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Abstract

Immunotherapies have shown promising results in treating patients with hematological malignancies like multiple
myeloma, which is an incurable but treatable bone marrow-resident plasma cell cancer. Choosing the most efficacious
treatment for a patient remains a challenge in such cancers. However, pre-clinical assays involving patient-derived tumor
cells co-cultured in an ex vivo reconstruction of immune-tumor micro-environment have gained considerable notoriety over
the past decade. Such assays can characterize a patient’s response to several therapeutic agents including immunotherapies
in a high-throughput manner, where bright-field images of tumor (target) cells interacting with effector cells (T cells,
Natural Killer (NK) cells, and macrophages) are captured once every 30 minutes for upto six days. Cell detection, tracking,
and classification of thousands of cells of two or more types in each frame is bound to test the limits of some of the most
advanced computer vision tools developed to date and requires a specialized approach. We propose TLCellClassifier
(time-lapse cell classifier) for live cell detection, cell tracking, and cell type classification, with enhanced accuracy and
efficiency obtained by integrating convolutional neural networks (CNN), metric learning, and long short-term memory
(LSTM) networks, respectively. State-of-the-art computer vision software like KTH-SE and YOLOv8 are compared with
TLCellClassifier, which shows improved accuracy in detection (CNN) and tracking (metric learning). A two-stage LSTM-
based cell type classification method is implemented to distinguish between multiple myeloma (tumor/target) cells and
macrophages/monocytes (immune/effector cells). Validation of cell type classification was done both using synthetic
datasets and ex vivo experiments involving patient-derived tumor/immune cells.

Availability and implementation: https://github.com/QibingJiang/cell _classification_-ml
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L. fidelity data and provide a unique insight into the dynamic
the body’s immune system to combat cancer [2, 3]. It can X . .
. . , . . . nature of patient/drug-specific ez vivo responses, they pose a
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. significant challenge in accurately detecting and tracking [11,
it to locate and attack cancer cells [1, 4]. Immunotherapy o
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Images of cells can be captured using various imaging
modalities, including 2D bright-field, phase contrast [14],
differential interference contrast (DIC) [15], and fluorescence
images [16]. Fluorescence images are widely used by biologists
due to the rich details they provide in cells. Sequences
of stained or counterstained cells or nuclei moving on a
flat substrate can be captured as 2D or 3D time-lapse
sequences, offering additional insights into the environment
and behavior of the cells. The Cell Tracking Challenge [17]
contains various datasets and many state-of-the-art methods
[18, 19, 12] have been developed to address detection and
tracking challenges in various scenarios. For both cell detection
and tracking, numerous deep learning-based methods and
canonical approaches have been proposed, where thresholding
and learning-based methods are effective in segmenting DIC
images [20]. Moreover, thresholding-based pipelines and level-
set-based approaches were proposed to detect cells in bright-
field microscopy images [21, 22]. Over the past decade, deep
learning methods have progressively outperformed canonical
methods in detection tasks. For instance, DKFZ-GE, one of
the methods in the Cell Tracking Challenge, employs nnU-
Net [23] and achieves the best performance on the Fluo-
C3DH-A549 dataset. U-net [24] based methods perform well
on general object detection and medical image segmentation,
which is made possible by high resolution images. Another
method from Cell Tracking Challenge, UNSW-AU utilizes NAS
(neural architecture search) [25] and performs very well on the
Fluo-C2DL-MSC dataset. Advanced machine learning methods
automatically extract numerous features in an unsupervised
manner, surpassing the efficacy of handcrafted features such
as setting thresholds for pixels. However, compared to cell
detection, deep learning methods have not shown significant
improvements in cell tracking.

Most tracking methods fall into one of two categories. The
first relies on tracking overlapping objects from two consecutive
images [26, 27, 28, 29]. This approach is particularly effective
for large, slow-moving cells captured using high-sampling-rate
imaging systems, ensuring an overlap for each cell in two
consecutive images. The second class of methods is based
on Euclidean distance. A temporal association is established
between sets of cells detected in different images. This
association can be built either on two consecutive images
or on a multi-image sliding window that includes all images
simultaneously. The Hungarian algorithm [30] has been utilized
to align cells on two sequential images, as demonstrated in
studies [31, 32]. On the other hand, the Viterbi algorithm can
be employed to match cells across all images and establish
global cell tracks, as shown in the KTH-SE method [33].
Additionally, some models utilize probabilistic approaches to
build temporal links, as indicated in studies [34, 35]. However,
predicting cell trajectories remains a significant challenge,
particularly in cases where cell migration resembles Brownian
motion.

Cell classification is also a critical area of research in medical
image processing. For instance, Inception v3 and artificial
features have been combined to classify cervical cell images
in the HErlev Pap Smear Dataset [36]. Similarly, CNN-based
methods are employed to classify white blood cells in blood
smear images [37], and a combination of CNN and support
vector machine is used to classify single-cell videos into patterns
and impurities [38]. Additionally, deep neural networks have
been utilized to rapidly detect live bacterial growth and
classify corresponding species in time-lapse images [39]. These
studies typically involve datasets with high-resolution images

of single cells or videos capturing dozens of images per second.
However, cells on smear slides have limited viability, restricting
cell motion and evolution. Our dataset is unique because it
monitors thousands of cells in a liquid medium for six days.
This extended observation period requires the development of a
novel computer vision pipeline capable of classifying thousands
of cells in these new ez vivo conditions.

Most computer vision software discussed relies on high-
resolution images or images stained with fluorescent markers,
which works well on images of fixed cells such as FFPE
(Formalin fixed Paraffin Embedded) tissue slides. However,
fluorescence imaging of live cells suffer from drawbacks such
as photobleaching and phototoxicity [40]. This makes bright-
field imaging ideal for capturing cell membrane motion,
cell morphology, and motility in time lapse imaging. We
are working with a dataset [8, 9, 10] developed at Moffitt
Cancer Center that involves bright-field images of patient-
derived CD138+ multiple myeloma (MM) cells co-cultured
with CD144 macrophages/monocytes along with human bone
marrow stromal cells captured once every 30 minutes for up
to six days. Each 1328 x 1048 bright-field image contains
thousands of cells, and the per cell resolution is very low and
often appears pixelated. Unlike the images typically studied in
contemporary research, which typically contain only dozens of
cells, our dataset’s larger cell population makes cell tracking
challenging due to an exponentially growing execution time
with increased cell number [41]. CNN-based methods [42] have
demonstrated significant capabilities in image processing tasks
such as object detection, tracking, and classification. Notable
examples include ResNet [43], YOLO [44], and GoogleNet [45].
However, these methods excel when per cell resolution is high
[46]. A key challenge with CNN-based methods is that as
the feature map progressively reduces in size when traversing
deeper into the CNN layer, smaller objects tend to vanish in the
deeper layers, making their detection and tracking particularly
challenging [47, 48, 49].

This article explores the detection and tracking of patient-
derived MM cells in bright-field time-lapse images derived from
an exr vivo assay. These images are captured to screen effective
drugs for MM cells. In each experiment, MM cells derived from
one patient are co-cultured with human bone marrow stromal
cells with either macrophages/monocytes, NK cells, and T cells
in 384 wells, each containing different drugs/combinations at
five serially diluted concentrations. By capturing images of each
well for six days, we can observe the dynamic interactions
of the tumor with its microenvironment, immune effector
cells, and therapeutic agents. To quantify the viability of the
MM cells, we have developed an image processing pipeline
TLCellClassifier (time-lapse cell classifier) that includes CNN-
based detection, metric learning-based tracking [50], and long
short-term memory (LSTM)-based [51] classification methods.
These methods are described in detail in Methods. The
evaluation of the proposed method and its comparison with
baseline approaches are explored in the Results section. Finally,
we conclude our work and discuss future directions.

Methods

Time-lapse images utilized in this study comprise bright-field
images of MM cells captured under a microscope. These
bright-field time-lapse images are obtained through the ez
vivo assay mentioned below and designed by our collaborators
[7, 8, 9, 10]. Fig.1 illustrates the overall workflow of the
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(a) Original Image (b) Cell Detection

(c) Cell Tracking (d) Cell Classification

Fig. 1. The overall workflow of the pipeline is as follows: (a) Some cells appear bright while others appear dark in the bright-field images. (b) A

CNN-based cell detection method is designed in this research. (c) Due to the crowded and similar appearance of cells, metric learning is applied in this

framework to track cells based on their neighborhoods. (d) Cells are classified into three types: Macrophage (highlighted in red), MM (highlighted in

green), and others (highlighted in yellow). LSTM is then applied to classify the cells.

proposed framework, which consists of three main components:
cell detection, tracking, and classification. Cells captured in
bright-field images can be distinguished from the background
via a sharp gradient in contrast. However, the presence of
various cellular subtypes of different sizes and shapes that
are captured at different brightness intensities can complicate
the problem of cell detection. To address this, a CNN-based
cell detection approach is developed. Moreover, the crowded
nature of cells and their similar appearances present tracking
difficulties. In this framework, metric learning is utilized to
track cells based on their neighborhoods. Lastly, cells are
classified into three types: macrophages, MM, and others (with
CD14+ expression but not macrophages, such as monocytes).
LSTM is applied here to classify single-cell tracks/videos. The
details of the three components are described in the following
subsections, followed by the introduction of the baseline and
benchmark methods.

Ex Vivo Assay

To evaluate the impact of drugs on primary MM cells, our
collaborators at Moffitt Cancer Center conduct an ez vivo
assay [8]. In this assay, primary MM cells, along with
macrophage and stromal cells, are isolated from fresh bone
marrow samples of patients. These cells are then separated
and plated into 384-well plates, providing a supportive
microenvironment for their survival. Various drugs, each at
five different concentrations, are added to designated wells,
while ten control wells remain untreated. The efficacy of a
drug for MM treatment is determined by observing the rate of
MM cell death in drug-treated wells compared to control wells.
Additionally, differences in MM cell viability across different
drug concentrations indicate concentration-dependent effects of
the drug on MM cells. Conversely, if there is no variation in MM
cell viability among wells with different drug concentrations,
it suggests that varying concentrations have similar effects on
MM cells. The plated cells are observed using a motorized
stage microscope, maintaining conditions similar to those in the
human body. Images at a resolution of 1328 x 1048 pixels are
captured under bright-field microscopy every half an hour for up
to six days. In these images, macrophage and MM cells appear
as white nearly circular objects, while stromal cells are observed
as white elongated structures, as shown in Fig.2. Fig.2 also
shows a more challenging case: ‘Myeloma 2’, which is darker
than the background. These kinds of images are captured when
a particular well is slightly out of focus.

Myeloma 1

Myeloma 2

Macrophage

Stroma
Background

Fake white object

128x1

Conv Layer Dense Layer

CNN Classifier

Fig. 2. The image is initially converted into a binary image. For each
cluster of white pixels detected in the binary image, an ROI is cropped
from the original image. These ROIs are then classified by a CNN classifier
into two categories: 1. ROUND CELL and 2. NEGATIVE OBJECT.

Cell Detection

Both MM cells and macrophage cells appear as white objects in
the bright-field images, varying in size and shape. A bounding
box around each cell can typically have a resolution as low as
12x12 pixels. In a CNN-based method, smaller objects may
vanish as the image passes through deeper layers. To address
this, we integrated traditional image processing techniques
(thresholding) with a shallow CNN for cell detection. Cells
are detected in two steps, as illustrated in Fig.2. Initially,
the grayscale image is converted into a binary image using a
predefined threshold [12]. The bounding box for each candidate
cell, a 12x12 region of interest (ROI), is then cropped
from the grayscale image. These ROIs serve as input for
the CNN classifier, which categorizes them into two classes:
ROUND CELL, encompassing macrophage and MM cells, and
NEGATIVE OBJECT, which includes stroma, background,
and other white flares.

The grouping of both macrophages and MM cells into
the same category is a result of the limitations of human
visual perception in distinguishing these two cell types within
a single image. However, macrophage and MM cells exhibit
distinct behaviors over time, making it possible to differentiate
them through time-lapse video analysis. The following section
explores video classification techniques aimed at separating
these two cell types. Within this section, macrophages, MM,
and other immune cells are initially detected and categorized
as ROUND CELL.
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From Fig.2, we can observe that the first category, ROUND
CELL, contains cell images that appear different. Cell images
can vary due to many factors. Maintaining consistent focus on
cells while capturing thousands of wells across different plates
is challenging. Additionally, cells can reside at different depths
within the culture medium, and the well-plate may have a slight
curvature, all of which contribute to the variations observed in
MM cells, as shown in Fig.2. To enhance the robustness of the
CNN classifier, a diverse range of MM images is collected in the
training dataset.

Our CNN classifier consists of four layers, including three
ResNet convolution layers and one dense layer. The CNN
architecture is kept shallow due to the small size of cells.
Rectified Linear Unit (ReLU) is utilized as the activation
function in the convolutional layers, and Softmax is employed
in the dense layer. The loss function is defined as follows:

N C
LD) == > Ly log p(yi = k), 1)
i=1k=1

where N is the number of cell images and C is the number
of classes, which is two (1. ROUND CELL, 2. NEGATIVE
OBJECT) in this study. y; represents the true label (ground
truth) for the (i)-th cell image, while p(y; = k) denotes the
predicted probability that the (i)-th cell image belongs to class
k. 1y,— is an indicator function, returning 1 when y equals
k, and O otherwise. The predicted probability is generated by
the final layer of the CNN. The process of minimizing the
cross-entropy loss selects parameters that drive the predicted
probability towards 1 for the actual class.

For each image, cell detection is accomplished in two
steps: ROI identification and classification. This process yields
cell coordinates, contours, eccentricity, and other relevant
information. Additionally, a 12x12 image is cropped for each
cell, enabling further analyses such as tracking and cell type
classification.

Cell Tracking

Using the aforementioned cell detection approach, ROIs in each
frame across time are identified. To create cell tracks for each
cell across time, the detected cells within the ROIs must be
matched. Tracking cells presents unique challenges compared to
tracking objects in daily life, as cells often appear similar and
are densely packed. Drawing insights from person identification
techniques [52, 53], we discovered that metric learning can be
trained to generate embedding vectors capable of representing
the similarity or dissimilarity features between two images. The
challenge in our dataset lies in the similarity of MM cells,
which are difficult to distinguish due to low resolution. While
different persons can be distinguished based on appearance,
it is not always possible to differentiate MM cells with a
12x12 resolution. Through observation of time-lapse images,
we found that the cell neighborhood remains relatively stable
and recognizable between two time points. Therefore, instead of
only tracking individual cells, we also track cell neighborhoods,
as demonstrated in Fig.3.

Our metric learning model is designed for object re-
identification in images captured at different time points. The
architecture of the metric learning model, as summarized in
Table 1, uses larger ROIs of size 18 x18 pixels. These images
consist of a 12x12 ROI detected previously along with its
surrounding area. Through a series of convolutional layers, the
image dimensions are reduced to 2x2 pixels. Subsequently, an
embedding vector of length 128 is extracted using a dense layer.

To enhance accuracy, the network incorporates several residual
blocks [43], enabling information flow from the initial layers to
the final ones.

Table 1. Architecture of the metric learning-based model

Layer Output Size
Conv 1 32@18 x 18
Conv 2 32@18 x 18
Max Pool 3 32@9 x 9
Residual 4 32@9 x 9
Residual 5 32@9 x 9
Residual 6 64Q4 x 4
Residual 7 64Q@Q4 x 4
Residual 8 128@2 x 2
Residual 9 128@2 x 2
Dense 10 128@1

The loss function utilized for training enforces separation
based on the embedding vectors of images within individual
cell tracks, ensuring they differ from the mean of the embedding
vectors across other cell tracks:

1 JUTE
e 242 ||'v ”’3/“2 A

Lwv)=q-lee———opmZmr - @
keC(y) +

where v represents one embedding vector (one input image)
to be learned in cell track y. C(y) = 1,...,C\y denotes the
set of cell tracks excluding y. A is a hyper-parameter, @, is
the mean of the cell image predictions in cell track y, and &2
is the variance of all cell images. By minimizing the loss, the
feature representation from the same cell will become closer,
while the feature representation from different cell tracks will
become further apart.

Another challenge in tracking cells arises from the presence
of macrophages in our time-lapse images, which move rapidly
and irregularly. Unlike other cells, macrophages do not
maintain a stable neighborhood, making it difficult for metric
learning to match all detected cells between two time points.
Therefore, an additional step is needed to track these cells,
involving the calculation and comparison of cell locations
between two time points to match them.

The overall tracking algorithm is outlined in Algorithm
1, where D;{d?,d;...} and Dt+1{dg+1,di+1.‘.} represent cell
detections at time points t and ¢t 4+ 1, respectively. MLM
and HA denote the Metric Learning Model and Hungarian
Algorithm, respectively. Cell tracks are established by matching
detected cells from two consecutive time points. For each pair
of adjacent time points, the matching process consists of two
steps. In the first step (lines 8-19), the metric learning-based
model generates embedding vectors V; and Vi based on the
neighborhood of each cell. Then, the cosine similarity between
the vectors from the two time points is calculated. Finally, the
Hungarian algorithm is used to match the embedding vectors.
Only pairs with a cosine similarity score score(a) higher than
the threshold are retained (line 11). For each matched pair
(di, d{Jrl)7 the current detection d{+1 is added to the track
T'[k] that includes d; (line 13). Fast-moving cells, which lack
a stable neighborhood, may not find a match in the first step
(line 14). This is where the second step comes into effect (lines
20-23). First, the Euclidean distance is calculated between
the coordinates of the cells from the two time points. Then,
the Hungarian algorithm is applied to match the cells. After
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Fig. 3. Framework for cell tracking. Cell neighborhood images are the input of the metric learning-based model, which generates embedding vectors as

output. The Hungarian algorithm is then utilized to match the vectors obtained from two different time points. By matching these embedding vectors,

cells from the two time points can be effectively matched.

completing both steps, cells from the two time points are
matched. By applying these steps for each pair of consecutive

time points, cell tracks are established.

Cell Classification

Cell classification plays an important role in drug screening.
Within the microenvironment of a well, various cell types such
MM cells, and others coexist. As the MM
cells are treated with drugs,

as macrophages,
some cells undergo apoptosis,
while others may be subject to phagocytosis over time. It is

Algorithm 1 Tracking Algorithm

Require: Detections Di{d},d;...}, Diy1{d}, ,,di ,...} at
time point ¢ and t + 1, Metric Learning Model (MLM),
Hungarian Algorithm (HA)

Ensure: Tracks T

1: T+ 0

2: for t in TimePoints do

3: #Generate embeddings for the detected cells
4 Vi + MLM(Dy)

5: Vt+1 < MLM(Dt+1)

6: #Apply Hungarian algorithm to match two vector sets
7 Assignments < HA(V;, Vigq)

8: #Step 1, matching by metric learning

9: for a in Assignments do

10: #a: the pair (di, d{+1) matched by HA
11: if score(a) > threshold then

12: # Detected cells di and d{+1 are matched.
13: T[k] : {...dy} < di

14: else

15: #Unmatched detections

16: unDet; di

17: ’LLTLDett+1 < d‘z+1

18: end if

19: end for
20: #Step 2, matching by Euclidean distance
21: Coord; < Coordinates(unDet;)
22: Coordyy1 < Coordinates(unDety 1)
23: Assignments < HA(Coord;, Coordi+1)
24: for a in Assignments do
25: #a: the pair (di, dt'+1) matched by HA
26: TIk) : {...dl} + dt_'_1
27: end for
28: end for

29: return T > Return the final set of tracks

important to know the proportion of each cell type and monitor
the number of cells of each type that undergo cell death. In this
study, our primary objective is to identify a drug capable of
selectively targeting MM cells while avoiding any detrimental
effects on immune cells.

Based on cell detection and tracking, we can crop single-
cell images at each time point and track for each cell. With
thousands of single-cell tracks available, cells can be classified
into different types: myeloma, macrophage, or others. Although
these cells may look similar in a single image, their behavior
Therefore, LSTM is employed to
The

differs across time points.
classify the cells by analyzing the single-cell tracks.
architecture of our LSTM method is illustrated in Fig.4.

The CNN model in Fig.4(a) is a pre-trained Inception v3
[54]. Images of 1000 different classes in the ImageNet [55] are
used to train Inception v3. The Inception v3 architecture is
a deep CNN used for image analysis and object detection. It
is designed to allow deeper networks while also keeping the
number of parameters from growing too large. The architecture
is made up of multiple Inception modules, which consist of
parallel layers of convolutions and pooling. The Inception v3
architecture has been employed in many different applications.
In this study, it is utilized to generate feature representations
that serve as the input for the LSTM module.

The input to the Inception v3 model is a 12x12 cell image in
a single-cell track. The output of the model is a feature vector
containing extracted information from the cell image. Inception
v3 is followed by the LSTM model for multi-class classification.
Categorical cross-entropy is used as the loss function, which
In this classification task, N
represents the number of cell tracks in the dataset,

is the same as Equation (1).
and
C' represents the number of classes, including macrophage,
The objective is to optimize the LSTM

model parameters to minimize this loss.

myeloma, and ‘others.’

Monocytes, categorized under ‘others,” are white blood cells
that differentiate into macrophages. In this precursor state,
these cells have a different morphology and behavior. In ex
vivo cultures, the differences between monocytes and myeloma
are difficult to distinguish. Even through the observation of
single-cell tracks, it remains difficult to separate these two
cell types. To compel the model to learn specific features for
each type, two stages of LSTM are employed. In the first
stage, the LSTM-based Classifier 1 is tasked with separating
macrophages from other cells, while in the second stage, the
LSTM-based Classifier 2 distinguishes between other cells (such

as monocytes) and myeloma, as illustrated in Fig. 4(b).
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Fig. 4. LSTM-based Cell Classification. (a) Inception V3 is employed to generate a feature vector for each cell image, which is then utilized by LSTM

for cell classification. (b) Two stages of LSTM are designed in this approach. The first stage aims to classify cells into either {myeloma, others} or

{macrophage}. The second stage further refines the classification, distinguishing between myeloma and other cell types.

To train the two LSTM-based classifiers, we prepared two
types of experiments (i.e., wells). The first contains only MM
cells. The second consists of immune cell-only wells, which
contain only CD14+ selected cells (macrophages/monocytes).
(1) Classifier 1 is trained with the dataset of the single-
cell tracks generated from the two types of wells. Then
Classifier 1 is applied to the immune cell-only wells, where
cell tracks are classified into two groups. The first group
comprises cells that exhibit quick, irregular movement and
change shape over time, identified as macrophages. The second
group consists of motionless immune cells, and their cell type
remains undetermined, for which we name them ‘Others’. (2)
Myeloma and ‘Others’ single-cell tracks are similar and difficult
to distinguish, for which we designed Classifier 2, which is
specifically used to extract the features that can differentiate
the two similar cell classes. Cell tracks from MM wells and the
‘Others’ single-cell tracks from immune cell-only wells form the
dataset that is used to train Classifier 2.

After training, the LSTM-based classifiers can classify cells
into three categories as is shown in Fig.4(b). The mix of
three types of cells in a well makes classification a prerequisite
for further analysis. Through classification, we can observe
which cell type is responding to therapy, quantify each type,
and determine the targeted effect of each immunotherapy on
tumor/target cells.

Benchmarking

In order to evaluate the performance of the detection and
tracking methods, two contemporary methods are applied to
the time-lapse cell images.

KTH-SE: KTH-SE [41] is a tracking-by-detection framework,
which has shown strong performance across various datasets
in Cell Tracking Challenges [56]. The detection method is
based on threshold setting, and the tracking method utilizes
the Viterbi algorithm. As this framework does not involve a

machine learning method, there is no need for a training step.
Furthermore, they offer a user-friendly graphical interface for
ease of use.

YOLO: YOLO [44] is a CNN-based method comprising 24
convolutional layers. It utilizes a feature pyramid network to
extract features from images. The output is a 7x7x30 vector
representing 49 predictions, each comprising 2 bounding boxes
and 20 class probabilities. YOLO has introduced its eighth
version, which is faster, more accurate, and can detect and
track more objects. In this study, YOLO v8 is employed for
comparison with TLCellClassifier.

Evaluation Metrics

To evaluate the performance of cell detection and tracking, this
study utilizes metrics used for evaluating submissions in the
Cell Tracking Challenge [57]. Both the detection and tracking
methods undergo evaluation using the Acyclic Oriented Graph
Matching (AOGM) measure. For evaluation purposes, two
graphs are constructed: one for ground truth and one for
prediction. In each graph, a node represents a detected cell, and
edges denote one-to-one matches between two time points. This
method assesses the difficulty of transforming the prediction
graph into the ground truth graph, quantified as a weighted sum
of the minimum graph operations required, including splitting,
deleting, and adding a node, as well as deleting, adding, and
altering the semantics of an edge, to align the two graphs.
Numerically, DET is defined as a normalized AOGM measure
for detection, with its value always falling within the [0,1]
interval. A higher DET value indicates better performance.
Similarly, TRA is defined as a normalized AOGM measure
for tracking, also within the [0,1] range, where a higher value
denotes better performance.
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(a) Original Image

with ground truth

(c) The result of KTH-SE compared with
ground truth

(b) The result of TLCellClassifier compared

(d) The result of YOLO v8 compared with
ground truth

Fig. 5. The comparison of the three methods: The ground truth segmentation is highlighted in red, while the predictions from the three methods are

displayed in green. The overlap between the predicted region and the ground truth is represented in yellow (correct prediction) in (b) and (c). The

boxes in (d) indicate the detection results of YOLO v8.

Detection Results of Three Methods Tracking Results of Three Methods

10 — 10 —

°
>

AOGM Metric
AOGM Metric
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S

0.0
TLCellClassifier ~ KTH_SE YOLO v8

o.
TiCellClassifier ~ KTH_SE YOLO v8

Fig. 6. The comparison of TLCellClassifier, KTH-SE, and YOLO v8 on

three wells: (a) cell detection performance; (b) cell tracking performance.

Results

In this section, we evaluate the performance of the proposed
framework, TLCellClassifier, by comparing it with KTH-SE
and YOLO v8. The dataset consists of bright-field time-
lapse images, each containing thousands of cells. Subsequent
sections will assess the performance in detection, tracking, and
classification.

Cell Detection and Tracking

In this section, 640x640 images are cropped from the original
13281048 ones. Full-range images are not utilized here
because the KTH-SE and YOLO methods cannot efficiently
process such a large number of objects. The computational
expense of the Viterbi algorithm makes it impractical for
tracking thousands of objects, thus preventing the KTH-SE
method from producing results for the 1328x1048 images
within a few days on our server, equipped with an Intel
Core i7-8700 processor and 32GB memory. The maximum
resolution KTH-SE can handle for our dataset, which contains
considerably fewer objects, is 640x640. Additionally, YOLO’s
capability to detect objects is limited. In earlier versions
of YOLO, it could detect a maximum of 49 objects. While
subsequent versions of YOLO have significantly improved this
number, our dataset presents a greater challenge due to the
presence of thousands of cells in a single image, each with a
low resolution of 12x12.

The comparison between TLCellClassifier and contemporary
methods, KTH-SE and YOLO v8, is illustrated in Fig.5. In
the bright-field images, there are over 600 cells. The ground
truth for detection and tracking is manually annotated on

these images. Both TLCellClassifier and KTH-SE demonstrate
proficient detection capabilities, capturing most of the cells as
illustrated in Fig.5(b) and (c). However, KTH-SE struggles to
effectively differentiate between stromal cells and MM cells,
as evident in Fig.5(c). Conversely, YOLO v8, depicted in
Fig.5(d), detects only 300 cells, approximately half of the total
count. This indicates YOLO’s limitation in detecting small
cells, particularly in densely populated regions.

To conduct a comprehensive evaluation of cell detection
and tracking accuracy of TLCellClassifier, ground truth from
three wells is manually labeled. Subsequently, the accuracy of
detection and tracking is assessed by comparing the predictions
of the three methods against this ground truth. The evaluation
metrics utilized in the Cell Tracking Challenge are employed, as
described in the Evaluation Metrics subsection. The results of
this assessment are calculated and presented in Fig.6. Notably,
among the three methods, TLCellClassifier outperforms in both
detection and tracking. Again, KTH-SE struggles to effectively
differentiate stromal cells and MM cells, resulting in lower
detection and tracking accuracy compared to TLCellClassifier.
Consistent with the findings illustrated in Fig.5(d), YOLO
v8 exhibits poor performance on small and crowded objects,
thereby yielding the lowest detection and tracking accuracy
among the three methods.

Based on the findings above, it’s evident that our dataset
poses challenges beyond the capabilities of YOLO v8. To
simplify the experiment, we cropped a smaller section of
480x480 from the full image. As illustrated in Fig.S1 in the
Supplementary document, YOLO v8 successfully detects the
majority of cells when the frame size is 480x480. However, with
a frame size of 640x640, only half of the cells are detected.

The preceding section has outlined the detection and
tracking results obtained for our dataset using the three
methods. It is important to note that the images used above
have a resolution of 640x640. Among these methods, only
TLCellClassifier exhibits smooth performance even when the
resolution is increased to 1328 x1048.

Cell Classification

It is important to categorize cells into different types:

tumor (target), immune effector cells, and cells from

the microenvironment, for accurate quantification of the
treatment’s effect on a given patient’s tumor cells. To assess

the performance of our LSTM classifier in the TLCellClassifier
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Fig. 7. Classification of synthetic datasets. The experiment involves seven datasets, each containing different numbers of the three types of cells. The

LSTM classifier is utilized to classify these cells into three categories. Each dataset is repeated 10 times, and the mean and standard deviation (in red

text) of the predictions are calculated for each dataset. The blue bars represent the number of each cell type prepared in the dataset (ground truth),

while the red bars depict the classification results.
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Fig. 8. The left image displays a well containing three types of cells: macrophage (MO), myeloma (MM), and others. The cell classification is represented

in three colors: red circles indicate macrophages (MO), green circles indicate myeloma (MM), and yellow circles indicate others. It is noted that the

number of macrophages and others should be twice that of myeloma cells. The right plot illustrates the number of cells in each category at time point

0 across ten wells.

framework, we have prepared three different types of wells. The
first type comprises cancer cell-only wells: 10 wells containing
only MM cells.
10 wells containing only CD14+4 selected cells

The second type consists of immune cell-
only wells:
(macrophages/monocytes). In these wells, macrophages move
rapidly and irregularly, while other cells (monocytes) remain
relatively stable. The third type comprises mixed wells: 10
wells containing a mixture of cells from both types, where the
number of immune cells is twice the number of cancer cells.
The approach is implemented in several steps. Initially, cells
are detected and tracked in time-lapse images. Subsequently,
single-cell images (ROIs) are cropped to generate a track for
each cell. The two-stage LSTM-based classification method is
tested using two in silico experiments. In the first experiment,
synthetic datasets with different ratios of each cell type are
combined from the immune cell-only wells and cancer cell-only
wells to evaluate the performance of the LSTM classifier. In the
second experiment, the LSTM classifier is applied to the mixed-
cell wells (i.e., the third type) to demonstrate the classification
outcomes.

1. Prediction of Different Cell Ratios

As mentioned earlier, single-cell tracks are extracted from
immune cell-only wells or cancer cell-only wells based on cell
detection and tracking. An LSTM-based binary classifier is
then trained on the tracks from these two types of wells to
discern the differences between the cells. Subsequently, the
trained classifier is applied to the immune cell-only wells,
The first

group comprises cells that exhibit quick, irregular movement

where cell tracks are classified into two groups.

and change shape over time, identified as macrophages. The
second group consists of cells that are motionless, and their
cell type remains undetermined. Given three types of cells —
myeloma cells, macrophages, and other cells (monocytes) —
several synthetic datasets are created to classify cell tracks.
The two-stage LSTM classifier is employed to classify these
synthetic datasets. The results are illustrated in Fig.7.

In the figure, seven plots display the results of different
in silico experiments using synthetic datasets as inputs. In
each experiment, different numbers of the three cell types are
prepared as ground truth, as indicated by the blue bars. Each
of the seven experiments is repeated 10 times. The mean and
standard deviation of the classification results are calculated
and shown in the red bars. In the first column, an equal number
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of cells for each type (i.e., 1000 cells for each) is used, while the
other three columns have a dominant cell type. It is observed
that in the experiments represented in the left three columns,
the accuracy is high. In contrast, the datasets in the rightmost
column, which contain a higher proportion of ‘other’ cells (such
as monocytes), exhibit relatively low classification accuracy.
‘Other’ cells, unlike macrophages which are actively moving,
are relatively stable like myeloma cells. Thus, they are easily
misclassified as myeloma cells when there are too many of them.
Interestingly, the converse is not true; when a high number of
myeloma cells are included, they are not misclassified as other
cells at this image resolution level.

2. Prediction on Mized Cell Wells

In the preceding subsection, we evaluated the performance of
the LSTM classifier using synthetic datasets with varying ratios
of cell types. In this subsection, we rely on data from an actual
er vivo experiment, where twice the number of immune cells
(macrophages/monocytes) are added in the well compared to
myeloma cells at the beginning of the experiment. We have 10
wells with this condition, and we tested the two-stage LSTM
classifier to estimate the proportion or number of myeloma cells
relative to the immune cells. The results of this classification
task are illustrated in Fig.8.

The left image in Fig.8 displays a well containing three types
of cells: macrophage, myeloma, and others. Each cell type is
visually distinguished with a specific color for classification.
Macrophage cells are denoted by red circles, myeloma cells by
green circles, and other cells by yellow circles. The right plot
shows the classification results in ten wells. The number of cells
in categories myeloma and immune cells (i.e., macrophage and
others) is shown in the box plot. Given that the number of
macrophages and others is twice the number of myeloma cells
at the start, the right figure in Fig.8 shows the prediction is
close to ground truth.

Conclusion

Live cell imaging has been the subject of research in computer
science and biomedical sciences for many years. Cells within the
microenvironment pose a greater challenge for detection and
tracking compared to general objects encountered in daily life.
This paper presents TLCellClassifier, a framework designed to
effectively detect, track, and classify cells. Operating on high-
throughput time-lapse images characterized by low resolution
and frame rates, TLCellClassifier achieves state-of-the-art
performance. When compared to KTH-SE, a leading method
in the Cell Tracking Challenge, and YOLO, renowned for
general object detection, only TLCellClassifier demonstrates
proficiency in both detection and tracking. Furthermore, it
extends its applicability beyond cell tracking to encompass
general object tracking, particularly for images featuring small
objects such as aerial or fish images.

The cell type classification approach described in this article
helps quantify the patient/immunotherapy-specific effect to
profile patient tumors and immune effector cells to assess their
efficacy prior to treatment. This ensures that every patient
receives a therapeutic option to which they are most likely
to respond, thus avoiding instances where patients have an
underwhelming response. We submit that high-throughput ez
vivo assays characterizing response to immunotherapies, when
integrated with such specialized software, can help lay the
groundwork for personalized medicine in cancer treatment.
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