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Cache-Aided K-User Broadcast Channels With
State Information at Receivers

Hadi Reisizadeh , Mohammad Ali Maddah-Ali , Fellow, IEEE, and Soheil Mohajer , Member, IEEE

Abstract— We study a K-user coded-caching broadcast prob-
lem in a joint source-channel coding framework. The transmitter
observes a database of files that are being generated at a certain
rate per channel use, and each user has a cache, which can
store a fixed fraction of the generated symbols. In the delivery
phase, the transmitter broadcasts a message so that the users
can decode their desired files using the received signal and
their cache content. The communication between the transmitter
and the receivers happens over a (deterministic) time-varying
erasure broadcast channel, and the channel state information
is only available to the users. We characterize the maximum
achievable source rate for the 2-user and the degraded K-
user problems. We provide an upper bound for any caching
strategy’s achievable source rates. Finally, we present a linear
programming formulation to show that the upper bound is not a
sharp characterization. Closing the gap between the achievable
rate and the optimum rate remains open.

Index Terms— Coded caching, joint source-channel coding,
broadcast channel, wireless networks.

I. INTRODUCTION

THE number of active users of video streaming applica-
tions such as Netflix, YouTube, HBO, etc., is growing

rapidly. Coded caching is a promising strategy to overcome
this rapidly growing traffic load of networks during their peak
traffic time by duplicating parts of the content in the caches
distributed across the network. A caching system operates
in two phases: (i) a placement (pre-fetching) phase, where
each user has access to the database of the transmitter and
stores some packets from the database during the off-load
time, and (ii) a delivery (fetching) phase, during which each
user demands a file from the database, and the transmitter
broadcasts a signal over a (noisy) channel to all the users
(receivers), such that each user is able to decode his desired
file from his cache content and his received signal. Moreover,
in this phase, the network is congested, and the transmitter
exploits the content of users to serve their requested files.
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In practice, assuming a perfect broadcast channel fails,
especially for the wireless communication setup. Therefore,
we are dealing with a random time-varying channel between
the transmitter and the users. In this paper, to model the
randomness of the channel, we consider a binary determin-
istic version of a time-varying memoryless fading broadcast
channel when the transmitter is serving users. However, the
pre-fetching phase takes over the noiseless links. We study
such a caching problem in a joint source-channel coding
framework and analyze the limitations of the source rate for
the transmitter.

Related Works. Coded caching schemes are proposed
under the perfect channel assumption for the delivery phase
and the uncoded cache placement where the placement per-
forms on pure packets of the files for the centralized [2] and
the decentralized settings [3]. It is shown that a significant gain
can be achieved by sending coded packets and simultaneously
serving multiple users. A distributed source coding problem
is presented in [4] to study the cache-aided networks. The
database is viewed as a discrete memoryless source and the
users’ requests as side information that is available everywhere
except at the cache encoder. The inner and outer bounds on
the fundamental trade-off of cache memory size and update
rate are provided. For file selection networks with uniform
requests, the derived bounds recover the rates established
by [2], [3]. The exact trade-off between the memory and load
of delivery is characterized [5] for the uncoded placement. The
coded caching problem has also been studied in various setups,
including online caching [6], device-to-device caching [7],
[8], caching with nonuniform demands [9], [10], coded cache
placement [11], [12], [13], [14].

All of the aforementioned works assume that the delivery
phase takes over a perfect channel. However, in practice,
we are dealing with noisy broadcast channels, especially
for wireless communication systems. For the wireless setup,
various types of channel models have been studied, such as
cache-aided interference channels [15], [16], [17], caching
on broadcast channels [18], [19], erasure and fading chan-
nels [20], [21], [22], and channels with delayed feedback
with channel state information [23], [24]. The cache-aided
communications problem is modeled as a joint cache-channel
coding problem in [18]. The delivery phase takes place over
a memoryless erasure broadcast channel. It is shown that
using unequal cache sizes and joint cache-channel coding
improves system efficiency when the users experience different
channel qualities. The capacity-memory trade-off of the K-
user broadcast channel is studied when each user is equipped
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with a cache. It is optimal to assign all the cache memory to
the weakest user for the small total cache size. On the other
hand, for the large cache size, it is optimal to assign a positive
portion of the cache to each user where weaker users have
access to a larger cache memory than stronger users. Another
wireless communication model is considered in [23] where
a K-antenna transmitter communicates to K single receiver
antenna. It is shown that the combination of caching with
a rate-splitting broadcast approach can reduce the need for
channel state information at the transmitter.

Note that in a fast-fading environment sending the channel
state information (CSI) from the receiver to the transmitter
over a feedback link is difficult. So, it is more reasonable
to consider broadcast channels with no CSI. The ergodic
capacity region of a K-user binary deterministic version
of the time-varying memoryless fading broadcast channel
(K-DTVBC) introduced by [25] is studied in [26], [27].
Depending on the instantaneous channel strength, each user
only receives the most significant bits of the transmit signal.
Using the insight from the K-DTVBC model, an outer bound
to the Gaussian fading BC capacity region is derived.

Contributions. In this work, we study a communication
model over the K-DTVBC for n channel use where each user
is equipped with a cache. The transmitter has some source
rate per channel for each file in its database. A fixed fraction
of each file is available in each user’s cache. Here, we focus
on a class of uncoded cache placement schemes. After the
completion of this phase, each user demands a file. Then,
the transmitter forms broadcasting messages such that each
user can decode his desired file. The main challenge for the
transmitter is to assign the signal levels to the (broadcasting)
messages intended for each user without having access to the
realization of the channels, which consists of the number of
bits delivered to each user. Note that a fast-fading environment
needs coding for reliable communication, where the capacity
of the channel is achievable using channel codes with suf-
ficiently large block lengths. Thus, we study the asymptotic
behavior of the system, where we allow the size of messages
in the pre-fetching and fetching phases will grow with the
communication block length. This leads us to deal with a
joint source-channel coding problem where the transmitter
has a certain source rate per channel use. We characterize
the maximum achievable source rate for the two-user and the
degraded K-user problems. Then, we provide an upper bound
for the source rate. Finally, we discuss an achievable scheme
with the linear programming (LP) formulation to show the
looseness of the characterization for K > 2.

Outline of the Paper. In the following, we formulate
the problem in Section II, and present the main results
in Section III, whose proofs are presented in Section V-
VIII. In Section IV, we provide an achievable source rate
through the LP formulation and then show the achieved
information-theoretic bound is not tight in general. Finally,
we conclude the paper in Section IX.

Notation. Throughout this paper, we denote the set of
integers {1, 2, . . . , N} by [N ] and the set of non-negative
real numbers by R+. For a binary vector of length B, i.e.,
X ∈ FB

2 , and a pair of integers a < b, we use the short

Fig. 1. A K-user binary deterministic version of the time-varying memory-
less fading broadcast channel. The transmitter only knows the statistics, but
not the realizations of the generated i.i.d. random sequence {Lk[t]}n

t=1.

hand notation X(a : b) to denote [X(a), X(a+1), . . . , X(b)].
We use (a, b] to refer to the interval (a, b] := {x ∈ R :
a < x ≤ b}, and its scaled and shifted version is defined as
α+ β(a, b] := (α+ βa, α+ βb]. For a set of real numbers I,
we use |I| to denote its Lebesgue measure, e.g., |(a, b]| :=
b − a denotes the length of the interval. The all-ones and
all-zeros vectors are defined as 1n := (1, 1, . . . , 1) ∈ Rn×1

and 0n := (0, 0, . . . , 0) ∈ Rn×1, respectively. For a real
number x ∈ R, we denote its floor and ceiling by ⌊x⌋
and ⌈x⌉, respectively. The fractional part of x is denote by
{x} := x−⌊x⌋. Finally, for n, k ∈ Z, the binomial coefficient
is defined as

(
n
k

)
:= n!

k!(n−k)! , if 0 ≤ k ≤ n, and
(
n
k

)
:= 0,

otherwise.

II. PROBLEM FORMULATION

In this section, we first introduce the K-DTVBC, which
is the core of this work. Then, we discuss the joint
source-channel coding problem studied in this paper.

A. Channel Model

We are interested in a time-varying broadcast channel,
where a transmitter aims at sending one message to each of
the K users. We consider the K-DTVBC introduced by [25]
as shown in Figure 1. The channel is modeled by

Yk,t = DB−Lk[t]Xt = Xt(1 : Lk[t]), k ∈ [K], (1)

where Xt, Yk,t ∈ FB
2 for k ∈ [K], and D is a B × B shift

matrix, given by

D =


0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

 .
Here Lk[t] with 0 ≤ Lk[t] ≤ B determines the number of

bits delivered to user k at time t. The channel state at user
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Fig. 2. A transmitter containing N files of size nf bits each is connected
through a K-DTVBC to users each with a cache of size nMf bits.

k, i.e., {Lk[t] : t = 1, . . . , n}, is an i.i.d. random sequence
generated according to some probability mass function (PMF)
PLk

(ℓ) := P[Lk = ℓ]. Intuitively, sending a message Xt

of length B bits over a channel with parameters Lk[t], the
receiver only receives the Lk[t] most significant bits (MSBs)
of Xt, and the remaining bits will be erased. This operation
can be modeled as the multiplication of the message Xt

by DB−Lk[t], where D is the shift matrix. We assume that
the channel state information is casually known only to the
receivers. However, the transmitter only knows the channel
statistics PLk

(ℓ), but not the channel realizations.
Definition 1: We denote the complementary cumulative dis-

tribution function (CCDF) of Lk for any ℓ ∈ [B] by

FLk
(ℓ) := P[Lk ≥ ℓ].

For notational simplicity, let

F Lk
:=

FLk
(1)

...
FLk

(B)

 ,
for each user k ∈ [K].

Definition 2: The random variable Lk is stochastically
larger than Lv , if FLk

(ℓ) ≥ FLv
(ℓ) for every ℓ ∈ [B] and

we denote it by Lk ≥st Lv .
The K-DTVBC channel model for wireless communication

simplifies analysis compared to the Gaussian model while still
capturing the important features of the problem. This model
focuses on signal interactions rather than background noise
since networks often operate in interference-limited scenarios.
The deterministic model operates on a finite-field, makes it
simpler, and provides a complete characterization of network
capacity. The insights gained from the deterministic analysis
can be applied to find approximately optimal communica-
tion schemes for Gaussian relay networks. The analysis of
deterministic networks not only guides coding schemes for
Gaussian channels but also offers useful proof techniques. The
capacity region of the K-DTVBC is derived in [27]. In this
work, we focus on a cache-aided version of this problem,

where the users are equipped with a cache that can pre-fetch
part of the messages. In contrast, to [27], where the capacity
region is characterized, we are interested in the symmetric rate,
as it is standard to consider equal file sizes in file delivery
systems.

In the majority of the existing literature on coded caching,
a perfect channel is assumed between the transmitter and the
users. Hence, the focus is on minimizing the design of the
placement and delivery phases to minimize the load on the
perfect channel [2], [3], [5], [7], [8]. Here, we are dealing
with a fast fading channel which requires coding for reliable
communication. Hence, we allow for a large code length and
study the asymptotic behavior of the channel. Consequently,
the size of the message(s) will grow with the communication
block length. This leads to a joint source-channel coding
problem [28], [29], [30]. More precisely, we consider a com-
munication scenario over n channel uses, where the transmitter
has a library of N files, each of size nf bits. Each user
is equipped with a cache that can pre-fetch up to nMf
bits (before the actual request of the user is revealed), and
the goal is to send one requested file to each user reliably.
We are interested in characterizing the maximum source
rate f for which, and for sufficiently large block length n,
a reliable communication scheme can be devised. A similar
joint source-channel coding approach is used to study the
original coded caching problem with common rate and side
information in [4]. Further details of the cache model are
discussed in the next section.

B. Joint Source-Channel Coding Framework

Let us consider a communication scenario over the
K-DTVBC for n channel uses. The transmitter has some
source rate f ∈ R+ per channel use that generates N

files, namely, W (n)
i for i ∈ [N ]. This means the transmitter

has access to a database of N mutually independent files
W

(n)
1 , . . . ,W

(n)
N each of size nf bits, i.e.,

W
(n)
i ∈ {1, 2, . . . , 2nf}, i ∈ [N ].

We assume each user k is equipped with a cache, which can
pre-fetch part of the files. The size of the content is pro-
portional to the communication block length. More precisely,
we assume that user k has a cache C(n)

k of size nMf bits, for
k ∈ [K]. In the placement phase, the cache memory of each
user is filled with uncoded bits of the files; that is, the content
of the cache C(n)

k can be partitioned into raw (uncoded) bits
of the files.

Definition 3: A caching strategy C for a normalized cache
size µ = M/N and a network with K users consists
of K collections of intervals in (0, 1]. More precisely,
C = (c1, c2, . . . , cK) where

• ck =
⋃

ℓ∈[Nk] Ik,ℓ,
• Nk is a finite positive integer number for every k ∈ [K],
• Ik,ℓ = (ak,ℓ, bk,ℓ] ⊆ (0, 1] where bk,ℓ ≤ ak,ℓ+1 for every
ℓ ∈ [K−1], and

•
∑

ℓ∈[Nk] |Ik,ℓ| = µ, for every k ∈ [K].
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For a file W = (W (1),W (2), . . . ,W (F )) ∈ FF
2 of length F

bits, we define

W (ck) :=
⋃

ℓ∈[Nk]

{W (⌈ak,ℓF ⌉+ 1), · · · ,W (⌊bk,ℓF ⌋)}.

For a given source rate f , block length n, family of files{
W

(n)
i

}
, and caching placement strategy C, the cache content

of user k ∈ [K] is given by

C
(n)
k :=

⋃
i∈[N ]

C
(n)
k,i =

⋃
i∈[N ]

W
(n)
i (ck) (2)

=
⋃

i∈[N ]

⋃
ℓ∈[Nk]

{
W

(n)
i (⌈nfak,ℓ⌉+1), . . . ,W (n)

i (⌊nfbk,ℓ⌋)
}
.

This implies that

H
(
C

(n)
k,i

)
≤
∑

ℓ∈[Nk]

(⌊nfbk,ℓ⌋ − ⌈nfak,ℓ⌉)

≤
∑

ℓ∈[Nk]

nf |Ik,ℓ| = µnf. (3)

Therefore, we get

H
(
C

(n)
k

)
= H

(
C

(n)
k,1 , C

(n)
k,2 , . . . , C

(n)
k,N

)
≤ H

(
C

(n)
k,1

)
+H

(
C

(n)
k,2

)
+ · · ·+H

(
C

(n)
k,N

)
≤

N∑
i=1

nµf = nMf.

Moreover, from the definition of the cache content in (2) and
the independence of files, we can write

H
(
C

(n)
k,i

∣∣∣W (n)
i

)
= 0,

I
(
C

(n)
k,j ;W (n)

i

)
= 0, j ̸= i.

We define cS :=
⋃

u∈S cu =
⋃

u∈S
⋃

ℓ∈[Nu] Iu,ℓ for every
S ⊆ [K] and the caching tuple µ := (µS : S ⊆ [K]) where
µS := |cS |. We also use C(n)

S,i to refer to the collection of all
the parts of file i cached by the users in the subset S ⊆ [K],
i.e., C(n)

S,i =
⋃

u∈S C
(n)
u,i . Therefore, we have

H
(
C

(n)
S,i

)
≤ µSnf, (4)

for every i ∈ [N ]. After the completion of the placement
phase, each user requests one of the N files, where all files
are equally likely to be requested. We denote dk ∈ [N ] as the
index of the file requested by user k ∈ [K] and the sequence
of all requests by d = (d1, . . . , dK). Once the requests are
revealed to the transmitter, it forms a broadcasting message
Xn = (X1, X2, . . . , Xn) = ψ

(n)
d

(
W

(n)
1 , . . . ,W

(n)
N ;C(n)

[K]

)
,

where

ψ
(n)
d :{1, 2, . . . , 2nf}N×{1, 2, . . . , 2nMf}K→ {1, 2, . . . , 2B}n,

and transmits Xt over the broadcast channel during the tth
channel use of the delivery phase, for t = 1, . . . , n. Upon
receiving Y n

k = (Yk,1, Yk,2, . . . , Yk,n), user k ∈ [K] should

be able to decode its desired file using its cache content C(n)
k

and the received message Y n
k (see Figure 2), i.e.,

Ŵ
(n)
dk

= ϕ
(n)
k

(
Y n

k , C
(n)
k

)
.

Here, we define the overall decoding error probability as
P

(n)
e :=

∑K
k=1P

[
Ŵ

(n)
dk

̸=W (n)
dk

]
.

Definition 4: For a given caching strategy C and a (distinct)
request profile d, a source rate f(C,d) is called achievable if
there exists a sequence of encoding and decoding functions{(
ψ(n), ϕ

(n)
1 , . . . , ϕ

(n)
K

)}
n

, for which P (n)
e → 0 as n grows.

Here, our goal is to characterize the maximum achievable
source rate f(C,d) for a given K-DTVBC with channel
statistics, F Lk

for k ∈ [K]. Note that the cache placement
is fixed prior to the users’ demands, and we are not designing
the cache contents of users based on the requested files.

For every subset of users S ⊆ [K] and file index i ∈ [N ],
we define W (n)

i,S =
⋂

k∈SW
(n)
i (ck) = W

(n)
i

(⋂
k∈S ck

)
, to be

the sections of file W (n)
i which are cached at all users in S.

Next, inspired by the central cache placement strategy of [2],
we introduce the central caching strategy Ccent. For a subset
S ⊆ [K] with |S| = s, let χ(S) ∈

{
1, 2, . . . ,

(
K
s

)}
be the

rank of S among all subsets of [K] of size s, according to the
lexicographical order.

Definition 5: For every S ⊆ [K] with |S| = s, define

JS :=

(
χ(S)(

K
s

) , χ(S) + 1(
K
s

) ]
.

Then, for a network with K users and normalized cache
size µ ∈ [0, 1], we define the central caching strategy
Ccent := (ccent

1 , . . . , ccent
K ) where

ccent
k :=


⋃

S⊆[K]
|S|=⌊µK⌋
S∋k

(1− λ)JS

∪


⋃
T ⊆[K]

|T |=⌊µK⌋+1
T ∋k

((1− λ)+λJT )

,
and1 λ = {µK}.

Note that for any set of users Q ⊆ [K], we have

µcent
Q =

∣∣ccent
Q
∣∣

=

∣∣∣∣∣ ⋃
k∈Q

ccent
k

∣∣∣∣∣
= (1− λ)

1− 1(
K

⌊µK⌋
) ∑

S⊆[K]
|S|=⌊µK⌋
S∩Q=∅

1



+ λ

1− 1(
K

⌊µK⌋+1

) ∑
T ⊆[K]

|T |=⌊µK⌋+1
T ∩Q=∅

1


1Note that µK = (1− λ)⌊µK⌋+ λ⌈µK⌉.
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= (1−λ)

(
1−

(
K−|Q|
⌊µK⌋

)(
K

⌊µK⌋
) )+λ

(
1−

(
K−|Q|
⌊µK⌋+1

)(
K

⌊µK⌋+1

)) . (5)

Moreover, we have∣∣∣∣∣ ⋂
k∈Q

ccent
k

∣∣∣∣∣ =(1−λ)
1(
K

⌊µK⌋
) ∑
S⊆[K]
|S|=⌊µK⌋
Q⊆S

1 +λ
1(
K

⌊µK⌋+1

) ∑
T ⊆[K]

|T |=⌊µK⌋+1
Q⊆T

1

= (1− λ)

(
K−|Q|

⌊µK⌋−|Q|
)(

K
⌊µK⌋

) + λ

(
K−|Q|

⌊µK⌋+1−|Q|
)(

K
⌊µK⌋+1

) . (6)

III. MAIN RESULTS

In this section, we present the main results of this paper,
organized according to the level of generalization of the
setting.

We first characterize the maximum achievable source rate
for the 2-user DTVBC.

Theorem 1 (Two-User (Non-Degraded) BC): For a 2-
DTVBC with a caching strategy C, a distinct request profile
d, and µ ≤ 1

2 , any achievable source rate is upper bounded
by

f⋆ =min
{

min
ω≥1

ωR1(ω) +R2(ω)
ω(1−µ) + (1−2µ)

,

min
0≤ω≤1

R1(ω)+ 1
ωR2(ω)

(1−2µ)+ 1
ω (1−µ)

}
. (7)

Moreover, if 1
2 ≤ µ ≤ 1, any achievable source rate is upper

bounded by

f⋆ = min

{∑B
ℓ=1 FL1(ℓ)
1− µ

,

∑B
ℓ=1 FL2(ℓ)
1− µ

}
, (8)

where

R1(ω) :=
∑

ℓ∈L1(ω)

FL1(ℓ)

R2(ω) :=
∑

ℓ∈L2(ω)

FL2(ℓ), (9)

and summations are over L1(ω) := {ℓ : ωFL1(ℓ) ≥ FL2(ℓ)},
and L2(ω) := {ℓ : ωFL1(ℓ) < FL2(ℓ)}. Moreover, the source
rates in (7) and (8) are achievable for the central caching
strategy Ccent.

The proof of Theorem 1 is provided in Section V.
In the upper bound presented in Theorem 1, we intuitively

enhance both the cache and channel strengths for each user
and compare the two possible settings.

Now, let us consider a more general setting where a network
is serving K users. In a K user setting, we can characterize the
maximum achievable source rate when the channels from the
transmitter to the users are degraded (see Definition 2). In the
following theorem, we provide an LP optimization problem
for the maximum achievable source rate of the degraded K-
DTVBC with the caching strategy Ccent.

Theorem 2 (K-User Degraded BC): For a degraded K-
DTVBC LK ≥st · · · ≥st L1 and a normalized cache sizes µ
satisfying Kµ ∈ N, with the central caching strategy Ccent and

a distinct request profile d, the maximum achievable source
rate is given by

max
{zℓ,k}

f̄ , (10)

s.t.
(
1− µcent

[k]

)
f̄ ≤

B∑
ℓ=1

zℓ,kFLk
(ℓ), ∀k ∈ [K],

zℓ,k ≥ 0, ∀k ∈ [K],∀ℓ ∈ [B],
K∑

k=1

zℓ,k ≤ 1, ∀ℓ ∈ [B]. (11)

The proof of Theorem 2 is presented in two parts. The
proof of achievability part is presented in Section VI, and its
converse proof is provided in Section VIII. We note that the
achievability proof of Theorem 2 is based on the LP-based
method which is discussed in Section IV. Next, we will now
present an illustrative example of the degraded K-DTVBC
with three users (k = 3). This example will be helpful in
establishing the notation and following the proof techniques.

Example 1 (Degraded Channel Case): We consider a net-
work with K = 3 users N = 3 files, namely {W1,W2,W3},
and B = 3 signal levels. The channel statistics of the three
users are given by the cumulative distribution functions as

FL1 = [0.5, 0.4, 0.3]T ,

FL2 = [0.7, 0.5, 0.4]T ,

FL3 = [0.9, 0.6, 0.5]T .

That is, the first user receives the top level with probability 0.5,
but the bits sent over all three B = 3 levels are delivered at
this same user with probability 0.3. Considering the caching
strategy Ccent with a caching factor of µ = 1/3, it can be
defined as follows

c1 = (0, 1/3], c2 = (1/3, 2/3], c3 = (2/3, 1].

Hence, the placement strategy Ccent implies that the cached
parts of the files at different users are disjoint, i.e.,
W

(n)
i =

⋃3
k=1W

(n)
i,k for every i ∈ [N ] where W (n)

i,k the part
of file W (n)

i cached exactly by user k.
Without loss of generality, assume user k is inter-

ested in file W
(n)
k , for k ∈ {1, 2, 3}. Here, we have

µcent
{1} = 1/3, µcent

{1,2} = 2/3, and µcent
{1,2,3} = 1. The coefficients

[z](ℓ,k) := zℓ,k that provide the optimum solution of (10) are
give by

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

z=
[

0.37 0.63 0 1 0 0 1 0 0
]T
,

with the optimum source rate

f⋆ =
∑3

ℓ=1 zℓ,kFL1(ℓ)
1− µcent

{1}
=
∑3

ℓ=1 zℓ,kFL2(ℓ)
1− µcent

{1,2}
=1.326.

⋄
Finally, we can present our result for the most general

case, which is the (non-degraded) K-DTVBC. The following
theorem provides an upper bound for the source rate of the
K-DTVBC with any given caching strategy C.
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Theorem 3 (K-User (Non-Degraded) BC): Any achievable
source rate of the K-DTVBC for a given cache placement
strategy C and a (distinct) request profile d is upper-bounded
by

f(C,d)≤f⋆(C,d) :=min
ω≥0

∑B
ℓ=1 maxk ωπ(k)FLπ(k)(ℓ)∑K
k=1 ωπ(k)

(
1− µπ([k])

) , (12)

where ω := (ω1, . . . , ωK) ∈ [0,∞)K is a non-negative vector
of length K, π([k]) := {π(1), . . . , π(k)}, and π : [K] → [K]
is the permutation that sorts ω in the non-increasing order.

The proof of Theorem 3 is presented in Section VII.
Note that the upper bound in the theorem is given as a

min-max problem, for which the evaluation of the optimum
point can be computationally challenging. In the following
proposition, we show that the upper bound in (12) can be
evaluated by solving K! linear programming problems, each
corresponding to a permutation of users. Hence, denoting tLP

as the run time for each LP, the complexity of evaluation of
the upper-bound in (12) is K!× tLP.

Proposition 1: The min-max problem in (12) is equivalent
to

f⋆(C,d) = min
π∈Π

f⋆
π(C,d), (13)

where

f⋆
π(C,d) := min

x∈RK+B
[0T

K ,1
T
B ]x,

s.t. Aπx ≤ 0,

bx = 1,
− x ≤ 0, (14)

and Π is the set of all permutations over [K]. The matrix Aπ ∈
R(KB+K−1)×(K+B) is given in (15), shown at the bottom of
the page. Moreover,

b = [1T
K ,0

T
B ] ∈ R1×(K+B), (16)

and I ∈ RB×B is the identity matrix. Note that for each
permutation π ∈ Π, the LP problem in (14) consists of K+B
variables and K(B+2)+B constraints.

The proof of Proposition 1 is provided in Section VII.

IV. AN ACHIEVABLE SCHEME: LP FORMULATION

In this section, we provide an achievable scheme, which is
based on Linear programming. This scheme is optimum for
the degraded broadcast channels (as claimed in Theorem 3).
However, in an illustrative example, we show that there is

a gap between the achievable rate of the proposed scheme
and the upper bound in (12). This implies that either the
achievable scheme is not optimum, or the upper bound is not
tight. Consequently, the exact characterization of the optimum
source rate of a non-degraded K-DTVBC with K > 2 remains
as an open problem for future works.

Similar to [2], we focus on specific normalized cache sizes
µ such that t := Kµ = KM/N ∈ N. Let us assume that each
user k ∈ [K] requests file W (n)

k . The delivery scheme of [2]
consists of broadcasting coded packets to serve multiple users
simultaneously. Each coded packet is intended for a group
of users S ⊆ {1, . . . ,K} with |S| = t + 1. More precisely,
we have

W
(n)
S =

⊕
k∈S

W
(n)
dk,S\{k}.

We aim at sending each coded packet W (n)
S to all users

k ∈ S . To this end, we devise a bit allocation strategy
y={yℓ,S :ℓ ∈ [B],S ⊆ [K], |S|= t+1}, where 0 ≤ yℓ,S ≤ 1
is a variable indicating the fraction of time that level ℓ of the
channel is used to transmit coded message W (n)

S . Note that a
signal level ℓ can be shared between multiple coded message
W

(n)
S . For a feasible allocation policy y, in each level, the

sum of time fractions allocated to all coded messages should
not exceed 1, that is,∑

S⊆[K]
|S|=t+1

yℓ,S ≤ 1, ∀ℓ ∈ [B]. (17)

To ensure successful decoding of the sub-message W (n)
S by

every user in k ∈ S , it is necessary to assign sufficiently
large values to the coefficients yℓ,S . Recall that for a given
common source rate f , the rate of W (n)

S is given by f/
(
K
t

)
.

Then, a coded message W (n)
S is decodable at user k ∈ S if

B∑
ℓ=1

FLk
(ℓ)yℓ,S ≥

f(
K
t

) . (18)

So, we have an optimization problem given by

fLP := max f

s.t. (17)–(18)
yℓ,S ≥ 0, ∀ℓ ∈ [B],∀S ⊆ [K], |S| = t+ 1. (19)

We can write the optimization problem as a linear pro-
gram. To this end, we define a vector y of length
m = B

(
K

t+1

)
+1, forming by stacking all variables in

Aπ =



F Lπ(1) 0B · · · 0B 0B

(
µπ(1) − 1

)
I

0B F Lπ(2) · · · 0B 0B

(
µπ([2]) − 1

)
I

...
...

...
...

...
...

0B 0B · · · 0B F Lπ(K)

(
µπ([K]) − 1

)
I

µπ([2])−1 1−µπ(1) · · · 0 0 0
...

...
...

...
...

...
0 0 · · · µπ([K])−1 1−µπ([K−1]) 0


, (15)
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{yℓ,S :ℓ∈ [B],S ⊆ [K], |S| = t+1} along with f at the very
last position. The first B

(
K

t+1

)
entries of y are labeled by pairs

(ℓ,S) and we set ym = −f as the last entry of y.
To write the constraint in (17) in matrix form, we can define

a matrix H ∈ RB×m, where its rows indexed by ℓ ∈ [B], and
its columns are labeled similar to y. Moreover, we have

Hb,(ℓ,S) =

{
1 if b = ℓ

0 if b ̸= ℓ,

Hb,m = 0, ∀b ∈ [B].

Thus, the constraint in (17) is equivalent to Hy ≤ 1.
Similarly, to write the constraint in (18), we define a matrix

G ∈ RK(K−1
t )×m. The columns of G are labeled similar the

entries of y, and each row in G is labeled by a pair (k, T )
where T ⊆ [K] \ {k}, and |T | = t. An entry at row (k, T )
and column (ℓ,S) is given by

G(k,T ),(ℓ,S) =

{
−FLk

(ℓ) if S = T ∪ {k},
0 otherwise,

and the entries in the mth column are

G(k,T ),m =
1(
K
t

) , ∀(k, T ).

With this, the constraint (18) is reduced to Gy ≤ 0.
We can conclude the following proposition by rephrasing

the coding scheme devised above and its constraints in a linear
form.

Proposition 2: For any K-DTVBC with cache placement
strategy C and a (distinct) request profile d, the source rate
fLP given by

fLP = min [0T
m−1,−1]y

s.t. Gy ≤ 0

Hy ≤ 1

− y ≤ 0, (20)

is achievable.
In the following example, we evaluate fLP by solving (20)

for a non-degraded broadcast channel with K = 3 users.

We also solve the LP in (12) and show that the achievable rate
and the upper bound do not match. This shows that our result
does not provide an exact characterization for the maximum
source rate, when the channel is not degraded, and the number
of users is more than 2.

Example 2 (Non-Degraded Channel Case): Consider a net-
work with K = 3 users N = 3 files, namely {W1,W2,W3},
and B = 3 transmit levels. The channel statistics of the three
users are given by the CCDFs as

FL1 = [0.9, 0.3, 0.3]T ,

FL2 = [0.7, 0.4, 0.4]T ,

FL3 = [0.5, 0.5, 0.5]T .

Consider the caching strategy Ccent with µ = 1/3, i.e.,

c1 = (0, 1/3], c2 = (1/3, 2/3], c3 = (2/3, 1].

Again, we assume that user k is interested in file W (n)
k , for

k ∈ {1, 2, 3}. Here, the LP in (20) is given by

fLP = min [01×(m−1),−1]y
s.t. Gy ≤ 0

Hy ≤ 1

− y ≤ 0, (21)

where the matrices G and H are given in (22) and (23), shown
at the bottom of the page.

The optimum solution of the LP in (21) is also presented
in (24), shown at the bottom of the page, where y(ℓ,S) indicates
the fraction of time that the transmitter uses signal level ℓ to
send a coded message W (n)

S . The transmitter has to send coded
messages W (n)

{1,2} = W
(n)
1,{2} ⊕ W

(n)
2,{1}, W (n)

{1,3} = W
(n)
1,{3} ⊕

W
(n)
3,{1}, and W (n)

{2,3} = W
(n)
2,{3} ⊕W

(n)
3,{2}. Note that the source

rate of fLP = ym = 3/2 is achievable. Therefore, since the
rate of each coded message is 1/3 of the rate of the original
files, the source rate for each coded message is fLP/3 = 1/2.

The transmission scheme devised by (24) suggests that
W

(n)
{1,2} will be broadcast over the top level (ℓ = 1) for

2/3 fraction of time, and the second level (ℓ = 2) for

G =

(1,{1,2}) (1,{1,3}) (1,{2,3}) (2,{1,2}) (2,{1,3}) (2,{2,3}) (3,{1,2}) (3,{1,3}) (3,{2,3}) m
(1,{2})

(2,{1})

(1,{3})

(3,{1})

(2,{3})

(3,{2})


−0.9 0 0 −0.3 0 0 −0.3 0 0 0.33
−0.7 0 0 −0.4 0 0 −0.4 0 0 0.33

0 −0.9 0 0 −0.3 0 0 −0.3 0 0.33
0 −0.5 0 0 −0.5 0 0 −0.5 0 0.33
0 0 −0.7 0 0 −0.4 0 0 −0.4 0.33
0 0 −0.5 0 0 −0.5 0 0 −0.5 0.33

 ,
(22)

H =

(1,{1,2}) (1,{1,3}) (1,{2,3}) (2,{1,2}) (2,{1,3}) (2,{2,3}) (3,{1,2}) (3,{1,3}) (3,{2,3}) m
1
2
3

 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0

 . (23)

(1,{1,2}) (1,{1,3}) (1,{2,3}) (2,{1,2}) (2,{1,3}) (2,{2,3}) (3,{1,2}) (3,{1,3}) (3,{2,3}) m

y =
[

2
3

1
3 0 1

12 0 11
12 0 2

3
1
3

3
2

]T
.

(24)
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TABLE I
THE UPPER BOUND ON THE SOURCE RATE FOR EACH PERMUTATION

WITH THE CACHING STRATEGY Ccent AND THE NORMALIZED CACHE
SIZE µ = 1/3

1/12 fraction. Thus, user 1 is able to decode the message
W

(n)
{1,2}, as

0.9× 2
3

+ 0.3× 1
12

=
5
8
≥ 1

2
=
fLP

3
.

Similarly, user 2 decodes the message, since

0.7× 2
3

+ 0.4× 1
12

=
1
2
≥ 1

2
=
fLP

3
.

A similar argument holds for decodability of W (n)
{1,3} at users

1 and 3, as well as decodability of W (n)
{2,3} at users 2 and 3.

Next, we evaluate the upper-bound f⋆(Ccent,d). We solve
the LP problems in (12) for all possible permutations. The
bound corresponding to each permutation is given in Table I.

Therefore, we get

f̂ := f⋆(Ccent,d) = min
π∈Π

f⋆
π(Ccent,d)

= min{1.66, 1.76, 1.61, 1.62, 1.73, 1.64} = 1.61,

where the minimum value is attained for the permuta-
tion π⋆ = (2, 3, 1) with ω⋆ = (0, 1.25, 1). Clearly, we have
fLP = 1.5 < 1.61 = f̂ , and there is a gap between the achiev-
able rate and the upper bound. ⋄

V. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1. To do
this, we first provide the converse proof and then discuss the
achievability part. For the converse proof, we first enhance
the channel to achieve a degraded broadcast channel. Next,
we introduce a lemma that allows us to establish an upper
bound on the maximum achievable source rate for a physically
degraded BC. By applying this lemma to the degraded channel
we have obtained, we are able to characterize the maximum
achievable source rate.

A. Converse

The converse proof of Theorem 1 is based on the result
of [26]. We need to construct a degraded broadcast channel.
In this regard, we replace L2, the channel of User 2, with an
enhanced channel L̃2. For a given ω ≥ 1, we define

F L̃2
(ℓ) :=min

[
1,max

[
FL2(ℓ), ωFL1(ℓ)

]]
, ℓ ∈ [B], (25)

which is the CCDF of random variable L̃2. Moreover,
we define Ỹ2 := DB−L̃2X = X(1 : L̃2). Hence, we have a
degraded broadcast channel, i.e., X ↔ Ỹ2 ↔ Y1.

Next, we derive an upper bound on the maximum achievable
source rate for a physically degraded BC. We refer to the
appendix for the proof of Lemma 1.

Lemma 1: Consider a physically degraded memoryless BC
described by PY1,Y2|X for a given cache placement strategy C
and a distinct request profile d. Then, any achievable source
rate f(C,d) satisfies

f(C,d) ≤ I(U1;Y1)
1− µ

, (26)

f(C,d) ≤ I(X;Y2|U1)
1− 2µ

. (27)

for some U1 satisfying U1 ↔ X ↔ Y2 ↔ Y1.
Now, we are ready for the proof of Theorem 1. We can

use Lemma 1 for the degraded channel obtained by the
enhancement procedure in (25). Let U1 be the random variable
satisfying the claim of Lemma 1, and form a Markov chain
U1 ↔ X ↔ Ỹ2 ↔ Y1. Using the fact that CSI is available at
the receivers, for the terms in (26) and (27), we can write

I(U1;Y1, L1) = I(U1;X(1 : L1), L1)

=
B∑

j=1

PL1(j)I(U ;X(1 : j), L1 = j)

=
B∑

j=1

[
PL1(j)

j∑
ℓ=1

I(U1;X(ℓ)|X(1 : ℓ− 1))

]

=
B∑

ℓ=1

I(U1;X(ℓ)|X(ℓ− 1))
ℓ∑

j=1

PL1(j)


=

B∑
ℓ=1

FL1(ℓ)I(U1;X(ℓ)|X(ℓ− 1))

=
B∑

ℓ=1

FL1(ℓ)
[
H(X(ℓ)|X(1 :ℓ−1)) (28)

−H(X(ℓ)|X(1 :ℓ−1)), U1)
]

Similarly, we have

I(X; Ỹ , L̃2|U1) = I(X;X(1 : L̃2), L̃2|U1)

= I(X; L̃2|U1) + I(X;X(1 : L̃2)|U1, L̃2)

(a)
=

B∑
j=1

PL̃2
(j)I(X;X(1 : j)|U1, L̃2 = j)

=
B∑

j=1

[
PL̃2

(j)
j∑

ℓ=1

I(X;X(ℓ)|X(1 : ℓ− 1), U1)

]

=
B∑

ℓ=1

I(X;X(ℓ)|X(ℓ− 1), U1)
ℓ∑

j=1

PL̃2
(j)


=

B∑
ℓ=1

F L̃2
(ℓ)I(X;X(ℓ)|X(ℓ− 1), U1)

=
B∑

ℓ=1

F L̃2
(ℓ)
[
H(X(ℓ)|X(1 : ℓ− 1), U1)

−H(X(ℓ)|X,X(1 : ℓ− 1)), U1)
]
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=
B∑

ℓ=1

F L̃2
(ℓ)H(X(ℓ)|X(1 : ℓ− 1), U1), (29)

where (a) follows from the fact that L̃2 is independent from
U1 and X . Therefore, from Lemma 1, we get

ω(1− µ)f(C,d)≤ω
B∑

ℓ=1

FL1(ℓ)
[
H(X(ℓ)|X(1 :ℓ−1))

−H(X(ℓ)|X(1 :ℓ−1)), U1)
]
, (30)

and

(1− 2µ)f(C,d) ≤
B∑

ℓ=1

F L̃2
(ℓ)H(X(ℓ)|X(1 : ℓ− 1), U1).

(31)

Taking the sum of the two inequalities in (30) and (31),
we arrive at

(ω(1−µ)+(1−2µ))f(C,d)

≤ω
B∑

ℓ=1

FL1(ℓ)H(X(ℓ)|X(1 :ℓ−1))

+
B∑

ℓ=1

(g̃(ℓ)−ω)FL1(ℓ)H(X(ℓ)|X(1 :ℓ−1), U1), (32)

where g̃(ℓ) := F L̃2
(ℓ)/FL1(ℓ). The summands of the first

summation in (32) will be maximized by an i.i.d. Bernoulli
random variable choice for X1, . . . , XB . Moreover, the terms
in the second summation can be maximized if

H(X(ℓ)|X(1 :ℓ−1), U1) =

{
1 g̃(ℓ) > ω,

0 g̃(ℓ) ≤ ω,

which can be satisfied by an optimum choice for U1, given by

U1 = {X(ℓ)|g̃(ℓ) ≤ ω}.

Hence, for (32) we can write

(ω(1−µ)+(1−2µ))f(C,d)

≤ ω
∑

ℓ:g̃(ℓ)≤ω

FL1(ℓ) +
∑

ℓ:g̃(ℓ)>ω

g̃(ℓ)FL1(ℓ)

(a)
= ω

∑
ℓ:g̃(ℓ)≤ω

FL1(ℓ) +
∑

ℓ:g̃(ℓ)>ω

F L̃2
(ℓ)

(b)
= ω

∑
ℓ:g̃(ℓ)≤ω

FL1(ℓ) +
∑

ℓ:g̃(ℓ)>ω

FL2(ℓ)

= ωR1(ω) +R2(ω), (33)

where R1(ω) and R2(ω) are defined in (9). We note that
in the chain of inequalities in (33), the step (a) follows
from g̃(ℓ)FL1(ℓ) = FL2(ℓ) and {ℓ|g̃(ℓ) > ω} = {ℓ|g(ℓ) > ω}
and (b) holds since F L̃2

(ℓ) = FL2(ℓ) whenever g(ℓ) > ω.
Dividing both sides of (33) by ω(1−µ) + (1−2µ) and mini-
mizing over all ω ≥ 1, we arrive at the the first minimization
in (7).

For 0 ≤ ω ≤ 1, we can repeat the steps in (25) through (33)
by swapping the labels of the users and replacing ω by 1

ω .
Under these reversed labels, we now enhance the channel of
User 1 and get the second minimization in (7).

Finally, we characterize the maximum achievable source
rate when µ > 1

2 . Starting (26) and using (28), we can write

(1− µ)f(C,d) ≤ I(U1;Y1, L1)

=
B∑

ℓ=1

FL1(ℓ)
[
H(X(ℓ)|X(1 : ℓ− 1))

−H(X(ℓ)|X(1 :ℓ−1)), U1)
]

≤
B∑

ℓ=1

FL1(ℓ). (34)

Similarly, by swapping the labels of the users, we can repeat
the steps in (34) that leads us to

(1− µ)f(C,d) ≤
B∑

ℓ=1

FL2(ℓ).

This completes the converse proof.

B. Achievability

The achievability proof of Theorem 1 is based on a linear
scheme in which the transmitter only broadcasts a raw and
linear combination of the messages. To show that f⋆ is achiev-
able, we split the messages into three messages, including two
private messages (one for each user) and a common message,
which is intended for both users. Then, we allocate the (signal)
levels in [B] to each of these messages and prove that both
users can decode their desired file.

Without loss of generality, we assume the source rate f⋆ is
obtained by the first minimization in (7) and (8) for 0 ≤ µ ≤ 1

2
and 1

2 ≤ µ ≤ 1, respectively. Now, we present the achievability
proof for each regime of µ.

0 ≤ µ ≤ 1
2 :

Consider the central cache placement of Definition 5. Let
us denote the file requested by user k by Wdk

for k ∈ [2].
Recall that user 1 needs W

(n)
d1

, which is partitioned into(
W

(n)
d1,∅,W

(n)
d1,{1},W

(n)
d1,{2},W

(n)
d1,{1,2}

)
. Note that since µ ≤ 1

2 ,
from (6) we can conclude that |ccent

{1,2}| = 0, and hence

W
(n)
d1,{1,2} = ∅. While user 1 has W

(n)
d1,{1} in its cache, the

subfiles W (n)
d1,∅ and W

(n)
d1,{2}, need to be delivered. Similarly,

the user 2 will be served be by sending W
(n)
d2,∅, W (n)

d2,{1}.
Instead of sending these message separately, we send
individual messages W (n)

d1,∅ and W (n)
d2,∅, as well as the common

message W (n)
d1,{2} ⊕W

(n)
d2,{1}. We aim to send each individual

message to the intended user and the common message to both
receivers. To this end, we need to allocate the levels and time
among the messages. We first define g(ℓ) := FL2(ℓ)/FL1(ℓ)
for each level ℓ ∈ [B], and sort all the B levels of the channel
in an non-decreasing order according to g(·). This leads to a
one-to-one mapping λ : [B] → [B] that sorts the level, and
thus, g(λ(1)) ≤ g(λ(2)) ≤ · · · ≤ g(λ(B − 1)) ≤ g(λ(B)).
For notational simplicity, we rename the levels and
define ℓi := λ(i) and γi := g(ℓi), for every i ∈ [B].
We clearly have γ1 ≤ γ2 ≤ · · · ≤ γB . We refer to Figure 3
for clarification. Our proposed level (and time) allocation
scheme is parameterized by (u, v;α, β), where u, v ∈ [B] with
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u ≤ v, and 0 < α, β ≤ 1: We use levels {ℓ1, ℓ2 . . . , ℓu−1}
for the entire communication block and level ℓu for an
α fraction of time to send the individual message W

(n)
d1,∅.

Similarly, the individual message W
(n)
d2,∅ will be sent on

levels {ℓv+1, . . . , ℓB} for the entire communication block
and on level ℓv for β fraction of time. The remaining levels
(including the remaining (1 − α) fraction of ℓu and (1 − β)
fraction of ℓv) will be used to send the common message.
Such a delivery strategy can support any source rate f that
satisfies∑

i<u

FL1(ℓi) + αFL1(ℓu) ≥ 1
n

∣∣∣W (n)
d1,∅

∣∣∣ = (1− 2µ)f,

∑
i>v

FL2(ℓi) + βFL2(ℓv) ≥ 1
n

∣∣∣W (n)
d2,∅

∣∣∣ = (1− 2µ)f,

(1− α)FL1(ℓu) +
∑

u<i<v

FL1(ℓi) + (1− β)FL1(ℓv)

≥ 1
n

∣∣∣W (n)
d1,{2} ⊕W

(n)
d2,{1}

∣∣∣ = µf, (35)

(1− α)FL2(ℓu) +
∑

u<i<v

FL2(ℓi) + (1− β)FL2(ℓv)

≥ 1
n

∣∣∣W (n)
d1,{2} ⊕W

(n)
d2,{1}

∣∣∣ = µf.

It is easy to verify that constraints in (35) are feasible if and
only if the constraints∑

i<u

FL1(ℓi) + αFL1(ℓu) ≥ (1− 2µ)f,

(1− α)FL2(ℓu) +
∑
i>u

FL2(ℓi) ≥ (1− µ)f∑
i>v

FL2(ℓi) + βFL2(ℓv) ≥ (1− 2µ)f,∑
i<v

FL1(ℓi) + (1− β)FL1(ℓv) ≥ (1− µ)f, (36)

are satisfied. Note that we can optimize the allocation parame-
ters (u, v;α, β). Moreover, the first and the second constraints
in (36) only depend on (u, α), and the third and the fourth
constraints only depend on (v, β). These motivate defining

f1(u, α) :=min

(
1

1−2µ

[∑
i<u

FL1(ℓi)+αFL1(ℓu)

]
,

1
1−µ

[∑
i>u

FL2(ℓi)+(1−α)FL2(ℓu)

])
,

(37)

f2(v, β) :=min

(
1

1− µ

[∑
i<v

FL1(ℓi) + (1− β)FL1(ℓv)

]
,

1
1− 2µ

[∑
i>v

FL2(ℓi)+βFL2(ℓv)

])
.

(38)

Our goal would be to maximize min(f1(u, α), f2(v, β)). The
following lemma formally presents the properties of the
optimum solution of f1(u, α) and f2(v, β). We show that
the maximum of min(f1(u, α), f2(v, β)) over the choice of

Fig. 3. Sorting the signal levels of a 2-user system according to their ratio.

(u, v;α, β) meets the upper bound of source rate in (7). This
completes the achievability proof for the regime 0 ≤ µ ≤ 1

2
Lemma 2: Consider a 2-DTVBC with a distinct request

profile d, a normalized cache size µ ≤ 1
2 , and the central

caching strategy Ccent. Let f⋆
1 := maxu,α f1(u, α) and f⋆

2 :=
maxv,β f2(v, β), where f1(u, α) and f2(v, β) are defined
in (37) and (38), respectively. Then, the following properties
hold:

(i) The source rate min(f⋆
1 , f

⋆
2 ) is achievable;

(ii) If (u⋆, α⋆) := arg max f1(u, α) be the maximizer of
f1 and (v⋆, β⋆) := arg max f2(v, β) be the maximizer of
f2, then we have u⋆ ≤ v⋆;

(iii) If f⋆
1 ≤ f⋆

2 then g(ℓu⋆) ≤ 1. Alternatively, if f⋆
1 ≥ f⋆

2 ,
then we have g(ℓv⋆) ≥ 1;

(iv) For f⋆ defined in (7), we have f⋆ ≤ min(f⋆
1 , f

⋆
2 ).

The proof of Lemma 2 is presented in the appendix. It is
worth noting that parts (i) and (iv) of the lemma above
immediately yield the achievability proof of Theorem 1 for
0 ≤ µ ≤ 1

2 .
1
2 ≤ µ ≤ 1 :

We need to show that the minimum attained in (8) is achiev-
able. Let d = (d1, d2) be the demand profile. The file W (n)

d1

is partitioned into
(
W

(n)
d1,∅,W

(n)
d1,{1},W

(n)
d1,{2},W

(n)
d1,{1,2}

)
. Note

that since µ ≥ 1
2 , from (6) we can conclude that |ccent

∅ | = 0,
and hence W

(n)
d1,∅ = ∅. This means user 1 has W (n)

d1,{1} and

W
(n)
d1,{1,2} in its cache, and only W (n)

d1,{2} need to be delivered

over the channel. Similarly, user 2 will be served by W (n)
d2,{1}.

The transmitter only needs to multicast a common message
Wd1,{2}⊕Wd2,{1} to both users over the signal levels in [B].
The size of this common message is (1− µ) f⋆. Hence, the
maximum achievable source rate is given the minimum of
the capacities of the channels to two users. For user i, the
maximum rate is

f⋆ =
∑B

ℓ=1 FLi(ℓ)
1− µ

.

Taking the minimum over i ∈ {1, 2}, we get the rate in (8).
This completes the proof of the theorem. □

VI. ACHIEVABILITY PROOF OF THEOREM 2

The achievability proof of Theorem 2 is based on
the achievable scheme in Section IV and Proposition 2.
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We consider a specific normalized cache sizes µ for which
t = Kµ = KM/N ∈ N. Therefore, from (5), we have

µcent
[k] =

(
K−k

t

)(
K
t

) , (39)

for every k ∈ [K]. Now, we show that every set {zℓ,k}
that satisfies (11) provides a feasible set of {yℓ,S} for the
achievable scheme of Proposition 2. Recall that we assume the
channel is degraded (i.e., LK ≥st · · · ≥st L1). Let kw(S) :=
mink∈S k be the index of the weakest user in the set S. For
every S ⊆ [K] with |S| = t+ 1, we set

yℓ,S =
1(

K−kw(S)
t

)zℓ,kw(S). (40)

First, note that yℓ,S ≥ 0 for every ℓ∈ [B].
Next, we have∑

S⊆[K]
|S|=t+1

yℓ,S
(a)
=

∑
S⊆[K]
|S|=t+1

zℓ,kw(S)(
K−kw(S)

t

)
=

K∑
k=1

∑
S⊆[K]
|S|=t+1
kw(S)=k

zℓ,k(
K−k

t

)

=
K∑

k=1

zℓ,k(
K−k

t

) ∑
S⊆[K]
|S|=t+1
kw(S)=k

1

(b)
=

K∑
k=1

zℓ,k(
K−k

t

)(K − k

t

)

=
K∑

k=1

zℓ,k

(c)

≤ 1, (41)

where (a) follows from (40), in (b) we used the fact that any
S satisfying S ⊆ [K], |S| = t+1 and kw(S) = k should be of
the form of S = {k} ∪ T , where T ⊆ {k+ 1, k+ 2, . . . ,K},
with |T | = t. Hence, the number of such S’s is

(
K−k

t

)
. Lastly,

(c) follows from the last constraint in (11). Thus, (41) shows
that the {yℓ,S} introduced above satisfies (17).

Furthermore, the degradedness of the channel implies that

B∑
ℓ=1

FLk
(ℓ)yℓ,S

(a)

≥
B∑

ℓ=1

FLkw(S)(ℓ)yℓ,S

=
1(

K−kw(S)
t

) B∑
ℓ=1

FLkw(S)(ℓ)zℓ,kw(S)

(b)

≥ 1(
K−kw(S)

t

) (1− µcent
[kw(S)]

)
f̄

(c)

≥ 1(
K−kw(S)

t

) (K−kw(S)
t

)(
K
t

) f̄

=
f̄(
K
t

) , (42)

for every k ∈ S. Here, (a) holds since for every user k ∈ S and
every ℓ ∈ [B], we have FLk

(ℓ) ≥ FLkw(S)(ℓ), (b) follows from

the first constraint in (11), and we used (39) with k = kw(S)
in (c). This shows that the {yℓ,S} sequence introduced in (40)
satisfies (18).

We proved that the {yℓ,S} introduced in (40) satisfies all
constraints of the LP problem in Proposition 2. In other words,
every {zℓ,k} satisfying (11) provides a feasible solution {yℓ,S}
for the (achievable) optimization method in (19). This, together
with Proposition 2 (that any feasible solution of {yℓ,S} leads
to an achievable source rate) completes the achievability proof
of Theorem 2. □

VII. PROOF OF THEOREM 3 AND PROPOSITION 1

In this section, we provide the proof of Theorem 3 and
Proposition 1. First, we present some auxiliary lemmas whose
proofs are provided in the appendix.

A. Preliminary Results

The proof of Theorem 3 is built based on the result of [27],
in which the rate region of an erasure K-user broadcast
channel is characterized. We first need to enhance the channels
to convert the network to a degraded broadcast channel. To this
end, we will replace Lk, the channel of User k, by a stronger
channel L̃k, so that the channel of user k statistically degrades
that of user k − 1, for k = 2, 3, . . . ,K. More precisely, for a
given weight vector ω = (ω1, . . . , ωK) ∈ [0,∞)K with sorted
entries ω1 ≥ ω2 ≥ · · · ≥ ωK , we define

F L̃k
(ℓ) := min

[
1,max

(
FLk

(ℓ),
ωk−1

ωk
F L̃k−1

(ℓ)
)]

, (43)

for every ℓ ∈ [B] and k ∈ {2, 3, . . . ,K}. with an initialization
given by F L̃1

(ℓ) = FL1(ℓ), for every ℓ ∈ [B].
The following lemma demonstrates some of the properties

of the enhanced channel, which will be useful in the proof of
Theorem 3.

Lemma 3: The CCDF of L̃k providing in (43) has the
following properties

(i) If F L̃k
(ℓ) = 1, then

F L̃u
(ℓ) = 1,

for every u ≥ k.
(ii) If ωkF L̃k

(ℓ) > ωk−1F L̃k−1
(ℓ), then

ωkFLk
(ℓ)=ωkF L̃k

(ℓ)>ωk−1F L̃k−1
(ℓ)≥· · ·≥ω1F L̃1

(ℓ).

(iii) If ωkF L̃k
(ℓ) < ωk−1F L̃k−1

(ℓ), then

ωKF L̃K
(ℓ) ≤ · · · ≤ ωkF L̃k

(ℓ) < ωk−1F L̃k−1
(ℓ).

(iv) The maximum of the weighted channel parameters satisfy

max
k

ωkF L̃k
(ℓ) = max

k
ωkFLk

(ℓ),

for every ℓ ∈ [B].
The following corollary is based on the properties presented

in Lemma 3 and provides a better understanding of the
enhancement procedure. Note that for a given ℓ ∈ [B],
the quantity ωkF L̃k

(ℓ) may be equal for k ̸= k′. Hence,
arg maxk ωkF L̃k

(ℓ) is a set, with possibly many elements.
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Fig. 4. Channel enhancement: The behavior of the ωkF
L̃k

(ℓ) for the
enhanced deterministic broadcast channel (top), and comparison of the channel
parameters before and after enhancement (bottom).

Corollary 1: Let k⋆ := min arg maxk ωkF L̃k
(ℓ) and

u⋆ := max arg maxk ωkF L̃k
(ℓ) for any fixed level ℓ ∈ [B].

Then, we can decompose the set of users [K] into the
following non-overlapping subsets

[K] = {1, . . . , k⋆−1} ∪ {k⋆, . . . , u⋆} ∪ {u⋆+1, . . . ,K}.

Then, we arrive at the below properties
(i) The sequence {ωkFLk

(ℓ)}k⋆−1
k=1 is non-decreasing, i.e.,

ω1F L̃1
(ℓ) ≤ · · · ≤ ωk⋆−1F L̃k⋆−1

(ℓ) < ωk⋆F L̃k⋆
(ℓ).

(ii) The sequence {ωkFLk
(ℓ)}u⋆

k=k⋆ satisfies

ωk⋆FLk⋆ (ℓ) = ωk⋆F L̃k⋆
(ℓ) = · · · = ωu⋆F L̃u⋆

(ℓ).

(iii) The sequence {ωkFLk
(ℓ)}K

k=u⋆+1 is non-increasing, i.e.,

ωu⋆F L̃u⋆
(ℓ) > ωu⋆+1F L̃u⋆+1

(ℓ) ≥ · · · ≥ ωKF L̃K
(ℓ).

The proof of Corollary 1 is presented in the appendix. Using
the properties discussed in Corollary 1, we can visualize the
behavior of the enhanced channels F L̃k

(ℓ) and their weighted
versions ωkF L̃k

(ℓ) as in Figure 4.
In the next lemma, we provide an important property of the

cache placement strategy.
Lemma 4: For a given caching strategy and mutually inde-

pendent files W (n)
1 , . . . ,W

(n)
N , we get

I
(
Wi;C

(n)
S

)
≤ nµSf, S ⊆ [K]. (44)

Finally, we provide the extension of Lemma 1 to the K-
users system in the following result.

Lemma 5: If a source rate f(C,d) for a given caching
strategy C and a distinct request profile d is achievable on
a physically degraded broadcast channel, i.e.,

X ↔ YK ↔ · · · ↔ Y1,

then f(C,d) satisfies

f(C,d) ≤ I(U1;Y1)
1− µ[1]

, (45)

f(C,d) ≤ I(Uk;Yk|Uk−1)
1− µ[k]

, k ∈ [2 : K − 1] (46)

f(C,d) ≤ I(X;YK |UK−1)
1− µ[K]

, (47)

for some random variables (U1, U2, . . . , UK−1) that form a
Markov chain

X ↔ UK−1 ↔ · · · ↔ U1.

The proof of Lemma 5 is presented in Appendix.
Remark 1: The global capacity of a broadcast chan-

nel depends on the underlying transition probability
P(Y1, . . . , YK |X) only through its marginal conditional prob-
abilities P(Y1|X), . . . ,P(YK |X). Therefore, the claim of
Lemma 5 also applies to stochastically degraded BCs.

Now, we are ready to present the proof of Theorem 3.

B. An Upper-Bound on the Achievable Source Rate

The main steps of the proof of Theorem 3 are twofold:
We first enhance and replace the arbitrary L1, . . . , LK by
the degraded L̃1, . . . , L̃K and then by exploiting Lemma 5,
we derive an upper-bound on the achievable source rate.

Proof of Theorem 3: We first note that for arbitrary
channels L1, . . . , LK , the K-DTVBC is not degraded. Hence,
we recursively enhance the channel of the users to obtain
a set of degraded channels. In this regard, we consider
a weight vector ω = (ω1, . . . , ωK) ∈ [0,∞)K with sorted
entries ω1 ≥ ω2 ≥ · · · ≥ ωK . We define the enhanced chan-
nel output of user k as Ỹk = DB−L̃kX = X(1 :
L̃k) where L̃k is a random variable drawn according to
F L̃k

, given by (43), independent of all other users. Since
ωk−1 ≥ ωk, from (43) we have F L̃k

(ℓ) ≥ F L̃k−1
(ℓ). Thus,

from [27, Lemma 1], we can conclude that the enhanced
broadcast channel is (stochastically) degraded. Now, we can
use Lemma 5 for the degraded channel obtained by the
enhancement procedure. Let U1, . . . , UK−1 be the random
variables satisfying the claim of the lemma, and form a
Markov chain X ↔ UK−1 ↔ · · · ↔ U1. Then, given the fact
that CSI is available at the receivers, the terms in Lemma 5
for the deterministic channel of interest will be simplified to

I(Uk; Ỹk, L̃k|Uk−1)

= I(Uk;X(1 : L̃k), L̃k|Uk−1)

= I(Uk; L̃k|Uk−1) + I(Uk;X(1 : L̃k), |Uk−1, L̃k)

(a)
=

B∑
j=1

PL̃k
(j)I(Uk;X(1 : j)|Uk−1, L̃k = j)

=
B∑

j=1

[
PL̃k

(j)
j∑

ℓ=1

I(Uk;X(ℓ)|X(1 : ℓ− 1), Uk−1)

]

=
B∑

ℓ=1

I (Uk;X(ℓ)|X(1 : ℓ− 1), Uk−1) ·
B∑

j=ℓ

PL̃k
(j)


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=
∑B

ℓ=1
F L̃k

(ℓ)I(Uk;X(ℓ)|X(1 :ℓ−1)|Uk−1)

=
B∑

ℓ=1

F L̃k
(ℓ) [H (X(ℓ)|X(1 :ℓ−1), Uk−1)

−H (X(ℓ)|X(1 :ℓ−1), Uk−1, Uk)]

(b)
=

B∑
ℓ=1

F L̃k
(ℓ) [H(X(ℓ)|X(1 :ℓ−1), Uk−1)

−H(X(ℓ)|X(1 :ℓ−1), Uk)]

=
B∑

ℓ=1

F L̃k
(ℓ)Qℓ,k, (48)

where (a) follows from the fact that the random variable
L̃k is independent from Uk−1 and Uk, (b) holds
due to the Markov chain Uk−1 ↔ Uk ↔ X(ℓ) and
Qℓ,k :=H(X(ℓ)|X(1 :ℓ−1), Uk−1)−H(X(ℓ)|X(1:ℓ−1), Uk).
Therefore, from Lemma 5 we have

f(C,d) ·
(
1−µ[k]

)
≤I(Uk; Ỹk, L̃k|Uk−1)

=
B∑

ℓ=1

F L̃k
(ℓ)Qℓ,k, (49)

for k ∈ [K]. Taking a weighted sum of (49) with coefficients
{ωk}, we arrive at

f(C,d)
K∑

k=1

ωk

(
1− µ[k]

)
≤

K∑
k=1

B∑
ℓ=1

ωkF L̃k
(ℓ) ·Qℓ,k

=
B∑

ℓ=1

K∑
k=1

ωkF L̃k
(ℓ) ·Qℓ,k. (50)

Note that for each ℓ ∈ [B] we have

K∑
k=1

Qℓ,k

=
K∑

k=1

[H(X(ℓ)|X(1 :ℓ−1), Uk−1)−H(X(ℓ)|X(1:ℓ−1), Uk)]

= H (X(ℓ)|X(1 :ℓ−1), U0)−H (X(ℓ)|X(1:ℓ−1), UK)
≤ H(X(ℓ)) ≤ 1, (51)

where we define U0 = ∅ as a dummy variable and UK =X .
Therefore, using (51) for each ℓ ∈ [B] we can write

K∑
k=1

ωkF L̃k
(ℓ) ·Qℓ,k ≤

(
max

k
ωkF L̃k

(ℓ)
)
·

K∑
k=1

Qℓ,k

≤ max
k

ωkF L̃k
(ℓ). (52)

Thus, plugging (52) into (50) we get

f(C,d)
K∑

k=1

ωk

K∑
k=1

ωk

(
1− µ[k]

)
≤max

k

B∑
ℓ=1

max
k

ωkF L̃k
(ℓ)

=
B∑

ℓ=1

max
k

ωkFLk
(ℓ), (53)

where the last equality follows from Lemma 3-(iv). Dividing
both sides of (53) by

∑K
k=1ωk

(
1− µ[k]

)
, we arrive at

f(C,d) ≤
∑B

ℓ=1 maxk ωkFLk
(ℓ)∑K

k=1ωk

(
1− µ[k]

) . (54)

Now we return to examine the upper bound for an arbitrary
weight vector ω = (ω1, . . . , ωk) ∈ [0,∞)K . Let π be a per-
mutation that sorts the vector ω in a non-increasing order, i.e.,
ωπ(1)≥· · ·≥ωπ(K). Now, applying the enhancement in (43),
we arrive at a set of (statistically) degraded channels,

X ↔ Ỹπ(K) ↔ Ỹπ(K−1) ↔ · · · ↔ Ỹπ(2) ↔ Ỹπ(1).

Repeating the argument above, we arrive at (54) for a permuted
version of the variables, that is,

f(C,d) ≤
∑B

ℓ=1 maxk ωπ(k)FLπ(k)(ℓ)∑K
k=1 ωπ(k)

(
1− µπ([k])

) . (55)

By minimizing the right hand side of (55) over all non-negative
vectors ω, we get the desired bound, i.e.,

f(C,d) ≤ f⋆(C,d)

= min
ω≥0

∑B
ℓ=1 maxk ωπ(k)FLπ(k)(ℓ)∑K

k=1 ωπ(k)

(
1− µπ([k])

) . (56)

This completes the proof of the theorem.

C. An LP Representation

The main step in the proof of Proposition 1 is to define a
new weight vector σ, which allows us to transform the upper-
bound in (56) into a linear form.

Proof of Proposition 1: Using ωπ(1)≥ · · · ≥ωπ(K) ≥ 0 and
starting from (56), we can write

f⋆(C,d) = min
ω≥0

∑B
ℓ=1 maxk ωπ(k)FLπ(k)(ℓ)∑K

k=1 ωπ(k)

(
1− µπ([k])

)
= min

π∈Π
min

ω∈Ωπ

∑B
ℓ=1 maxk ωπ(k)FLπ(k)(ℓ)∑K

k=1 ωπ(k)

(
1− µπ([k])

) , (57)

where Ωπ :=
{
ω : ωπ(1) ≥ · · · ≥ ωπ(K) ≥ 0

}
. Now, we fix

some π ∈ Π and focus on the inner minimization in (57), i.e.,

f⋆
π(C,d) = min

ω∈Ωπ

∑B
ℓ=1 maxk ωπ(k)FLπ(k)(ℓ)∑K

k=1 ωπ(k)

(
1− µπ([k])

) . (58)

We define σk := ωπ(k)

(
1−µπ([k])

)
/
∑K

u=1 ωπ(u)

(
1−µπ([u])

)
for every k ∈ [K]. We note that the vector σ := (σ1, . . . , σK)
satisfies the following conditions:
(C1) Since ωπ(k) ≥ 0 and µπ([k]) ≤ 1 for every k ∈ [K],

we have σk ≥ 0 for every k ∈ [K];
(C2) We have

K∑
k=1

σk =
K∑

k=1

ωπ(k)

(
1− µπ([k])

)∑K
u=1 ωπ(u)

(
1− µπ([u])

) = 1;

(C3) Using ωπ(k−1) ≥ ωπ(k), we get
σk−1

1− µπ([k−1]),
≥ σk

1− µπ([k])
,
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or equivalently,

σk−1 ·
(
1− µπ([k])

)
≥ σk ·

(
1− µπ([k−1])

)
,

for every k ∈ {2, · · · ,K}.
We define Σπ as the set of all vectors σ satisfying three
conditions in (C1)-(C3).

Note that for every vector ω ∈ Ωπ , there is a vector σ ∈
Σπ and vice versa. Applying this change of variables in (57),
we arrive at

f⋆
π(C,d)= min

ω∈Ωπ

B∑
ℓ=1

max
k

ωπ(k)

(
1−µπ([k])

)∑K
u=1 ωπ(u)

(
1−µπ([u])

) FLπ(k)(ℓ)
1−µπ([k])

= min
σ∈Σπ

B∑
ℓ=1

max
k

σk

FLπ(k)(ℓ)
1−µπ([k])

. (59)

Let us consider each summand in (59). For a given π ∈ Π and
σ ∈ Σπ , the ℓth term in the summation is

max
k

σk

FLπ(k)(ℓ)
1−µπ([k])

=min

{
θℓ :θℓ≥σk

FLπ(k)(ℓ)
1− µπ([k])

, k ∈ [K]

}
.

(60)

Let us define

Θσ
π :=

{
θ=(θ1, . . . , θB) :θℓ≥σk

FLπ(k)(ℓ)
1− µπ([k])

, k ∈ [K]

}
. (61)

Then, (60) can be written as

max
k

σk

FLπ(k)(ℓ)
1−µπ([k])

= min
θ∈Θσ

π

θℓ. (62)

Note that the conditions on each θℓ in (61) only depend
on {FLπ(k)(ℓ)}k, and hence, for ℓ ̸= ℓ′, the conditions on θℓ

and θℓ′ are independent of each other. In other words, Θσ
π is

an orthant with an offset in RB . Hence, the minimum of the
summation of {θℓ}B

ℓ=1 and the summation of the minimum of
{θℓ}B

ℓ=1 are equivalent, i.e.,

B∑
ℓ=1

min
θ∈Θσ

π

θℓ = min
θ∈Θσ

π

B∑
ℓ=1

θℓ. (63)

Combining (62) and (63), we arrive at
B∑

ℓ=1

max
k

σk

FLπ(k)(ℓ)
1− µπ([k])

= min
θ∈Θσ

π

B∑
ℓ=1

θℓ. (64)

Plugging (64) into (59), we get

f⋆
π(C,d) = min

σ∈Σπ

min
θ∈Θσ

π

B∑
ℓ=1

θℓ. (65)

Let x := [σ,θ]. It is important to note that the objective
function and the constraints on the optimization problem (65)
are linear in x. More precisely, using matrices A and b defined
in and (15) in (16), conditions (C1), (C2), and (C3) on vector
σ ∈ Σπ can be translated into −x ≤ 0, bx = 1, and the
lower K − 1 rows of Aπx ≤ 0, respectively. Moreover, the
constraints on θ ∈ Θσ

π in (61) can be expressed as the top
KB rows of Aπx ≤ 0. Therefore, we can rewrite (65) as

f⋆(C,d) = min
x∈RK+B

[0T
K ,1

T
B ]x

s.t. Aπx ≤ 0,

bx = 1,
− x ≤ 0.

This completes the proof of the proposition.

VIII. CONVERSE PROOF OF THEOREM 2

The converse proof of Theorem 2 is derived directly from
the proof of Theorem 3 where no channel enhancement is
required, i.e., L̃k = Lk for every k ∈ [K]. Since LK ≥st

· · · ≥st L1 the K-DTVBC is degraded, we can repeat the
steps (48) in through (49) with no further channel enhance-
ment, i.e., F L̃k

(ℓ) = FLk
(ℓ) for every k ∈ [K] and ℓ ∈ [B].

Hence, for the cache placement strategy Ccent and its caching
tuple µcent we can write

f(C,d) ·
(
1− µcent

[k]

)
≤

B∑
ℓ=1

FLk
(ℓ)Qℓ,k, ∀k ∈ [K], (66)

where

Qℓ,k =H(X(ℓ)|X(1 :ℓ−1), Uk−1)−H(X(ℓ)|X(1:ℓ−1), Uk)

for the Markov chain Uk−1 ↔ Uk ↔ X(ℓ). It is easy to verify
that Qℓ,k ≥ 0. Moreover, from (51), we have

K∑
k=1

Qℓ,k ≤ 1, ∀ℓ ∈ [B]. (67)

From (66) and (67), we can write

f(C,d) ≤ max f̄

s.t. f̄ ·
(
1−µcent

[k]

)
≤

B∑
ℓ=1

FLk
(ℓ)Qℓ,k, ∀k ∈ [K],

K∑
k=1

Qℓ,k ≤ 1, ∀ℓ ∈ [B]. (68)

Noting the LP problems in (10) with constraints (11) and (68)
are equivalent, we arrive at the claim of Theorem 2. This
completes the proof of the theorem. □

IX. CONCLUSION

In this work, we studied a K-user coded-caching problem
in a joint source-channel coding framework by providing each
user a cache. The transmitter has a certain rate for all files per
channel use, and a fraction of the bits/symbols are available in
each user’s cache. After this, each user requests a file from the
database where the transmitter needs to satisfy users’ demands
over the K-DTVBC. The receivers have only access to the
channel state information. We characterized the maximum
achievable source rate for the 2-DTVBC and the degraded K-
DTVBC. Then, we provided an upper bound for the source
rate with any caching strategy C. Finally, we presented an
achievable scheme with the LP formulation to show that the
upper bound is not a sharp characterization.

Several avenues are left for future research, including clos-
ing the gap between the achievable and optimum rates and
studying the similar coded-caching problem over the Gaussian
fading BC with (un-)coded cache placement schemes.
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APPENDIX
PROOF OF LEMMAS

In this section, we provide the proofs of lemmas. Note that,
in order to avoid repetition, we provide the proof of Lemma 1
after the proof of Lemma 5, since most of the techniques used
in the latter are also applied in the former.

Proof of Lemma 2: The first part of the lemma is an imme-
diate consequence of the level-allocation in (35) and (36).

Before we prove the other claims of the lemma, consider the
LHS of (37) and note that the first term in the minimization
increases with respect to both u and α, while the second term
decreases with u and α. Hence, the minimum of two terms is
maximized when two terms are equal. Thus, we can write

f⋆
1 =

1
1−2µ

[∑
i<u⋆

FL1(ℓi)+α
⋆FL1(ℓu⋆)

]

=
1

1−µ

[∑
i>u⋆

FL2(ℓi) + (1− α⋆)FL2(ℓu⋆)

]
. (69)

Similarly, for (38) we get

f⋆
2 =

1
1− µ

[∑
i<v⋆

FL1(ℓi)+(1− β⋆)FL1(ℓv⋆)

]

=
1

1−2µ

[∑
i>v⋆

FL2(ℓi) + β⋆FL2(ℓv⋆)

]
. (70)

Now, in order to prove the second and the third claims of the
lemma, we can distinguish two cases, depending on whether
f⋆
1 ≤ f⋆

2 or f⋆
1 ≥ f⋆

2 . Let us start with the first case. Since
µ > 0, we can write

∑
i≤v⋆

FL1(ℓi)>
1− 2µ
1−µ

∑
i≤v⋆

FL1(ℓi)


(a)

≥ 1− 2µ
1−µ

[∑
i<v⋆

FL1(ℓi) + (1− β⋆)FL1(ℓv⋆)

]
(b)

≥ (1− 2µ)f⋆
2

(c)

≥ (1− 2µ)f⋆
1

(d)
=
∑
i<u⋆

FL1(ℓi) + α⋆FL1(ℓu⋆)

(e)

≥
∑
i<u⋆

FL1(ℓi), (71)

where (a) holds since β⋆ ≤ 1, (b) follows from the first
equality in (70), (c) is due to assuming f⋆

1 ≤ f⋆
2 , (d) follows

from the first equality in (69), and (e) holds since α⋆ ≥ 0.
Then, (71) implies that v⋆ ≥ u⋆.

For the second case with f⋆
1 ≥ f⋆

2 and µ > 0, we can write

∑
i≥u⋆

FL2(ℓi)>
1− 2µ
1−µ

∑
i≥u⋆

FL2(ℓi)


(a)

≥ 1− 2µ
1−µ

[∑
i>u⋆

FL2(ℓi) + (1− α⋆)FL2(ℓu⋆)

]

(b)
= (1− 2µ)f⋆

1

(c)

≥ (1− 2µ)f⋆
2

(d)
=
∑
i>v⋆

FL2(ℓi)+β
⋆FL2(ℓu⋆)

(e)

≥
∑
i>v⋆

FL2(ℓi), (72)

where (a) holds for α⋆ ≤ 1, (b) follows from the second
equality in (69), (c) is true since we assumed f⋆

1 ≥ f⋆
2 , (d)

follows from the second equality in (70), and (e) holds for
β⋆ > 0. From (72), it can be immediately seen that v⋆ ≥ u⋆,
as claimed in part (ii) of the lemma.

We prove the third claim assuming that f⋆
1 ≤f⋆

2 . Note
that the proof for the other case is very similar. The
proof is by contradiction. Assume g(ℓu⋆) > 1. Then,
since the levels are sorted with respect to g(·), we have
1 < g(ℓu⋆) ≤ · · · ≤ g(ℓB), which implies FL2(ℓi) > FL1(ℓi)
for every i > u⋆. Thus, we have

(1−α⋆)FL2(ℓu⋆) +
∑

u⋆<i<v⋆

FL2(ℓi)

+ β⋆FL2(ℓv⋆) + (1− β⋆)FL2(ℓv⋆) +
∑
i>v⋆

FL2(ℓi)

= (1− α⋆)FL2(ℓu⋆)+
∑
i>u⋆

FL2(ℓi)

(a)
= (1− µ)f⋆

1

(b)

≤ (1− µ)f⋆
2

(c)
=
∑
i<v⋆

FL1(ℓi) + (1− β⋆)FL1(ℓv⋆)

=
∑
i<u⋆

FL1(ℓi)+α
⋆FL1(ℓu⋆) + (1−α⋆)FL1(ℓu⋆)

+
∑

u⋆<i<v⋆

FL1(ℓi) + (1− β⋆)FL1(ℓv⋆), (73)

where (a) follows from the second equality in (69), (b) holds
as f⋆

1 ≤ f⋆
2 , and step (c) follows from the first equality in (70).

Subtracting the RHS of (73) from its LHS, we arrive at

0 ≤

[ ∑
i<u⋆

FL1(ℓi)+α
⋆FL1(ℓu⋆) + (1−α⋆)FL1(ℓu⋆)

+
∑

u⋆<i<v⋆

FL1(ℓi) + (1− β⋆)FL1(ℓv⋆)

]

−

[
(1− α⋆)FL2(ℓu⋆) +

∑
u⋆<i<v⋆

FL2(ℓi) (74)

+ β⋆FL2(ℓv⋆) + (1− β⋆)FL2(ℓv⋆) +
∑
i>v⋆

FL2(ℓi)

]

=

[ ∑
i<u⋆

FL1(ℓi)+α
⋆FL1(ℓu⋆)

]

−

[ ∑
i>v⋆

FL2(ℓi) + β⋆FL2(ℓv⋆)

]
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+

[
(1− α⋆)

(
FL1(ℓu⋆)− FL2(ℓu⋆)

)]

+

[
(1− β⋆)

(
FL1(ℓv⋆)− FL2(ℓv⋆)

)]

+

[ ∑
u⋆<i<v⋆

(
FL1(ℓi)− FL2(ℓi)

)]
(a)
<

[ ∑
i<u⋆

FL1(ℓi)+α
⋆FL1(ℓu⋆)

]

−

[ ∑
i>v⋆

FL2(ℓi) + β⋆FL2(ℓv⋆)

]
(b)
= (1− 2µ)f⋆

1 − (1− 2µ)f⋆
2 = (1− 2µ)(f⋆

1 − f⋆
2 ), (75)

where (a) holds since FL1(ℓi) < FL2(ℓi) for i > u⋆, and (b)
follows from the second equalities in (69) and (70). Then,
(74) implies that f⋆

1 > f⋆
2 , which is in contradiction with

the assumption that f⋆
1 ≤ f⋆

2 . Hence, we can conclude that
g(ℓu⋆) ≤ 1. This completes the proof of part (iii).

Finally, we can prove part (iv) of the lemma. First, assume
that f⋆

1 ≤ f⋆
2 . From (69), we can write

1
g(ℓu⋆)

(1−µ)f⋆
1 =

1
g(ℓu⋆)

[∑
i>u⋆

FL2(ℓi)+(1−α⋆)FL2(ℓu⋆)

]
(a)
=

1
g(ℓu⋆)

∑
i>u⋆

FL2(ℓi)+(1−α⋆)FL1(ℓu⋆),

where in (a) follow from g(ℓu⋆) = FL2(ℓu⋆)/FL1(ℓu⋆).
Moreover, from (69) we have

(1− 2µ)f⋆
1 =

∑
i<u⋆

FL1(ℓi) + α⋆FL1(ℓu⋆).

Combining these two equations, we arrive at

f⋆
1 =

∑
i≤u⋆ FL1(ℓi) + 1

g(ℓu⋆ )

∑
i>u⋆ FL2(ℓi)

(1− 2µ) + 1
g(ℓu⋆ ) (1− µ)

(a)
=
R1(g(ℓu⋆)) + 1

g(ℓu⋆ )R2(g(ℓu⋆))

(1− 2µ) + 1
g(ℓu⋆ ) (1− µ)

=
R1(ω) + 1

ω)R2(ω)

(1− 2µ) + 1
ω (1− µ)

∣∣∣∣∣
ω=g(ℓu⋆ )

(b)

≥ min
ω≤1

R1(ω) + 1
ω)R2(ω)

(1− 2µ) + 1
ω (1− µ)

, (76)

where in (a) we have R1(g(ℓu⋆)) and R1(g(ℓu⋆)) as given
in (9). Moreover,

L1(g(ℓu⋆)) = {ℓ : g(ℓu⋆)FL1(ℓ) ≥ FL2(ℓ)}

= {ℓ : g(ℓu⋆) ≥ g(ℓ)} = {i : i ≤ u⋆},

and L2(g(ℓu⋆)) = {i : i > u⋆} as indicated in the statement of
Theorem 1. Also, note that from part (iii), we have g(ℓu⋆) ≤ 1,
which justifies the inequality in (b).

Now, we consider the case that f⋆
2 ≤ f⋆

1 . From (70), we can
write

g(ℓv⋆)(1− µ)f⋆
2 =g(ℓv⋆)

[∑
i<v⋆

FL1(ℓi)+(1−β⋆)FL1(ℓv⋆)

]
.

Further, we get

(1− 2µ)f⋆
2 =

∑
i>v⋆

FL2(ℓi) + β⋆FL2(ℓv⋆)

(a)
=
∑
i>v⋆

FL2(ℓi) + g(ℓv⋆)β⋆FL1(ℓv⋆),

where (a) follows from g(ℓv⋆)=FL2(ℓv⋆)/FL1(ℓv⋆). Com-
bining these two equations, we have

f⋆
2 =

g(ℓv⋆)
∑

i≤v⋆ FL1(ℓi) +
∑

i>v⋆ FL2(ℓi)
g(ℓv⋆)(1− µ) + (1− 2µ)

=
g(ℓv⋆)R1(g(ℓv⋆)) +R2(g(ℓv⋆))
g(ℓv⋆)(1− µ) + (1− 2µ)

=
ωR1(xω) +R2(ω)
ω(1− µ) + (1− 2µ)

∣∣∣∣∣
ω=g(ℓv⋆ )

≥ min
0≤ω≤1

ωR1(xω) +R2(ω)
ω(1− µ) + (1− 2µ)

. (77)

Here, R1(ω) and R2(ω) are defined as in (9). Moreover,
we have

L1(g(ℓv⋆)) = {ℓ : g(ℓv⋆)FL1(ℓ) ≥ FL2(ℓ)}
= {ℓ : g(ℓv⋆) ≥ g(ℓ)} = {i : i ≤ v⋆},

and L1(g(ℓv⋆)) = {i : i > v⋆}. It is worth noting that, the
last inequality in (77) holds since g(ℓv⋆) ≥ 1, as shown in
part (iii) of the lemma.

Combining (76) and (77), we arrive at min(f⋆
1 , f

⋆
2 ) ≥ f⋆,

for f⋆ defined in (7). This completes the proof of part (iv).
Proof of Lemma 3: In order to prove (i), we show that

F L̃k
(ℓ) = 1 implies F L̃k+1

(ℓ) = 1. From (43), we have

F L̃k+1
(ℓ) = min

[
1,max

(
FLk+1(ℓ),

ωk

ωk+1
F L̃k

(ℓ)
)]

= min
[
1,max

(
FLk+1(ℓ),

ωk

ωk+1

)]
(a)
= min

[
1,

ωk

ωk+1

]
(b)
= 1,

where (a) and (b) hold because FLk+1(ℓ) ≤ 1 ≤ ωk

ωk+1
, for a

non-increasing sequence ω1 ≥ ω2 ≥ · · · ≥ ωK . This implies
that F L̃u

(ℓ) = 1 for every u ≥ k.
Next, we prove part (ii). First, assume that

ωkFLk
(ℓ) < ωk−1F L̃k−1

(ℓ). Then, we can write

F L̃k
(ℓ) = min

[
1,max

(
FLk

(ℓ),
ωk−1

ωk
F L̃k−1

(ℓ)
)]

≤max
(
FLk

(ℓ),
ωk−1

ωk
F L̃k−1

(ℓ)
)

=
ωk−1

ωk
F L̃k−1

(ℓ),

which implies ωkF L̃k
(ℓ) ≤ ωk−1F L̃k−1

(ℓ), which is in
contradiction with the assumption of part (ii). Hence, we have
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ωkFLk
(ℓ)≥ωk−1F L̃k−1

(ℓ). This together with (43) leads to

F L̃k
(ℓ) = min

[
1,max

(
FLk

(ℓ),
ωk−1

ωk
F L̃k−1

(ℓ)
)]

= min
[
1, FLk

(ℓ)
]

= FLk
(ℓ),

where the last equality follows from FLk
(ℓ) ≤ 1. This shows

the first equality in part (ii).
Then, assume F L̃u

(ℓ) = 1 for some u < k. From part (i),
we get

F L̃u
(ℓ) = · · · = F L̃k−1

(ℓ) = F L̃k
(ℓ) = 1.

This together with the fact that ωk−1 ≥ ωk implies
ωk−1F L̃k−1

(ℓ) ≥ ωkF L̃k
(ℓ) which contradicts with the

assumption of part (ii). Hence, we have F L̃u
(ℓ) < 1 for every

u < k. Using this fact, we get

F L̃u
(ℓ) = min

[
1,max

(
FLu(ℓ),

ωu−1

ωu
F L̃u−1

(ℓ)
)]

= max
(
FLu

(ℓ),
ωu−1

ωu
F L̃u−1

(ℓ)
)

≥ ωu−1

ωu
F L̃u−1

(ℓ),

which results in ωuF L̃u
(ℓ) ≥ ωu−1F L̃u−1

(ℓ) for every u < k,
or equivalently

ωkF L̃k
(ℓ)>ωk−1F L̃k−1

(ℓ)≥ωk−2F L̃k−2
(ℓ)≥· · ·≥ω1F L̃1

(ℓ).

This completes the proof of part (ii).
In order to prove part (iii), we first note that

ωk−1

ωk
F L̃k−1

(ℓ)
(a)
> F L̃k

(ℓ)

= min
[
1,max

(
FLk

(ℓ),
ωk−1

ωk
F L̃k−1

(ℓ)
)]

(b)
= min

[
1,
ωk−1

ωk
F L̃k−1

(ℓ)
]
, (78)

where both (a) and (b) follow from the assumption of
part (iii). Then, (78) implies F L̃k

(ℓ) = 1. This, from part (i) of
the lemma, we get

F L̃u
(ℓ) = 1, u ≥ k.

This along with ω1 ≥ · · · ≥ ωK leads to

ωKF L̃K
(ℓ) ≤ · · · ≤ ωkF L̃k

(ℓ) < ωk−1F L̃k−1
(ℓ),

which is the claim of part (iii).
Next, we prove part (iv) of the lemma. Fix some ℓ ∈ [B],

and define s⋆ := max
{
j : ωjF L̃j

(ℓ)>ωj−1F L̃j−1
(ℓ)
}

.
In the following, we first show that

ωs⋆F L̃s⋆
(ℓ) = max

k
ωkF L̃k

(ℓ). (79)

The definition of s⋆ implies ωuF L̃u
(ℓ) ≤ ωu+1F L̃u+1

(ℓ), for
every u > s⋆, leading to

ωs⋆F L̃s⋆
(ℓ) ≥ ωs⋆+1F L̃s⋆+1

(ℓ) ≥ · · · ≥ ωKF L̃K
(ℓ). (80)

Moreover, Since ωs⋆F L̃s⋆
(ℓ) > ωs⋆−1F L̃s⋆−1

(ℓ), from
part (ii) of the lemma we have

ω1F L̃1
(ℓ)≤· · ·≤ωs⋆−1F L̃s⋆−1

(ℓ)<ωs⋆F L̃s⋆
(ℓ)=ωs⋆FLs⋆(ℓ).

(81)

Combining (80) and (81), we can conclude (79). Furthermore,
we have

max
k

ωkFLk
(ℓ) ≥ ωs⋆FLs⋆(ℓ)

(a)
= ωs⋆F L̃s⋆

(ℓ)

= max
k

ωkF L̃k
(ℓ)

(b)

≥ max
k

ωkFLk
(ℓ). (82)

Here, (a) follows from (81), and (b) is due to the fact that
ωkF L̃k

(ℓ) ≥ ωkFLk
(ℓ) for every k ∈ [K]. Lastly, (82)

concludes the proof of part (iv).
Proof of Corollary 1: To prove (i), from the definition of

k⋆, we get

ωk⋆F L̃k⋆
(ℓ) > ωk⋆−1F L̃k⋆−1

(ℓ).

This together with Lemma 3-(ii) for k = k⋆ arrives us at

ωk⋆−1F L̃k⋆−1
(ℓ) ≥ · · · ≥ ω1F L̃1

(ℓ).

The part (ii) can be directly derived from the definitions of k⋆

and u⋆.
In order to prove part (iii), from the definition of u⋆, we have

ωu⋆F L̃u⋆
(ℓ) > ωu⋆+1F L̃u⋆+1

(ℓ).

This combined with Lemma 3-(iii) for k = u⋆ + 1 leads us to

ωu⋆+1F L̃u⋆+1
(ℓ) ≥ · · · ≥ ωKF L̃K

(ℓ),

which completes the proof of the corollary
Proof of Lemma 4: We first prove that

I
(
W

(n)
i ;C(n)

S

)
= H

(
C

(n)
S,i

)
.

To this end, we show I
(
W

(n)
i ;C(n)

S

)
≥ H

(
C

(n)
S,i

)
and

I
(
W

(n)
i ;C(n)

S

)
≤H

(
C

(n)
S,i

)
. For the first inequality, we can

write

I
(
W

(n)
i ;C(n)

S

)
= H

(
C

(n)
S

)
−H

(
C

(n)
S

∣∣∣W (n)
i

)
≥ H

(
C

(n)
S

)
=H

(
C

(n)
S,i , C

(n)
S,[N ]\{i}

)
≥H

(
C

(n)
S,i

)
, (83)

where C(n)
S,i :=

(
C

(n)
k,i

)
k∈S

and

C
(n)
S,[N ]\{i} :=

(
C

(n)
k,1 , . . . , C

(n)
k,i−1, C

(n)
k,i+1, . . . , C

(n)
k,N

)
k∈S

.

On the other hand, we have

I
(
W

(n)
i ;C(n)

S

)
= I

(
W

(n)
i ;C(n)

S,i , C
(n)
S,[N ]\{i}

)
= I

(
W

(n)
i ;C(n)

S,[N ]\{i}

)
+ I

(
W

(n)
i ;C(n)

S,i

∣∣∣C(n)
S,[N ]\{i}

)
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≤ I
(
W

(n)
i ;W (n)

[N ]\{i}

)
+ I

(
W

(n)
i ;C(n)

S,i

∣∣∣C(n)
S,[N ]\{i}

)
(a)
= I

(
W

(n)
i ;C(n)

S,i

∣∣∣C(n)
S,[N ]\{i}

)
= H

(
C

(n)
S,i

∣∣∣C(n)
S,[N ]\{i}

)
−H

(
C

(n)
S,i

∣∣∣C(n)
S,[N ]\{i},W

(n)
i

)
= H

(
C

(n)
S,i

∣∣∣C(n)
S,[N ]\{i}

)
≤ H

(
C

(n)
S,i

)
, (84)

where (a) follows since files W (n)
1 , . . . ,W

(n)
N are mutually

independent. Hence, using (83), (84), and (4), we arrive at
I
(
W

(n)
i ;C(n)

S

)
= H

(
C

(n)
S,i

)
≤ nµSf . This completes the

proof of the lemma.
Proof of Lemma 5: Let d = (d1, . . . , dK) be the demand

vector. First, note that since user k is capable of decoding its
requested file W (n)

dk
from its received signal and cache content

C
(n)
k , there should exist some family of caching strategies,

encoding, and decoding functions with block length n and
decoding error probability ϵn where ϵn → 0 as n→∞. From
Fano’s inequality, we have

H
(
W

(n)
dk

∣∣∣Y n
k , C

(n)
k

)
≤ nϵn, k ∈ [K].

Then, we can write

nf(C,d)− nϵn (85)

≤ H
(
W

(n)
d1

)
− nϵn

≤ I
(
W

(n)
d1

;Y n
1 , C

(n)
1

)
= I

(
W

(n)
d1

;Y n
1

∣∣∣C(n)
1

)
+ I

(
W

(n)
d1

;C(n)
1

)
=

n∑
i=1

I
(
W

(n)
d1

;Y1,i

∣∣∣Y i−1
1 , C

(n)
1

)
+ I

(
W

(n)
d1

;C(n)
1

)
(a)

≤
n∑

i=1

I
(
W

(n)
d1

, Y i−1
1 ;Y1,i

∣∣∣C(n)
1

)
+ I

(
W

(n)
d1

;C(n)
1

)
(b)
=

n∑
i=1

I
(
W

(n)
d1

, Y Q−1
1 ;Y1,Q

∣∣∣C(n)
1 , Q = i

)
+ I

(
W

(n)
d1

;C(n)
1

)
= n

n∑
i=1

I
(
W

(n)
d1

, Y Q−1
1 ;Y1,Q

∣∣∣C(n)
1 , Q = i

)
P(Q = i)

+ I
(
W

(n)
d1

;C(n)
1

)
= n

n∑
i=1

I
(
W

(n)
d1

, Y Q−1
1 ;Y1,Q

∣∣∣C(n)
1 , Q

)
+ I

(
W

(n)
d1

;C(n)
1

)
≤ nI

(
W

(n)
d1

, C
(n)
1 , Y Q−1

1 , Q;Y1,Q

)
+ I

(
W

(n)
d1

;C(n)
1

)
(c)
= nI(U1;Y1,Q) + I

(
W

(n)
d1

;C(n)
1

)
= nI(U1;Y1) + I

(
W

(n)
d1

;C(n)
1

)
(d)

≤ nI(U1;Y1) + nµ{1}f(C,d), (86)

where (a) holds since

I
(
W

(n)
d1

, Y i−1
1 ;Y1,i

∣∣∣C(n)
1

)

= I
(
Y i−1

1 ;Y1,i

∣∣∣C(n)
1

)
+ I

(
W

(n)
d1

;Y1,i

∣∣∣Y i−1
1 , C

(n)
1

)
,

in (b) Q is a random variable independent of all other
random variables which are uniformly distributed over [n],
in (c) we define U1 :=

(
W

(n)
d1

, C
(n)
1 , Y Q−1

1 , Q
)

, and in (d)
we used (44). This implies inequality in (45).

We define the subset of indices d[k] = {d1, . . . , dk} for
every k ∈ [K].

Similarly, for k ∈ [2 : K − 1], we have

nf(C,d)− nϵn

= H
(
W

(n)
dk

)
− nϵn

≤ I
(
W

(n)
dk

;Y n
k , C

(n)
k

)
= I

(
W

(n)
dk

;Y n
k

∣∣∣C(n)
k

)
+ I

(
W

(n)
dk

;C(n)
k

)
≤ I

(
W

(n)
dk

;Y n
k ,W

(n)
d[k−1]

, C
(n)
[k−1]

∣∣∣C(n)
k

)
+ I

(
W

(n)
dk

;C(n)
k

)
= I

(
W

(n)
dk

;C(n)
[k−1]

∣∣∣C(n)
k

)
+ I

(
W

(n)
dk

;W (n)
d[k−1]

∣∣∣C(n)
[k]

)
+ I

(
W

(n)
dk

;Y n
k

∣∣∣W (n)
d[k−1]

, C
(n)
[k]

)
+ I

(
W

(n)
dk

;C(n)
k

)
(a)
= I

(
W

(n)
dk

;Y n
k

∣∣∣W (n)
d[k−1]

, C
(n)
[k]

)
+ I

(
W

(n)
dk

;C(n)
[k]

)
=

n∑
i=1

I
(
W

(n)
dk

;Yk,i

∣∣∣W (n)
d[k−1]

, C
(n)
[k] , Y

i−1
k

)
+ I

(
W

(n)
dk

;C(n)
[k]

)
≤

n∑
i=1

I
(
W

(n)
dk

;Yk,i, Y
i−1
[k−1]

∣∣∣W (n)
d[k−1]

, C
(n)
[k] , Y

i−1
k

)
+I
(
W

(n)
dk

;C(n)
[k]

)
(b)
=

n∑
i=1

I
(
W

(n)
dk

;Yk,i

∣∣∣{W (n)
d[k−1]

, C
(n)
[k] ,Y

i−1
[k]

)
+I
(
W

(n)
dk

;C(n)
[k]

)
≤

n∑
i=1

I
(
W

(n)
dk

,C
(n)
k , Y i−1

k ;Yk,i

∣∣∣W (n)
d[k−1]

, C
(n)
[k−1],Y

i−1
[k−1]

)
+I
(
W

(n)
dk

;C(n)
[k]

)
(c)
=

n∑
i=1

I
(
W

(n)
dk

,C
(n)
k ,Y Q−1

k ;Yk,Q

∣∣∣W (n)
d[k−1]

,C
(n)
[k−1],Y

Q−1
[k−1], Q= i

)
+I
(
W

(n)
dk

;C(n)
[k]

)
= nI

(
W

(n)
dk

,C
(n)
k ,Y Q−1

k ;Yk,Q

∣∣∣W (n)
d[k−1]

, C
(n)
[k−1],Y

Q−1
[k−1], Q

)
+ I

(
W

(n)
dk

;C(n)
[k]

)
(87)

(d)
= nI(Uk;Yk,Q|Uk−1)+I

(
W

(n)
dk

;C(n)
[k]

)
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= nI(Uk;Yk|Uk−1)+I
(
W

(n)
dk

;C(n)
[k]

)
,

(e)

≤ nI(Uk;Yk|Uk−1)+nµ[k]f(C,d), (88)

where (a) holds since, for an uncoded caching strategy and
mutually independent files, we have

I
(
W

(n)
dk

;W (n)
d[k−1]

∣∣∣C(n)
[k]

)
= I

(
W

(n)
dk

;W (n)
d[k−1]

∣∣∣C[k],dk
, C

(n)
[k],d[k−1]

, C
(n)
[k],[N ]\d[k]

)
= H

(
W

(n)
dk

, C
(n)
[k],dk

, C
(n)
[k],d[k−1]

, C
(n)
[k],[N ]\d[k]

)
+H

(
W

(n)
d[k−1]

, C
(n)
[k],dk

, C
(n)
[k],d[k−1]

, C
(n)
[k],[N ]\d[k]

)
−H

(
W

(n)
dk

,W
(n)
d[k−1]

, C
(n)
[k],dk

, C
(n)
[k],d[k−1]

, C
(n)
[k],[N ]\d[k]

)
−H

(
C

(n)
[k],dk

, C
(n)
[k],d[k−1]

, C
(n)
[k],[N ]\d[k]

)
= H

(
W

(n)
dk

, C
(n)
[k],d[k−1]

, C
(n)
[k],[N ]\d[k]

)
+H

(
W

(n)
d[k−1]

, C
(n)
[k],dk

, C
(n)
[k],[N ]\d[k]

)
−H

(
W

(n)
dk

,W
(n)
d[k−1]

, C
(n)
[k],[N ]\d[k]

)
−H

(
C

(n)
[k],dk

, C
(n)
[k],d[k−1]

, C
(n)
[k],[N ]\d[k]

)
= H

(
W

(n)
dk

)
+H

(
C

(n)
[k],d[k−1]

)
+H

(
C

(n)
[k],[N ]\d[k]

)
+H

(
W

(n)
d[k−1]

)
+H

(
C

(n)
[k],dk

)
+H

(
C

(n)
[k],[N ]\d[k]

)
−H

(
W

(n)
dk

)
−H

(
W

(n)
d[k−1]

)
−H

(
C

(n)
[k],[N ]\d[k]

)
−H

(
C

(n)
[k],dk

)
−H

(
C

(n)
[k],[N ]\d[k]

)
= 0.

Moreover, (b) follows from the degradedness of the channel,
which implies that for any time instance i, conditioned on Yk,i,
all channel outputs {Yu,i : u < k} are independent of the chan-
nel input and hence from the files and cache contents. More
precisely, from

(
W

(n)
[N ] , C

(n)
[K]

)
↔Xi ↔YK,i ↔ · · · ↔ Y1,i we

have

I
(
W

(n)
dk

;Y i−1
[k−1]

∣∣∣W (n)
d[k−1]

, C
(n)
[k] ,Y

i−1
k

)
=H

(
Y i−1

[k]

∣∣∣W (n)
d[k−1]

, C
(n)
[k] ,Y

i−1
k

)
−H

(
Y i−1

[k−1]

∣∣∣W (n)
d[k]

, C
(n)
[k] ,Y

i−1
k

)
= H

(
Y i−1

[k−1]

∣∣∣Y i−1
k

)
−H

(
Y i−1

[k−1]

∣∣∣Y i−1
k

)
= 0.

Furthermore, in the equality marked by (c), the random
variable Q is independent of all other random variables and

admits a uniform distribution over [n]. In the step (d) we have

Uk :=
(
Uk−1,W

(n)
dk

, C
(n)
k , Y Q−1

k

)
=
(
W

(n)
d[k]

, C
(n)
[k] , Y

Q−1
[k] , Q

)
.

Finally, in the inequality (e) we used (44). Dividing both sides
of (88) by n and letting n → ∞, we arrive at (46), claimed
in the lemma.

Finally, we can use a similar argument for the K-th and
reach to (87). Continuing from there, we can write

nf(C,d)− nϵn

≤ nI
(
W

(n)
dK

,C
(n)
K ,Y Q−1

K ;YK,Q

∣∣∣W (n)
d[K−1]

, C
(n)
[K−1],Y

Q−1
[K−1], Q

)
+ I

(
W

(n)
dK

;C(n)
[K]

)
(a)
= nI

(
XQ,W

(n)
dK

,C
(n)
K ,Y Q−1

K ;YK,Q

∣∣∣UK−1

)
+I
(
W

(n)
dK

;C(n)
[K]

)
(b)
= nI (XQ;YK,Q|UK−1) + I

(
W

(n)
dK

;C(n)
[K]

)
= nI (X;YK |UK−1) + I

(
W

(n)
dK

;C(n)
[K]

)
(c)

≤ nI (X;YK |UK−1) + nµ[K]f(C,d), (89)

where (a) holds since the channel input XQ is determin-
istically determined by the files and cache contents, (b)
holds since condition on XQ, the channel output YK,Q is
independent of all other variables, and (c) follows from (44).
The last inequality in (47) can be obtained from (89).

It remains to show that the random variables U1, . . . , UK−1

form a Markov chain. This is immediately implied by the
recursive construction of Uk and the fact that Uk−1 is deter-
ministically known once Uk is given. This completes the proof
of the lemma.

Proof of Lemma 1: The proof of Lemma 1 is derived
directly from the proof of Lemma 5. From (86) and (89),
we have

nf(C,d)− nϵn ≤ nI(U1;Y1) + nµ{1}f(C,d), (90)
nf(C,d)− nϵn ≤ nI (X;Y2|U1) + nµ{1,2}f(C,d), (91)

For the last term in (90), we can write

µ{1} =
∣∣∣ ⋃

ℓ∈[N1]

I1,ℓ

∣∣∣ ≤ ∑
ℓ∈[N1]

|I1,ℓ| = µ. (92)

Similarly, for the last term in (91) we get

µ{1,2} =
∣∣∣ ⋃

u∈{1,2}

⋃
ℓ∈[Nu]

Iu,ℓ

∣∣∣
≤

∑
u∈{1,2}

∑
ℓ∈[Nu]

|Iu,ℓ|

=
∑

ℓ∈[N1]

|I1,ℓ|+
∑

ℓ∈[N2]

|I2,ℓ| = 2µ. (93)

Plugging (92) and (93) into (90) and (91), respectively,
we arrive at the desired inequalities. This completes the proof
of the lemma.
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