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Abstract

Immunotherapies have shown promising results in treating patients with hematological malignancies like multiple
myeloma, which is an incurable but treatable bone marrow-resident plasma cell cancer. Choosing the most efficacious
treatment for a patient remains a challenge in such cancers. However, pre-clinical assays involving patient-derived tumor
cells co-cultured in an ex vivo reconstruction of immune-tumor micro-environment have gained considerable notoriety over
the past decade. Such assays can characterize a patient’s response to several therapeutic agents including immunotherapies
in a high-throughput manner, where bright-field images of tumor (target) cells interacting with effector cells (T cells,
Natural Killer (NK) cells, and macrophages) are captured once every 30 minutes for upto six days. Cell detection, tracking,
and classification of thousands of cells of two or more types in each frame is bound to test the limits of some of the most
advanced computer vision tools developed to date and requires a specialized approach. We propose TLCellClassifier
(time-lapse cell classifier) for live cell detection, cell tracking, and cell type classification, with enhanced accuracy and
efficiency obtained by integrating convolutional neural networks (CNN), metric learning, and long short-term memory
(LSTM) networks, respectively. State-of-the-art computer vision software like KTH-SE and YOLOv8 are compared with
TLCellClassifier, which shows improved accuracy in detection (CNN) and tracking (metric learning). A two-stage LSTM-
based cell type classification method is implemented to distinguish between multiple myeloma (tumor/target) cells and
macrophages/monocytes (immune/effector cells). Validation of cell type classification was done both using synthetic
datasets and ex vivo experiments involving patient-derived tumor/immune cells.
Availability and implementation: https://github.com/QibingJiang/cell classification ml
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Introduction

Immunotherapy [1] is a type of cancer treatment that utilizes

the body’s immune system to combat cancer [2, 3]. It can

enhance or modify the immune system’s functionality, enabling

it to locate and attack cancer cells [1, 4]. Immunotherapy

may be administered alone or in conjunction with other

cancer treatments [5, 6]. Preclinical ex vivo assays [7, 8, 9,

10] can help identify the most efficacious therapy for each

patient by treating co-cultures of tumor and immune cells

with several drugs/combinations in a reconstruction of the

tumor microenvironment. The use of bright-field imaging for

high-throughput drug sensitivity characterization facilitates

quantifying ex vivo responses in a temporal fashion unlike

traditional end-point assays. These bright-field images typically

feature thousands of cells in each frame and are captured

once every 30 minutes for up to six days. While such high-

throughput time-lapse imaging of ex vivo cultures yield high

fidelity data and provide a unique insight into the dynamic

nature of patient/drug-specific ex vivo responses, they pose a

significant challenge in accurately detecting and tracking [11,

12] thousands of cells across hundreds of frames. Additionally,

co-culture assays involve multiple types of cells and require an

efficient approach to quantify the targeted effect of the therapy

on the tumor cells compared to other non-malignant cellular

subtypes [13], which presents a unique challenge to classify cell

types based on morphology and behavior. In this article, we

systematically address three main challenges, namely, detection

of cancer cells and identifying cell-specific features, tracking

individual cells across time using time-lapse imaging, and

classifying cells into their respective cell types.
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Images of cells can be captured using various imaging

modalities, including 2D bright-field, phase contrast [14],

differential interference contrast (DIC) [15], and fluorescence

images [16]. Fluorescence images are widely used by biologists

due to the rich details they provide in cells. Sequences

of stained or counterstained cells or nuclei moving on a

flat substrate can be captured as 2D or 3D time-lapse

sequences, offering additional insights into the environment

and behavior of the cells. The Cell Tracking Challenge [17]

contains various datasets and many state-of-the-art methods

[18, 19, 12] have been developed to address detection and

tracking challenges in various scenarios. For both cell detection

and tracking, numerous deep learning-based methods and

canonical approaches have been proposed, where thresholding

and learning-based methods are effective in segmenting DIC

images [20]. Moreover, thresholding-based pipelines and level-

set-based approaches were proposed to detect cells in bright-

field microscopy images [21, 22]. Over the past decade, deep

learning methods have progressively outperformed canonical

methods in detection tasks. For instance, DKFZ-GE, one of

the methods in the Cell Tracking Challenge, employs nnU-

Net [23] and achieves the best performance on the Fluo-

C3DH-A549 dataset. U-net [24] based methods perform well

on general object detection and medical image segmentation,

which is made possible by high resolution images. Another

method from Cell Tracking Challenge, UNSW-AU utilizes NAS

(neural architecture search) [25] and performs very well on the

Fluo-C2DL-MSC dataset. Advanced machine learning methods

automatically extract numerous features in an unsupervised

manner, surpassing the efficacy of handcrafted features such

as setting thresholds for pixels. However, compared to cell

detection, deep learning methods have not shown significant

improvements in cell tracking.

Most tracking methods fall into one of two categories. The

first relies on tracking overlapping objects from two consecutive

images [26, 27, 28, 29]. This approach is particularly effective

for large, slow-moving cells captured using high-sampling-rate

imaging systems, ensuring an overlap for each cell in two

consecutive images. The second class of methods is based

on Euclidean distance. A temporal association is established

between sets of cells detected in different images. This

association can be built either on two consecutive images

or on a multi-image sliding window that includes all images

simultaneously. The Hungarian algorithm [30] has been utilized

to align cells on two sequential images, as demonstrated in

studies [31, 32]. On the other hand, the Viterbi algorithm can

be employed to match cells across all images and establish

global cell tracks, as shown in the KTH-SE method [33].

Additionally, some models utilize probabilistic approaches to

build temporal links, as indicated in studies [34, 35]. However,

predicting cell trajectories remains a significant challenge,

particularly in cases where cell migration resembles Brownian

motion.

Cell classification is also a critical area of research in medical

image processing. For instance, Inception v3 and artificial

features have been combined to classify cervical cell images

in the HErlev Pap Smear Dataset [36]. Similarly, CNN-based

methods are employed to classify white blood cells in blood

smear images [37], and a combination of CNN and support

vector machine is used to classify single-cell videos into patterns

and impurities [38]. Additionally, deep neural networks have

been utilized to rapidly detect live bacterial growth and

classify corresponding species in time-lapse images [39]. These

studies typically involve datasets with high-resolution images

of single cells or videos capturing dozens of images per second.

However, cells on smear slides have limited viability, restricting

cell motion and evolution. Our dataset is unique because it

monitors thousands of cells in a liquid medium for six days.

This extended observation period requires the development of a

novel computer vision pipeline capable of classifying thousands

of cells in these new ex vivo conditions.

Most computer vision software discussed relies on high-

resolution images or images stained with fluorescent markers,

which works well on images of fixed cells such as FFPE

(Formalin fixed Paraffin Embedded) tissue slides. However,

fluorescence imaging of live cells suffer from drawbacks such

as photobleaching and phototoxicity [40]. This makes bright-

field imaging ideal for capturing cell membrane motion,

cell morphology, and motility in time lapse imaging. We

are working with a dataset [8, 9, 10] developed at Moffitt

Cancer Center that involves bright-field images of patient-

derived CD138+ multiple myeloma (MM) cells co-cultured

with CD14+ macrophages/monocytes along with human bone

marrow stromal cells captured once every 30 minutes for up

to six days. Each 1328 × 1048 bright-field image contains

thousands of cells, and the per cell resolution is very low and

often appears pixelated. Unlike the images typically studied in

contemporary research, which typically contain only dozens of

cells, our dataset’s larger cell population makes cell tracking

challenging due to an exponentially growing execution time

with increased cell number [41]. CNN-based methods [42] have

demonstrated significant capabilities in image processing tasks

such as object detection, tracking, and classification. Notable

examples include ResNet [43], YOLO [44], and GoogleNet [45].

However, these methods excel when per cell resolution is high

[46]. A key challenge with CNN-based methods is that as

the feature map progressively reduces in size when traversing

deeper into the CNN layer, smaller objects tend to vanish in the

deeper layers, making their detection and tracking particularly

challenging [47, 48, 49].

This article explores the detection and tracking of patient-

derived MM cells in bright-field time-lapse images derived from

an ex vivo assay. These images are captured to screen effective

drugs for MM cells. In each experiment, MM cells derived from

one patient are co-cultured with human bone marrow stromal

cells with either macrophages/monocytes, NK cells, and T cells

in 384 wells, each containing different drugs/combinations at

five serially diluted concentrations. By capturing images of each

well for six days, we can observe the dynamic interactions

of the tumor with its microenvironment, immune effector

cells, and therapeutic agents. To quantify the viability of the

MM cells, we have developed an image processing pipeline

TLCellClassifier (time-lapse cell classifier) that includes CNN-

based detection, metric learning-based tracking [50], and long

short-term memory (LSTM)-based [51] classification methods.

These methods are described in detail in Methods. The

evaluation of the proposed method and its comparison with

baseline approaches are explored in the Results section. Finally,

we conclude our work and discuss future directions.

Methods

Time-lapse images utilized in this study comprise bright-field

images of MM cells captured under a microscope. These

bright-field time-lapse images are obtained through the ex

vivo assay mentioned below and designed by our collaborators

[7, 8, 9, 10]. Fig.1 illustrates the overall workflow of the
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Fig. 1. The overall workflow of the pipeline is as follows: (a) Some cells appear bright while others appear dark in the bright-field images. (b) A

CNN-based cell detection method is designed in this research. (c) Due to the crowded and similar appearance of cells, metric learning is applied in this

framework to track cells based on their neighborhoods. (d) Cells are classified into three types: Macrophage (highlighted in red), MM (highlighted in

green), and others (highlighted in yellow). LSTM is then applied to classify the cells.

proposed framework, which consists of three main components:

cell detection, tracking, and classification. Cells captured in

bright-field images can be distinguished from the background

via a sharp gradient in contrast. However, the presence of

various cellular subtypes of different sizes and shapes that

are captured at different brightness intensities can complicate

the problem of cell detection. To address this, a CNN-based

cell detection approach is developed. Moreover, the crowded

nature of cells and their similar appearances present tracking

difficulties. In this framework, metric learning is utilized to

track cells based on their neighborhoods. Lastly, cells are

classified into three types: macrophages, MM, and others (with

CD14+ expression but not macrophages, such as monocytes).

LSTM is applied here to classify single-cell tracks/videos. The

details of the three components are described in the following

subsections, followed by the introduction of the baseline and

benchmark methods.

Ex V ivo Assay
To evaluate the impact of drugs on primary MM cells, our

collaborators at Moffitt Cancer Center conduct an ex vivo

assay [8]. In this assay, primary MM cells, along with

macrophage and stromal cells, are isolated from fresh bone

marrow samples of patients. These cells are then separated

and plated into 384-well plates, providing a supportive

microenvironment for their survival. Various drugs, each at

five different concentrations, are added to designated wells,

while ten control wells remain untreated. The efficacy of a

drug for MM treatment is determined by observing the rate of

MM cell death in drug-treated wells compared to control wells.

Additionally, differences in MM cell viability across different

drug concentrations indicate concentration-dependent effects of

the drug on MM cells. Conversely, if there is no variation in MM

cell viability among wells with different drug concentrations,

it suggests that varying concentrations have similar effects on

MM cells. The plated cells are observed using a motorized

stage microscope, maintaining conditions similar to those in the

human body. Images at a resolution of 1328 × 1048 pixels are

captured under bright-field microscopy every half an hour for up

to six days. In these images, macrophage and MM cells appear

as white nearly circular objects, while stromal cells are observed

as white elongated structures, as shown in Fig.2. Fig.2 also

shows a more challenging case: ‘Myeloma 2’, which is darker

than the background. These kinds of images are captured when

a particular well is slightly out of focus.

Fig. 2. The image is initially converted into a binary image. For each

cluster of white pixels detected in the binary image, an ROI is cropped

from the original image. These ROIs are then classified by a CNN classifier

into two categories: 1. ROUND CELL and 2. NEGATIVE OBJECT.

Cell Detection
Both MM cells and macrophage cells appear as white objects in

the bright-field images, varying in size and shape. A bounding

box around each cell can typically have a resolution as low as

12×12 pixels. In a CNN-based method, smaller objects may

vanish as the image passes through deeper layers. To address

this, we integrated traditional image processing techniques

(thresholding) with a shallow CNN for cell detection. Cells

are detected in two steps, as illustrated in Fig.2. Initially,

the grayscale image is converted into a binary image using a

predefined threshold [12]. The bounding box for each candidate

cell, a 12×12 region of interest (ROI), is then cropped

from the grayscale image. These ROIs serve as input for

the CNN classifier, which categorizes them into two classes:

ROUND CELL, encompassing macrophage and MM cells, and

NEGATIVE OBJECT, which includes stroma, background,

and other white flares.

The grouping of both macrophages and MM cells into

the same category is a result of the limitations of human

visual perception in distinguishing these two cell types within

a single image. However, macrophage and MM cells exhibit

distinct behaviors over time, making it possible to differentiate

them through time-lapse video analysis. The following section

explores video classification techniques aimed at separating

these two cell types. Within this section, macrophages, MM,

and other immune cells are initially detected and categorized

as ROUND CELL.
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From Fig.2, we can observe that the first category, ROUND

CELL, contains cell images that appear different. Cell images

can vary due to many factors. Maintaining consistent focus on

cells while capturing thousands of wells across different plates

is challenging. Additionally, cells can reside at different depths

within the culture medium, and the well-plate may have a slight

curvature, all of which contribute to the variations observed in

MM cells, as shown in Fig.2. To enhance the robustness of the

CNN classifier, a diverse range of MM images is collected in the

training dataset.

Our CNN classifier consists of four layers, including three

ResNet convolution layers and one dense layer. The CNN

architecture is kept shallow due to the small size of cells.

Rectified Linear Unit (ReLU) is utilized as the activation

function in the convolutional layers, and Softmax is employed

in the dense layer. The loss function is defined as follows:

L(D) = −
N∑

i=1

C∑
k=1

1yi=k · log p(yi = k), (1)

where N is the number of cell images and C is the number

of classes, which is two (1. ROUND CELL, 2. NEGATIVE

OBJECT) in this study. yi represents the true label (ground

truth) for the (i)-th cell image, while p(yi = k) denotes the

predicted probability that the (i)-th cell image belongs to class

k. 1y=k is an indicator function, returning 1 when y equals

k, and 0 otherwise. The predicted probability is generated by

the final layer of the CNN. The process of minimizing the

cross-entropy loss selects parameters that drive the predicted

probability towards 1 for the actual class.

For each image, cell detection is accomplished in two

steps: ROI identification and classification. This process yields

cell coordinates, contours, eccentricity, and other relevant

information. Additionally, a 12×12 image is cropped for each

cell, enabling further analyses such as tracking and cell type

classification.

Cell Tracking
Using the aforementioned cell detection approach, ROIs in each

frame across time are identified. To create cell tracks for each

cell across time, the detected cells within the ROIs must be

matched. Tracking cells presents unique challenges compared to

tracking objects in daily life, as cells often appear similar and

are densely packed. Drawing insights from person identification

techniques [52, 53], we discovered that metric learning can be

trained to generate embedding vectors capable of representing

the similarity or dissimilarity features between two images. The

challenge in our dataset lies in the similarity of MM cells,

which are difficult to distinguish due to low resolution. While

different persons can be distinguished based on appearance,

it is not always possible to differentiate MM cells with a

12×12 resolution. Through observation of time-lapse images,

we found that the cell neighborhood remains relatively stable

and recognizable between two time points. Therefore, instead of

only tracking individual cells, we also track cell neighborhoods,

as demonstrated in Fig.3.

Our metric learning model is designed for object re-

identification in images captured at different time points. The

architecture of the metric learning model, as summarized in

Table 1, uses larger ROIs of size 18×18 pixels. These images

consist of a 12×12 ROI detected previously along with its

surrounding area. Through a series of convolutional layers, the

image dimensions are reduced to 2×2 pixels. Subsequently, an

embedding vector of length 128 is extracted using a dense layer.

To enhance accuracy, the network incorporates several residual

blocks [43], enabling information flow from the initial layers to

the final ones.

Table 1. Architecture of the metric learning-based model

Layer Output Size

Conv 1 32@18× 18

Conv 2 32@18× 18

Max Pool 3 32@9× 9

Residual 4 32@9× 9

Residual 5 32@9× 9

Residual 6 64@4× 4

Residual 7 64@4× 4

Residual 8 128@2× 2

Residual 9 128@2× 2

Dense 10 128@1

The loss function utilized for training enforces separation

based on the embedding vectors of images within individual

cell tracks, ensuring they differ from the mean of the embedding

vectors across other cell tracks:

L(y, v) =

− log
e−

1

2σ̂2 ∥v−µ̂y∥22−λ∑
k∈C(y) e

− 1

2σ̂2 ∥v−µ̂k∥2
2


+

, (2)

where v represents one embedding vector (one input image)

to be learned in cell track y. C(y) = 1, ..., C\y denotes the

set of cell tracks excluding y. λ is a hyper-parameter, µ̂y is

the mean of the cell image predictions in cell track y, and σ̂2

is the variance of all cell images. By minimizing the loss, the

feature representation from the same cell will become closer,

while the feature representation from different cell tracks will

become further apart.

Another challenge in tracking cells arises from the presence

of macrophages in our time-lapse images, which move rapidly

and irregularly. Unlike other cells, macrophages do not

maintain a stable neighborhood, making it difficult for metric

learning to match all detected cells between two time points.

Therefore, an additional step is needed to track these cells,

involving the calculation and comparison of cell locations

between two time points to match them.

The overall tracking algorithm is outlined in Algorithm

1, where Dt{d0
t , d

1
t ...} and Dt+1{d0

t+1, d
1
t+1...} represent cell

detections at time points t and t + 1, respectively. MLM

and HA denote the Metric Learning Model and Hungarian

Algorithm, respectively. Cell tracks are established by matching

detected cells from two consecutive time points. For each pair

of adjacent time points, the matching process consists of two

steps. In the first step (lines 8-19), the metric learning-based

model generates embedding vectors Vt and Vt+1 based on the

neighborhood of each cell. Then, the cosine similarity between

the vectors from the two time points is calculated. Finally, the

Hungarian algorithm is used to match the embedding vectors.

Only pairs with a cosine similarity score score(a) higher than

the threshold are retained (line 11). For each matched pair

(di
t, dj

t+1), the current detection dj
t+1 is added to the track

T [k] that includes di
t (line 13). Fast-moving cells, which lack

a stable neighborhood, may not find a match in the first step

(line 14). This is where the second step comes into effect (lines

20-23). First, the Euclidean distance is calculated between

the coordinates of the cells from the two time points. Then,

the Hungarian algorithm is applied to match the cells. After

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.11.598552doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.11.598552


5

Metric Learning
Hungarian

Algorithm

Cell track 1

Cell track 2

Cell track 3

Cell patches with 

neighborhood
Embedding 

vectors

Cell tracks

Fig. 3. Framework for cell tracking. Cell neighborhood images are the input of the metric learning-based model, which generates embedding vectors as

output. The Hungarian algorithm is then utilized to match the vectors obtained from two different time points. By matching these embedding vectors,

cells from the two time points can be effectively matched.

completing both steps, cells from the two time points are

matched. By applying these steps for each pair of consecutive

time points, cell tracks are established.

Cell Classification
Cell classification plays an important role in drug screening.

Within the microenvironment of a well, various cell types such

as macrophages, MM cells, and others coexist. As the MM

cells are treated with drugs, some cells undergo apoptosis,

while others may be subject to phagocytosis over time. It is

Algorithm 1 Tracking Algorithm

Require: Detections Dt{d0
t , d

1
t ...}, Dt+1{d0

t+1, d
1
t+1...} at

time point t and t + 1, Metric Learning Model (MLM),

Hungarian Algorithm (HA)

Ensure: Tracks T

1: T ← ∅
2: for t in TimePoints do

3: #Generate embeddings for the detected cells

4: Vt ← MLM(Dt)

5: Vt+1 ← MLM(Dt+1)

6: #Apply Hungarian algorithm to match two vector sets

7: Assignments← HA(Vt, Vt+1)

8: #Step 1, matching by metric learning

9: for a in Assignments do

10: #a: the pair (di
t, dj

t+1) matched by HA

11: if score(a) > threshold then

12: # Detected cells di
t and dj

t+1 are matched.

13: T [k] : {...di
t} ← dj

t+1

14: else

15: #Unmatched detections

16: unDett ← di
t

17: unDett+1 ← dj
t+1

18: end if

19: end for

20: #Step 2, matching by Euclidean distance

21: Coordt ← Coordinates(unDett)

22: Coordt+1 ← Coordinates(unDett+1)

23: Assignments← HA(Coordt, Coordt+1)

24: for a in Assignments do

25: #a: the pair (di
t, dj

t+1) matched by HA

26: T [k] : {...di
t} ← dj

t+1

27: end for

28: end for

29: return T ▷ Return the final set of tracks

important to know the proportion of each cell type and monitor

the number of cells of each type that undergo cell death. In this

study, our primary objective is to identify a drug capable of

selectively targeting MM cells while avoiding any detrimental

effects on immune cells.

Based on cell detection and tracking, we can crop single-

cell images at each time point and track for each cell. With

thousands of single-cell tracks available, cells can be classified

into different types: myeloma, macrophage, or others. Although

these cells may look similar in a single image, their behavior

differs across time points. Therefore, LSTM is employed to

classify the cells by analyzing the single-cell tracks. The

architecture of our LSTM method is illustrated in Fig.4.

The CNN model in Fig.4(a) is a pre-trained Inception v3

[54]. Images of 1000 different classes in the ImageNet [55] are

used to train Inception v3. The Inception v3 architecture is

a deep CNN used for image analysis and object detection. It

is designed to allow deeper networks while also keeping the

number of parameters from growing too large. The architecture

is made up of multiple Inception modules, which consist of

parallel layers of convolutions and pooling. The Inception v3

architecture has been employed in many different applications.

In this study, it is utilized to generate feature representations

that serve as the input for the LSTM module.

The input to the Inception v3 model is a 12x12 cell image in

a single-cell track. The output of the model is a feature vector

containing extracted information from the cell image. Inception

v3 is followed by the LSTM model for multi-class classification.

Categorical cross-entropy is used as the loss function, which

is the same as Equation (1). In this classification task, N

represents the number of cell tracks in the dataset, and

C represents the number of classes, including macrophage,

myeloma, and ‘others.’ The objective is to optimize the LSTM

model parameters to minimize this loss.

Monocytes, categorized under ‘others,’ are white blood cells

that differentiate into macrophages. In this precursor state,

these cells have a different morphology and behavior. In ex

vivo cultures, the differences between monocytes and myeloma

are difficult to distinguish. Even through the observation of

single-cell tracks, it remains difficult to separate these two

cell types. To compel the model to learn specific features for

each type, two stages of LSTM are employed. In the first

stage, the LSTM-based Classifier 1 is tasked with separating

macrophages from other cells, while in the second stage, the

LSTM-based Classifier 2 distinguishes between other cells (such

as monocytes) and myeloma, as illustrated in Fig. 4(b).
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Fig. 4. LSTM-based Cell Classification. (a) Inception V3 is employed to generate a feature vector for each cell image, which is then utilized by LSTM

for cell classification. (b) Two stages of LSTM are designed in this approach. The first stage aims to classify cells into either {myeloma, others} or

{macrophage}. The second stage further refines the classification, distinguishing between myeloma and other cell types.

To train the two LSTM-based classifiers, we prepared two

types of experiments (i.e., wells). The first contains only MM

cells. The second consists of immune cell-only wells, which

contain only CD14+ selected cells (macrophages/monocytes).

(1) Classifier 1 is trained with the dataset of the single-

cell tracks generated from the two types of wells. Then

Classifier 1 is applied to the immune cell-only wells, where

cell tracks are classified into two groups. The first group

comprises cells that exhibit quick, irregular movement and

change shape over time, identified as macrophages. The second

group consists of motionless immune cells, and their cell type

remains undetermined, for which we name them ‘Others’. (2)

Myeloma and ‘Others’ single-cell tracks are similar and difficult

to distinguish, for which we designed Classifier 2, which is

specifically used to extract the features that can differentiate

the two similar cell classes. Cell tracks from MM wells and the

‘Others’ single-cell tracks from immune cell-only wells form the

dataset that is used to train Classifier 2.

After training, the LSTM-based classifiers can classify cells

into three categories as is shown in Fig.4(b). The mix of

three types of cells in a well makes classification a prerequisite

for further analysis. Through classification, we can observe

which cell type is responding to therapy, quantify each type,

and determine the targeted effect of each immunotherapy on

tumor/target cells.

Benchmarking
In order to evaluate the performance of the detection and

tracking methods, two contemporary methods are applied to

the time-lapse cell images.

KTH-SE: KTH-SE [41] is a tracking-by-detection framework,

which has shown strong performance across various datasets

in Cell Tracking Challenges [56]. The detection method is

based on threshold setting, and the tracking method utilizes

the Viterbi algorithm. As this framework does not involve a

machine learning method, there is no need for a training step.

Furthermore, they offer a user-friendly graphical interface for

ease of use.

YOLO: YOLO [44] is a CNN-based method comprising 24

convolutional layers. It utilizes a feature pyramid network to

extract features from images. The output is a 7x7x30 vector

representing 49 predictions, each comprising 2 bounding boxes

and 20 class probabilities. YOLO has introduced its eighth

version, which is faster, more accurate, and can detect and

track more objects. In this study, YOLO v8 is employed for

comparison with TLCellClassifier.

Evaluation Metrics
To evaluate the performance of cell detection and tracking, this

study utilizes metrics used for evaluating submissions in the

Cell Tracking Challenge [57]. Both the detection and tracking

methods undergo evaluation using the Acyclic Oriented Graph

Matching (AOGM) measure. For evaluation purposes, two

graphs are constructed: one for ground truth and one for

prediction. In each graph, a node represents a detected cell, and

edges denote one-to-one matches between two time points. This

method assesses the difficulty of transforming the prediction

graph into the ground truth graph, quantified as a weighted sum

of the minimum graph operations required, including splitting,

deleting, and adding a node, as well as deleting, adding, and

altering the semantics of an edge, to align the two graphs.

Numerically, DET is defined as a normalized AOGM measure

for detection, with its value always falling within the [0,1]

interval. A higher DET value indicates better performance.

Similarly, TRA is defined as a normalized AOGM measure

for tracking, also within the [0,1] range, where a higher value

denotes better performance.
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Fig. 5. The comparison of the three methods: The ground truth segmentation is highlighted in red, while the predictions from the three methods are

displayed in green. The overlap between the predicted region and the ground truth is represented in yellow (correct prediction) in (b) and (c). The

boxes in (d) indicate the detection results of YOLO v8.

Fig. 6. The comparison of TLCellClassifier, KTH-SE, and YOLO v8 on

three wells: (a) cell detection performance; (b) cell tracking performance.

Results

In this section, we evaluate the performance of the proposed

framework, TLCellClassifier, by comparing it with KTH-SE

and YOLO v8. The dataset consists of bright-field time-

lapse images, each containing thousands of cells. Subsequent

sections will assess the performance in detection, tracking, and

classification.

Cell Detection and Tracking
In this section, 640×640 images are cropped from the original

1328×1048 ones. Full-range images are not utilized here

because the KTH-SE and YOLO methods cannot efficiently

process such a large number of objects. The computational

expense of the Viterbi algorithm makes it impractical for

tracking thousands of objects, thus preventing the KTH-SE

method from producing results for the 1328×1048 images

within a few days on our server, equipped with an Intel

Core i7-8700 processor and 32GB memory. The maximum

resolution KTH-SE can handle for our dataset, which contains

considerably fewer objects, is 640×640. Additionally, YOLO’s

capability to detect objects is limited. In earlier versions

of YOLO, it could detect a maximum of 49 objects. While

subsequent versions of YOLO have significantly improved this

number, our dataset presents a greater challenge due to the

presence of thousands of cells in a single image, each with a

low resolution of 12×12.
The comparison between TLCellClassifier and contemporary

methods, KTH-SE and YOLO v8, is illustrated in Fig.5. In

the bright-field images, there are over 600 cells. The ground

truth for detection and tracking is manually annotated on

these images. Both TLCellClassifier and KTH-SE demonstrate

proficient detection capabilities, capturing most of the cells as

illustrated in Fig.5(b) and (c). However, KTH-SE struggles to

effectively differentiate between stromal cells and MM cells,

as evident in Fig.5(c). Conversely, YOLO v8, depicted in

Fig.5(d), detects only 300 cells, approximately half of the total

count. This indicates YOLO’s limitation in detecting small

cells, particularly in densely populated regions.

To conduct a comprehensive evaluation of cell detection

and tracking accuracy of TLCellClassifier, ground truth from

three wells is manually labeled. Subsequently, the accuracy of

detection and tracking is assessed by comparing the predictions

of the three methods against this ground truth. The evaluation

metrics utilized in the Cell Tracking Challenge are employed, as

described in the Evaluation Metrics subsection. The results of

this assessment are calculated and presented in Fig.6. Notably,

among the three methods, TLCellClassifier outperforms in both

detection and tracking. Again, KTH-SE struggles to effectively

differentiate stromal cells and MM cells, resulting in lower

detection and tracking accuracy compared to TLCellClassifier.

Consistent with the findings illustrated in Fig.5(d), YOLO

v8 exhibits poor performance on small and crowded objects,

thereby yielding the lowest detection and tracking accuracy

among the three methods.

Based on the findings above, it’s evident that our dataset

poses challenges beyond the capabilities of YOLO v8. To

simplify the experiment, we cropped a smaller section of

480×480 from the full image. As illustrated in Fig.S1 in the

Supplementary document, YOLO v8 successfully detects the

majority of cells when the frame size is 480×480. However, with

a frame size of 640×640, only half of the cells are detected.

The preceding section has outlined the detection and

tracking results obtained for our dataset using the three

methods. It is important to note that the images used above

have a resolution of 640×640. Among these methods, only

TLCellClassifier exhibits smooth performance even when the

resolution is increased to 1328×1048.

Cell Classification
It is important to categorize cells into different types:

tumor (target), immune effector cells, and cells from

the microenvironment, for accurate quantification of the

treatment’s effect on a given patient’s tumor cells. To assess

the performance of our LSTM classifier in the TLCellClassifier
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Fig. 7. Classification of synthetic datasets. The experiment involves seven datasets, each containing different numbers of the three types of cells. The

LSTM classifier is utilized to classify these cells into three categories. Each dataset is repeated 10 times, and the mean and standard deviation (in red

text) of the predictions are calculated for each dataset. The blue bars represent the number of each cell type prepared in the dataset (ground truth),

while the red bars depict the classification results.

Fig. 8. The left image displays a well containing three types of cells: macrophage (MO), myeloma (MM), and others. The cell classification is represented

in three colors: red circles indicate macrophages (MO), green circles indicate myeloma (MM), and yellow circles indicate others. It is noted that the

number of macrophages and others should be twice that of myeloma cells. The right plot illustrates the number of cells in each category at time point

0 across ten wells.

framework, we have prepared three different types of wells. The

first type comprises cancer cell-only wells: 10 wells containing

only MM cells. The second type consists of immune cell-

only wells: 10 wells containing only CD14+ selected cells

(macrophages/monocytes). In these wells, macrophages move

rapidly and irregularly, while other cells (monocytes) remain

relatively stable. The third type comprises mixed wells: 10

wells containing a mixture of cells from both types, where the

number of immune cells is twice the number of cancer cells.

The approach is implemented in several steps. Initially, cells

are detected and tracked in time-lapse images. Subsequently,

single-cell images (ROIs) are cropped to generate a track for

each cell. The two-stage LSTM-based classification method is

tested using two in silico experiments. In the first experiment,

synthetic datasets with different ratios of each cell type are

combined from the immune cell-only wells and cancer cell-only

wells to evaluate the performance of the LSTM classifier. In the

second experiment, the LSTM classifier is applied to the mixed-

cell wells (i.e., the third type) to demonstrate the classification

outcomes.

1. Prediction of Different Cell Ratios

As mentioned earlier, single-cell tracks are extracted from

immune cell-only wells or cancer cell-only wells based on cell

detection and tracking. An LSTM-based binary classifier is

then trained on the tracks from these two types of wells to

discern the differences between the cells. Subsequently, the

trained classifier is applied to the immune cell-only wells,

where cell tracks are classified into two groups. The first

group comprises cells that exhibit quick, irregular movement

and change shape over time, identified as macrophages. The

second group consists of cells that are motionless, and their

cell type remains undetermined. Given three types of cells −
myeloma cells, macrophages, and other cells (monocytes) −
several synthetic datasets are created to classify cell tracks.

The two-stage LSTM classifier is employed to classify these

synthetic datasets. The results are illustrated in Fig.7.

In the figure, seven plots display the results of different

in silico experiments using synthetic datasets as inputs. In

each experiment, different numbers of the three cell types are

prepared as ground truth, as indicated by the blue bars. Each

of the seven experiments is repeated 10 times. The mean and

standard deviation of the classification results are calculated

and shown in the red bars. In the first column, an equal number
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of cells for each type (i.e., 1000 cells for each) is used, while the

other three columns have a dominant cell type. It is observed

that in the experiments represented in the left three columns,

the accuracy is high. In contrast, the datasets in the rightmost

column, which contain a higher proportion of ‘other’ cells (such

as monocytes), exhibit relatively low classification accuracy.

‘Other’ cells, unlike macrophages which are actively moving,

are relatively stable like myeloma cells. Thus, they are easily

misclassified as myeloma cells when there are too many of them.

Interestingly, the converse is not true; when a high number of

myeloma cells are included, they are not misclassified as other

cells at this image resolution level.

2. Prediction on Mixed Cell Wells

In the preceding subsection, we evaluated the performance of

the LSTM classifier using synthetic datasets with varying ratios

of cell types. In this subsection, we rely on data from an actual

ex vivo experiment, where twice the number of immune cells

(macrophages/monocytes) are added in the well compared to

myeloma cells at the beginning of the experiment. We have 10

wells with this condition, and we tested the two-stage LSTM

classifier to estimate the proportion or number of myeloma cells

relative to the immune cells. The results of this classification

task are illustrated in Fig.8.

The left image in Fig.8 displays a well containing three types

of cells: macrophage, myeloma, and others. Each cell type is

visually distinguished with a specific color for classification.

Macrophage cells are denoted by red circles, myeloma cells by

green circles, and other cells by yellow circles. The right plot

shows the classification results in ten wells. The number of cells

in categories myeloma and immune cells (i.e., macrophage and

others) is shown in the box plot. Given that the number of

macrophages and others is twice the number of myeloma cells

at the start, the right figure in Fig.8 shows the prediction is

close to ground truth.

Conclusion

Live cell imaging has been the subject of research in computer

science and biomedical sciences for many years. Cells within the

microenvironment pose a greater challenge for detection and

tracking compared to general objects encountered in daily life.

This paper presents TLCellClassifier, a framework designed to

effectively detect, track, and classify cells. Operating on high-

throughput time-lapse images characterized by low resolution

and frame rates, TLCellClassifier achieves state-of-the-art

performance. When compared to KTH-SE, a leading method

in the Cell Tracking Challenge, and YOLO, renowned for

general object detection, only TLCellClassifier demonstrates

proficiency in both detection and tracking. Furthermore, it

extends its applicability beyond cell tracking to encompass

general object tracking, particularly for images featuring small

objects such as aerial or fish images.

The cell type classification approach described in this article

helps quantify the patient/immunotherapy-specific effect to

profile patient tumors and immune effector cells to assess their

efficacy prior to treatment. This ensures that every patient

receives a therapeutic option to which they are most likely

to respond, thus avoiding instances where patients have an

underwhelming response. We submit that high-throughput ex

vivo assays characterizing response to immunotherapies, when

integrated with such specialized software, can help lay the

groundwork for personalized medicine in cancer treatment.

Funding

This work was supported by the National Science Foundation

(NSF) [NSF-III2246796 and NSF-III2152030], and the

Pentecost Family Foundation and Pentecost Family Myeloma

Research Center (PMRC) at Moffitt Cancer Center. It was

also supported in part by the H. Lee Moffitt Cancer Center

Physical Sciences in Oncology (PSOC) Grant 1U54CA193489-

01A1 (to K.H.S., A.S.S., R.J.G. and R.A.G.), H. Lee Moffitt

Cancer Center’s Team Science Grant (to A.S.S. and K.H.S.),

Miles for Moffitt Foundation (to A.S.S.) and the Cancer Center

Support Grant P30-CA076292 to the Moffitt Cancer Center. A

References

1. Ira Mellman, George Coukos, and Glenn Dranoff. Cancer

immunotherapy comes of age. Nature, 480(7378):480–489,

2011.

2. Yiping Yang et al. Cancer immunotherapy: harnessing the

immune system to battle cancer. The Journal of clinical

investigation, 125(9):3335–3337, 2015.

3. Stephen J Till, James N Francis, Kayhan Nouri-Aria,

and Stephen R Durham. Mechanisms of immunotherapy.

Journal of Allergy and Clinical Immunology, 113(6):1025–

1034, 2004.

4. Manfred Schuster, Andreas Nechansky, and Ralf

Kircheis. Cancer immunotherapy. Biotechnology Journal:

Healthcare Nutrition Technology, 1(2):138–147, 2006.

5. James C Yang, Marybeth Hughes, Udai Kammula, Richard

Royal, Richard M Sherry, Suzanne L Topalian, Kimberly B

Suri, Catherine Levy, Tamika Allen, Sharon Mavroukakis,

et al. Ipilimumab (anti-ctla4 antibody) causes regression

of metastatic renal cell cancer associated with enteritis and

hypophysitis. Journal of immunotherapy, 30(8):825–830,

2007.

6. Apostolia-Maria Tsimberidou. Targeted therapy in cancer.

Cancer chemotherapy and pharmacology, 76:1113–1132,

2015.

7. Zayar P Khin, Maria LC Ribeiro, Timothy Jacobson, Lori

Hazlehurst, Lia Perez, Rachid Baz, Kenneth Shain, and

Ariosto S Silva. A preclinical assay for chemosensitivity in

multiple myeloma. Cancer research, 74(1):56–67, 2014.

8. Ariosto Silva, Timothy Jacobson, Mark Meads, Allison

Distler, and Kenneth Shain. An organotypic high

throughput system for characterization of drug sensitivity

of primary multiple myeloma cells. JoVE (Journal of

Visualized Experiments), (101):e53070, 2015.

9. Ariosto Silva, Maria C Silva, Praneeth Sudalagunta, Allison

Distler, Timothy Jacobson, Aunshka Collins, Tuan Nguyen,

Jinming Song, Dung-Tsa Chen, Lu Chen, et al. An ex vivo

platform for the prediction of clinical response in multiple

myeloma. Cancer research, 77(12):3336–3351, 2017.

10. Praneeth Sudalagunta, Maria C Silva, Rafael R Canevarolo,

Raghunandan Reddy Alugubelli, Gabriel DeAvila,

Alexandre Tungesvik, Lia Perez, Robert Gatenby, Robert

Gillies, Rachid Baz, et al. A pharmacodynamic model

of clinical synergy in multiple myeloma. EBioMedicine,

54:102716, 2020.

11. Hao Wu, Jovial Niyogisubizo, Keliang Zhao, Jintao Meng,

Wenhui Xi, Hongchang Li, Yi Pan, and Yanjie Wei. A

weakly supervised learning method for cell detection and

tracking using incomplete initial annotations. International

Journal of Molecular Sciences, 24(22):16028, 2023.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.11.598552doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.11.598552


10 Author Name et al.

12. Qibing Jiang, Praneeth Sudalagunta, Maria C Silva,

Rafael R Canevarolo, Xiaohong Zhao, Khandakar Tanvir

Ahmed, Raghunandan Reddy Alugubelli, Gabriel DeAvila,

Alexandre Tungesvik, Lia Perez, et al. Cancercelltracker: a

brightfield time-lapse microscopy framework for cancer drug

sensitivity estimation. Bioinformatics, 38(16):4002–4010,

2022.

13. W Joost Lesterhuis, John BAG Haanen, and Cornelis JA

Punt. Cancer immunotherapy–revisited. Nature reviews

Drug discovery, 10(8):591–600, 2011.

14. Frits Zernike. Phase contrast, a new method for the

microscopic observation of transparent objects part ii.

Physica, 9(10):974–986, 1942.

15. RD Allen and GB David. The zeiss-nomarski

differential interference equipment for transmitted-light

microscopy. Zeitschrift fur wissenschaftliche Mikroskopie

und mikroskopische Technik, 69(4):193–221, 1969.

16. Xavier Michalet, Achillefs N Kapanidis, Ted Laurence,

Fabien Pinaud, Soeren Doose, Malte Pflughoefft, and

Shimon Weiss. The power and prospects of fluorescence

microscopies and spectroscopies. Annual review of

biophysics and biomolecular structure, 32(1):161–182,

2003.

17. Vladimı́r Ulman, Martin Maška, Klas EG Magnusson, Olaf
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57. Pavel Matula, Martin Maška, Dmitry V Sorokin, Petr

Matula, Carlos Ortiz-de Solórzano, and Michal Kozubek.
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