs of vari-
ous downstream jobs. Since the debut of AlexNet [40],
DCNN has become a superstar in computer vision.
ResNet [41] constructs a DCNN with hundreds of lay-
ers by utilizing shortcut connections. Hourglasss [42]
and U-Net [43] use an encoder-decoder design to keep
high-resolution representation of images. To date,
CNN remains a key model for addressing computer
vision challenges. In the area of NLP, Recurrent Neu-
ral Networks (RNN) are prominent for dealing with
temporal sequence data [44]. Transformer [45] has re-
cently emerged as a dominating successor by using an
attention method to construct the global interdepen-

dence between input and output. The transformer has
also been applied for computer vision tasks. Vision
Transformer(ViT), Swin Transformer, and their modi-
fications [46, 47] keep improving the state-of-the-art
performance in various CV tasks. In the proposed
framework, we deploy two representative networks,
DCNN and Swin Transformer, to implement the holo-
gram filter network.

3. Preliminaries and motivation

3.1. RFID Phase model
Sensitive and trustworthy measures from the origi-

nal RFID readings are more useful for locating RFID
tags in real-time. In contrast to RSSI, the phase value
is commonly used in many RFID-based sensing appli-
cations [48, 49, 7]. As shown in (1), the phase reading
θi,m on channel i from antenna m is a periodic function
with a period of 2π.

θi,m = mod
(

4π |T Am|

λi
+ θtag + θeq, 2π

)
, (1)

where |T Am| denotes the distance between tag T and
antenna Am, λi is the wavelength of channel i, and θtag

and θeq are the phase offsets caused by the RFID tag
and RFID hardware such as antenna and reader, re-
spectively. Here θeq is a constant for a given RFID
system; hence it can be calibrated and removed con-
veniently.

3.2. Hologram tensor
Tagoram [50] is the first work to introduce the con-

cept of an RF hologram for RFID localization. The
primary concept underlying an RF hologram is to
compute the similarities between theoretical and mea-
sured phase values for each grid in the surveillance
space. To eliminate the tag-related phase offset, i.e.,
θtag in (1), we use phase difference, instead, as the ob-
servation in our system. The measured phase differ-
ence, obtained with the phase values collected from a
pair of antennas (m, n) on channel i, is denoted as

pi,m,n = mod (θi,m − θi,n, 2π) (2)

When the coordinates of both antennas are known,
the theoretical phase difference between antenna pair
(m, n) on channel i can be determined. The theoretical
phase difference for a tag located at grid position Gx,y,z

from antenna pair (m, n) is given by

qx,y,z
i,m,n = mod

4π
∣∣∣Gx,y,zAm

∣∣∣
λi

−
4π

∣∣∣Gx,y,zAn

∣∣∣
λi

, 2π

 (3)

With the measured and theoretical phase differ-
ences, their similarity, S x,y,z, can be estimated as fol-
lows.

S x,y,z =
∑

(M,N)

∑
I

1

σ
√

2π
exp

− (δx,y,z
i,m,n)2

2σ2


δ

x,y,z
i,m,n = mod

(
pi,m,n − qx,y,z

i,m,n, 2π
) (4)



4 X. Wang, J. Zhang, S. Mao, S.C.G. Periaswamy, and J. Patton

where (M,N) represents the set consisting of all avail-
able antenna pairs, and I denotes the set of all avail-
able channel indices. The hologram tensor, S, is con-
structed as

S =


S 1,1,z S 1,2,z · · · S 1,y,z
S 2,1,z S 2,2,z · · · S 2,y,z
...

...
. . .

...
S x,1,z S x,2,z · · · S x,y,z

 , z = 1, 2, ...,Z (5)

where each element is scaled to have a value in [0, 1]
in the proposed system.

3.3. Motivation

MulTLoc is, to the best of our knowledge, the first
effort to train deep learning models for real-time 3D
localization using hologram tensors. Although some
indoor localization systems, e.g., [18, 39, 51], use RF
signals to produce images or tensors for offline train-
ing, the generated data may lack a strong relationship
between the observation and the spatial location. In
these applications, images and tensors are employed
as fingerprints, and deep networks are used as classi-
fiers. The ambiguity between fingerprints may be lost
throughout the dataset construction process, thus re-
stricting the transferability of the localization model.
In comparison to the images and tensors in the preced-
ing studies, the hologram tensor is interpretable. The
hologram tensors represent the possibility of a tag lo-
cated at a grid position in the surveillance space. The
similarity S is directly connected to the distances be-
tween the tag and antennas, and it exhibits a high de-
gree of independence from the equipment utilized to
generate the tensor.

A hologram matrix formed in a two-dimensional
area is shown in Fig. 1. It displays the two-
dimensional projection of the hologram matrix. The
exact location of the target tag is indicated by the red
pentagram. As can be seen, there is a peak at the posi-
tion of the ground truth. However, because of the mul-
tipath and phase wrapping effects, multiple fake peaks
are also formed and distributed across the hologram.
Some of the fake peaks have even greater similarity
values. To avoid such issues, data prepossessing has
become a key component of many RFID-based sens-
ing systems. Some ways improve accuracy at the ex-
pense of real-time performance. Channel selection [1]
and phase sanitation [52], for example, are used to
keep systems away from phase readings tainted by the
multipath effect. Such approaches, however, may be
impractical for real-time localization systems. This
is because multiple-round interrogations are required,
and the tag (or target) will not remain stationary until
the system performs a sufficient number of interroga-
tions.

Moreover, some applications rely on specific hard-
ware and deployment, such as the synthetic-aperture
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Fig. 1: Hologram of a 2D scenario. The red pentagram denotes the
ground truth and a brighter color indicates higher similarity.

array [53] and multi-resolution filtering [54], to miti-
gate the detrimental effect caused by the phase wrap-
ping ambiguity. Although these technologies provide
sufficient precision and real-time performance, the re-
quirement for customized hardware increases costs
and restricts compatibility with COTS RFID systems.
Furthermore, tag localization in 3D spaces is a more
difficult challenge than in 2D spaces. In this paper, we
presents two unique neural networks that have been in-
tegrated into our proposed framework to address these
challenges.

4. Overview of the MulTLoc system

In this paper, we present MulTLoc, an RFID-based
localization framework for estimating the location of
multiple tags simultaneously in 3D space utilizing
noisy hologram tensors. Although MulTLoc, like nu-
merous previous deep learning-based localization sys-
tems, is trained using ground truths provided by sen-
sors like an RGB-D camera, the localization problem
is treated as regression in this study. To estimate the
coordinates of unknown sites, traditional fingerprint-
ing methods leverage deep neural networks to treat lo-
cation estimation as a classification problem. The size
of the fingerprint database limits the accuracy of lo-
calization, and the granularity of the fingerprints de-
termines the inherent inaccuracy of the system. The
network would not give location estimation instanta-
neously in the MulTLoc framework. Instead, noisy
hologram tensors are regressed to single-peak holo-
gram tensors, which are free from the fake peaks intro-
duced by multipath and phase wrapping effects. Loca-
tion estimation is then performed intuitively using the
sanitized hologram tensor.

4.1. MulTLoc system architecture

Fig. 2 depicts the MulTLoc architecture. An RFID
system collaborates with a vision-based sensor to gen-
erate hologram tensors and the accompanying ground
truth tensors, respectively, for training the hologram
filtering networks. Because the hologram tensors and
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Sanitized Hologram Tensor

Hologram  Filter Networks

Tag Location Estimation

DCNN
Swin

Transformers

Peak Detection Algorithm

RGBD Camera

ROS

Coordinate Transformation and

Synchronization

Data Augmentation

Hologram Tensor Generation

Ground Truth Tensor Generation

Fig. 2: The MulTLoc system architecture.

ground truth coordinates provided by the vision-based
sensor are typically in distinct coordinate systems, our
proposed framework uses the Robot Operating System
(ROS) to synchronize and unify the data acquired from
diverse hardware. Generally, any deep neural network
capable of sanitizing noisy hologram tensors would be
compatible with MulTLoc. We utilize two typical neu-
ral networks in this paper to evaluate the performance
of the proposed framework. Finally, the unknown tag
position can be induced conveniently using a simple
peak detection algorithm with the sanitized hologram
tensors.

Based on the proposed framework, we deploy two
representative deep network models for creating the
hologram filter network. First, a DCNN-based holo-
gram filter network is designed with the hourglass
backbone to clean and compress noisy hologram ten-
sors. To recover the original size of the hologram
tensor, trilinear interpolation or equivalent approaches
could be used before peak detection. Data augmen-
tation is used to prevent overfitting in the training of
the DCNN-based hologram filter network. Further,
the DCNN network architecture in this paper is re-
lated to the channel of input tensors. The architec-
ture shown in Fig. 3 is for locating three tags simul-
taneously, where three residual units are used to sani-
tize the hologram tensors from three tags. Additional
residual units are required to cope with more channels,
resulting in the expansion of network architecture. To
resolve the issue, another hologram filter network is
also proposed with the Swin Transformer for keep-
ing the architecture stable for taking care of the ten-
sors from more tags. The output of the network keeps
the original size of the input tensors, which will be di-
rectly adopted for location prediction. Self-supervised
learning is deployed in the training to extract latent
features from noisy hologram tensors. Once the net-
works have been properly trained, the vision-based
sensor will no longer be required when the system is
applied for location estimation.

Residual

Unit Hourglass

Unit-1

Hourglass

Unit-2

Hologram

Tensors

LR Tensors

Residual

Unit

Residual

Unit

Fig. 3: Architecture of the DCNN based hologram filter network.

4.2. Training dataset generation
In order to successfully train the deep networks, it

is essential to label the hologram tensor with the rel-
evant ground truth tensor. However, the ground truth
coordinates and hologram tensors are acquired by dif-
ferent sensors with distinct coordinate systems. The
reported coordinates for most vision-based sensors are
normally determined by the coordinate origin of the
sensor space. For example, the center of the depth
sensor is the origin of the coordinates for Kinect V2,
whereas the surveillance space determines the coor-
dinates of the antennae of MulTLoc. ROS is used
in MulTLoc to integrate the hologram tensors from
the RFID system and the coordinates from the vision-
based sensor, to label hologram tensors with accurate
ground truth tensors. We transfer all coordinates from
the vision-based sensor into the frames of the holo-
gram tensors depending on the sensor pose and posi-
tion in the surveillance space. To ensure synchroniza-
tion, timestamps are appended to both the hologram
tensors and the ground truth coordinates. The coordi-
nates with the most recent timestamp will be assigned
an RF hologram tensor.

The ground truth tensor, K, is constructed using a
Gaussian kernel. Based on the synchronized ground
truth coordinates by measuring the Euclidean dis-
tance

∣∣∣Gx,y,zH
∣∣∣ between the grid location Gx,y,z and the

ground truth location H, the ground truth tensor, K, is
formulated as

K =


K1,1,z K1,2,z · · · K1,y,z
K2,1,z K2,2,z · · · K2,y,z
...

...
. . .

...
Kx,1,z Kx,2,z · · · Kx,y,z

, z = 1, 2, ...,Z (6)

Each element of K is given by

Kx,y,z =
1

ε
√

2π
exp

−
∣∣∣Gx,y,zH

∣∣∣2
2ε2

 (7)

where ε controls the radius of the ground truth peak.
In the MulTLoc framework, K supervises the train-
ing of hologram filter networks. To coordinate the
compressed output of the DCNN-based hologram fil-
ter network, the ground truth tensor K is downsam-
pled. Since the hologram tensor is interpretable spa-
tially, our training dataset is augmented by the flipping
and rotating operations in the training of the DCNN
based hologram filter network.
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4.3. Design of DCNN for filtering hologram tensors

As shown in Fig. 3, a DCNN-based hologram filter
network is introduced to remove fake peaks from holo-
gram tensors. Compared to the changing settings that
compromise the efficacy of fingerprinting-based lo-
calization systems, the positional connection between
tags is relatively constant, especially for passive tags
attached to items. The hologram filter network is in-
tended to learn the spatial connection between tags in
order to differentiate the real peaks in RF hologram
tensors. We downsample the hologram tensors from
n tags and concatenate them into an n-channel tensor
using residual units to reduce the amount of weights
in the proposed network and accelerate training. The
newly created n-channel tensor retains the detailed in-
formation in the original hologram tensors while also
including a coherent understanding among the tags. In
our following experiments, n is set to three, i.e., to lo-
cate three tags at the same time.

The residual unit of the hologram filter network
consists of two residual blocks [55], each consisting of
two three-dimensional convolutional layers. The hour-
glass blocks [42] are arranged end-to-end following
the residual blocks as the backbone of the hologram
filter network to extract features in the n-channel ten-
sor at different sizes. The design of the hourglass unit
is comparable to that of an encoder-decoder network,
as shown in Fig. 3. The input tensor is first compressed
and then upscaled in the unit. The bottom-up, top-
down inference is repeated by stacking the hourglass
units. By computing the loss between the ground truth
tensors and the output tensors, the deep network is op-
timized with the Adam algorithm. We will discuss the
selection of loss function in the following section. For
accelerating training, intermediate supervision is ap-
plied at each hourglass unit in the DCNN-based holo-
gram filter network. The hologram filter network pro-
duces a low resolution, n-channel tensor (i.e., the LR
Tensor), which is divided into n low resolution holo-
gram tensors for location estimation.

Fig. 4(a) and Fig. 4(b) display the input and output
of the hologram filter network, respectively. Lower
similarity values are shown as bluish pixels in the fig-
ures. The RF hologram tensor is produced using the
phases gathered from our testbed, which covers a re-
gion of dimension 1.5m×1.5m×1.5m (see Section 5.1
for details). Fake peaks spread out in the original
hologram tensor, similar to the hologram matrix in the
two-dimensional case. Although the space has four
bands with greater similarity values, no clear peak can
be recognized. The hologram filter network generates
the sanitized hologram tensor, shown in Fig. 4(b), by
mixing the holograms from the three tags. The ma-
jority of the fake peaks in the input tensor have now
been muted. The single bright spot is in the center of
the filtered hologram tensor, which is similar to that
in the ground truth tensor shown in Fig. 4(c). The
spatial connection among the tags has now helped to

retrieve the accurate location information concealed
among fake peaks.

4.4. Design of Swin Transformers for filtering holo-
gram tensors

However, the cleaned tensor is compressed by the
DCNN based network in Fig. 4(b). Because the in-
put of our networks is a 4D tensor (i.e., it consists of
150×150×150×3 pixels in the following experiment),
and the number of parameters escalates with the use
of 3D convolution, the output size is reduced to save
memory while utilizing the DCNN as the backbone.
Data compression appears to be at the expense of lo-
cation estimation accuracy. Furthermore, the num-
ber of input channels (i.e., the number of tags to lo-
cate) determines the architecture of the DCNN net-
work. to deal with tensors from three tags, three resid-
ual units are included. Therefore, the compatibility of
the framework remains limited when the DCNN back-
bone is used.

To address the issue, we employ a Swin
Transformer-based network to sanitize the noisy holo-
gram tensors. In our framework, this approach is
functionally equivalent to the DCNN-based network
but offers several advantages. The Swin Transformer
backbone not only exhibits robustness to different
sizes of the input tensor, but also produces output with
the same size as the input tensor. Fig. 5 illustrates
the architecture. The network is a 3D variation of the
U-Net [43] with a Swin Transformer backend. The
input tensor is first split into non-overlapping 3D to-
kens, which are subsequently fed into the Swin Trans-
former blocks. Our implementation sets the patch size
to 2 × 2 × 2. It consists of a raw feature dimension
of 2 × 2 × 2 × 3 associated with the multi-tag holo-
gram tensor with three channels. The raw features are
projected into a 48-dimensional space using a linear
embedding layer, which is consistent with the tradi-
tional Swin Transformer. Then, the processed tokens
are applied with Swin Transformer blocks.

Fig. 6 plots the shifted window based self-attention
in the Swin Transformer blocks, where W-MSA and
SW-MSA represent the regular window based Multi-
head Self-Attention (MSA) and shifted window based
MSA, respectively. A LayerNorm (LN) layer is
adopted before each MSA and MLP. The tokens are
first partitioned into small cubes in the Swin Trans-
former block. For example, the token of H × W × D
would be divided in to H

M ×
W
M ×

D
M cubes with a win-

dow of M × M × M. In the following block, the win-
dow would shift ( M

2 ,
M
2 ,

M
2 ) pixels, so that the connec-

tion between neighboring non-overlapping windows
in the previous block would be introduced in the net-
work. With this approach, the output of two consecu-
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(a) (b) (c)

Fig. 4: (a) The original hologram tensor. (b) The filtered hologram tensor. (c) The full-size ground truth tensor.
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Fig. 5: Architecture of the Swin Transformer based hologram filter network.

tive Swin Transformer blocks is computed as

ŝl = W-MSA(LN(sl−1)) + sl−1

sl = MLP(LN(ŝl)) + ŝl

ŝl+1 = SW-MSA(LN(sl)) + sl

sl+1 = MLP(LN(ŝl+1)) + ŝl+1 (8)

The self-attention is given by

Attention(Q,K,V) = SoftMax
(

QKT

√
d

+ B
)

V (9)

where Q,K,V stand for queries, keys, and values, re-
spectively; d is the scale-down factor; and B is the
relative position bias. A patch merging layer always
follows the Swin Transformer blocks for shrinking the
size of the features by a factor of 2 in each stage. The
output of each stage will not only be passed on to
the subsequent stage, but also be fed into the DCNN-
based decoders to regenerate the filtered hologram ten-
sor.

The feature representation from the Swin Trans-
former backbone is firstly adjusted through a convo-
lutional encoder before it is concatenated with the fea-
tures from the decoder of the lower layer. The con-
volutional decoder processes the merged features, and
the output returns to the higher layer. In our imple-
mentation, the filtered hologram tensor is obtained
directly with the convolutional decoder from the top

MLP

LN

SW-MSA

LN

MLP

LN

W-MSA

LN

Fig. 6: Swin Transformer blocks.

layer. To supervise the training of the network, a
mixed loss function is formulated as

Lmix = α × LMS-SSIM + (1 − α) × L`1 (10)

where LMS-SSIM is the multiscale structural similarity
index, L`1 represents the `1 loss, and α is a hyper-
parameter [56].

4.5. Self-supervised pre-training of the Swin Trans-
former

Self-supervised pre-training has made a significant
contribution to the development of cutting-edge mod-
els for a wide range of NLP tasks. Recent research has
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Fig. 7: Architecture of self-supervised pre-training.

identified numerous self-supervised methods aimed
at enhancing the capacity of deep neural networks
in leaning feature representations for vision tasks as
well [57, 58]. In this paper, self-supervised pre-
training is leveraged with the Swin Transformer-based
hologram filter network to promote the performance
of sanitizing noisy tensors in the proposed framework.

According to Fig. 7, we adopt three pretext losses
to facilitate effective data representation learning in
self-supervised pre-training, which are inspired by the
prior work for medical image analysis [59]. The in-
put hologram tensor S is firstly cropped and rotated
to generate sub-volumes randomly. The Swin Trans-
former backbone is utilized to extract feature repre-
sentations from sub-volumes. Simultaneously, three
different projection heads are employed to fulfill the
corresponding pretext tasks. The first task is to predict
the angle rotation of the sub-volumes in six classes in-
cluding 90◦,−90◦ along with the x-axis, y-axis, and
z-axis, respectively. The cross-entropy loss is utilized
as follows:

Lrot = −

6∑
m=1

rm × log(r̂m) (11)

where r̂m is the SoftMax result from the rotation head,
and rm is the ground truth.

Tensor recovering task is also a part of self-
supervised pre-training. We mask out a portion of
pixels in the sub-volumes with a ratio s. The sub-
pixel convolution in the recover head regenerates the
masked pixels with the feature representation from
the Swin Transformer backbone. The MSE loss Lrec

is leveraged to measure the difference between the
ground truth sub-volume S sub and the recovered sub-
volume Ŝ sub, which is given as,

Lrec =
1
P

∑
(S sub − Ŝ sub)2 (12)

where P is the number of pixels in the sub-volume.
Contrastive learning [57] is also a part of self-

supervised training in the proposed framework. We

leverage a simple instance discrimination task as the
pretext task. Two correlated sub-volumes of the input
hologram tensor, s and s+, are generated with the ten-
sor rotation and cutout at first. With the Swin Trans-
former backbone and the contrastive head, the feature
representations are extracted from s and s+ and de-
noted as q and k0. For a minibatch of N tensors, only
the feature representation from the same input tensor
is treated as positive pair, while the feature representa-
tion {k1, k2, ..., kN−1} from the rest N −1 tensors are the
negative examples. Apparently, the instance discrim-
ination task is actually an N-way classification prob-
lem, which tries to classify q as k0. Thus, the con-
trastive loss function, called InfoNCE [60], is defined
as

Lcontrast = − log
 exp(q·k0/α)∑N−1

m=0 exp(q·km/α)

 (13)

where the dot product is implemented to measure the
similarity between the feature representations, and α
is a temperature hyper-parameter.

Finally, the Swin Transformer backbone is self-
supervised by minimizing the complex loss function,
which is defined as follows:

L = Lrot +Lrec +Lcontrast (14)

Our Swin Transformer-based hologram filter net-
work is fine-tuned using regular supervised learn-
ing after self-supervised pre-training. Fig. 8 depicts
the progress brought by self-supervised pre-training.
Fig. 8(a) and Fig. 8(b) show a noisy hologram ten-
sor slice and the corresponding ground truth slice. In
Fig. 8(c), a sanitized slice of the hologram tensor is
generated using the pre-trained weight, while Fig. 8(d)
shows the slice sanitized by the network without the
self-supervised pre-training. By comparing Fig. 8(a)
and Fig. 8(c), we notice that the stripe pattern in
Fig. 8(a) is extracted and recovered in Fig. 8(c). The
peak spot locates at one of the stripes in the slice,
which is consistent with our observation in Fig. 1. The
stripe pattern, however, vanishes in Fig. 8(d). Instead,
the shadow area in Fig. 8(d) is consistent with the blur
area in Fig. 8(a). It appears that the network learns
how to sanitize the tensor via a “shortcut,” which is
not what we expect. Furthermore, the area of the peak
spot in Fig. 8(c) is significantly more focused than that
in Fig. 8(d). This result verifies that self-supervised
pre-training is able to improve location estimation by
extracting detailed and interpretative feature represen-
tations from noisy tensor inputs.

Furthermore, Fig. 8(e) displays a slice of the san-
itized tensor using the DCNN-based hologram filter
network. Compared to the previous slices, Fig. 8(e) is
almost identical to the ground truth slice in Fig. 8(b).
Even though the slice is much cleaner than the slices
from the Swin Transformer, the details from the orig-
inal input tensors are lost through the DCNN-based
network. It is difficult for us to discover how the
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Fig. 8: (a) A slice of the input tensor. (b) A slice of the ground truth tensor. (c) A slice of the sanitized tensor using self-supervised pre-training.
(d) A slice of the sanitized tensor using supervised learning.(e) A slice of the sanitized tensor obtained with the DCNN-based network.

network cleans up the tensor in the forward propa-
gation. The phenomenon exhibits the difference be-
tween the DCNN backbone and the Swin Transformer
backbone. The Swin Transformer has a stronger repre-
sentation capacity, since the effective features are re-
tained in Fig. 8(c). However, it usually suffers from
data shortage because of the lack of the typical convo-
lutional inductive bias. On the other hand, the DCNN
backbone performs well even with a dataset of limited
size. The detailed comparison between the two back-
bones will be presented in the following section.

4.6. Location estimation

The tag location can be readily inferred using a
simple peak detection algorithm applied to the san-
itized hologram tensors. Because the sanitized ten-
sor from the DCNN-based hologram filter network is
compressed, we employ trilinear interpolation to re-
cover its size. The estimated location Ĝ is computed
as follows.

Ĝ = {G | f (SR,G) = max(SR)} (15)

where f (·) extracts the similarity value at the grid lo-
cation G from the sanitized hologram tensor SR.

5. Experimental study

5.1. Testbed configuration

To evaluate the performance of the proposed frame-
work, we create a prototype using a Zebra FX9600
reader and eight Zebra AN720 antennas, as shown in
Fig. 9. Besides, three UPM Raflatac Frog 3D tags are
utilized as localization targets, which are attached to
the body of a subject. In the experiment, we evalu-
ate the proposed framework by concurrently localizing
the three tags to ensure real-time performance, tak-
ing into account that a commercial RFID reader can
interrogate tags at a rate of roughly 500Hz [61]. A
Kinect V2 device collaborates with a 3D human posi-
tion estimation algorithm [62] to produce ground truth
coordinates for supervised learning. For dataset cre-
ation and tag position estimation, the target tags are at-
tached to the two shoulders and the neck. ROS Kinetic
Kame is utilized to synchronize and unify the coordi-
nates and tensors from Kinect V2 and the RFID reader.

Fig. 9: The MulTLoc testbed setup.

We adjust the requirement for hologram tensor cre-
ation to ensure real-time performance of the proposed
framework. When five antenna pairs are available, the
phases from seven channels will be used to construct
the hologram tensors. The surveillance space of the
testbed covers a space of dimension 1.5m×1.5m×1.5m
at a 0.5m height above the ground. The grid size is set
to 1cm. Furthermore, the similarities at each grid posi-
tion in the surveillance space are computed in parallel
using CUDA GPU programming to speed up the con-
struction of hologram and ground truth tensors.

To train the deep networks, we collect phase read-
ings and related coordinates from several volunteers,
each having three tags attached to the two shoulders
and the neck, and moving randomly in the surveillance
space. Three hundred groups of data are included in
the dataset. As illustrated in Algorithm 19, two tensors
from the shoulder tags and one tensor from the neck
tag (step 4) are first generated with the collected phase
readings with eqs. (2), (3) and (5) and section 3.2. The
corresponding ground truth tensors (step 6) are created
using eqs. (6) and (7). Once the tensor-label pairs are
ready, a general supervised training method is able to
optimize the parameters for both deep networks (steps
13-18). The pseudocode for location prediction is pre-
sented in Algorithm 10. Similarly to offline training,
the collected phase readings are used to build holo-
gram tensors as deep network inputs (step 4). The fil-
tered tensor is then directly produced using the well-
trained networks (step 6). Trilinear interpolation is im-
plemented to recover the size of the filtered tensors
(steps 8). Finally, the location prediction of our MulT-
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Algorithm 1: Weights Training of MulTLoc
System

1 Input: network architecture D, target area A, Max epoch, phase
groups φ = {θ1, θ2, θ3}, ground truth locationsH = {H1,H2,H3},

2 Output: Trained parameters w;

3 //Generate hologram tensor groups S = {S1,S2,S3}

with collected phases φ in target area A;
4 S = HologramGenerator(φ, A);
5 //Generate ground truth tensor groups
K = {K1,K2,K3} with tag locationsH ;

6 K = truthGenerator(H , A);
7 if Swin Transformer is used as backbone then
8 Load the pre-trained w
9 end

10 else
11 Randomly initialize w
12 end
13 while epoch < Max epoch do
14 Shuffle the training data {S,K};
15 for mini-batch {s

′

, k
′

} in {S,K} do
16 compute the loss, L(D,w, s

′

, k
′

);
17 end
18 update w with the computed loss
19 end

Loc system is the coordinates of the pixel with the
highest value in each filtered tensor (step 12). It should
be noted that our proposed MulTLoc is compatible
with the Swin Transformer backbone. As a result,
self-supervised pre-training might be easily adapted
to improve interpretative feature representations. The
pseudocode for the self-supervised pre-training is pro-
vided by Algorithm 12. In each mini-batch, the holo-
gram tensors, which are formed in the same manner as
previous methods, are cropped and rotated to produce
sub-volumes as the labels for self-supervised training
(step 8). After the pre-training is completed, the op-
timized parameter w would be loaded for the general
training of the Swin Transformer-based hologram fil-
ter network. For both schemes, the acquired data is
divided randomly for training, validation, and testing.
Specifically, 80% of the tensor groups are used to train
the deep neural networks. The training dataset in-
cludes seven hundred and twenty RF hologram ten-
sors in total, while the remaining sixty tensor groups
are evenly sperated for validation and testing. An
Nvidia RTX3090 GPU and an RTX A6000 GPU are
utilized to accelerate the computation of the two deep
networks.

5.2. Implementation details
For the DCNN based hologram filter network, the

input tensors are first compressed by residual units and
passed into the hourglass backbone as shown in Fig. 3.
The residual unit consists of two ResUnit block. Each
block is made up of two [3 × 3 × 3] convolution lay-
ers. The hourglass units are used after residual units to
retrieve location information across all scales. In the
unit, a [3×3×3] convolution layer is inserted between

Algorithm 2: Location Prediction of MulTLoc
System

1 Input: phase groups φ = {θ1, θ2, θ3}, target area A, network
parameter w, network architecture D

2 Output: Location estimation Ĝ = {Ĝ1, Ĝ2, Ĝ3};

3 //Generate hologram tensor groups S = {S1,S2,S3}

with collected phases φ in target area A;
4 S = HologramGenerator(φ, A);
5 //Filter hologram tensors with the deep network D

and the well-trained parameters w ;
6 S

′

= D(w,S);
7 // Employ trilinear interpolation to recover the size

of S
′

;
8 S

′

= interpolate(S
′

) ;
9 // Choose the coordinates of the pixel with the

highest value in the filtered tensor as the output ;
10 Ĝ =

{
G | f (S

′

,G) = max(S
′

)
}

Algorithm 3: Self-supervised Pretraining of
MulTLoc System

1 Input: network architecture D, Max epoch, phase groups
φ = {θ1, θ2, θ3}, target area A

2 Output: Trained parameters w;

3 //Generate hologram tensor groups S = {S1,S2,S3}

with collected phases φ in target area A;
4 S = HologramGenerator(φ, A);
5 while epoch < Max epoch do
6 Shuffle the training data S;
7 for mini-batch s′ in S; do
8 Generate sub-volumes groups s′cut and

rotation label r with the mini-batch s′;
9 Compute the loss L(D,w, s′, s′cut, r);

10 end
11 update w with the computed loss
12 end
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Fig. 10: Illustration of the structure of the Hourglass Unit.

two [1×1×1] convolution layers to build a convolution
block. Four blocks are binded as a convolution group
in the hourglass unit. As shown in Fig. 10, the out-
put from the group is then downsampled using a max-
pooling of 2x2 with a stride of 2. The residual con-
nection is inserted between convolution blocks. Also,
the inputs of groups are also added back to the ten-
sor when they are upsampled to the original size. It
is worth noting that the depth of the hourglass back-
bone may be raised recursively. Fig. 10 exhibits an
hourglass unit with a depth of 2, however, our imple-
mented hourglass unit has a depth of 3.

The detailed information about the Swin Trans-
former backbone is presented in Table 1. As is shown
in Fig. 5, four stages are included in the Swin Trans-
former backbone. The feature dimension and the num-
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Fig. 11: CDFs of location estimation errors obtained with different
hologram filter networks.

ber of attention heads will increase by a factor of two
in each stage. With the patch merging, the output size
from stages is shrunk by a factor of two. Two blocks
are included in each stage by default. We will dis-
cuss the effect of feature dimension and the number of
blocks on the performance of location estimation later
in this section.

5.3. Experiment results and discussions
5.3.1. Overall performance

Fig. 11 presents the Cumulative Distribution Func-
tion (CDF) of localization errors, showcasing the over-
all localization precision achieved by different net-
work configurations. The best localization perfor-
mance is achieved by the DCNN backbone cooper-
ating with the MS-SSIM loss function, which has a
mean error of 0.0558m. When the L2 loss is lever-
aged in the DCNN training, the mean localization er-
ror increases to 0.0688m. For the Swin Transformer
based network, a mean error of 0.0961m is achieved
when self-supervised learning is leveraged in train-
ing, whereas the mean error is 0.1041m without self-
supervised training. Even though a precision im-
provement in location estimation is brought by self-
supervised training, DCNN-based hologram filter net-
works, in general, outperforms the Swin Transformer
based networks. This result is not unexpected. In [46],
the authors showed that a large Vision Transformer
underperforms models with ResNet backbone when
a small dataset is utilized in training. Due to the
fact that our dataset only has three hundred groups
of input tensors, it is acceptable to achieve a com-
parable location precision with a Swin Transformer-
based network. Furthermore, the interpretable fil-
tered result is the main reason for us to investigate
the Swin Transformer-based network. As observed
in Fig. 1, where peaks consistently appear on a high-
lighted stripe, Fig. 8(c) recovers the real peak based
on the stripe pattern in Fig. 8(a), which meets our ex-
pectation in location estimation. Additionally, large
Vision Transformer models outperform the ResNet-
based model as the dataset grows in computer vision
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Fig. 12: Location estimation for tags

tasks. Thus Swin Transformer-based hologram filter
network has a great potential when there is sufficient
data.

Fig. 12 depicts the mean locatin errors for tags as
well as the overall average errors of various network
configurations. Apparently, the DCNN-based holo-
gram filter network beats the network with a Swin
Transformer backbone in terms of accuracy. The lo-
cation error obtained from the tag attached to the
left shoulder, with the Swin Transformer backbone,
is approximately 0.103m, which doubles the error of
0.053m achieved with the DCNN backbone. The low-
est error is obtained for the tag attached to the neck
with both networks, which is 0.0525m for the network
with the DCNN backbone, and 0.0916m for the Swin
Transformer based network. In Fig. 12, the mean er-
rors for various systems are also indicated with dashed
lines. The blue and red lines show the overall errors
for networks using the Swin Transformer and DCNN
backbones, respectively. Because RF-Kinect [12] also
performs an experiment in a 1.5m × 1.5m scanning
region, its average location error of 0.0512m is dis-
played as a green line for comparison with our pro-
posed approaches. As illustrated in Fig. 12, even
though RF-Kinect exhibits a small improvement in lo-
calization accuracy over the DCNN-based network,
the extended version of the DCNN-based hologram
filter network, denoted as Hourglass×5, achieves an
error of 0.0489m, outperforming all other methods.
The network extension will be discussed next.

5.3.2. Effect of loss function on location error
Two representative deep neural networks are used

as backbones in this paper to sanitize the noisy holo-
gram tensors. First, the framework employs a 3D vari-
ant of the U-Net with a Swin Transformer backbone.
This type of network is proposed in [63] for seman-
tic segmentation. However, the purpose of semantic
segmentation is to label each pixel in the image with
the right label, which does not match our task of tensor
sanitizing. Labels are not utilized in our task. The pix-
els are filtered with the network to produce a smooth
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Table 1: Details of the Swin Transformer Backbone

Stage-1 Stage-2 Stage-3 Stage-4

Layer Size
[
win. sz. 7×7×7
dim 48, head 3

]
× 2

[
win. sz. 7×7×7

dim 48×2, head 6

]
× 2

[
win. sz. 7×7×7

dim 48×4, head 12

]
× 2

[
win. sz. 7×7×7

dim 48×8, head 24

]
× 2

Output Size (24×24×24) (12×12×12) (6×6×6) (3×3×3)
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Fig. 13: Location estimation effected by different loss function

and continuous sanitized tensor. Tensor sanitizing,
from this perspective, is similar to image restoration
and denoising. The fake peaks related to phase wrap-
ping and multipath effect can be treated as blur and
noise in the hologram tensor. Therefore, two loss
function in image restoration, L1 loss and MS-SSIM
loss [56], are introduced to the Swin Transformer-
based network aimed at enhancing the performance of
tensor sanitizing.

According to Fig. 13, the mean location error is
0.1469m when the L2 loss is utilized in the training.
Location estimate continues to improve with the use
of MS-SSIM loss and L1 loss. The MS-SSIM loss re-
duces the mean error to 0.1322m, while the L1 loss
contributes to a mean error of 0.1267m. Moreover,
we use a joint loss function that includes both MS-
SSIM loss and L1 loss to improve the performance of
the Swin Transformer-based hologram filter network.
When self-supervised learning is used, the error is op-
timized to 0.0961m.

Since the joint loss function achieves an outstand-
ing performance in improving the localization accu-
racy for Swin Transformer-based hologram filter net-
work, we examine the effect of the ratio between L1
loss and MS-SSIM loss on location error in Fig. 14. It
is evident that the location error remains high when L1
loss, or the MS-SSIM loss, is deployed in the training
individually (i.e., when α = 0.0, or when α = 1.0).
With the increment of α, the MS-SSIM loss is intro-
duced into the supervised training. The location error
drops to 0.1154m when α is 0.2. Even though a slight
stagnation happens as α is 0.4, the lowest location er-
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Fig. 14: Location estimation affected by α using the Swin Trans-
former backbone.

ror is achieved when α rises to 0.6. After that, as the
L1 loss disappears, the localization accuracy contin-
ues to deteriorate.

However, the DCNN-based hologram filter network
does not benefit from the joint loss function consist-
ing of the L1 loss and MS-SSIM loss. The hourglass
network, a convolutional network architecture for hu-
man pose estimation, serves as the backbone of the
DCNN-based hologram filter network. The main idea
of the hourglass network is to capture the spatial in-
teractions associated with the key points using a re-
peated bottom-up, top-down covolutional structure. It
converges to our tensor filter task, in which we attempt
to extract the true peaks existing in a multiple-channel
hologram tensor by using the spatial relationship be-
tween peaks in different channels. However, the loss
functions for image restoration cannot match the hour-
glass network perfectly. The L1 loss produces the
largest error of 0.0911m in Fig. 13. Despite the fact
that the MS-SSIM loss leads to the best localization
accuracy with a mean error of 0.0558m, the joint loss
function cannot replicate its effect on the Swin Trans-
former backbone. The location error related to the L1
loss is even higher than the error achieved by the L2
loss, which are 0.0741m and 0.0688m, respectively. In
Fig. 15, we also examine the effect of ratio α between
the L1 loss and MS-SSIM loss on location error. Al-
though the location error drops as the MS-SSIM loss
is involved in the training, the overall localization ac-
curacy is not elevated by the joint loss function. When
α is 0.6, the localization accuracy even gets worse.
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Fig. 15: Location estimation affected by α using the DCNN back-
bone.
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Fig. 16: Location estimation obtained by the joint function consist-
ing of the L2 loss and MS-SSIM loss.

To acquire the best localization accuracy with the
DCNN-based hologram filter network, a joint loss
function comprising both the L2 loss and MS-SSIM
loss is investigated. Let β be the ratio between the
L2 loss and MS-SSIM loss, which follows the similar
way as the α in (10). The effect of β on location er-
ror is presented in Fig. 16. With the growth of β, the
MS-SSIM loss is utilized to advance the localization
accuracy. As β reaches 0.4, the MS-SSIM loss signifi-
cantly improves the situation, but after that the growth
rate slows down. Eventually, the optimized location
error is obtained when the loss function is composed
by the MS-SSIM loss only.

5.3.3. Effect of model size on location error
The backbone architecture has a considerable im-

pact on the performance of the hologram filter net-
works. To evaluate the localization accuracy resulted
by the structural changes, we conduct experiments
with different number of trainable parameters using
two hologram filter networks. In Table 2, the num-
ber of layers in a Swin Transformer-based network is

Table 2: Location Estimation Affected by the Setup of the Swin
Transformer based Hologram Filter Network (*: the default setting)

Structure # of parameters (M) Location Error (m)

(2,2,2,2)∗ 62.2 0.0961
(2,2,4,2) 63.1 0.0985
(2,2,6,2) 64.1 0.1072
(2,2,8,2) 65.0 0.1064

Table 3: Location Estimation Affected by the Feature Size (*: the
default setting)

Dimension Size # of parameters (M) Location Error (m)

12 4.07 0.1175
24 15.7 0.1135
48∗ 62.2 0.0961

Table 4: Location Estimation Affected by the Setup of the DCNN
based Hologram Filter Network (*: the default setting)

Structure # of parameters (M) Location Error (m)

Hourglass ×2 33.4 0.0565
Hourglass ×3∗ 49.9 0.0558
Hourglass ×4 66.3 0.0523
Hourglass ×5 82.7 0.0489

firstly varied. According to [22], only the layers in
Stage-3 is varied, where (2, 2, 2, 2) indicates a default
layer configuration where two layers are included in
each stage. As we can see, the number of parameters
grows with the increasing number of layers. However,
the location error does not improve significantly. De-
spite an increase in the number of parameters from
62.2M to 65.0M, the distance error remains at about
0.1m.

Another key parameter influencing the scale of the
Swin Transformer backbone is dimension size, given
as dim in Table 1. It determines the output dimension
of the linear layer in a Transformer block. Because the
dimension of the current stage is determined by the
dimension of the preceding stage, any change in the
first stage would drastically alter the scale of the entire
network. Table 3 employs three different dimension
sizes, i.e., 12, 24, and 48, to investigate their impact on
the number of parameters and localization accuracy.
When the dimension size is 12, the network consists
of just 4.07M trainable parameters; therefore, the ca-
pability of the network is constrained by the confined
size. The location error degrades to 0.1175m. As we
double the dimension size to 24, the number of train-
able parameters grows to 15.7M. Correspondingly, the
extent of the network size contributes to the enhanced
localization accuracy. The error drops to 0.1135m. We
further increase the dimension size to 48 to examine
the improvement in localization accuracy brought by
the enlarged network. In this scenario, the hologram
network is composed of 62.2M parameters and the lo-
cation error becomes 0.0961m.



14 X. Wang, J. Zhang, S. Mao, S.C.G. Periaswamy, and J. Patton

DCNN Swin Transformer
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Lo

ca
tio

n 
Er

ro
r (

m
)

UPM Raflatac Frog 3D tags
data2

Fig. 17: Location estimation obtained for different tags.

We also study the influence of network size on the
localization precision of the DCNN-based hologram
filter network. Due to the architecture of the hour-
glass backbone, it is convenient to stack several hour-
glass units for network expansion. Four variations of
the hourglass backbone are deployed and the results
are presented in Table 4. The number of parameters
grows in direct proportion to the number of hourglass
units leveraged in the backbone. With the increment of
the number of parameters, the location error declines
gradually. The lowest error of 0.0489m is obtained
when five hourglass units, with 82.7M parameters, are
used in the network.

5.3.4. Robustness of Hologram Filter Networks
To investigate the robustness of the hologram fil-

ter networks, SML GBe4U7 tags are deployed in the
framework to collect hologram tensors. The tags are
attached to the human body at the same position as
in the previous experiments. The newly collected ten-
sors are not used to train, or fine tune, the hologram
filter networks. Instead, the experimental results are
derived directly from the newly collected tensors us-
ing networks that were previously trained. Fig. 17
delineates the performance degradation resulted from
different tags. Obviously, a significant performance
degradation occurs with both networks. However,
the Swin Transformer-based network is more robust
to the change of tags. Even though DCNN-based
network achieves a location error of less than 6cm,
its accuracy suffers when facing tags that have never
been used in training. In the new tag test, the Swin
Transformer-based network outperforms the DCNN
network by approximately 20cm. It potentially shows
that the interpretable pattern extracted by the Swin
Transformer-based network is beneficial to tensor san-
itization in different tags, whereas the DCNN-based
network might rely on certain “shortcuts” for tensor
cleaning, which could adversely affect its transferabil-
ity.

6. Conclusions and future work

In this paper, we presented MulTLoc, a frame-
work that utilizes deep neural networks for filtering RF
hologram tensor in order to locate multiple RFID tags
in 3D spaces. To our knowledge, this paper represents
the first attempt to train deep neural networks using
hologram tensors for the purpose of 3D localization
based on RFID tags. Two representative deep learning
models were incorporated in the MulTLoc framework.
First, we built a DCNN-based hologram filter network.
The network successfully recovered cleaned hologram
tensors. Centimeter-level multiple tag localization was
achieved successfully with sanitized hologram tensor.
In addition, a Swin Transformer-based network was
also used to sanitize the hologram tensors aimed at en-
hancing the compatibility of the proposed framework.
The network architecture was not related to the num-
ber of target tags. By adopting self-supervised train-
ing, the network was effectively trained with a small
dataset. We evaluated the proposed framework us-
ing a task of multi-joint location estimation. The re-
sults demonstrated the outstanding performance of the
proposed framework. For future investigations, it be-
comes increasingly difficult to improve the accuracy
of localization systems using a single signal observa-
tion. Consequently, sensor fusion could be a practi-
cal method of taking advantage of various radio fre-
quency signals, such as Wi-Fi, RFID, and mmWave.
Furthermore, deep learning based signal processing,
especially after the rise of chatGPT, could be an attrac-
tive method to eliminate noise brought by the cluttered
environment and enhance localization accuracy.
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