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Abstract

Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization
of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor
heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics
data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To
address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution
from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel
biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph
Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots.
Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict
whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are
available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing
methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression
estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and
tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at
https://github.com/compbiolabucf/STGAT.
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Introduction biomedical research [1, 2]. Correspondingly, Hematoxylin and
Advancements in genome sequencing technologies have made Eosin (H&E) stained Whole Slide Images (WSI) are now easily
RNA-seq gene expression data affordable and accessible for obtainable [3]. Integrating RNA-seq gene expression and WSI data
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from the same cohort can enhance disease diagnosis accuracy.
However, bulk RNA-seq data lacks detailed tissue environment
information found in WSI cross-sections and may include
expressions of non-disease cells that could affect prediction
outcomes [4]. In this regard, the information from single-cell
RNA-seq (scRNA-seq) proves to be valuable. For example, the
type, density, and location of immune cells within tumor samples
are crucial for predicting cancer sub-types as they reveal latent
disease information [5]. Therefore, examining gene expression
at or near the cell level, along with location information,
aids in diagnosing complex biological systems and structures,
particularly in treating compound diseases like cancer [6, 7].
Spatial transcriptomics data, comprising spot-level information,
has opened the path for meticulous analysis of tissue sections
and offers a potential connection between affordable bulk RNA-
seq and cell-level gene expression data, enabling the retention
of location and cell-type information [8, 9]. By using spatial
transcriptomics, a WSI of a tissue cross-section can be divided
into multiple gene expression fragments known as spots. Each
spot represents a few cells and contains gene expression profiles
with positional information [10, 11].

Spatial transcriptomics has proven successful in analyzing var-
lous cancer tissues, including breast [11], prostate [12], melanoma
[13], pancreas [14] and carcinoma [15]. It has also been applied
to study diseased tissues such as Alzheimer’s disease [16] and
gingivitis [17], as well as healthy tissues like the mouse olfactory
bulb [11], human heart [18], spinal cord [19] and brain [20]. Despite
these advancements, the applicability of spatial transcriptomics
data to large cohort studies is often limited because it is relatively
expensive, labor-intensive and time-consuming [6, 9, 21]. Addi-
tionally, the technology is relatively new compared to bulk RNA-
seq. Hence, spatial transcriptomics data is unavailable in most
situations. Nevertheless, there are several large cohort disease
studies (e.g. TCGA [22]) that provide both bulk RNA-seq expression
for a sample and the corresponding WSI [1, 2]. An estimation of
spot-level gene expression from bulk RNA-seq and WSI in these
large cohort studies can be leveraged to uncover more precise
molecular mechanisms at a near-cellular level for different dis-
eases. This study focuses on developing such an approach to esti-
mate spot-level gene expression from bulk RNA-seq expression.

Several computational methods have been developed to ana-
lyze spatial transcriptomics data and unveil latent characteris-
tics of human tissues and organs. These methods facilitate the
analysis of spatial expression patterns [23, 24|, determination of
cell-type composition [25, 26], investigation of cell-to-cell commu-
nication [27, 28], clustering into spatial domains [29, 30] and gen-
eration of spatial embedding representations [31]. Furthermore,
attempts have been made to predict gene expression at the spot-
level using methods such as ST-Net [32] and HistoGene [33]. A
recent method named iSTAR [34] aims to predict gene expres-
sion profiles at the pixel level using HViT (Hierarchical Vision
Transformer). However, these approaches do not fully exploit
the rich information contained in the data. ST-Net and iSTAR
process spot images (patches) independently without consider-
ing location information, while HistoGene incorporates spatial
coordinates but disregards internal 2D visual features of the
images. Graph Neural Networks [35, 36] show promise in address-
ing these limitations and may offer valuable insights in this
context.

In recent years, network-based computational methods, capa-
ble of extracting topological information from large-scale biologi-
cal data, have shown great promise in solving complex problems,
including precision oncology [37], drug sensitivity analysis [38]

and single-cell RNA-seq analysis [39]. The spatial information
present in spatial transcriptomics data can be harnessed to con-
struct a network. The coordinates of a spot provide insight into
its location within the tissue section and offer contextual infor-
mation about the surrounding environment, leading to improved
disease diagnosis [29, 40, 41]. For instance, spots infected with
a specific sub-type of cancer may exhibit spatial proximity and
influence each other’s behavior. Consequently, a network can be
generated using spot location information, with closer spots being
connected to one another. Hist2ST [42] and THItoGene [43], which
employ the graph learning algorithms, have demonstrated the
effectiveness of spatial networks derived from spatial transcrip-
tomics data. They outperform previous models (i.e. ST-Net and
HistoGene) in gene expression prediction tasks. However, both of
them predict only a limited number of gene expression profiles,
which restricts the downstream tasks utilizing such expression
data. Additionally, their applicability is limited to spatial tran-
scriptomics data only. The performance of Hist2ST and THItoGene
suggests that the utilization of network information available
in spatial transcriptomics can significantly impact the results.
Graph Attention Network (GAT) [44] can efficiently extract topo-
logical information from a network and has shown success in
various biological tasks, including cancer sub-type prediction [45],
drug-target interaction prediction [46], tissue structure prediction
from spatial data [40], drug-microbe interaction prediction [47],
gene essentiality prediction [48] and single-cell RNA-seq based
dimensionality reduction [49]. We aim to extend this exemplary
performance of GAT to spatial transcriptomics. GAT leverages
the attention mechanism [50] to accumulate information from
neighboring nodes in a network, with certain neighbors receiving
more attention than others. This mechanism enables the network
to focus on relevant and informative connections within the data.

Motivated by the need to obtain spot-level gene expression
and drawing inspiration from the success of the GAT model, we
present STGAT, a novel machine learning framework designed
to predict gene expression profiles at the spot-level. STGAT uti-
lizes spot images extracted from WSIs and estimates the gene
expression for each spot. The framework makes use of the limited
availability of spatial transcriptomics data to train STGAT, map-
ping the spatial information of each spot to gene expression. The
trained model is then transferred to bulk RNA-seq data to esti-
mate spot-level gene expression. This framework enables detailed
downstream analysis tasks by allowing researchers to focus on
specific regions of interest within a tissue sample. To evaluate
the performance of STGAT, we conducted tests on a large-scale
cancer study (i.e. TCGA [22]), which encompasses tens of thou-
sands of cancer samples, providing both WSI and bulk RNA-seq
gene expression data. Our hypothesis suggests that gene expres-
sion originating from tumor-only spots within a WSI exhibits a
stronger correlation with the disease phenotype, thereby offering
more accurate molecular signals for predicting cancer sub-types
compared to bulk RNA-seq data. Consequently, our objective is to
classify spots from a WSI into tumor and non-tumor categories
and estimate the gene expression of each tumor spot. Subse-
quently, gene expression exclusively derived from tumor-only
spots is utilized for downstream analyses, including biomarker
identification, cancer sub-type prediction and patient survival
prediction.

Materials and methods

We introduce the STGAT (Spatial Transcriptomics Graph Atten-
tion Network) model in this section. Firstly, we provide an overview
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Figure 1. An overall illustration of the proposed framework. The SEG produces embeddings for spot images extracted from a WSI. The GEP then estimates
spot-level gene expression profiles for the WSI by leveraging the embeddings generated by SEG and the bulk RNA-seq gene expression data of the
corresponding WSI. The SLP classifies each spot on the WSI as either tumor or non-tumor. In this study, SEG is trained and evaluated on spatial
transcriptomics data, GEP is trained and evaluated on TCGA data, and SLP is trained on spatial transcriptomics data and applied to TCGA data.

of the model architecture, outlining its key components (Fig. 1),
followed by a detailed description of each component. Next, we
describe the datasets utilized for training and evaluating STGAT,
along with the pre-processing steps applied to these datasets.
Lastly, we elucidate the training procedure employed for the
various components of the model.

Model framework

The primary objective of the STGAT model is to generate spot-
level gene expression for WSIs using available bulk RNA-seq
gene expression data. The underlying assumption is that identi-
fying tumor spots and using only these spots can improve down-
stream task performance by reducing noise introduced by other
spots that are irrelevant to the downstream analysis. The STGAT
model consists of three fundamental modules: (i) Spot Embed-
ding Generator (SEG), (ii) Gene Expression Predictor (GEP) and
(iif) Spot Label Predictor (SLP). Initially, SEG is trained on spa-
tial transcriptomics data to map spots from spatial transcrip-
tomics images to their corresponding gene expression values.
Once trained, the SEG is transferred to bulk RNA-seq data to gen-
erate spot-level gene expression through the GEP module. The GEP
module consists of two components: the pretrained SEG and fully
connected (FC) layers. Spots generated from WSIs associated with
bulk RNA-seq data are fed into the pretrained SEG to obtain spot
embeddings. These spot embeddings, combined with bulk RNA-
seq gene expression data processed through the FC layers, are
used to estimate spot-level gene expression profiles for the WSI.
Finally, the SLP module, trained on spatial transcriptomics data,
is used to classify spots as either tumor or non-tumor. The labels
produced by the SLP module for a WSI are then used to select only
the gene expression profiles of tumor spots from the spot-level

gene expression generated by the GEP module. Tables S1, S2 and
S3 in the Supplementary document include the mathematical
notations utilized in the Methods section, the number of different
blocks used in each module and the composition of each block,
respectively.

Spot Embedding Generator

The SEG module, depicted at the top of Fig. 1, generates embed-
dings for spots with dimensions of 224 x 224. Trained on spatial
transcriptomics data, the SEG module starts with six Convolu-
tional Neural Network (CNN) blocks followed by an FC layer. These
CNN blocks are essential for extracting features from the spot
images, with deeper layers capturing specific details of the spots.
To avoid losing the 2D contextual information of the spots, we
have limited the model to six layers. The intermediate FC layer
prepares the embeddings generated by the final CNN block for
input into the GAT layer.

Let’s consider there are v spatial transcriptomics images,
denoted as X = [Xy,Xp,...,X,]. Additionally, each X; image
contains g; spots, and let p represent the number of genes to
be estimated within each spot in each image. These spot images
are fed into the first CNN block in mini-batches. Each CNN block
comprises a convolutional layer, a Rectified Linear Unit (ReLU)
activation function and a MaxPooling layer, except for the first
CNN block.

Ei(jl) = MaxPool(ReLU(Convolution(X;))) (1)
E” = ReLUWE" + B) 2

Following Equation (1), the output from the final CNN block for
the jth spot is represented by E{’ € R*, where e. is the length of
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the embedding vector. Ef” € R9%*% denotes the embeddings for all
gi spots in X;, which is passed through the intermediate FC layer
according to Equation (2) to generate Efz) € RIixe,

Subsequently, Ei(z) undergoes processing via a GAT layer. This
layer makes use of the adjacency matrix, denoted as A; (excluding
self-connections), which is derived from the distance matrix of
the image X; (as detailed in Section Adjacency matrix), to establish
the underlying graph structure. Our hypothesis suggests that
when the majority of a spot’s neighboring points are classified
as tumor spots, there is a high possibility that the spot itself is
also a tumor spot. We employ two distinct attention coefficients:
neighbor attention, denoted as an, and self-attention, denoted as
as, with the aim of directing the model to place less emphasis on
individual spots and prioritize information from their neighbors.
This approach facilitates the channeling of the characteristics of
neighboring spots into the spot’s embedding. For the jth spot,
the neighbor attention coefficient from the kth neighbor can be
calculated as follows:

s cawE)

where ag,a, € R% are the self and neighbor attention vectors,
respectively, with e, representing the embedding length of the
GAT. W5, W, € R%*% are weight matrices of self and neighbor
attention. The neighbor attention coefficient vector a,, € R%
for the jth spot is updated to retain values only for connections
present in A;, while others are set to zeros. ay, is then passed
through the Softmax function for normalization to ensure model
compatibility with different graph structures generated from var-
ious images. Next, the self-attention coefficient is computed from
the neighbor attention coefficient vector using the formula s, =

1 - .
TS oy where N represents the set of the neighbors for the

jth spot.
Finally, the spot embedding for the jth spot is determined by
Equations (4) and (5):

'3) ) @)
EY =f|a SEU + > o WES (4)
ReN;
B = ILof s, WoE( + D7 o W EYY (5)
keNj
where E;)@ € R% represents the spot embedding from a single

head, E’ e R° is the spot embedding obtained from h heads
(e = hey) and f denotes a non-linear function.

Spot embedding E® is then passed through two FC layers to
produce spot-level gene expressions, Yi(l) € R9>*P, for each spatial
transcriptomics image X;. The purpose of the FC layers is to project
the embeddings of the spots onto gene expression profiles, which
are necessary for training the SEG module. The final FC layers are
omitted from the pretrained SEG when it is used to generate spot
embeddings for WSIs as part of the GEP module.

Gene Expression Predictor

The GEP module, depicted in the middle panel of Fig. 1,is designed
to predict spot-level gene expression for WSI samples. Let T =
[Ty, Ty, ..., T;] represents the set of WSIs, where T; denotes the
ith WSI containing m; spots. Furthermore, U; € RP represents the
corresponding bulk gene expression in the set U = [U3, Us, ..., Gy,
with p denoting the number of genes in the bulk RNA-seq gene
expression data. Spots are initially generated from T; and input

into the pretrained SEG to produce an embedding, E® € R™>°,
Concurrently, U; undergoes processing through the first compo-
nent of GEP, which consists of two FC layers, resulting in the
generation of a WSI embedding, Z" ¢ R®. To align E® and 2"
in a compatible feature space, two learnable weight parameters,
Wipors and Wy € R®¢, are multiplied with them, as shown in
Equation (6):

EY = WoosE?, 27 = Wy, 27 (6)
Then Z-score normalization is applied to Ef‘“ and Z§2). Zfz’
is broadcast and added to El.(4) to generate Zl@ e R®™™M in
Equation (7).

Z® = E® + Broadcast (ZfZ)T) 7)

Lastly, Zfa) is passed through three FC layers to generate the
spot-level gene expression for a single WSI, given by Y§2) € R™*P,
During training, the average expression of all spots within a
particular image is considered as its bulk gene expression, which
is then compared to the actual bulk RNA-seq gene expression. The
SEG module is pretrained on spatial transcriptomics data. The
pretrained SEG and GEP are utilized to generate spot-level gene
expression profiles for WSIs. In the final stage of our framework,
the SLPis employed to classify spots as either tumor or non-tumor,
enabling the use of only tumor spots’ gene expression data for
downstream tasks.

Spot Label Predictor

As mentioned above, SLP predicts whether a spot is tumor or non-
tumor by feeding spot images to it. SLP contains five CNN blocks
(similar to Equation (1)), followed by a Maxpool2D layer, two FC
layers (similar to Equation (2)) and a Softmax activation function
at the end. SLP is trained on spatial transcriptomics data, which
contains tumor/non-tumor label information for each spot. The
pretrained SLP is then used to predict the label of the WSI spots,
and only the tumor spots are used to compute the average gene
expression of a WSI image for downstream tasks.

Training procedure

The STGAT framework comprises three separate training
processes for its three modules implemented using Pytorch [51].
Firstly, the SEG module is trained using spatial images from the
spatial transcriptomics data. The spots generated from these
images are input into the SEG module, which, in turn, produces
gene expression predictions for all the spots. The training
objective for the SEG module is based on the Mean Squared Error
(MSE) loss, calculated as the MSE between the predicted spot-level
gene expression, denoted as Y?l) for the ith spatial image, and the
corresponding true gene expression, denoted as ?gl) as defined
in Equation (8). This MSE loss serves as the objective function for
training the SEG module.

e = [ ¥, @

After completing the training process, the last two FC layers of the
SEG module are removed to extract the spots’ embeddings directly
from the GAT layer.

Next, the GEP module is trained using TCGA WSIs (i.e. images).
For each TCGA image, the spots generated from the ith image are
fed into the pretrained SEG to obtain the corresponding spots’
embeddings. Simultaneously, the bulk RNA-seq gene expression
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data of the TCGA image is processed through two FC layers. The
two representations obtained from the spots and bulk RNA-seq
gene expression are integrated following Equations (6) and (7), as
discussed in Section Gene Expression Predictor. Subsequently, spot-
level gene expression, denoted as Yi@, is generated for the TCGA
image, and the average gene expression of all spots, represented
as U; € R?, is computed. The MSE loss between U; (the true bulk
RNA-seq gene expression) and U; is calculated in a manner similar
to Equation (8), serving as the objective function for training the
GEP module.

Finally, the SLP module is trained using the spatial image spots
to determine the probability of each spot being tumor or non-
tumor tissue. Given the imbalanced class labels in the spatial
transcriptomics data, Youden'’s Index [52] is employed to identify
a threshold value for classifying each spot. Subsequently, the SLP
module is trained with the objective of maximizing the F; score,
which measures the harmonic mean of precision and recall, by
comparing the true class labels with the predicted class labels for
each spatial image.

Data processing
Datasets

Spatial transcriptomics data, along with TCGA data, serve as crit-
ical components for training and assessing the proposed STGAT
framework. The evaluation process involves the utilization of
two distinct breast cancer spatial transcriptomics datasets. The
first dataset is the human breast cancer in situ transcriptomics
dataset, hereafter referred to as the ‘breast cancer dataset,” was
sourced from the Mendeley Data website [53]. The second dataset
is the HER2-positive breast cancer dataset, hereafter referred to as
the ‘HER2+ dataset,” was obtained from the Zenodo data repos-
itory [54]. Additionally, TCGA Breast Invasive Carcinoma (BRCA)
data [55] is employed to train the GEP module and to facilitate
subsequent tasks related to gene expression prediction.

The ‘breast cancer dataset’ comprises a total of 68 spatial
images, with each image containing around 1000 spots. For every
spot within each image, there are 13 776 gene expression profiles
available. It is important to note that spatial location and label
information (tumor/non-tumor) is only accessible for approxi-
mately 250 to 700 spots within each image, while the remaining
spots are considered as background and are not utilized in exper-
imental procedures. In this study, 42 samples from the ‘breast
cancer dataset’ are designated for training, while the remaining 26
samples are allocated for testing purposes. The ‘HER2+ dataset’
is constituted of 36 samples and the number of spots per sample
within this dataset ranges from 177 to 712. Importantly, all sam-
ples in the ‘HER2+ dataset’ are exclusively used for testing. The
tumor and non-tumor spots labeled by pathologists are utilized
as the ground truth for the purpose of training the model.

The WSIs for the TCGA BRCA data were obtained from the
Genomic Data Commons Data Portal [56]. The associated bulk
RNA-seq data pertaining to the same patient samples were
retrieved from the UCSC Xena Hub [57]. Clinical information for
these patient samples was collected from cBioPortal [58]. The
model was trained on 60 BRCA patient samples and tested on 349
BRCA patient samples with available clinical information.

Splitting image patches from WSI

Usually, the size of WSIs is very large. Additionally, using WSI
images increases the computational complexity of the model by
many folds [59]. Hence, the WSl is split, or specific regions of inter-
est are selected from the image for processing to serve a specific
purpose in a study [60-62]. In the spatial transcriptomics data,

STGAT | 5

spatial spots are extracted from WSI using location information
provided in the data. A region of 112 pixels on both sides of the
(%,y) coordinates (considered as the center of the spot) is cropped
from the WSI to obtain the spot. However, for TCGA WSIs, lacking
location information, an initial division of the WSI into spots
of dimensions 512 x 512 pixels is performed. Subsequently, for
each spot, the count of pixels with a mean RGB (Red, Green, Blue
channels) value less than 220 is determined. If this count is less
than half of the spot’s pixels (i.e. 512 x 512/2), the spot is classified
as background; otherwise, it is considered a valid spot. Valid spots
are then reshaped to 224 x 224 pixels, and the corresponding row
and column values are used as the spot’s (x,y) coordinates for
constructing the adjacency matrix.

Adjacency matrix

In the STGAT framework, an important component is the GAT
layer, which is designed to leverage the spatial location informa-
tion inherent in spatial transcriptomics data. This spatial context
is conveyed to the GAT layer through an adjacency matrix of the
spots network. For each sample image in spatial transcriptomics
data or TCGA data, a spots network is constructed based on
the coordinates (x, y) of the spots in each image. The Euclidean
distance between pairs of spots is computed, as outlined by the
following equation:

\/(Xi —x)2 + (yi —y))?

where 1,j denote distinct spots. For a given spot, all computed
distance values to other spots are normalized by dividing each
value by the maximum among all such distances. Subsequently,
only the connections where the distance values fall below a
specified threshold are set to 1, signifying that the connection is
retained, while all other connections are set to 0. This process is
repeated for all spots, resulting in the construction of the binary
adjacency matrix. Finally, any self-connection is eliminated by
setting the diagonal entries of the matrix to 0.

Baseline methods

To assess the performance of STGAT in predicting spot-level gene
expression for spatial transcriptomics data, three state-of-the-art
baseline methods were employed: (1) Hist2ST [42], (2) HisToGene
[33] and (3) THItoGene [43]. However, all of them lack the capacity
to directly predict spot-level gene expression from bulk RNA-seq
gene expression data. Therefore, the evaluation of gene expres-
sion produced by STGAT on TCGA data is conducted through a
comparison with true gene expression values.

A Vision Transformer (ViT) [63] is employed by HisToGene for
the gene expression estimation task in the context of spatial
transcriptomics data. The process begins by segmenting the spot
image patches from WSIs based on their spatial coordinates. The
embedding of spot image patches, along with positional embed-
dings, is aggregated using a modified ViT. Subsequently, multi-
head attention layers are utilized to generate hidden embeddings,
which are then fed into a Multilayer Perceptron for the prediction
of gene expression.

Hist2ST employs three modules, namely, Convmixer, Trans-
former and GNN, to predict the gene expression for each
sequenced spot. The Convmixer module is responsible for
capturing the 2D relationships within the spot image patch, while
the Transformer module extracts global spatial dependencies.
The GNN module leverages the relationships between the spots
through the utilization of the GraphSAGE algorithm [64]. The
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learned features integrated from these modules are subsequently
utilized to predict gene expression, employing the zero-inflated
negative binomial distribution.

THItoGene leverages four modules with specific functions for
the gene expression prediction task. The Dynamic Convolution
[65] module extracts and enhances features from the histolog-
ical image, the Efficient-CapsNet [66] module captures spatial
relationships and hierarchical structures among features, the ViT
[63] module attempts to extrapolate long-range dependencies in
the images, and the Graph Attention Network [44] module learns
interactions between spatially neighboring spots.

Experiments

To evaluate the performance of STGAT and the reliability of
the estimated gene expression, we conducted comprehensive
experiments in two main domains. The first set of experiments
focused solely on spatial transcriptomics data, thereby assessing
the efficacy of the SEG component of the model. The second set of
experiments involved WSIs and the corresponding bulk RNA-seq
data in TCGA, demonstrating STGAT’s ability to transfer acquired
knowledge from the spatial domain to existing large-scale cancer
studies. The impact of gene expression estimation by STGAT is
substantiated through downstream analysis tasks. Section S1 in
the Supplementary document explains the evaluation metrics
used for the experiments.

Evaluation with spatial transcriptomics data only

In the STGAT framework, the SEG module plays a pivotal role
as it generates gene expression at the level of individual spots.
To assess the reliability of the estimated gene expression, we
calculate the correlation between the true gene expression and
the predicted gene expression for each spot within every spatial
image. This helps us assess how well our predictions align with
the real gene expression patterns.

Estimated gene expression correlated with the ground truth

The SEG component within the STGAT framework and the two
baseline methods were trained on the 42 samples of the ‘breast
cancer dataset’ and predicted the gene expression at the spot-
level for the remaining 26 samples. The correlations and Mean
Squared Error (MSE) between the true expression and estimated
gene expression are presented in Fig.2 and Supplementary
Fig. S1, along with the average correlation score and average MSE
loss across all samples, respectively. It is evident that STGAT
significantly outperforms all the baseline methods. Notably,
Hist2ST and THItoGene, which exploit a network structure
constructed using spot location information, exhibits superior
performance compared to HistToGene. This observation high-
lights the advantageous nature of integrating spatial information
for gene expression prediction. Furthermore, the synergy between
the attention mechanism and spatial information within the SEG
module allows for the enhanced extraction of nuances of spatial
transcriptomic data, contributing to the superior performance
of STGAT. In a GAT layer, the attention mechanism and spatial
information work cohesively to enhance results. The spatial
information enables the model to identify neighbors for a target
node, while the attention mechanism assigns significance to
these neighbors by allocating attention coefficients. This process
ensures a focus on the most crucial neighbors while disregarding
the rest.

Motivated by these compelling results, we expanded our inves-
tigation to the 'HER2+ dataset.” We directly applied the STGAT

model and the baseline models, previously trained on the ‘breast
cancer dataset,’ to the 36 samples of this new dataset. The out-
comes are illustrated in Fig. 3 and Supplementary Fig. S2. It is
evident that STGAT consistently outperforms the baselines in
terms of correlation and MSE loss across the majority of the
samples. The strong correlation and lower MSE loss between gene
expression predicted by STGAT and the real gene expressions
gives us confidence in using the predicted gene expression at the
spot-level for downstream analysis tasks.

To evaluate STGAT’s performance from a different perspec-
tive, we experimented with Kyoto Encyclopedia of Genes and
Genomes [67] pathways. Supplementary Fig. S3 displays the top
twenty pathways with the highest correlation coefficients com-
puted when evaluated on the test samples of the ‘breast cancer
dataset’. It demonstrates that for these pathways, the correlation
score between true and STGAT-predicted gene expression profiles
is higher than the others. Through literature review, it was found
that indeed, most of the top pathways have direct or indirect
impacts on cancer or tumor cells [68-70].

To further investigate the performance of STGAT, we explored
the effect of decreasing the number of genes involved in the anal-
ysis. Varying percentages (0.1%, 1.0%, 10% and 50.0%) of the total
number of genes were randomly selected for the ‘breast cancer
dataset’ and compared the correlation results in Supplementary
Fig. S4. The experiment with each percentage value was repeated
10 times to draw the boxplots. This evaluation reveals valuable
insights about the model’s behavior. Although a particular gene
might not have any direct impact on another gene’s prediction, it
contributes to the neighbor’s attention coefficient. Hence, when
the number of genes is very low (0.1%, 1%), the performance of the
model drops significantly along with an increase in the standard
deviation. When 10% of the genes (approximately 1000 genes)
are used, the model achieves optimum performance, signifying
that with proper feature selection, the model can perform much
better at this level. Further increases in the number of genes do
not improve the correlation score; however, they decrease the
standard deviation since the model becomes generalized over
more genes.

Estimated gene expression distinguished the tumor and
non-tumor spots

As part of the analysis focusing on the gene expression gen-
erated by the SEG module, our objective is to assess whether
the predicted gene expression contains enough information to
differentiate between tumor and non-tumor tissue spots. For
this experiment, we analyzed the predicted gene expression at
the individual spot-level using STGAT for samples in the ‘breast
cancer dataset.’ In the context of a single sample (image), top 100
genes with the most variance are ranked based on their t-test
P-value between tumor and non-tumor tissue spots. We created
heatmaps displaying the five genes with the most significant P-
values for two samples (appearing in two rows), as shown in Fig. 4.
The first image in each row provides the true labeling of tumor
and non-tumor tissue spots. These genes established connections
to cancer as evidenced by previous research, are outlined in
Table 1.

The results demonstrate that the gene expression predicted
by STGAT can distinctly differentiate between tumor and non-
tumor tissue spots. The differentially expressed genes are also
associated with cancer according to previously established stud-
ies. For instance, the gene TBX1, known for its high expression in
breast cancer tumor tissues [72], can effectively distinguish tumor
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Figure 2. Experimentation on the ‘breast cancer dataset.” The boxplots represent the correlation between the true gene expression and the predicted
gene expression by STGAT and the baseline models for the 26 test samples of the ‘breast cancer dataset.’
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Figure 3. Experimentation on the ‘HER2+ dataset.’” The figure illustrates the correlation between the true gene expression and the predicted gene
expression of the samples in the ‘HER2+ dataset’ by training STGAT and baseline models on the ‘breast cancer dataset.’
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Figure 4. Examples of genes that distinguish the tumor and non-tumor tissue spots. The first image in each row illustrates the accurate label information
for the tumor and non-tumor spots. The subsequent five heatmap images display the gene expression estimated by STGAT for the genes with the most
significant P-values, comparing expressions between tumor and non-tumor spots.

and non-tumor spots. In addition, the prediction of TBX1 expres-
sion across the tumor image show a high-resolution expression
pattern of TBX1: in non-tumor tissue area, its expression is low,
and it gradually increases the expression pattern as the spot
moves away from the non-tumor tissue area (Fig. 4 upper panel).

Similarly, other genes predicted to increase their expression in
sample- BC23944 D2 show a similar pattern. This observation
suggests the potential of using this gene as a viable marker for
a precise areal definition of tumor and therapeutic target for drug
development. Similarly, the gene POLG2 is found to be mutated in
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Table 1. Literature review of the candidate cancer genes. This table presents citations highlighting the relevance of the signature genes
depicted in Fig. 4 to cancer for two patient samples in the ‘breast cancer dataset’

Sample name Gene name Description Reference P-value
BC23944_D2 OARD1 Collectively prognostic, not studied individually yet [71] 5.9976e-31
TBX1 High expression in tumor tissues; could promote cell proliferation, [72] 1.2222e-30
migration, invasion, and cell cycle progression
FAM127C Undergoes X-chromosome inactivation affecting cancers [73] 1.4752e-30
ST3GAL1 Silencing suppresses tumor growth along with a notable decrease [74] 1.5358e-30
in vascularity of MCF7 xenograft tumors
BC23277_D2 POLG2 Somatic mutations frequently found in breast cancer; [75] 1.2008e-18
decreases OXPHOS resulting in mtDNA depletion in breast tumors
SUFU Suppresses RSL3-induced ferroptosis sensitivity of breast cancer cells; [76] 9.8341e-15
regulates the Hippo pathway in breast cancer cells by interacting with
LATS1
IFIT3 Classified as IRDS subset gene with better therapeutic response to IFNs; [77] 6.8357e-13
hence considered predictive biomarker in many primary human cancers
RBM27 Capable of predicting overall survival in case of breast cancer [78] 2.6176e-12
USB1 Affects growth of thyroid tumor cell lines; could induce cell cycle arrest [79] 2.6440e-12

in the

G1 phase, thereby suppressing cell proliferation and migration

63% of breast tumors [75]. However, its differential gene expres-
sion was not associated with breast cancer. Besides, some genes
such as [FIT3 and USB1 that have not yet been linked to breast
cancer could be promising candidates for future research direc-
tions, aiming to determine if they offer any prognostic insights
into breast cancer.

Estimated gene expression improved cell-type classification

We also assessed the predictive performance of estimated gene
expression using STGAT across various cell types within the
same sample. This investigation involved eight samples from the
‘HER2+ dataset,” as detailed cell-type information was available
for these samples [54]. Each sample exhibited a distinct number
of cell types, and a separate Support Vector Machine (SVM) model
was trained and tested using true and predicted spot-level gene
expression for each sample. The resulting AUROC scores are
presented in Supplementary Table S4. Notably, in five out of
the eight samples, the predicted gene expression demonstrated
superior predictive power in distinguishing cell types compared
to the true gene expression. This outcome underscores the
efficacy of the spot-level gene expression generated by STGAT
in facilitating downstream prediction tasks.

Evaluation with TCGA Data

As demonstrated in the previous section, the SEG module exhibits
remarkable predictive performance in gene expression estima-
tion at the spot-level resolution (i.e. near cell level resolution)
within spatial transcriptomic datasets. However, after its training
on spatial transcriptomic data, the SEG module demonstrates
limited efficacy when applied to WSIs and their corresponding
bulk RNA-seq gene expression data, such as those sourced from
TCGA studies. These data in large-scale disease studies introduce
distinctive challenges when it comes to the prediction of gene
expression at the spot-level: (i) absence of spatial coordinates:
unlike spatial transcriptomic data, WSIs lack explicit spatial coor-
dinate information, making it difficult to infer the precise spatial
origin of gene expression. (ii) Lack of ground truth gene expression
values: unlike spatial transcriptomic datasets, the dataset does
not provide true gene expression values at the spot-level, further

complicating the estimation process. (iii) Divergent expression
distributions: the distribution of bulk RNA-seq gene expression
and the gene expression patterns observed in spatial transcrip-
tomic data are dissimilar, exacerbating the challenges of accurate
gene expression prediction at the spot-level.

In order to address the challenges, we employ the GEP module
introduced in the Materials and methods section. It leverages gene
expression estimates obtained from bulk RNA-seq experiments
to predict the corresponding gene expression levels at the spot-
level. Specifically, following normalization, the gene expression
estimated from bulk RNA-seq data serves as a guiding reference
for spot-level gene expression predictions. Furthermore, the
predicted tumor or non-tumor labels generated by the SLP
module enable the proposed framework, STGAT, to focus solely
on the gene expression values estimated from tumor spots,
providing more accurate molecular signatures for downstream
data analysis.

The STGAT model is trained to generate gene expression pro-
files for a total of 10 397 genes, which are overlapped between
the spatial transcriptomic and TCGA datasets. To demonstrate
the effectiveness and proficiency of the predicted spot-level gene
expression for TCGA samples, we conducted a series of compre-
hensive downstream experiments.

STGAT improved breast cancer sub-type prediction

To evaluate the quality of the estimated spot-level gene expres-
sion by STGAT, we designed three cancer sub-type prediction tasks
using 349 patient samples from the TCGA breast cancer dataset.
These tasks were undertaken with the following assumptions: (i)
the estimated gene expression data by STGAT achieves a near-
cell-level resolution, offering more precise molecular signatures
for cancer sub-type prediction in comparison to bulk RNA-seq
gene expression data. (ii) Gene expression estimates derived solely
from tumor spots provide superior predictive power for cancer
outcomes when contrasted with gene expression data originating
from a mixture of both tumor and non-tumor tissue samples.
In this experiment, the STGAT model was trained on a spatial
transcriptomics ‘breast cancer dataset,’ characterized by similar
cancer sub-types as those present in the TCGA breast cancer
samples.
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Table 2. Average AUROC scores and their SD for classifying
TCGA breast cancer patients based on clinical variables using
bulk RNA-seq gene expression data, the average gene expression
of all spots (tumor + non-tumor tissue), and the average gene
expression of tumor spots (tumor-specific average gene
expression). The most significant AUROC scores are bolded. ‘*’
indicates that the difference between the results on the
tumor-only spot and the other two cases is statistically
significant (P-value < 0.0001)
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Table 3. Average AUROC scores and their SD for classifying
TCGA breast cancer patients into different tumor stages using
bulk RNA-seq gene expression data, the average gene expression
of all spots (tumor + non-tumor tissue), and the average gene
expression of tumor spots (tumor-specific average gene
expression). The most significant AUROC scores are bolded. ‘«’
indicates that the difference between the results on the
tumor-only spot and the other two cases is statistically
significant (P-value < 0.001)

Sub-type Gene Expression AUROC SD Classifier Gene Expression AUROC SD
ER bulk RNA-seq 0.8776* 0.0439 Random Forest bulk RNA-seq 0.5686* 0.0407
all spots 0.8973* 0.0494 all spots 0.6023* 0.0336
tumor spots only 0.9302 0.0352 tumor spots only 0.6262 0.0361
PR bulk RNA-seq 0.8064* 0.0519 SVM bulk RNA-seq 0.5971* 0.0459
all spots 0.8125* 0.0539 all spots 0.5850* 0.0490
tumor spots only 0.8514 0.0506 tumor spots only 0.6211 0.0476
N bulk RNA-seq 0.8962* 0.0450
all spots 0.9179 0.0475
tumor spots only 0.9211 0.0419

There are 280 Estrogen Receptor positive (ER+) and 69 ER
negative (ER-) samples, 239 Progesterone Receptor positive (PR+)
and 110 PR negative (PR-) samples, and 110 Triple-negative (TN)
and 294 non-TN samples in the dataset. The three tasks were
to predict breast cancer patients’ ER, PR and TN statuses. The
average gene expression of tumor spots, estimated by STGAT,
and the average gene expression of all spots (tumor + non-
tumor tissue), estimated by STGAT, are compared with the gene
expression generated from bulk RNA-seq data. SVM was applied
for the prediction task. The estimated gene expression data is
divided into training and test sets, containing 80 and 20% of the
total samples, respectively. We ran the classifiers on the three
estimated gene expression datasets with the above-mentioned
splitting 100 times. The average AUROC scores and their standard
deviation (SD) for the 100 splits of the three datasets are reported
in Table 2.

The results clearly show that using tumor-specific average
gene expression performs better than the other two datasets in
all three comparisons. This demonstrates that STGAT has the
capability to estimate gene expression at the spot-level and re-
visit TCGA data to perform a more accurate downstream analysis
for cancer sub-type prediction. The enhanced performance of the
proposed framework can be largely attributed to the information
aggregation mechanism within the SEG module. Specifically, it
is well-established that spatially proximate spots or cells exhibit
correlated characteristics, a phenomenon supported by the spa-
tial relationships inherent in biological tissues. The GAT layer
leverages this spatial information to assign greater attention to
neighboring nodes in comparison to those located at a distance.
Consequently, this selective attention mechanism facilitates the
transfer of properties from proximal nodes to the target node, thus
enhancing the network’s ability to capture spatially coherent gene
expression patterns.

We also note that the average gene expression from all spots
exhibits similar predictive power compared to gene expression
from bulk RNA-seq experiments. This is because STGAT uses bulk
RNA-seq gene expression for training the GEP module and also
as a reference when creating the gene expression profiles for
individual spots. The guidance from bulk RNA-seq data governs
the predicted spot-level gene expression in achieving similar dis-
tribution, which enhances its prognostic capability.

To explore the impact of individual components within the
STGAT framework on generating high-quality gene expression

data for subsequent analysis, an ablation study was performed,
and the findings are illustrated in Supplementary Fig. S5. The
evaluation is conducted on gene expression data derived from
various configurations of the STGAT framework for patients’ TN
status prediction. Specifically, the study compares STGAT without
the GAT layer in the SEG module (STGAT - GAT), STGAT with-
out bulk RNA-seq gene expression guidance in the GEP mod-
ule (STGAT - bulk), and STGAT without the z-score normaliza-
tion step in the GEP module (STGAT - norm), in addition to
the complete STGAT framework. The findings illuminate that
the GAT layer exerts the most significant influence, followed by
the bulk gene expression and normalization steps, respectively.
This underscores the critical role of the GAT layer in generat-
ing high-quality spot-level gene expression for cancer sub-type
prediction.

STGAT improved tumor stage prediction

Motivated by the improved cancer sub-type prediction achieved
with expression data estimated by STGAT, our study extended to
assess its effectiveness in predicting tumor stage. Accurate tumor
stage prediction plays a pivotal role in customizing treatment
strategies to meet each patient’s unique needs. Among the 349
TCGA breast cancer patients, 93 were classified as Stage I, 199 as
StageII, 43 as Stage Il and 12 as Stage IV, with two patients lacking
tumor stage information. We applied the same configuration for
the training and test sets as in the cancer sub-type prediction task,
employing two classification models, Random Forest and SVM, for
this multi-class classification endeavor. Furthermore, we utilized
the same three types of gene expression data, including true bulk
RNA-seq gene expression, average gene expression from all the
spots, and tumor-specific average gene expression, in our analysis
and comparison. The results are presented in Table 3. It is evident
that tumor-specific gene expression data outperforms the other
two gene expression datasets in terms of its predictive capacity
for tumor stage. The significant P-value obtained when comparing
the classification results further demonstrates the improvement.
This experiment highlights STGAT’s capability to effectively inte-
grate the morphological features of images with the network
information of spot locations to proficiently acquire the distinc-
tive characteristics associated with various tumor stages.

STGAT improved stratification of observed survival time

To further assess the quality of spot-level gene expression
data generated by STGAT, we conducted predictions on overall
survival and disease-free time for TCGA breast cancer patients.
The Cox proportional hazards model with elastic net penalty [80]
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Figure 5. Survival and disease-free time predictions on TCGA breast cancer patients utilizing bulk RNA-seq gene expression and gene expression
estimates derived from STGAT. KM plots illustrate low-risk (solid line) and high-risk (dashed line) groups based on the predicted prognostic index
generated by bulk RNA-seq gene expression, the average gene expression of all spots (tumor + non-tumor tissue) estimated by STGAT, and the average
gene expression of tumor spots estimated by STGAT for both survival and disease-free analyses. The number in parentheses indicates the sample count
in the low- or high-risk group. The P-value is calculated using the log-rank test to compare the overall survival or disease-free probability of two groups

of breast cancer patients.

was deployed to select gene expression predictive of patients’
outcome, i.e. overall survival or disease-free survival, including
STGAT-estimated gene expression (tumor spots only and all
spots) and bulk RNA-seq gene expression. 80% of the samples
were utilized for training, and performance was tested on the
remaining 20% of patient samples. The independent test set’s
low and high-risk patient groups were generated based on the
prognostic index [81]. Survival and disease-free predictions were
visualized using Kaplan-Meier (KM) plots and compared using
the log-rank test in Fig. 5. The Python packages scikit-survival
[82] and lifelines [83] were employed for this analysis. The KM
plots illustrate improved predictions of patient survival time and
disease-free time based on the average expression of tumor spots
compared to bulk RNA-seq gene expression or the average gene
expression of all spots. Since the average gene expression of all
spots and bulk RNA-seq gene expression include information
from non-tumor spots, the message flow from these spots might
impede performance. Log-rank test P-values further demonstrate

the robust additional predictive power of the average gene
expression of tumor spots beyond bulk RNA-seq gene expression.

Furthermore, to identify the important genes that show the
prediction power of patients survival and disease-free, we sorted
patient samples for each gene according to their gene expression
levels. Subsequently, these samples were divided into high and
low expressed groups, and KM plots were created to visualize the
survival and disease-free predictions for each group, as illustrated
in Fig. 6. Only the top 100 genes with the greatest variances in
gene expression are included in this analysis. The figure presents
KM plots for four genes with the most significant log-rank test
P-values. In this figure, the survival and disease-free curves dis-
tinctly show separation between patient groups with high and low
gene expression for each gene, accompanied by the corresponding
P-value. This result suggests that the gene expression predicted by
STGAT provides clear and distinctive patterns, effectively distin-
guishing between breast cancer patient groups. Such outcomes
are valuable for the selection of appropriate genes in diagnostic
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Figure 6. Survival and disease-free analysis based on gene expression level. The genes with the most significant log-rank test P-values computed between
the low- and high-expressed patient groups are reported. This analysis utilized the average gene expression of tumor spots estimated by STGAT.

and analytical contexts, contributing to the development of tar-
geted medical interventions.

Discussion

Despite the availability of widespread genome sequencing data,
detailed study of tissue sections at the single-cell level remains
restricted due to the predominant use of bulk RNA-seq gene
expression and H&E-stained WSIs in large-scale disease studies.
While single-cell RNA-seq data provides cell-level gene expres-
sion, it lacks the spatial location information crucial for under-
standing tissue context in disease diagnosis and treatment. In
contrast, spatial transcriptomics data combines gene expression
at a near-cellular level with spatial location information. Despite
the availability of bulk RNA-Seq data and WSIs in the TCGA con-
sortium, the use of these highly profiled images and nucleotide-
resolution level gene expression data is largely missing due to
the lack of methodologies that could integrate this information
together. In this study, we introduce STGAT, a machine learning
framework trained on spatial transcriptomics data, enabling the
prediction of expression for over 10,000 genes at the spot-level
from TCGA WSIs. This allows STGAT to predict gene expression
patterns with better resolution compared to bulk RNA-Seq. Addi-
tionally, STGAT maximizes its usability by applying the method-
ology to existing data.

During the gene expression prediction process, we encountered
several challenges. Firstly, distribution disparities between TCGA
bulk RNA-seq expression data and spatial transcriptomics gene
expression data required the use of two weight matrices. These
matrices, learned during training, were multiplied with spatial
transcriptomics and TCGA gene expression data, ensuring align-
ment of the expression levels. Additionally, z-score normalization
was applied before integrating the bulk TCGA gene expression
vector into the spatial transcriptomics gene expression matrix.
Secondly, an imbalance in the number of tumor and non-tumor
spots in WSIs posed a challenge for training the SLP module to
predict tumor/non-tumor labels. The Youden Index was employed
to determine a threshold value for differentiating tumor and non-
tumor spots. Thirdly, the variable number of spots in TCGA images
(ranging from 150 to 4000) and the diverse networks created from
different images required normalization of attention coefficients
over all neighbors for a target spot, as detailed in SEG in the
Materials and methods section.

STGAT demonstrated robust performance even with limited
training data. The SEG module was trained on 42 spatial transcrip-
tomics images, and the GEP module on 46 TCGA WSIs. Despite
the limited data, STGAT’s generated gene expressions surpassed
State-Of-The-Art baselines in evaluations for both spatial tran-
scriptomics and TCGA data. On one hand, the predicted gene
expression outperformed the baselines in terms of correlation
with true gene expression (Figs 2 and 3). On the other hand, it
rendered better results in the case of binary cancer sub-type
prediction (Table 2), as well as multi-class tumor stage (Table 3)
and cell-type prediction (Table S4) tasks. The capability of the pre-
dicted gene expression to effectively distinguish between tumor
and non-tumor spots in Fig. 4 further validates the accuracy of
the predicted gene expression profiles. Finally, the survival and
disease-free prediction tasks, with significant P-values between
high and low risk/expressed samples in Figs 5 and 6, demonstrate
the reliability of the generated gene expression. Thus, STGAT
can identify new cancer- and normal tissue-enriched transcripts
based on a finer delineation of tumors and surrounding non-
tumor tissues. This can discover previously unrecognized cancer-
specific transcripts with spatial information that could be devel-
oped into new cancer markers for diagnosis and therapeutic
assessments.

Conclusion

Spatial transcriptomics has transformed the study of tissue struc-
tures, tumor composition and heterogeneity with detailed pre-
cision at the cellular level. However, due to its high cost, spa-
tial transcriptomics technologies have not been widely used in
large cohort studies. On the other hand, as genome sequenc-
ing methods have become more affordable, a large volume of
omics data, along with corresponding whole slide images, is now
accessible for large cohort studies. In this study, we introduced
STGAT, a graph-based learning model that can estimate gene
expression profiles at nearly the cellular level. We validate the
predicted gene expression on TCGA breast cancer patient samples
through various analyses, including cancer sub-type prediction,
and survival and disease-free prediction, showcasing the effec-
tiveness of STGAT. We believe that the gene expression profiles
generated by STGAT at the spot-level show promise for develop-
ing targeted medicine and immunotherapy for various complex
diseases.
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Key Points

e A machine learning framework named STGAT has been
developed to unravel the hidden information existing in
bulk tissue data and predict gene expression profiles at
near-cell (spot) level resolution.

* STGAT leverages Graph Attention Network to learn the
relation and complex biological networks between the
spots.

¢ After being trained on spatial transcriptomics data, the
model outperformed state-of-the-art baselines in sev-
eral experiments assessing the predictive capability.

e Further comprehensive experiments on TCGA bulk tis-
sue data demonstrates that estimated gene expression
provides more precise molecular signatures than true
gene expression and hence can be utilized for better
prognosis.
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