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Abstract 

Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization 

of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor 
heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics 

data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To 

address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution 

from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel 
biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph 

Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. 
Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict 
whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are 

available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing 

methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression 

estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and 

tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at 
https://github.com/compbiolabucf/STGAT. 
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Introduction 

Advancements in genome sequencing technologies have made 

RNA-seq gene expression data affordable and accessible for 

biomedical research [1, 2]. Correspondingly, Hematoxylin and 

Eosin (H&E) stained Whole Slide Images (WSI) are now easily 

obtainable [3]. Integrating RNA-seq gene expression and WSI data
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from the same cohort can enhance disease diagnosis accuracy. 
However, bulk RNA-seq data lacks detailed tissue environment 
information found in WSI cross-sections and may include 

expressions of non-disease cells that could affect prediction 

outcomes [4]. In this regard, the information from single-cell 
RNA-seq (scRNA-seq) proves to be valuable. For example, the 

type, density, and location of immune cells within tumor samples 

are crucial for predicting cancer sub-types as they reveal latent 
disease information [5]. Therefore, examining gene expression 

at or near the cell level, along with location information, 
aids in diagnosing complex biological systems and structures, 
particularly in treating compound diseases like cancer [6, 7]. 
Spatial transcriptomics data, comprising spot-level information, 
has opened the path for meticulous analysis of tissue sections 

and offers a potential connection between affordable bulk RNA-
seq and cell-level gene expression data, enabling the retention 

of location and cell-type information [8, 9]. By using spatial 
transcriptomics, a WSI of a tissue cross-section can be divided 

into multiple gene expression fragments known as spots. Each 

spot represents a few cells and contains gene expression profiles 

with positional information [10, 11]. 
Spatial transcriptomics has proven successful in analyzing var-

ious cancer tissues, including breast [11], prostate [12],melanoma 

[13], pancreas [14] and carcinoma [15]. It has also been applied 

to study diseased tissues such as Alzheimer’s disease [16] and  

gingivitis [17], as well as healthy tissues like the mouse olfactory 

bulb [11], human heart [18], spinal cord [19] and brain [20]. Despite 

these advancements, the applicability of spatial transcriptomics 

data to large cohort studies is often limited because it is relatively 

expensive, labor-intensive and time-consuming [6, 9, 21]. Addi-
tionally, the technology is relatively new compared to bulk RNA-
seq. Hence, spatial transcriptomics data is unavailable in most 
situations. Nevertheless, there are several large cohort disease 

studies (e.g. TCGA [22]) that provide both bulk RNA-seq expression 

for a sample and the corresponding WSI [1, 2]. An estimation of 
spot-level gene expression from bulk RNA-seq and WSI in these 

large cohort studies can be leveraged to uncover more precise 

molecular mechanisms at a near-cellular level for different dis-
eases. This study focuses on developing such an approach to esti-
mate spot-level gene expression from bulk RNA-seq expression. 

Several computational methods have been developed to ana-
lyze spatial transcriptomics data and unveil latent characteris-
tics of human tissues and organs. These methods facilitate the 

analysis of spatial expression patterns [23, 24], determination of 
cell-type composition [25, 26], investigation of cell-to-cell commu-
nication [27, 28], clustering into spatial domains [29, 30] and gen-
eration of spatial embedding representations [31]. Furthermore, 
attempts have been made to predict gene expression at the spot-
level using methods such as ST-Net [32] and HistoGene [33]. A 

recent method named iSTAR [34] aims to predict gene expres-
sion profiles at the pixel level using HViT (Hierarchical Vision 

Transformer). However, these approaches do not fully exploit 
the rich information contained in the data. ST-Net and iSTAR 

process spot images (patches) independently without consider-
ing location information, while HistoGene incorporates spatial 
coordinates but disregards internal 2D visual features of the 

images. Graph Neural Networks [35, 36] show promise in address-
ing these limitations and may offer valuable insights in this 

context. 
In recent years, network-based computational methods, capa-

ble of extracting topological information from large-scale biologi-
cal data, have shown great promise in solving complex problems, 
including precision oncology [37], drug sensitivity analysis [38] 

and single-cell RNA-seq analysis [39]. The spatial information 

present in spatial transcriptomics data can be harnessed to con-
struct a network. The coordinates of a spot provide insight into 

its location within the tissue section and offer contextual infor-
mation about the surrounding environment, leading to improved 

disease diagnosis [29, 40, 41]. For instance, spots infected with 

a specific sub-type of cancer may exhibit spatial proximity and 

influence each other’s behavior. Consequently, a network can be 

generated using spot location information,with closer spots being 

connected to one another. Hist2ST [42] and THItoGene [43], which 

employ the graph learning algorithms, have demonstrated the 

effectiveness of spatial networks derived from spatial transcrip-
tomics data. They outperform previous models (i.e. ST-Net and 

HistoGene) in gene expression prediction tasks. However, both of 
them predict only a limited number of gene expression profiles, 
which restricts the downstream tasks utilizing such expression 

data. Additionally, their applicability is limited to spatial tran-
scriptomics data only.The performance of Hist2ST andTHItoGene 

suggests that the utilization of network information available 

in spatial transcriptomics can significantly impact the results. 
Graph Attention Network (GAT) [44] can efficiently extract topo-
logical information from a network and has shown success in 

various biological tasks, including cancer sub-type prediction [45], 
drug-target interaction prediction [46], tissue structure prediction 

from spatial data [40], drug-microbe interaction prediction [47], 
gene essentiality prediction [48] and single-cell RNA-seq based 

dimensionality reduction [49]. We aim to extend this exemplary 

performance of GAT to spatial transcriptomics. GAT leverages 

the attention mechanism [50] to accumulate information from 

neighboring nodes in a network, with certain neighbors receiving 

more attention than others. This mechanism enables the network 

to focus on relevant and informative connections within the data. 
Motivated by the need to obtain spot-level gene expression 

and drawing inspiration from the success of the GAT model, we 

present STGAT, a novel machine learning framework designed 

to predict gene expression profiles at the spot-level. STGAT uti-
lizes spot images extracted from WSIs and estimates the gene 

expression for each spot. The framework makes use of the limited 

availability of spatial transcriptomics data to train STGAT, map-
ping the spatial information of each spot to gene expression. The 

trained model is then transferred to bulk RNA-seq data to esti-
mate spot-level gene expression. This framework enables detailed 

downstream analysis tasks by allowing researchers to focus on 

specific regions of interest within a tissue sample. To evaluate 

the performance of STGAT, we conducted tests on a large-scale 

cancer study (i.e. TCGA [22]), which encompasses tens of thou-
sands of cancer samples, providing both WSI and bulk RNA-seq 

gene expression data. Our hypothesis suggests that gene expres-
sion originating from tumor-only spots within a WSI exhibits a 

stronger correlation with the disease phenotype, thereby offering 

more accurate molecular signals for predicting cancer sub-types 

compared to bulk RNA-seq data. Consequently, our objective is to 

classify spots from a WSI into tumor and non-tumor categories 

and estimate the gene expression of each tumor spot. Subse-
quently, gene expression exclusively derived from tumor-only 

spots is utilized for downstream analyses, including biomarker 
identification, cancer sub-type prediction and patient survival 
prediction. 

Materials and methods 

We introduce the STGAT (Spatial Transcriptomics Graph Atten-
tionNetwork)model in this section. Firstly,we provide an overview
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Figure 1. An overall illustration of the proposed framework. The SEG produces embeddings for spot images extracted from a WSI. The GEP then estimates 

spot-level gene expression profiles for the WSI by leveraging the embeddings generated by SEG and the bulk RNA-seq gene expression data of the 

corresponding WSI. The SLP classifies each spot on the WSI as either tumor or non-tumor. In this study, SEG is trained and evaluated on spatial 
transcriptomics data, GEP is trained and evaluated on TCGA data, and SLP is trained on spatial transcriptomics data and applied to TCGA data. 

of the model architecture, outlining its key components ( Fig. 1), 
followed by a detailed description of each component. Next, we 

describe the datasets utilized for training and evaluating STGAT, 
along with the pre-processing steps applied to these datasets. 
Lastly, we elucidate the training procedure employed for the 

various components of the model. 

Model framework 

The primary objective of the STGAT model is to generate spot-
level gene expression for WSIs using available bulk RNA-seq 

gene expression data. The underlying assumption is that identi-
fying tumor spots and using only these spots can improve down-
stream task performance by reducing noise introduced by other 
spots that are irrelevant to the downstream analysis. The STGAT 

model consists of three fundamental modules: (i) Spot Embed-
ding Generator (SEG), (ii) Gene Expression Predictor (GEP) and 

(iii) Spot Label Predictor (SLP). Initially, SEG is trained on spa-
tial transcriptomics data to map spots from spatial transcrip-
tomics images to their corresponding gene expression values. 
Once trained, the SEG is transferred to bulk RNA-seq data to gen-
erate spot-level gene expression through the GEPmodule. The GEP 

module consists of two components: the pretrained SEG and fully 

connected (FC) layers. Spots generated from WSIs associated with 

bulk RNA-seq data are fed into the pretrained SEG to obtain spot 
embeddings. These spot embeddings, combined with bulk RNA-
seq gene expression data processed through the FC layers, are 

used to estimate spot-level gene expression profiles for the WSI. 
Finally, the SLP module, trained on spatial transcriptomics data, 
is used to classify spots as either tumor or non-tumor. The labels 

produced by the SLP module for a WSI are then used to select only 

the gene expression profiles of tumor spots from the spot-level 

gene expression generated by the GEP module. Tables S1, S2 and 

S3 in the Supplementary document include the mathematical 
notations utilized in the Methods section, the number of different 
blocks used in each module and the composition of each block, 
respectively. 

Spot Embedding Generator 

The SEG module, depicted at the top of Fig. 1, generates embed-
dings for spots with dimensions of 224 × 224. Trained on spatial 
transcriptomics data, the SEG module starts with six Convolu-
tional Neural Network (CNN) blocks followed by an FC layer. These 

CNN blocks are essential for extracting features from the spot 
images, with deeper layers capturing specific details of the spots. 
To avoid losing the 2D contextual information of the spots, we 

have limited the model to six layers. The intermediate FC layer 
prepares the embeddings generated by the final CNN block for 
input into the GAT layer. 

Let’s consider there are v spatial transcriptomics images, 
denoted as X = [X1,X2, . . .  ,Xv]. Additionally, each Xi image 

contains gi spots, and let p represent the number of genes to 

be estimated within each spot in each image. These spot images 

are fed into the first CNN block in mini-batches. Each CNN block 

comprises a convolutional layer, a Rectified Linear Unit (ReLU) 
activation function and a MaxPooling layer, except for the first 
CNN block. 

E(1) 

ij 
= MaxPool(ReLU(Convolution(Xij))) (1) 

E(2) 

i 
= ReLU(WE(1) 

i 
+ B) (2) 

Following Equation ( 1), the output from the final CNN block for 
the jth spot is represented by E(1) 

ij 
∈ R

ec , where  ec is the length of
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the embedding vector.  E(1) 

i 
∈ R

gi×ec denotes the embeddings for all 
gi spots in Xi, which is passed through the intermediate FC layer 
according to Equation (2) to generate E(2) 

i 
∈ R

gi×ec . 
Subsequently, E(2) 

i 
undergoes processing via a GAT layer. This 

layer makes use of the adjacency matrix, denoted as Ai (excluding 

self-connections), which is derived from the distance matrix of 
the image Xi (as detailed in Section Adjacency matrix), to establish 

the underlying graph structure. Our hypothesis suggests that 
when the majority of a spot’s neighboring points are classified 

as tumor spots, there is a high possibility that the spot itself is 

also a tumor spot. We employ two distinct attention coefficients: 
neighbor attention, denoted as αn, and self-attention, denoted as 

αs, with the aim of directing the model to place less emphasis on 

individual spots and prioritize information from their neighbors. 
This approach facilitates the channeling of the characteristics of 
neighboring spots into the spot’s embedding. For the jth spot, 
the neighbor attention coefficient from the kth neighbor can be 

calculated as follows: 

αnijk 
= ReLU

(
asWsE

(2) 

ij 
+ anWnE

(2) 

ik

)
(3) 

where as,an ∈ R
ea are the self and neighbor attention vectors, 

respectively, with ea representing the embedding length of the 

GAT. Ws,Wn ∈ R
ea×ec are weight matrices of self and neighbor 

attention. The neighbor attention coefficient vector αnij ∈ R
gi 

for the jth spot is updated to retain values only for connections 

present in Ai, while others are set to zeros. αnij is then passed 

through the Softmax function for normalization to ensure model 
compatibility with different graph structures generated from var-
ious images. Next, the self-attention coefficient is computed from 

the neighbor attention coefficient vector using the formula αsij = 

1 

1+
∑

k∈Nij 
αnijk 

, where  Nij represents the set of the neighbors for the 

jth spot. 
Finally, the spot embedding for the jth spot is determined by 

Equations (4) and  (5): 

E
′(3) 

ij 
= f 

⎛ 

⎝αsijW
′ 

sE
(2) 

ij 
+

∑

k∈Nij 

αnijkW
′ 

nE
(2) 

ik 

⎞ 

⎠ (4) 

E(3) 

ij 
= ‖h 

l=1f 

⎛ 

⎝αsijlWslE
(2) 

ij 
+

∑

k∈Nij 

αnijklWnlE
(2) 

ik 

⎞ 

⎠ (5) 

where E
′(3) 

ij 
∈ R

ea represents the spot embedding from a single 

head, E(3) 

ij 
∈ R

e is the spot embedding obtained from h heads 

(e = hea) and  f denotes a non-linear function. 
Spot embedding E(3) 

i 
is then passed through two FC layers to 

produce spot-level gene expressions, Y(1) 

i 
∈ R

gi×p, for each spatial 
transcriptomics imageXi. The purpose of the FC layers is to project 
the embeddings of the spots onto gene expression profiles, which 

are necessary for training the SEG module. The final FC layers are 

omitted from the pretrained SEG when it is used to generate spot 
embeddings for WSIs as part of the GEP module. 

Gene Expression Predictor 

The GEP module, depicted in the middle panel of Fig. 1, is designed 

to predict spot-level gene expression for WSI samples. Let T = 

[T1,T2, . . . ,Tt] represents the set of WSIs, where Ti denotes the 

ith WSI containing mi spots. Furthermore, Ũi ∈ R
p represents the 

corresponding bulk gene expression in the set Ũ = [Ũ1, Ũ2, . . . , Ũt], 
with p denoting the number of genes in the bulk RNA-seq gene 

expression data. Spots are initially generated from Ti and input 

into the pretrained SEG to produce an embedding, E(3) 

i 
∈ R

mi×e. 
Concurrently, Ũi undergoes processing through the first compo-
nent of GEP, which consists of two FC layers, resulting in the 

generation of a WSI embedding, Z(1) 

i 
∈ R

e. To  align  E(3) 

i 
and Z(1) 

i 

in a compatible feature space, two learnable weight parameters, 
Wspots and Wbulk ∈ R

e×e, are multiplied with them, as shown in 

Equation (6): 

E(4) 

i 
= WspotsE

(3)T 

i 
, Z(2) 

i 
= WbulkZ

(1)T 

i 
. (6)  

Then Z-score normalization is applied to E(4) 

i 
and Z(2) 

i 
. Z(2) 

i 

is broadcast and added to E(4) 

i 
to generate Z(3) 

i 
∈ R

e×mi in 

Equation (7). 

Z(3) 

i 
= E(5) 

i 
+ Broadcast

(
Z(2)T 

i

)
(7) 

Lastly, Z(3) 

i 
is passed through three FC layers to generate the 

spot-level gene expression for a single WSI, given by Y(2) 

i 
∈ R

mi×p. 
During training, the average expression of all spots within a 

particular image is considered as its bulk gene expression, which 

is then compared to the actual bulk RNA-seq gene expression. The 

SEG module is pretrained on spatial transcriptomics data. The 

pretrained SEG and GEP are utilized to generate spot-level gene 

expression profiles for WSIs. In the final stage of our framework, 
the SLP is employed to classify spots as either tumor or non-tumor, 
enabling the use of only tumor spots’ gene expression data for 
downstream tasks. 

Spot Label Predictor 

As mentioned above, SLP predicts whether a spot is tumor or non-
tumor by feeding spot images to it. SLP contains five CNN blocks 

(similar to Equation (1)), followed by a Maxpool2D layer, two FC 

layers (similar to Equation (2)) and a Softmax activation function 

at the end. SLP is trained on spatial transcriptomics data, which 

contains tumor/non-tumor label information for each spot. The 

pretrained SLP is then used to predict the label of the WSI spots, 
and only the tumor spots are used to compute the average gene 

expression of a WSI image for downstream tasks. 

Training procedure 

The STGAT framework comprises three separate training 

processes for its three modules implemented using Pytorch [51]. 
Firstly, the SEG module is trained using spatial images from the 

spatial transcriptomics data. The spots generated from these 

images are input into the SEG module, which, in turn, produces 

gene expression predictions for all the spots. The training 

objective for the SEG module is based on the Mean Squared Error 
(MSE) loss, calculated as the MSE between the predicted spot-level 
gene expression, denoted as Y(1) 

i 
for the ith spatial image, and the 

corresponding true gene expression, denoted as Ỹ(1) 

i 
as defined 

in Equation (8). This MSE loss serves as the objective function for 
training the SEG module. 

LMSE =

∥∥∥Ỹ(1) 

i 
− Y(1) 

i

∥∥∥
2 

2 

(8) 

After completing the training process, the last two FC layers of the 

SEGmodule are removed to extract the spots’ embeddings directly 

from the GAT layer. 
Next, the GEP module is trained using TCGA WSIs (i.e. images). 

For each TCGA image, the spots generated from the ith image are 

fed into the pretrained SEG to obtain the corresponding spots’ 
embeddings. Simultaneously, the bulk RNA-seq gene expression
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data of the TCGA image is processed through two FC layers. The 

two representations obtained from the spots and bulk RNA-seq 

gene expression are integrated following Equations (6) and (7), as 

discussed in Section Gene Expression Predictor. Subsequently, spot-
level gene expression, denoted as Y(2) 

i 
, is generated for the TCGA 

image, and the average gene expression of all spots, represented 

as Ui ∈ R
p, is computed. The MSE loss between Ũi (the true bulk 

RNA-seq gene expression) andUi is calculated in amanner similar 
to Equation (8), serving as the objective function for training the 

GEP module. 
Finally, the SLP module is trained using the spatial image spots 

to determine the probability of each spot being tumor or non-
tumor tissue. Given the imbalanced class labels in the spatial 
transcriptomics data, Youden’s Index [52] is employed to identify 

a threshold value for classifying each spot. Subsequently, the SLP 

module is trained with the objective of maximizing the F1 score, 
which measures the harmonic mean of precision and recall, by 

comparing the true class labels with the predicted class labels for 
each spatial image. 

Data processing 

Datasets 

Spatial transcriptomics data, along with TCGA data, serve as crit-
ical components for training and assessing the proposed STGAT 

framework. The evaluation process involves the utilization of 
two distinct breast cancer spatial transcriptomics datasets. The 

first dataset is the human breast cancer in situ transcriptomics 

dataset, hereafter referred to as the ‘breast cancer dataset,’ was 

sourced from the Mendeley Data website [53]. The second dataset 
is the HER2-positive breast cancer dataset, hereafter referred to as 

the ‘HER2+ dataset,’ was obtained from the Zenodo data repos-
itory [54]. Additionally, TCGA Breast Invasive Carcinoma (BRCA) 
data [55] is employed to train the GEP module and to facilitate 

subsequent tasks related to gene expression prediction. 
The ‘breast cancer dataset’ comprises a total of 68 spatial 

images, with each image containing around 1000 spots. For every 

spot within each image, there are 13 776 gene expression profiles 

available. It is important to note that spatial location and label 
information (tumor/non-tumor) is only accessible for approxi-
mately 250 to 700 spots within each image, while the remaining 

spots are considered as background and are not utilized in exper-
imental procedures. In this study, 42 samples from the ‘breast 
cancer dataset’ are designated for training,while the remaining 26 

samples are allocated for testing purposes. The ‘HER2+ dataset’ 
is constituted of 36 samples and the number of spots per sample 

within this dataset ranges from 177 to 712. Importantly, all sam-
ples in the ‘HER2+ dataset’ are exclusively used for testing. The 

tumor and non-tumor spots labeled by pathologists are utilized 

as the ground truth for the purpose of training the model. 
The WSIs for the TCGA BRCA data were obtained from the 

Genomic Data Commons Data Portal [56]. The associated bulk 

RNA-seq data pertaining to the same patient samples were 

retrieved from the UCSC Xena Hub [57]. Clinical information for 
these patient samples was collected from cBioPortal [58]. The 

model was trained on 60 BRCA patient samples and tested on 349 

BRCA patient samples with available clinical information. 

Splitting image patches from WSI 

Usually, the size of WSIs is very large. Additionally, using WSI 
images increases the computational complexity of the model by 

many folds [59]. Hence, the WSI is split, or specific regions of inter-
est are selected from the image for processing to serve a specific 

purpose in a study [60–62]. In the spatial transcriptomics data, 

spatial spots are extracted from WSI using location information 

provided in the data. A region of 112 pixels on both sides of the 

(x, y) coordinates (considered as the center of the spot) is cropped 

from the WSI to obtain the spot. However, for TCGA WSIs, lacking 

location information, an initial division of the WSI into spots 

of dimensions 512 × 512 pixels is performed. Subsequently, for 
each spot, the count of pixels with a mean RGB (Red, Green, Blue 

channels) value less than 220 is determined. If this count is less 

than half of the spot’s pixels (i.e. 512×512/2), the spot is classified 

as background; otherwise, it is considered a valid spot. Valid spots 

are then reshaped to 224× 224 pixels, and the corresponding row 

and column values are used as the spot’s (x, y) coordinates for 
constructing the adjacency matrix. 

Adjacency matrix 

In the STGAT framework, an important component is the GAT 

layer, which is designed to leverage the spatial location informa-
tion inherent in spatial transcriptomics data. This spatial context 
is conveyed to the GAT layer through an adjacency matrix of the 

spots network. For each sample image in spatial transcriptomics 

data or TCGA data, a spots network is constructed based on 

the coordinates (x, y) of the spots in each image. The Euclidean 

distance between pairs of spots is computed, as outlined by the 

following equation:

√
(xi − xj)2 + (yi − yj)2 

where i, j denote distinct spots. For a given spot, all computed 

distance values to other spots are normalized by dividing each 

value by the maximum among all such distances. Subsequently, 
only the connections where the distance values fall below a 

specified threshold are set to 1, signifying that the connection is 

retained, while all other connections are set to 0. This process is 

repeated for all spots, resulting in the construction of the binary 

adjacency matrix. Finally, any self-connection is eliminated by 

setting the diagonal entries of the matrix to 0. 

Baseline methods 

To assess the performance of STGAT in predicting spot-level gene 

expression for spatial transcriptomics data, three state-of-the-art 
baseline methods were employed: (1) Hist2ST [42], (2) HisToGene 

[33] and  (3) THItoGene  [43]. However, all of them lack the capacity 

to directly predict spot-level gene expression from bulk RNA-seq 

gene expression data. Therefore, the evaluation of gene expres-
sion produced by STGAT on TCGA data is conducted through a 

comparison with true gene expression values. 
A Vision Transformer (ViT) [63] is employed by HisToGene for 

the gene expression estimation task in the context of spatial 
transcriptomics data. The process begins by segmenting the spot 
image patches from WSIs based on their spatial coordinates. The 

embedding of spot image patches, along with positional embed-
dings, is aggregated using a modified ViT. Subsequently, multi-
head attention layers are utilized to generate hidden embeddings, 
which are then fed into a Multilayer Perceptron for the prediction 

of gene expression. 
Hist2ST employs three modules, namely, Convmixer, Trans-

former and GNN, to predict the gene expression for each 

sequenced spot. The Convmixer module is responsible for 
capturing the 2D relationships within the spot image patch, while 

the Transformer module extracts global spatial dependencies. 
The GNN module leverages the relationships between the spots 

through the utilization of the GraphSAGE algorithm [64]. The
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learned features integrated from these modules are subsequently 

utilized to predict gene expression, employing the zero-inflated 

negative binomial distribution. 
THItoGene leverages four modules with specific functions for 

the gene expression prediction task. The Dynamic Convolution 

[65] module extracts and enhances features from the histolog-
ical image, the Efficient-CapsNet [66] module captures spatial 
relationships and hierarchical structures among features, the ViT 

[63] module attempts to extrapolate long-range dependencies in 

the images, and the Graph Attention Network [44] module learns 

interactions between spatially neighboring spots. 

Experiments 

To evaluate the performance of STGAT and the reliability of 
the estimated gene expression, we conducted comprehensive 

experiments in two main domains. The first set of experiments 

focused solely on spatial transcriptomics data, thereby assessing 

the efficacy of the SEG component of the model. The second set of 
experiments involved WSIs and the corresponding bulk RNA-seq 

data in TCGA, demonstrating STGAT’s ability to transfer acquired 

knowledge from the spatial domain to existing large-scale cancer 
studies. The impact of gene expression estimation by STGAT is 

substantiated through downstream analysis tasks. Section S1 in 

the Supplementary document explains the evaluation metrics 

used for the experiments. 

Evaluation with spatial transcriptomics data only 

In the STGAT framework, the SEG module plays a pivotal role 

as it generates gene expression at the level of individual spots. 
To assess the reliability of the estimated gene expression, we 

calculate the correlation between the true gene expression and 

the predicted gene expression for each spot within every spatial 
image. This helps us assess how well our predictions align with 

the real gene expression patterns. 

Estimated gene expression correlated with the ground truth 

The SEG component within the STGAT framework and the two 

baseline methods were trained on the 42 samples of the ‘breast 
cancer dataset’ and predicted the gene expression at the spot-
level for the remaining 26 samples. The correlations and Mean 

Squared Error (MSE) between the true expression and estimated 

gene expression are presented in Fig. 2 and Supplementary 

Fig. S1, along with the average correlation score and average MSE 

loss across all samples, respectively. It is evident that STGAT 

significantly outperforms all the baseline methods. Notably, 
Hist2ST and THItoGene, which exploit a network structure 

constructed using spot location information, exhibits superior 
performance compared to HistToGene. This observation high-
lights the advantageous nature of integrating spatial information 

for gene expression prediction. Furthermore, the synergy between 

the attention mechanism and spatial information within the SEG 

module allows for the enhanced extraction of nuances of spatial 
transcriptomic data, contributing to the superior performance 

of STGAT. In a GAT layer, the attention mechanism and spatial 
information work cohesively to enhance results. The spatial 
information enables the model to identify neighbors for a target 
node, while the attention mechanism assigns significance to 

these neighbors by allocating attention coefficients. This process 

ensures a focus on the most crucial neighbors while disregarding 

the rest. 
Motivated by these compelling results, we expanded our inves-

tigation to the ‘HER2+ dataset.’ We directly applied the STGAT 

model and the baseline models, previously trained on the ‘breast 
cancer dataset,’ to the 36 samples of this new dataset. The out-
comes are illustrated in Fig. 3 and Supplementary Fig. S2. It  is  

evident that STGAT consistently outperforms the baselines in 

terms of correlation and MSE loss across the majority of the 

samples. The strong correlation and lower MSE loss between gene 

expression predicted by STGAT and the real gene expressions 

gives us confidence in using the predicted gene expression at the 

spot-level for downstream analysis tasks. 
To evaluate STGAT’s performance from a different perspec-

tive, we experimented with Kyoto Encyclopedia of Genes and 

Genomes [67] pathways. Supplementary Fig. S3 displays the top 

twenty pathways with the highest correlation coefficients com-
puted when evaluated on the test samples of the ‘breast cancer 
dataset’. It demonstrates that for these pathways, the correlation 

score between true and STGAT-predicted gene expression profiles 

is higher than the others. Through literature review, it was found 

that indeed, most of the top pathways have direct or indirect 
impacts on cancer or tumor cells [68–70]. 

To further investigate the performance of STGAT, we explored 

the effect of decreasing the number of genes involved in the anal-
ysis. Varying percentages (0.1%, 1.0%, 10% and 50.0%) of the total 
number of genes were randomly selected for the ‘breast cancer 
dataset’ and compared the correlation results in Supplementary 

Fig. S4. The experiment with each percentage value was repeated 

10 times to draw the boxplots. This evaluation reveals valuable 

insights about the model’s behavior. Although a particular gene 

might not have any direct impact on another gene’s prediction, it 
contributes to the neighbor’s attention coefficient. Hence, when 

the number of genes is very low (0.1%, 1%), the performance of the 

model drops significantly along with an increase in the standard 

deviation. When 10% of the genes (approximately 1000 genes) 
are used, the model achieves optimum performance, signifying 

that with proper feature selection, the model can perform much 

better at this level. Further increases in the number of genes do 

not improve the correlation score; however, they decrease the 

standard deviation since the model becomes generalized over 
more genes. 

Estimated gene expression distinguished the tumor and 

non-tumor spots 

As part of the analysis focusing on the gene expression gen-
erated by the SEG module, our objective is to assess whether 
the predicted gene expression contains enough information to 

differentiate between tumor and non-tumor tissue spots. For 
this experiment, we analyzed the predicted gene expression at 
the individual spot-level using STGAT for samples in the ‘breast 
cancer dataset.’ In the context of a single sample (image), top 100 

genes with the most variance are ranked based on their t-test 
P-value between tumor and non-tumor tissue spots. We created 

heatmaps displaying the five genes with the most significant P-
values for two samples (appearing in two rows), as shown in Fig. 4. 
The first image in each row provides the true labeling of tumor 
and non-tumor tissue spots. These genes established connections 

to cancer as evidenced by previous research, are outlined in 

Table 1. 
The results demonstrate that the gene expression predicted 

by STGAT can distinctly differentiate between tumor and non-
tumor tissue spots. The differentially expressed genes are also 

associated with cancer according to previously established stud-
ies. For instance, the gene TBX1, known for its high expression in 

breast cancer tumor tissues [72], can effectively distinguish tumor
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Figure 2. Experimentation on the ‘breast cancer dataset.’ The boxplots represent the correlation between the true gene expression and the predicted 

gene expression by STGAT and the baseline models for the 26 test samples of the ‘breast cancer dataset.’ 

Figure 3. Experimentation on the ‘HER2+ dataset.’ The figure illustrates the correlation between the true gene expression and the predicted gene 

expression of the samples in the ‘HER2+ dataset’ by training STGAT and baseline models on the ‘breast cancer dataset.’ 

Figure 4. Examples of genes that distinguish the tumor and non-tumor tissue spots. The first image in each row illustrates the accurate label information 

for the tumor and non-tumor spots. The subsequent five heatmap images display the gene expression estimated by STGAT for the genes with the most 
significant P-values, comparing expressions between tumor and non-tumor spots. 

and non-tumor spots. In addition, the prediction of TBX1 expres-
sion across the tumor image show a high-resolution expression 

pattern of TBX1: in non-tumor tissue area, its expression is low, 
and it gradually increases the expression pattern as the spot 
moves away from the  non-tumor tissue area (Fig. 4 upper panel). 

Similarly, other genes predicted to increase their expression in 

sample- BC23944_D2 show a similar pattern. This observation 

suggests the potential of using this gene as a viable marker for 
a precise areal definition of tumor and therapeutic target for drug 

development. Similarly, the gene POLG2 is found to be mutated in
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Table 1. Literature review of the candidate cancer genes. This table presents citations highlighting the relevance of the signature genes 

depicted in Fig. 4 to cancer for two patient samples in the ‘breast cancer dataset’ 

Sample name Gene name Description Reference P-value 

BC23944_D2 OARD1 Collectively prognostic, not studied individually yet [71] 5.9976e-31 

TBX1 High expression in tumor tissues; could promote cell proliferation, [72] 1.2222e-30 

migration, invasion, and cell cycle progression 

FAM127C Undergoes X-chromosome inactivation affecting cancers [73] 1.4752e-30 

ST3GAL1 Silencing suppresses tumor growth along with a notable decrease [74] 1.5358e-30 

in vascularity of MCF7 xenograft tumors 

BC23277_D2 POLG2 Somatic mutations frequently found in breast cancer; [75] 1.2008e-18 

decreases OXPHOS resulting in mtDNA depletion in breast tumors 

SUFU Suppresses RSL3-induced ferroptosis sensitivity of breast cancer cells; [76] 9.8341e-15 

regulates the Hippo pathway in breast cancer cells by interacting with 

LATS1 

IFIT3 Classified as IRDS subset gene with better therapeutic response to IFNs; [77] 6.8357e-13 

hence considered predictive biomarker in many primary human cancers 

RBM27 Capable of predicting overall survival in case of breast cancer [78] 2.6176e-12 

USB1 Affects growth of thyroid tumor cell lines; could induce cell cycle arrest 
in the 

[79] 2.6440e-12 

G1 phase, thereby suppressing cell proliferation and migration 

63% of breast tumors [75]. However, its differential gene expres-
sion was not associated with breast cancer. Besides, some genes 

such as IFIT3 and USB1 that have not yet been linked to breast 
cancer could be promising candidates for future research direc-
tions, aiming to determine if they offer any prognostic insights 

into breast cancer. 

Estimated gene expression improved cell-type classification 

We also assessed the predictive performance of estimated gene 

expression using STGAT across various cell types within the 

same sample. This investigation involved eight samples from the 

‘HER2+ dataset,’ as detailed cell-type information was available 

for these samples [54]. Each sample exhibited a distinct number 
of cell types, and a separate Support Vector Machine (SVM) model 
was trained and tested using true and predicted spot-level gene 

expression for each sample. The resulting AUROC scores are 

presented in Supplementary Table S4. Notably, in five out of 
the eight samples, the predicted gene expression demonstrated 

superior predictive power in distinguishing cell types compared 

to the true gene expression. This outcome underscores the 

efficacy of the spot-level gene expression generated by STGAT 

in facilitating downstream prediction tasks. 

Evaluation with TCGA Data 

As demonstrated in the previous section, the SEG module exhibits 

remarkable predictive performance in gene expression estima-
tion at the spot-level resolution (i.e. near cell level resolution) 
within spatial transcriptomic datasets. However, after its training 

on spatial transcriptomic data, the SEG module demonstrates 

limited efficacy when applied to WSIs and their corresponding 

bulk RNA-seq gene expression data, such as those sourced from 

TCGA studies. These data in large-scale disease studies introduce 

distinctive challenges when it comes to the prediction of gene 

expression at the spot-level: (i) absence of spatial coordinates: 
unlike spatial transcriptomic data,WSIs lack explicit spatial coor-
dinate information, making it difficult to infer the precise spatial 
origin of gene expression. (ii) Lack of ground truth gene expression 

values: unlike spatial transcriptomic datasets, the dataset does 

not provide true gene expression values at the spot-level, further 

complicating the estimation process. (iii) Divergent expression 

distributions: the distribution of bulk RNA-seq gene expression 

and the gene expression patterns observed in spatial transcrip-
tomic data are dissimilar, exacerbating the challenges of accurate 

gene expression prediction at the spot-level. 
In order to address the challenges, we employ the GEP module 

introduced in theMaterials andmethods section. It leverages gene 

expression estimates obtained from bulk RNA-seq experiments 

to predict the corresponding gene expression levels at the spot-
level. Specifically, following normalization, the gene expression 

estimated from bulk RNA-seq data serves as a guiding reference 

for spot-level gene expression predictions. Furthermore, the 

predicted tumor or non-tumor labels generated by the SLP 

module enable the proposed framework, STGAT, to focus solely 

on the gene expression values estimated from tumor spots, 
providing more accurate molecular signatures for downstream 

data analysis. 
The STGAT model is trained to generate gene expression pro-

files for a total of 10 397 genes, which are overlapped between 

the spatial transcriptomic and TCGA datasets. To demonstrate 

the effectiveness and proficiency of the predicted spot-level gene 

expression for TCGA samples, we conducted a series of compre-
hensive downstream experiments. 

STGAT improved breast cancer sub-type prediction 

To evaluate the quality of the estimated spot-level gene expres-
sion by STGAT,we designed three cancer sub-type prediction tasks 

using 349 patient samples from the TCGA breast cancer dataset. 
These tasks were undertaken with the following assumptions: (i) 
the estimated gene expression data by STGAT achieves a near-
cell-level resolution, offering more precise molecular signatures 

for cancer sub-type prediction in comparison to bulk RNA-seq 

gene expression data. (ii) Gene expression estimates derived solely 

from tumor spots provide superior predictive power for cancer 
outcomes when contrasted with gene expression data originating 

from a mixture of both tumor and non-tumor tissue samples. 
In this experiment, the STGAT model was trained on a spatial 
transcriptomics ‘breast cancer dataset,’ characterized by similar 
cancer sub-types as those present in the TCGA breast cancer 
samples.
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Table 2. Average AUROC scores and their SD for classifying 

TCGA breast cancer patients based on clinical variables using 

bulk RNA-seq gene expression data, the average gene expression 

of all spots (tumor + non-tumor tissue), and the average gene 

expression of tumor spots (tumor-specific average gene 

expression). The most significant AUROC scores are bolded. ‘∗’ 
indicates that the difference between the results on the 

tumor-only spot and the other two cases is statistically 

significant ( P-value < 0.0001) 

Sub-type Gene Expression AUROC SD 

ER bulk RNA-seq 0.8776∗ 0.0439 

all spots 0.8973∗ 0.0494 

tumor spots only 0.9302 0.0352 

PR bulk RNA-seq 0.8064∗ 0.0519 

all spots 0.8125∗ 0.0539 

tumor spots only 0.8514 0.0506 

TN bulk RNA-seq 0.8962∗ 0.0450 

all spots 0.9179 0.0475 

tumor spots only 0.9211 0.0419 

There are 280 Estrogen Receptor positive (ER+) and  69  ER  

negative (ER-) samples, 239 Progesterone Receptor positive (PR+) 
and 110 PR negative (PR-) samples, and 110 Triple-negative (TN) 
and 294 non-TN samples in the dataset. The three tasks were 

to predict breast cancer patients’ ER, PR and TN statuses. The 

average gene expression of tumor spots, estimated by STGAT, 
and the average gene expression of all spots (tumor + non-
tumor tissue), estimated by STGAT, are compared with the gene 

expression generated from bulk RNA-seq data. SVM was applied 

for the prediction task. The estimated gene expression data is 

divided into training and test sets, containing 80 and 20% of the 

total samples, respectively. We ran the classifiers on the three 

estimated gene expression datasets with the above-mentioned 

splitting 100 times. The average AUROC scores and their standard 

deviation (SD) for the 100 splits of the three datasets are reported 

in Table 2. 
The results clearly show that using tumor-specific average 

gene expression performs better than the other two datasets in 

all three comparisons. This demonstrates that STGAT has the 

capability to estimate gene expression at the spot-level and re-
visit TCGA data to perform a more accurate downstream analysis 

for cancer sub-type prediction. The enhanced performance of the 

proposed framework can be largely attributed to the information 

aggregation mechanism within the SEG module. Specifically, it 
is well-established that spatially proximate spots or cells exhibit 
correlated characteristics, a phenomenon supported by the spa-
tial relationships inherent in biological tissues. The GAT layer 
leverages this spatial information to assign greater attention to 

neighboring nodes in comparison to those located at a distance. 
Consequently, this selective attention mechanism facilitates the 

transfer of properties fromproximal nodes to the target node, thus 

enhancing the network’s ability to capture spatially coherent gene 

expression patterns. 
We also note that the average gene expression from all spots 

exhibits similar predictive power compared to gene expression 

from bulk RNA-seq experiments. This is because STGAT uses bulk 

RNA-seq gene expression for training the GEP module and also 

as a reference when creating the gene expression profiles for 
individual spots. The guidance from bulk RNA-seq data governs 

the predicted spot-level gene expression in achieving similar dis-
tribution, which enhances its prognostic capability. 

To explore the impact of individual components within the 

STGAT framework on generating high-quality gene expression 

Table 3. Average AUROC scores and their SD for classifying 

TCGA breast cancer patients into different tumor stages using 

bulk RNA-seq gene expression data, the average gene expression 

of all spots (tumor + non-tumor tissue), and the average gene 

expression of tumor spots (tumor-specific average gene 

expression). The most significant AUROC scores are bolded. ‘∗’ 
indicates that the difference between the results on the 

tumor-only spot and the other two cases is statistically 

significant ( P-value < 0.001) 

Classifier Gene Expression AUROC SD 

Random Forest bulk RNA-seq 0.5686∗ 0.0407 

all spots 0.6023∗ 0.0336 

tumor spots only 0.6262 0.0361 

SVM bulk RNA-seq 0.5971∗ 0.0459 

all spots 0.5850∗ 0.0490 

tumor spots only 0.6211 0.0476 

data for subsequent analysis, an ablation study was performed, 
and the findings are illustrated in Supplementary Fig. S5. The  

evaluation is conducted on gene expression data derived from 

various configurations of the STGAT framework for patients’ TN 

status prediction. Specifically, the study compares STGAT without 
the GAT layer in the SEG module (STGAT - GAT), STGAT with-
out bulk RNA-seq gene expression guidance in the GEP mod-
ule (STGAT - bulk), and STGAT without the z-score normaliza-
tion step in the GEP module (STGAT - norm), in addition to 

the complete STGAT framework. The findings illuminate that 
the GAT layer exerts the most significant influence, followed by 

the bulk gene expression and normalization steps, respectively. 
This underscores the critical role of the GAT layer in generat-
ing high-quality spot-level gene expression for cancer sub-type 

prediction. 

STGAT improved tumor stage prediction 

Motivated by the improved cancer sub-type prediction achieved 

with expression data estimated by STGAT, our study extended to 

assess its effectiveness in predicting tumor stage. Accurate tumor 
stage prediction plays a pivotal role in customizing treatment 
strategies to meet each patient’s unique needs. Among the 349 

TCGA breast cancer patients, 93 were classified as Stage I, 199 as 

Stage II, 43 as Stage III and 12 as Stage IV,with two patients lacking 

tumor stage information. We applied the same configuration for 
the training and test sets as in the cancer sub-type prediction task, 
employing two classification models, Random Forest and SVM, for 
this multi-class classification endeavor. Furthermore, we utilized 

the same three types of gene expression data, including true bulk 

RNA-seq gene expression, average gene expression from all the 

spots, and tumor-specific average gene expression, in our analysis 

and comparison. The results are presented in Table 3. It is evident 
that tumor-specific gene expression data outperforms the other 
two gene expression datasets in terms of its predictive capacity 

for tumor stage.The significant P-value obtainedwhen comparing 

the classification results further demonstrates the improvement. 
This experiment highlights STGAT’s capability to effectively inte-
grate the morphological features of images with the network 

information of spot locations to proficiently acquire the distinc-
tive characteristics associated with various tumor stages. 

STGAT improved stratification of observed survival time 

To further assess the quality of spot-level gene expression 

data generated by STGAT, we conducted predictions on overall 
survival and disease-free time for TCGA breast cancer patients. 
The Cox proportional hazards model with elastic net penalty [80]
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Figure 5. Survival and disease-free time predictions on TCGA breast cancer patients utilizing bulk RNA-seq gene expression and gene expression 

estimates derived from STGAT. KM plots illustrate low-risk (solid line) and high-risk (dashed line) groups based on the predicted prognostic index 

generated by bulk RNA-seq gene expression, the average gene expression of all spots (tumor + non-tumor tissue) estimated by STGAT, and the average 

gene expression of tumor spots estimated by STGAT for both survival and disease-free analyses. The number in parentheses indicates the sample count 
in the low- or high-risk group. The P-value is calculated using the log-rank test to compare the overall survival or disease-free probability of two groups 

of breast cancer patients. 

was deployed to select gene expression predictive of patients’ 
outcome, i.e. overall survival or disease-free survival, including 

STGAT-estimated gene expression (tumor spots only and all 
spots) and bulk RNA-seq gene expression. 80% of the samples 

were utilized for training, and performance was tested on the 

remaining 20% of patient samples. The independent test set’s 

low and high-risk patient groups were generated based on the 

prognostic index [ 81]. Survival and disease-free predictions were 

visualized using Kaplan–Meier (KM) plots and compared using 

the log-rank test in Fig. 5. The Python packages scikit-survival 

[82] and  lifelines [83] were employed for this analysis. The KM 

plots illustrate improved predictions of patient survival time and 

disease-free time based on the average expression of tumor spots 

compared to bulk RNA-seq gene expression or the average gene 

expression of all spots. Since the average gene expression of all 
spots and bulk RNA-seq gene expression include information 

from non-tumor spots, the message flow from these spots might 
impede performance. Log-rank test P-values further demonstrate 

the robust additional predictive power of the average gene 

expression of tumor spots beyond bulk RNA-seq gene expression. 
Furthermore, to identify the important genes that show the 

prediction power of patients survival and disease-free, we sorted 

patient samples for each gene according to their gene expression 

levels. Subsequently, these samples were divided into high and 

low expressed groups, and KM plots were created to visualize the 

survival and disease-free predictions for each group, as illustrated 

in Fig. 6. Only the top 100 genes with the greatest variances in 

gene expression are included in this analysis. The figure presents 

KM plots for four genes with the most significant log-rank test 
P-values. In this figure, the survival and disease-free curves dis-
tinctly show separation between patient groups with high and low 

gene expression for each gene, accompanied by the corresponding 

P-value. This result suggests that the gene expression predicted by 

STGAT provides clear and distinctive patterns, effectively distin-
guishing between breast cancer patient groups. Such outcomes 

are valuable for the selection of appropriate genes in diagnostic
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Figure 6. Survival and disease-free analysis based on gene expression level. The genes with the most significant log-rank test P-values computed between 

the low- and high-expressed patient groups are reported. This analysis utilized the average gene expression of tumor spots estimated by STGAT. 

and analytical contexts, contributing to the development of tar-
geted medical interventions. 

Discussion 

Despite the availability of widespread genome sequencing data, 
detailed study of tissue sections at the single-cell level remains 

restricted due to the predominant use of bulk RNA-seq gene 

expression and H&E-stained WSIs in large-scale disease studies. 
While single-cell RNA-seq data provides cell-level gene expres-
sion, it lacks the spatial location information crucial for under-
standing tissue context in disease diagnosis and treatment. In 

contrast, spatial transcriptomics data combines gene expression 

at a near-cellular level with spatial location information. Despite 

the availability of bulk RNA-Seq data and WSIs in the TCGA con-
sortium, the use of these highly profiled images and nucleotide-
resolution level gene expression data is largely missing due to 

the lack of methodologies that could integrate this information 

together. In this study, we introduce STGAT, a machine learning 

framework trained on spatial transcriptomics data, enabling the 

prediction of expression for over 10,000 genes at the spot-level 
from TCGA WSIs. This allows STGAT to predict gene expression 

patterns with better resolution compared to bulk RNA-Seq. Addi-
tionally, STGAT maximizes its usability by applying the method-
ology to existing data. 

During the gene expression prediction process,we encountered 

several challenges. Firstly, distribution disparities between TCGA 

bulk RNA-seq expression data and spatial transcriptomics gene 

expression data required the use of two weight matrices. These 

matrices, learned during training, were multiplied with spatial 
transcriptomics and TCGA gene expression data, ensuring align-
ment of the expression levels. Additionally, z-score normalization 

was applied before integrating the bulk TCGA gene expression 

vector into the spatial transcriptomics gene expression matrix. 
Secondly, an imbalance in the number of tumor and non-tumor 
spots in WSIs posed a challenge for training the SLP module to 

predict tumor/non-tumor labels. The Youden Indexwas employed 

to determine a threshold value for differentiating tumor and non-
tumor spots. Thirdly, the variable number of spots in TCGA images 

(ranging from 150 to 4000) and the diverse networks created from 

different images required normalization of attention coefficients 

over all neighbors for a target spot, as detailed in SEG in the 

Materials and methods section. 

STGAT demonstrated robust performance even with limited 

training data.The SEGmodulewas trained on 42 spatial transcrip-
tomics images, and the GEP module on 46 TCGA WSIs. Despite 

the limited data, STGAT’s generated gene expressions surpassed 

State-Of-The-Art baselines in evaluations for both spatial tran-
scriptomics and TCGA data. On one hand, the predicted gene 

expression outperformed the baselines in terms of correlation 

with true gene expression (Figs 2 and 3). On the other hand, it 
rendered better results in the case of binary cancer sub-type 

prediction (Table 2), as well as multi-class tumor stage (Table 3) 
and cell-type prediction (Table S4) tasks. The capability of the pre-
dicted gene expression to effectively distinguish between tumor 
and non-tumor spots in Fig. 4 further validates the accuracy of 
the predicted gene expression profiles. Finally, the survival and 

disease-free prediction tasks, with significant P-values between 

high and low risk/expressed samples in Figs 5 and 6, demonstrate 

the reliability of the generated gene expression. Thus, STGAT 

can identify new cancer- and normal tissue-enriched transcripts 

based on a finer delineation of tumors and surrounding non-
tumor tissues. This can discover previously unrecognized cancer-
specific transcripts with spatial information that could be devel-
oped into new cancer markers for diagnosis and therapeutic 

assessments. 

Conclusion 

Spatial transcriptomics has transformed the study of tissue struc-
tures, tumor composition and heterogeneity with detailed pre-
cision at the cellular level. However, due to its high cost, spa-
tial transcriptomics technologies have not been widely used in 

large cohort studies. On the other hand, as genome sequenc-
ing methods have become more affordable, a large volume of 
omics data, along with corresponding whole slide images, is now 

accessible for large cohort studies. In this study, we introduced 

STGAT, a graph-based learning model that can estimate gene 

expression profiles at nearly the cellular level. We validate the 

predicted gene expression on TCGA breast cancer patient samples 

through various analyses, including cancer sub-type prediction, 
and survival and disease-free prediction, showcasing the effec-
tiveness of STGAT. We believe that the gene expression profiles 

generated by STGAT at the spot-level show promise for develop-
ing targeted medicine and immunotherapy for various complex 

diseases.
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Key Points 

• A machine learning framework named STGAT has been 

developed to unravel the hidden information existing in 

bulk tissue data and predict gene expression profiles at 
near-cell (spot) level resolution. 

• STGAT leverages Graph Attention Network to learn the 

relation and complex biological networks between the 

spots. 
• After being trained on spatial transcriptomics data, the 

model outperformed state-of-the-art baselines in sev-
eral experiments assessing the predictive capability. 

• Further comprehensive experiments on TCGA bulk tis-
sue data demonstrates that estimated gene expression 

provides more precise molecular signatures than true 

gene expression and hence can be utilized for better 
prognosis. 
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