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Abstract—The highly directional nature of the millimeter

wave (mmWave) beams pose several challenges in using that

spectrum for meeting the communication needs of immersive

applications. In particular, the mmWave beams are susceptible

to misalignments and blockages caused by user movements. As

a result, mmWave channels are vulnerable to large fluctuations

in quality, which in turn, cause disproportionate degradation in

end-to-end performance of Transmission Control Protocol (TCP)

based applications. In this paper, we propose a reinforcement

learning (RL) integrated transport-layer plugin, Millimeter wave
based Immersive Agent (MIA), for immersive content delivery over

the mmWave link. MIA uses the RL model to predict mmWave

link bandwidth based on the real-time measurement. Then, MIA

cooperates with TCP’s congestion control scheme to adapt the

sending rate in accordance with the predictions of the mmWave

bandwidth. To evaluate the effectiveness of the proposed MIA,

we conduct experiments using a mmWave augmented immersive

testbed and network simulations. The evaluation results show that

MIA improves end-to-end immersive performance significantly

on both throughput and latency.

Index Terms—mmWave, immersive applications, bandwidth

prediction, reinforcement learning, TCP

I. INTRODUCTION

Immersive applications such as augmented reality (AR)
and virtual reality (VR) demand high-throughput and low-
latency network connectivity to sustain the transmission of
rich and dynamic content in their interactive experience. They
also need wireless connectivity for untethered access. In this
paper, we assume that these connectivity needs of the emerging
immersive applications are met using communication over the
millimeter wave (mmWave) spectrum.

Since the mmWave beams are highly directional, simple
user movements result in beam misalignments and beam
blockages, which in turn cause large channel quality fluctu-
ations. Conventional network protocols are not designed to
combat the adverse effects of large channel quality fluctua-
tions, thereby causing substantial degradation in end-to-end
performance. As a result, immersive applications over con-
ventional network protocols often have poor user experience
over mmWave access network.

Immersive applications often use Transmission Control Pro-
tocol (TCP) for reliable, sequenced delivery of data. One of
the key functions of TCP is congestion control. The variants
of TCP such as NewReno [1], Vegas [2], BIC [3], CUBIC

[4], Compound [5], BBR [6] and PCC [7] differ primarily in
their congestion control schemes. These variants are adept in
dealing with congestion caused by increased traffic demand on
a wired bottleneck link, but they are not adept in dealing with
congestion or even rapid changes of the bottleneck bandwidth
caused by channel quality fluctuations of a wireless link. To
combat the challenges posed by wireless links, researchers
have proposed a wide range of solutions, ranging from the
pioneering work by Balakrishanna et al. in Split-TCP [8]
to the more recent [9]; the number of proposed solutions
are too numerous to explicitly cite here. A large fraction
of the work in literature on wireless related TCP solutions
focus on cellular network where the data rates are relatively
small. When the data rates of the wireless links are large, as
in mmWave networks, the underlying network typically has
large bandwidth-delay product, which in turn introduces new
challenges to TCP. Specifically, the sending rate adaptation at
the TCP sender is often not available to react quick enough
to deal with large fluctuations in the data rate of a bottleneck
link. Recent works that focus on this situation are [10]–[12].
These solutions rely on dual or multi connectivity in the un-
derlying network to combat the effects of large channel quality
fluctuations of a single wireless link. Although dual or multi
connectivity is certainly possible in wireless networks, they
are still less common than network with single connectivity.
In this paper, we focus on single connected networks, where
one does not have the option to make use of hopefully another
better connected path in the network.

In this paper, we design a novel reinforcement learning
(RL) integrated transport-layer plugin, Millimeter wave based
Immersive Agent (MIA), to specifically combat the delete-
rious effects of mmWave’s large channel quality fluctuations.
Inspired by the approach in DeepCC [13], this plugin works in
conjunction with any throughput-oriented congestion control
scheme of TCP to deliver superior end-to-end performance to
the application. As in many recent works [13]–[15], this plugin
takes advantage of recent advances in RL. In particular, it uses
a RL scheme called Deep Q Network (DQN) to predict the
quality of the mmWave channel at the receiver end of the TCP
connection. This prediction is fed back to the sender end of
the TCP connection through acknowledgements (ACK), where
it is utilized along with TCP’s congestion control scheme to
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make the transport-layer sending rate cognizant of potential
changes in the wireless link bandwidth. Simulation results
included in the paper show that there are two to six fold
increase in the end-to-end throughput as compared to that
in different TCP variants. The simulation results also show
a considerable decrease in the end-to-end latency delivered to
the immersive applications.

Contributions: The contributions of this paper are as fol-
lows:
1) We provide a comprehensive system design for MIA plugin,
which includes the functionality of prediction, controlling and
measurement.
2) We provide a DQN based model which utilizes the
user speed information and demonstrate its effectiveness in
mmWave link bandwidth prediction.
3) We build a real-time measurement testbed which traces
the mmWave link bandwidth along with the VR user speed
information in immersive games.
4) We demonstrate that, with different network delays and
games, MIA plugin provides multi-fold improvement to dif-
ferent variants of TCP.

The rest of this paper is organized as follows. The related
work is introduced in Section II. The proposed approach is
described in Section III. The evaluation setup and results are
presented in Section IV. Finally, the paper is summarized in
Section V.

II. RELATED WORK

Machine Learning. The machine learning literature is clearly
vast. Here we only review the couple of machine learning
approaches that are directly relevant to the proposed work.
Deep Q Network (DQN) [16] and Deep Deterministic Policy
Gradient (DDPG) [17] are two well-known RL algorithms.
They are both well-suited for adaptively learning from high-
dimensional inputs and arriving at simple low-dimensional
decisions/actions. In the aspect of RL’s empirical learning
structure, DQN and DDPG have the similar RL structure.
That is, they both train based on the states, actions and the
corresponded rewards. And their evaluation theorems are both
based on Bellman equation. The main difference between
DQN and DDPG in applications is that DQN supports discrete
actions while DDPG supports continuous actions.
Machine Learning for TCP. TCP has shown its potential
in cooperating with machine learning algorithms in studies.
Remy [18] is a pioneering work showing that machine learning
algorithm can be used for generating congestion control rules
with network features. Remy generates the mapping rules
with the knowledge of the network assumptions, traffic model
and object functions for the fixed network model. [19] uses
decision tree to detect the packet loss in wireless connection
during congestion control after trained with the knowledge of
network features. [20] use XGBoost classifier to emulate the
behaviors of different TCP congestion control schemes. These
machine learning based congestion control scheme designs
require the presumption of the networks. When the network
condition becomes dynamic and difficult to be predefined for

specific training, RL becomes a competitive candidate to adapt
to different network conditions. Owl [15] uses DQN to learn
the network features of partially invisible networks and select
proper congestion window with partial network knowledge.
[21] states the potential overhead when applying RL to conges-
tion control schemes in unseen networks. DeepCC [13] uses
DDPG for TCP congestion control in celluar network in order
to steer TCP from throughput oriented toward delay oriented.
The architecture of DeepCC is compatible with different con-
gestion control schemes, which inspires the plugin design of
MIA for immersive applications in mmWave access networks.
DRL-CC [14] applies DDPG with Long Short-Term Memory
(LSTM) [22] representation network to improve the congestion
control in MPTCP when the number of TCP subflows is
various. DRL-CC uses LSTM to control multiple MPTCP
subflows when the flow number may change over time. As for
the control on each TCP flow, DRL-CC uses DDPG as the RL
algorithm for the congestion control. The target of DRL-CC is
achieving higher TCP throughput and lower file transferring
latency, which aligns with our target in the mmWave based
immersive applications. With the same target, when further
applied to mmWave based immersive applications, DRL-CC
can cooperate with MIA to overcome the potential difficulties.
DRL-CC’s empirical congestion control for each TCP flow is
still only based on the observation at the sender, which may
not react to the rapid mmWave link bandwidth changes in real
time. Meanwhile, observing and training at the sender limit
DRL-CC from extracting extensive features in the mmWave
based immersive environment, where the mmWave link is the
fluctuated bottleneck under the impact of the immersive user.
mmWave Related Work. Challenges of mmWave communi-
cations have been addressed at all layers of network stack. At
physical layer, Sur et al. propose MUST to predict the best
beam and to redirect user traffic over conventional WiFi when
there is blockage in the mmWave link [23]. Although MUST
focuses on the physical layer, it needs support from higher
layers of the protocol to redirect user traffic. [10] discusses
the challenges and tradeoffs of Ultra-Reliable Low Latency
Communication (URLLC) considering massive MIMO and
multi-connectivity.

Internet

mmWave link 

mmWave AP 

Immersive
application 

mmWave based immersive environmentServer

Sender controller Measurement 
module

Prediction 
module

Receiver
controllerMeasurement module

Fig. 1: Overview of MIA structure.

III. MILLIMETER WAVE BASED IMMERSIVE AGENT (MIA)
SCHEME

A. Overview

For simplicity of presentation, Fig. 1 shows a simple
topology formed by an immersive content server, a mmWave
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access point (AP), and a mobile immersive device worn by the
user. The mobile immersive device is enhanced with mmWave
access to the AP and the immersive content is sent from
the server to the mobile immersive device in an immersive
application. In the immersive experience, the user with the
mobile device moves in a small geographic area in the vicinity
of the mmWave AP. Due to the highly directional feature of
mmWave beam, the mmWave channel quality is vulnerable
to misalignment and blockages. Therefore, when the user
induces frequent changes in location and direction during the
interactions with immersive applications, the mmWave channel
quality fluctuates dramatically [24]. Consequently, during the
immersive experience in the mmWave access network in
Fig. 1, the bandwidth bottleneck on the route from the server
to the mobile device is often at the wireless mmWave link
between the AP and the immersive mobile device.

We propose Millimeter wave based Immersive Agent
(MIA), a RL integrated transport-layer plugin, to adaptively
adjust the transport-layer packet forwarding rate for better per-
formance. Shown as Fig. 1, MIA consists of three modules, the
prediction module, the measurement module, and the control
module (i.e., sender controller and receiver controller). The
prediction module is implemented at the immersive mobile
device, which is the receiver of the immersive content. The
control module and the measurement module are implemented
at both sender and receiver sides. MIA’s prediction module
takes the user movements and the current mmWave link band-
width as the inputs and predicts the mmWave link bandwidth
in the near future, that is, at the next round trip time (RTT).
The input data are collected by the measurement module and
the control module adaptively adjust the data sending rate with
the predicted link bandwidth.

Server

Immersive content sender

Transport protocol
TCP

UDP

Packet train 
sender 

Packet
train

Immersive
content

Immersive device

Immersive application 

Transport protocol

TCP with receiver control 
mechanism 
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User’s 
speeds

Action

mmWave 
bandwidth

Packet train

TCP data packet
& ACK packet 

Immersive device

Immersive application 

Transport protocol
TCP 

UDP
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Fig. 2: MIA system architecture.

B. MIA System Architecture

The system architecture of MIA is presented in Fig. 2.
MIA includes the cross-layer design between the immersive
application and the transport layer protocol. The immersive
content is sent from the remote server to the application at the
immersive device. At the server, the immersive content sender
forks the packet train sender in the application and forwards

Low-pass filter

State converter

Immersive 
environment 

Reward

Action

mmWave link
bandwidth

Rotational
speed

Moving
speed

MLP

Fig. 3: RL module.

immersive content to the sender controller. The packet train
sender operates as the sender of the measurement module
and sends packet trains to the immersive device for link
bandwidth measurement through the UDP connection. The
sender controller is integrated with TCP at the server and
the TCP sends data packets containing immersive content to
the immersive device. The control scheme at the server uses
the information extracted from the ACK packet arriving at
the server in MIA. At the immersive device, the packet train
receiver is forked by the immersive application. It calculates
the mmWave link bandwidth according to the incoming packet
trains from the UDP connection and forwards the measured
mmWave link bandwidth to the RL module in the application.
The user’s speed information is also sampled in the immersive
application during the user’s immersive experience. Shared
memory is used to send the mmWave link bandwidth and the
speed information from the measurement module to the RL
module. The RL module takes the user’s speed information and
mmWave link bandwidth as inputs and outputs the action to
the receiver controller through shared memory. The TCP with
the receiver controller forwards the received immersive content
up to the application. Meanwhile, the receiver controller takes
the action from the RL module and integrates this action
information with the ACK packet sent from the immersive
device to the server. Then, the server further controls its
sending process with this information. Note that, in MIA
system architecture, the prediction, control and measurement
modules run in parallel. The server runs the packet train
sender and the sender controller simultaneously since there
is no interaction between them. The immersive device runs
its measurement module, RL module and receiver controller
in parallel with shared memory connecting these modules. In
this case, there is no blocking among these modules. This non-
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blocking architecture avoids potential latency overhead when
applying RL module to TCP.

Algorithm 1 DQN prediction module in MIA.
Training process of one VR game:

1: Initialize replay buffer B with capacity of NB

2: Initialize state queue S with capacity of NS

3: Initialize action-value network Q with random weights ✓

4: Initialize target action-value network Q̂ with weights ✓̂ =
✓

5: for episode = 1, ...,M do

6: Reset the timestamp to the start of the VR experience.
7: for t = (1, ..., T ) · ⌧ do

8: Sample user moving speed value vm,t, rotational
speed value vr,t, and mmWave link bandwidth
value vb,t

9: Process vm,t, vr,t with low pass filter and get
v
0
m,t, v

0
r,t

10: Convert input values to state: st = [sb,t, sm,t, sr,t]
= StateConverter(vb,t, v0m,t, v

0
r,t)

11: Enqueue state st, St = [st, st�1, ..., st�NS+1]
12: if Probability falls in ✏ then

13: Take random action at

14: else

15: Take action at = argmax
a

Q✓(St, a)

16: end if

17: Execute action at in VR channel environment and
collect reward rt and state St+RTT

18: Record the transition (St, at, rt, St+RTT ) into
replay buffer B

19: Randomly sampled m transitions from buffer B,
noted as at time t

0

20: if VR game ends at t0 +RTT then

21: Target value yt0 = rt0

22: else

23: Target value yt0 = rt0+�·max
a

Q̂✓̂(St0+RTT , a)

24: end if

25: Calculate the Huber loss L�(yt0 , Q✓(St0 , at0))
26: Optimize weights ✓ with gradient descent
27: Update the target network weights ✓̂ = ✓ for every

C epochs
28: end for

29: end for

C. mmWave Link Bandwidth Prediction Module

The structure of the prediction module is presented in Fig. 3.
The key point of this module is to predict the mmWave link
bandwidth at the near future with the observation of user
movements and corresponded link bandwidth. In our design,
the prediction module is implemented at the user device, which
is the receiver of the immersive data. Thus, the prediction
at the user device represents the mmWave link bandwidth at
the next RTT. We use DQN [16] with multilayer perceptron
(MLP) policy in our RL module. Compared with transition

table, DQN supports more (input, action) transitions, while
numerous transitions require large transition tables. Moreover,
we quantize the input data and actions into discrete states
and use single agent for prediction. Compared with other
RL algorithm variants, DQN is deterministic and it fits our
immersive scenario where the action is discrete and low-
dimension.

The DQN module takes user’s current moving speed, ro-
tational speed, and mmWave link bandwidth as inputs and
converts these input values into states. The action of the DQN
module is also generated in states and then converted to action
values as the output. The DQN interacts with the mmWave
immersive environment and gets the feedback through the
reward calculated by the environment. The design of the state,
action and reward function is described as below.

STATE: At time t, the state st includes sb,t, sm,t, sr,t,
which represent the current mmWave link bandwidth state,
user moving speed state, and user rotational speed state. To
generate these state values, the prediction module first samples
mmWave link bandwidth value vb,t, user moving speed value
vm,t, and user rotational speed value vr,t. Then, we use
Butterworth filter to filter out the high frequency noise in vm,t

and vr,t during the immersive experience. The filtered values
of moving speed and rotational speed are represented as v

0
m,t

and v
0
r,t. Next, we put [vb,t, v0m,t, v

0
r,t] into a state converter,

which converts these values into states sb,t, sm,t, sr,t. These
states form into st. We select the user moving speed and rota-
tional speed in the state construction because they describe the
changes in location and direction, which impact the mmWave
link bandwidth. The current state st is further enqueued into
the state queue S, which is the state observed in the DQN
algorithm. The capacity of S is NS , which means the input
size of the DQN is 3 ·NS .

ACTION: The action at represents the prediction of
mmWave link bandwidth at the next RTT. Due to the action in
DQN is discrete, the final output of the prediction is mapped
from the action state to the corresponded bandwidth value.

REWARD: The reward function is designed to show each
prediction’s accuracy compared with the true mmWave link
bandwidth. Assume at time t, the prediction at is generated
for the next RTT. Then, the prediction error is defined as:

et =
at � vb,t+RTT

vb,t+RTT
(1)

The corresponded reward is:

rt =

(
↵ · exp(�0.5 · ( et⇢s

)2) + � if et > 0

↵ · exp(�0.5 · ( et⇢l
)2) + � otherwise

(2)

The scale and offset of the reward function is adjusted by ↵

and �. When the prediction is equal to the ground truth, the
reward reaches the maximum value. As the prediction error
increases, the reward drops and converges to the minimum
value. We usually set ⇢l larger than ⇢s. We use larger de-
scending rate when the prediction is greater than the ground
truth because when larger prediction leads the sender sending
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Fig. 4: Control scheme at the receiver controller.

too many packets, it may result in buffer overflow at the AP
and harm the performance significantly.

Algorithm 1 describes the training process of our DQN
algorithm in detail. At the start of the algorithm, the module
initializes the replay buffer B and state queue S with capacity
of NB and NS separately. We use a three-layer MLP with
32 neurons on each layer as the action-value network Q.
The hidden layers are activated by rectified linear activation
function and the last hidden layer is fully connected with
the actions on the output layer. The target network Q̂ has
the same structure as Q. The network Q is initialized with
random weights and Q̂ is assigned with same initial weights
as Q. The DQN is trained for M episodes. Each episode
means one VR game experience. During the training, the
algorithm takes each epoch every ⌧ milliseconds. We use t to
represent the timestamp of each epoch. Within each epoch, the
algorithm first converts the input data into states and enqueues
these states (line 8-11). When choosing the optimal action,
the algorithm takes the action which has the maximum Q-
value calculated by the DQN (line 15). Meanwhile, to com-
prehensively explore possible transitions, the algorithm takes a
random action with a probability of ✏ (line 13). After execute
action at in environment. The transition (St, at, rt, St+RTT )
is stored into replay buffer B. The replay buffer is used for
storing transitions during the training process and the DQN
can randomly samples stored transitions from B in mini-
batch mode. The sampled transitions are used to calculate the
target value through target network Q̂ with Bellman equation
(line 23). Then, we calculate the Huber loss and use Adam
optimizer [25] to train the DQN. Note that, the weights of Q̂
is updated every C epochs with the weights of Q for stability
during training.

D. Control Scheme

1) Control Scheme at Receiver Controller: Fig. 4 describes
the control scheme at the receiver controller, which cooperates
with TCP. The receiver controller takes the action value from
the prediction module in the immersive application through a
shared memory, named as mMem. The mMem is updated
every ⌧ milliseconds. This aligns with the time when the
prediction module takes an action. When the receiver sends out
an ACK packet, it appends the value of mMem to the ACK
packet, noted as mRate. The mRate represents the sending
rate adapted to the predicted mmWave link bandwidth. Then,
the sender executes further controls based on mRate.

Algorithm 2 Control scheme at the sender controller.
Initialize threshold THMIA

For each ACK packet receive process:

1: Extract mRate as predicted mmWave bandwidth limit
2: Get current time tnow

3: Calculate the moving average of sending intervals: tint =
tnow � tstamp

4: if ACK packet is duplicate then

5: Update counter: cnt = 0
6: else

7: Update counter: cnt += 1
8: end if

9: Calculate rate adaptive window: mWnd = mRate · tint
10: if mWnd < min(cWnd, rWnd)�Bf then

11: sWnd = mWnd . rate adaptive mode
12: else

13: if cnt > THMIA then

14: sWnd = mWnd . rate adaptive mode
15: else

16: sWnd = min(cWnd, rWnd)�Bf . congestion
mode

17: end if

18: end if

19: Send sWnd bytes of data
20: Record the current time as a timestamp: tstamp = tnow

2) Control Scheme at Sender Controller: Algorithm 2
describes the control scheme at the sender controller. The
controller is first initialized with the threshold value THMIA.
This threshold is used to determine whether to turn on the
rate adaptive mode in MIA. When an ACK packet arrives
at the sender, the sender controller extracts the mRate as
the predicted bandwidth limit. Meanwhile, the current times-
tamp tnow is updated and the arriving packet interval tint

is calculated as the time duration for each sending process.
The tstamp represents the timestamp at the previous sending
process. Moving average is used for tint to alleviate abrupt
large changes in packet intervals when the mmWave link
bandwidth fluctuates dramatically. Then, the counter cnt is
updated according to the ACK packet (line 4-8). The counter
cnt records the number of consecutive new ACK packets,
which is further used for mode choosing. During the mode
choosing (line 9-18), the mWnd is first calculated as the
sending limitation with mRate and tint. The mode is decided
through two comparisons. The first comparison is based on
mWnd, congestion window cWnd, receive window rWnd

and bytes in flight Bf . The second comparison is between the
counter cnt and THMIA. In rate adaptive mode, the sending
limit window sWnd is equal to mWnd. Otherwise, sWnd is
controlled by cWnd, rWnd, and Bf . After setting the sending
limit window sWnd, the sender sends sWnd bytes of data.
Finally, the timestamp tstamp is updated for the future packet
interval calculation.

E. Low-Overhead Real-Time Measurement Module
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Fig. 5: Illustration of the packet train.

The measurement module provides real-time input data
to the prediction module in MIA, including user’s moving
speed, rotational speed and mmWave link bandwidth. The
speed information can be measured from immersive devices
with little overhead. The key point is accurately measuring
mmWave link bandwidth with low overhead. MIA applies
packet trains [26] for the accurate estimation of the mmWave
link bandwidth with low bandwidth consumption. A packet
train is one group of packets with the same packet size. In
each train, the packets are generated and forwarded back-to-
back by the packet train sender in the server’s application.
This packet train is then received by the immersive device
over the mmWave link. As illustrated in Fig. 5, this technique
relies on the observation that these packets are usually queued
and sent in an back-to-back manner. If this observation holds,
the time spaces between these packets (i.e., time dispersion)
are inversely proportional to the bandwidth of the bottleneck
link on the route from the sender to the receiver, which is
the mmWave link in our immersive scenario. If Ltrain is the
length of one random section in a packet train and the packet
size is Spacket, then the relationship to bottleneck bandwidth
in this section can be shown as:

BWbottleneck = (Ltrain · Spacket)/tdispersion (3)

When receiving a packet train, the receiver randomly samples
different consecutive sections from this packet train and takes
the average measurement result of these sections. In the design
of MIA, concatenated with prediction module, the interval
between two packet trains is ⌧ milliseconds. This aligns
with the prediction frequency in Sec. III-C and the mMem

updating frequency in Sec. III-D.

IV. EVALUATION

A. Experimental Setup

We first build up a real-time measurement testbed to mea-
sure the user movements and the bottleneck link bandwidth
while the user is playing a VR game (see Fig. 6). In the testbed,
the user plays immersive games in a 5m x 5m space in the
vicinity of the mmWave AP. Since the current Oculus Quest
2 headsets do not support mmWave connections, the testbed
augments them with IEEE 802.11ay [27] mmWave devices.
In the testbed, the bottleneck link is often the mmWave link
and therefore its bandwidth fluctuations are measured using
the packet train technique described in Sec. III-E. The user’s
moving and rotational speeds are measured using a HTC Vive
tracker, which is attached to the helmet. We collect data and
evaluate performance in three immersive game scenarios. The

immersive experience lasts for approximately 20 minutes in
each game scenario. The trace data from the measurements is
used in an implementation of MIA in Network Simulator-3
(ns-3) [28] along with ns3gym [29] and OpenAI Gym [30].

(a) Testbed. (b) A user in immersive experience.

Fig. 6: MIA setup.

We evaluate the performance of the RL prediction module
and then evaluate MIA’s performance when working with
different congestion control schemes implemented in four
variants of TCP, Namely TCP-BIC [3], TCP-CUBIC [4], TCP-
BBR [6], and DRL-CC [14]. The effectiveness of the MIA is
assessed by comparing the performance of a given congestion
control scheme without and with the proposed MIA.

TABLE I: Hyperparameters of learning module.

Hyperparameter Variable Value
Replay buffer capacity NB 1000000
State queue capacity NS 10
Episode M 500
Epoch time ⌧ 10ms
Exploration rate ✏ 1 – 0.05
Minibatch size m 32
Target network update interval C 10000
Reward function scale ↵ 10.0
Reward function offset � -4.0
Reward function deviation (large) ⇢l 0.25
Reward function deviation (small) ⇢s 0.1

(a) Training without user speed
information.

(b) Training with user speed in-
formation.

Fig. 7: Comparison of average link bandwidth prediction error
without and with using user movement information while the
user is playing a boxing game over a network with an average
delay of around 10ms.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 19,2024 at 07:32:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8: Average throughput with 10ms average network delay
when different TCP variants run without and with MIA in an
boxing game.

B. Experimental Results

1) Prediction Module: We compare the convergence of
two different approaches for training the RL model. In the
first approach, only a recent history of data rates is used. In
the second approach, a recent history of user’s moving and
rotational speeds are also used along with a recent history
of data rate fluctuations. The comparison is used to evaluate
and demonstrate the benefits of using recent history of user
movements in predicting future data rates. Table. I shows the
hyperparameters of the RL model during the training process.
We train and test different models for three different immersive
games (boxing, beat saber, and table tennis) and three average
network delays (5ms, 10ms, 20ms). Each model is trained for
5 million epochs with an immersive environment of 20-minute
gaming experience. Then, the model is tested in the immersive
environment of another 20-minute gaming experience when
the user plays the same game on a different day and time.
Fig. 7 shows the absolute values of average prediction errors
in mmWave link bandwidth during the training process of the
model in the boxing game with 10ms average network delay,
corresponding to an average RTT of around 20ms. The red
dashed line represents the average error in one episode when
the model takes random actions. Fig. 7a shows the average
errors when the model only takes mmWave link bandwidth as
the input. As the comparison, Fig. 7b shows the average errors
when the model also takes the user’s moving speed and rota-
tional speed as input. The comparison shows that the model
with speed information is much better. The prediction errors
are much smaller and training converges rapidly. Therefore,
we use the learning module applying user’s moving speed and
rotational speed for the following performance evaluation and
we use the weights at the end of the training process for the
prediction module.

2) Performance Improvement due to MIA: We integrate
MIA with different TCP variants, including TCP-BIC, TCP-
CUBIC, TCP-BBR and DRL-CC. Then we evaluate their
performance with different immersive gaming experience in
simulations done using ns-3. In these simulations, the network
between the server and the user device is comprised of three

communication links. The first two links are assumed to be
wired with a bandwidth of 10 Gbps, while the third is a
mmWave based wireless link whose bandwidth varies based
on the traces collected by experimental measurements. In order
to model a typical network, we pick a target value for RTT.
We set the propagation delay for the first communication link
to be normally distributed with mean equal to half of the
target RTT and variance equal to 1

20 of the target RTT. The
second communication link is also shared by an UDP cross-
traffic with an average bandwidth of 2 Gbps. The cross-traffic
may cause congestion on the second link. The queuing in
the second communication link also causes variability in the
RTT. Finally, the bandwidth changes in the wireless link also
causes considerable variations to the delays experienced by
each packet. First, we present simulation results for the boxing
game when the average network delay is around 10ms (see
Fig. 8). The figure compares the average end-to-end through-
put over the 20-minute game for four different TCP variants
without and with the MIA. For instance, DRL-CC without
MIA has an average throughput of only 170 Mbps while the
DRL-CC with MIA has an average throughput of 913 Mbps,
a 5.3-fold increase in the throughput. Since DRL-CC is also a
reinforcement learning based approach this improvement in
performance is noteworthy. We therefore contend that link
bandwidth prediction at the receiver end is very effective in
improving the end-to-end throughput. This is understandable
because link bandwidth prediction allows TCP to adapt its
sending rate well in advance of changes in channel condition.
In particular, reducing sending rate in advance of expected
poor channel conditions is very advantageous in reducing
the queueing delays and packet losses at the wireless link.
Furthermore, when the channel conditions are expected to be
good and there are no hints of network congestion elsewhere as
indicated by the continuous arrival of new acknowledgements,
the sending rate can be increased more rapidly to accom-
modate the additional availability in the network. Note that,
although there are differences in improvement based on the
underlying congestion control scheme, the gains are substantial
for all four TCP variants.

Next, in Fig. 9, we further evaluate the improvements
provided by MIA. In Fig. 9a, we show the impact of network
delay (and hence, RTT) on the end-to-end throughput. As
shown in the figure, the average network delays are 5ms, 10ms,
and 20ms. The four bars for each network delay correspond
to the four TCP variants used in conjunction with MIA. The
figure basically shows that, as expected, the throughput of all
four variants decreases with increase in delay. The throughput
of BBR-MIA decreases from around 1400 Mbps to around
1000 Mbps as the delay increases from 5 ms to 20 ms.
Similarly, the throughput of DRL-CC-MIA decreases from
around 900 Mbps for 5 ms delay to around 500 Mbps for 20
ms. The corresponding Fig. 9b shows the relative improvement
in end-to-end throughput with MIA and without MIA. Irre-
spective of the network delays, the throughput improvements
range from a factor of 2 to a factor of nearly 6. A 5.5-fold
increase in average end throughput for 5 ms delay for DRL-
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(a) Average throughput when MIA cooperates
with different TCP variants.

(b) Improvement ratio when MIA cooperates
with different TCP variants.

(c) Data transmission latency comparison be-
tween using and not using MIA.

Fig. 9: Performance metrics in the boxing game when MIA cooperates with different network delays and TCP variants.

Fig. 10: Average throughput with 10ms average network delay
when different MIA threshold numbers are applied to DRL-
CC-MIA in the boxing game.

CC-MIA over DRL-CC is substantial without any dispute. As
mentioned above, the gains are primarily due to the ability
to predict link bandwidth accurately about one RTT ahead
into the future, thereby giving TCP senders adequate notice of
potential reductions or increases in the data rates offered by the
mmWave links and the ability of sending rate adaptations to
take advantage of this advanced notice. Finally, the immersive
experience is not only sensitive to throughput but also to
latency. Fig. 9c shows the average latency for transmitting
1 Gb of data from sender to receiver over the network. Such
latencies are important when scenes in the VR game require a
large amount of data transmission. To compute this average
we randomly sample the traffic flow at 500 different time
points and measure the time required to transmitted 1 Gb of
data starting at the sample point. Clearly, smaller latencies
are better than larger latencies. The figure is a scatterplot
of latencies without and with MIA in the four TCP variants
for different network delays. Since all the scatter points are
substantially below the equal latency line, we can conclude the
latencies in the schemes with MIA are considerably smaller
as compared to the latency without the MIA.

(a) In the table tennis game.

(b) In the beat saber game.

Fig. 11: Average throughput with 10ms average network delay
when different TCP variants run with and without MIA.

3) Impact of MIA Threshold (THMIA): Recall that, the
proposed solution uses the following strategy. When the pre-
dicted rate is much smaller than the sending rate congestion
control scheme, it uses the predicted rate. If the predicted
rate is greater than that of the congestion control scheme,
it stays with the congestion control scheme if fewer than a
pre-specified number of consecutive new acknowledgements
have been received. The idea is that this threshold determines
when we judge that the network has no hint of congestion and
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(a) Average throughput when MIA cooperates
with different TCP variants.

(b) Improvement ratio when MIA cooperates
with different TCP variants.

(c) Data transmission latency comparison be-
tween using and not using MIA.

Fig. 12: Performance metrics in the table tennis game when MIA cooperates with different network delays and TCP variants.

(a) Average throughput when MIA cooperates
with different TCP variants.

(b) Improvement ratio when MIA cooperates
with different TCP variants.

(c) Data transmission latency comparison be-
tween using and not using MIA.

Fig. 13: Performance metrics in the beatsaber game when MIA cooperates with different network delays and TCP variants.

it is safe to use the higher data rate of the mmWave link. The
larger the value of this threshold the more conservative we
are in using a rate higher than that suggested the underlying
congestion control scheme. Fig. 10 shows the end-to-end
throughput of DRL-CC-MIA as we increase the threshold from
1 to 300. A threshold of 300 means that we use a sending rate
higher than that suggested by the congestion control scheme
only if we have received at least 300 consecutive new acknowl-
edgements (i.e., not duplicate acknowledgements). Note that,
the throughput is not very sensitive to this threshold, although
there is a decrease in throughput as the threshold increases.
The throughput of DRL-CC-MIA decreases from around 900
Mbps to around 740 Mbps when the MIA threshold increases
from 1 to 300.

4) Impact of Games: All the above results are for the game
of boxing. Fig. 11, 12, 13 are the same kind of results for two
other games, table tennis and beat saber. Fig. 11 is similar to
Fig. 8 while Fig. 12 and 13 are similar to Fig. 9. For instance,
in Fig. 11a, the average throughput of DRL-CC without MIA
is 175 Mbps while the average throughput of DRL-CC with
MIA is 710 Mbps during a table tennis game. In Fig. 12
and 13, the throughput improvement with the use of MIA
ranges from a factor of 2 to a factor of around 7. Basically,
the figures show that the qualitative conclusions for all three of

table tennis and beat saber are similar to that for boxing. That,
MIA offers significant performance improvement in terms of
multi-fold increase in throughput and substantial decrease in
latency.

V. CONCLUSION

To better adapt to the fluctuations in mmWave channel
quality, we propose a RL integrated transport-layer Millimeter
wave based Immersive Agent (MIA) plugin and provide its
implementation in an immersive system architecture. MIA
observes the mmWave link bandwidth and the user’s speed
information during immersive applications in real time and
adaptively sends packets based on the prediction with the RL
algorithm. The evaluation results show that when the fluctu-
ations in mmWave channel quality impact TCP performance
in immersive experience, MIA enhances TCP performance in
both end-to-end throughput and latency.
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