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AbstractÐ We study a matrix completion problem which
leverages a hierarchical structure of social similarity graphs
as side information in the context of recommender systems.
We assume that users are categorized into clusters, each of which
comprises sub-clusters (or what we call ªgroupsº). We consider a
hierarchical stochastic block model that well respects practically-
relevant social graphs and follows a low-rank rating matrix
model. Under this setting, we characterize the information-
theoretic limit on the number of observed matrix entries (i.e.,
optimal sample complexity) as a function of the quality of
graph side information (to be detailed) by proving sharp upper
and lower bounds on the sample complexity. One important
consequence of this result is that leveraging the hierarchical
structure of similarity graphs yields a substantial gain in sample
complexity relative to the one that simply identifies different
groups without resorting to the relational structure across them.
Another implication of the result is when the graph information is
rich, the optimal sample complexity is proportional to the number
of clusters, while it nearly stays constant as the number of groups
in a cluster increases. We empirically demonstrate through
extensive experiments that the proposed algorithm achieves the
optimal sample complexity.

Index TermsÐ Recommender systems, matrix completion
problem, graph side information.

I. INTRODUCTION

I
N RECENT years, personalized recommender systems have
emerged in an extensive range of Web applications to

Manuscript received 1 January 2023; revised 17 July 2023; accepted
22 October 2023. Date of publication 28 December 2023; date of current
version 16 February 2024. The work of Junhyung Ahn and Changho Suh was
supported in part by the Korea Advanced Institute of Science and Technology
(KAIST) Grand Challenge 30 Program funded by KAIST under Grant
N11230067; and in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) Grant funded by the Korean
Government [Ministry of Science and ICT (MSIT)], Development and Study
of AI Technologies to Inexpensively Conform to Evolving Policy on Ethics,
under Grant 2022-0-00184. The work of Adel Elmahdy and Soheil Mohajer
was supported in part by the National Science Foundation under Grant
CCF-1749981. An earlier version of this paper was presented in part at
the 2020 Advances in Neural Information Processing Systems Conference
and in part at the 2022 IEEE International Symposium on Information Theory
[DOI: 10.1109/ISIT50566.2022.9834449]. (Junhyung Ahn and Adel Elmahdy

contributed equally to this work.) (Corresponding author: Adel Elmahdy.)

Junhyung Ahn and Changho Suh are with the School of Electrical Engineer-
ing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon
34141, South Korea (e-mail: tonyahn96@kaist.ac.kr; chsuh@kaist.ac.kr).

Adel Elmahdy and Soheil Mohajer are with the Department of Electrical
and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
USA (e-mail: adel@umn.edu; soheil@umn.edu).

Communicated by S. Jalali, Associate Editor for Machine Learning and
Statistics.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3345902.

Digital Object Identifier 10.1109/TIT.2023.3345902

predict the preferences of its users and provide them with new
and relevant items based on scarce data about the users and/or
items [1]. There are two major paradigms of recommender
systems: (i) content-based filtering systems; (ii) collaborative
filtering systems. Content-based filtering approach exploits a
profile of users’ preferences and/or properties of the items
to carry out the recommendation task. On the other hand,
collaborative filtering approach recommends new items to
users based on similarity measures between users and items.
The main advantage of collaborative filtering over content-
based filtering is that they do not require domain knowl-
edge since the embeddings are automatically learned, and
more interactions between the users and the items lead to a
more accurate and relevant new recommendations. Inspired by
the Netflix challenge, a well-known technique for predicting
missing ratings in collaborative filtering frameworks is low-
rank matrix completion, which is the main interest of this
paper. Given partial observation of a matrix of users by items,
the goal is to develop an algorithm to accurately predict
the values of the missing ratings. One of the prime chal-
lenges of collaborative filtering systems that rely on user-item
interactions is the ªcold start problemº in which high-quality
recommendations are not feasible for new users/items that bear
little or no information. One prominent technique to overcome
the problem with cold start users is to incorporate the commu-
nity information into the framework of recommender systems
in order to enhance the recommendation quality. Motivated
by the social homophily theory [2] that users within the
same community are more likely to share similar preferences,
socially-aware collaborative filtering approach exploits the
social network among users and provides recommendations
based on the similarity measures of users who have direct or
indirect social relationships with a given user.

A plethora of research works has explored the idea of
exploiting the information inferred by social graphs to enhance
the performance of recommender systems from an algorithmic
perspective [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21]. However,
few works were dedicated to developing theoretical insights
on the usefulness of graph side information on the quality of
recommendation, and characterizing the maximal achievable
gain due to side information, e.g., [22] and [23]. Recently,
a number of works [24], [25], [26], [27] have investigated the
problem of interest from an information-theoretic perspective.
Ahn et al. [24] considered a matrix completion problem with
n users and m items, and studied a simplified model where
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there are two clusters of users, and the users of each cluster
share the same rating over the items. A sharp threshold
on the sample complexity is derived as a function of the
quality of the social graph information, and the gain due to
the information provided by the social graph is theoretically
quantified. Furthermore, the authors proposed an efficient rat-
ing estimation algorithm that provably achieves the minimum
sample complexity for reliable recovery of the ground truth
rating matrix. Follow-up works have investigated different
models of the matrix completion problem proposed in [24].
Yoon et al. [25] considered a general setting with K hidden
communities of possibly different sizes, where each commu-
nity is associated with only one feature, and hence the users of
each community provide the same binary rating over the items.
Unlike [24] and [25] where one-sided graph side information
(i.e., user-to-user similarity graph) is considered, Zhang et al.
[26] studied the benefits of two-sided graph side information
depicted by user-to-user and item-to-item similarity graphs.
Interestingly, the theoretical analysis demonstrates that there
is a synergistic effect, under some scenarios, stemming from
considering two pieces of graph side information. This implies
that observing both graphs is necessary to reduce the sample
complexity under those scenarios. Jo and Lee [27] relaxed the
assumption in [24] on the preference matrix whose element at
row i and column j denotes the probability that user i likes
item j, and proposed a new model in which the unknown
entries of the preference matrix can take discrete values drawn
from a finite set of probabilities. While the works of [24],
[25], [26], and [27] lay out the theoretical foundation for
the problem, they impose a number of strict assumptions on
the system model. In particular, users of the same cluster are
assumed to have the same ratings for all items, which limits
the practicality of the proposed models for real-world data.

A natural hypothesis in the theory of recommender systems
is that the unknown rating matrix has an intrinsic structure
of being low-rank. This hypothesis is sensible because it is
generally believed that only a few factors contribute to one’s
preference. Prior works [24], [25], [26], [27] assume that each
cluster is represented by a rank-one matrix, and users within
a cluster share the same rating vector over items. In this
work, we relax this assumption and study a more generalized
framework where each cluster is represented by a rank-r
matrix. More specifically, we consider a matrix completion
problem where the users are categorized into c clusters, each
of which comprises g sub-clusters, or what we call ªgroupsº,
producing a hierarchical structure in which the features of
different groups within a cluster are broadly similar to each
other; however, they are different from the features of the
groups in other clusters. The goal is to reliably retrieve the
rating matrix under the proposed generalized model, utilizing
the information provided by the noisy partial observation of
the rating matrix, as well as the hierarchical social graph.

The main contributions of this paper are summarized
as follows. First, we characterize an information-theoretic
threshold for reliable matrix recovery as a function of the
quantified quality of the considered hierarchical graph side
information (to be detailed) by establishing matching upper
and lower bounds on the sample complexity. An implication

of the result is that our algorithm, which leverages the
hierarchical graph structure, yields a substantial gain in sample
complexity, compared to a simple variant of [24] and [25] that
does not exploit the relational structure across rating vectors
of groups. We also reveal that when graph information is
rich enough to perfectly retrieve the structures of clusters and
groups, the optimal sample complexity increases linearly as the
number of clusters increases. Otherwise, the optimal sample
complexity remains almost constant even though the number
of groups in a cluster increases. Next, we develop a matrix
completion algorithm that starts with hierarchical graph clus-
tering, which produces an exact recovery of clusters yet almost
exact recovery of groups. Then, rating vectors are estimated
followed by iterative local refinement of groups. We conduct
extensive experiments to demonstrate that the optimal sample
complexity is achieved by the proposed algorithm, which is a
practically-appealing contribution.

A preliminary version of the main results of this paper has
been reported in [28] for (c, g, r, q) = (2, 3, 2, 2) and [29]
for any (c, g, r, q), where q denotes the order of the finite field
from which the rating matrix entries are selected. In this paper,
we characterize the optimal sample complexity result for any
(c, g, r, q), and present the complete achievability and converse
proofs. Furthermore, we propose an algorithm that achieves the
optimal sample complexity for all (c, g, r, q). While numer-
ous low-complexity matrix completion algorithms have been
proposed, it remains an open problem to develop optimization
algorithms with provable performance guarantees for a generic
class of matrices [30]. This work makes substantial progress
on this long-standing open problem. We also emphasize on the
fact that this work is a non-trivial extension of [24] and [25],
as will be delineated in the following sections.

A. Related Works

1) Connection to Low-Rank Matrix Completion Problems:

The objective of low-rank matrix completion, a recurring
problem in collaborative filtering [1], is to recover an unknown
low-rank matrix from partial, and possibly noisy, sampling
of its entries [30]. Since the rank minimization problem is
NP-hard, accurate reconstruction is generally ill-posed and
computationally intractable. However, exploiting the fact that
the structure of the matrix is of low-rank makes the explo-
ration for a solution worthwhile. One direction of research is
geared towards studying low-rank matrix completion where
the observed subset of matrix entries is exactly known. Under
certain conditions, upper bounds on the number of observed
entries, which are uniformly drawn at random, are developed
to ensure successful reconstruction with high probability [31],
[32], [33]. A fundamental open question in the literature of
low-rank matrix completion with exact observation is how to
find a low-rank matrix that is consistent with the partial obser-
vation of its entries. This question stems from the fact that
the sparse basis of the low-rank matrix is unknown and that
the basis is drawn from a continuous space. The performance
guarantees provided by existing algorithms only hold when
certain incoherence assumptions on the singular vectors of the
matrix are satisfied. By and large, theoretical guarantees on
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the reconstruction performance are not established even for the
rank-one case, and hence, our understanding of the problem
is far from complete. Numerous algorithms for low-rank
matrix completion have been proposed over the years. If the
rank information of the original low-rank matrix is unknown,
various techniques based on nuclear norm minimization are
proposed [31], [32], [33], [34], [35], [36], [37]. On the other
hand, if the rank is known in advance, techniques based on
Frobenius norm minimization are proposed [38], [39], [40],
[41], [42], [43], [44], [45]. Another interesting and practical
research direction is investigating low-rank matrix completion
when the observed entries are contaminated by noise. The
objective is to seek a low-rank matrix that best approximates
the original matrix, and find an upper bound on the root-mean
squared error [32], [46].

In this work, we also consider a low-rank matrix completion
problem which has been an open problem for decades. Even
for simple settings, such as rank-1 or rank-2 matrices, the opti-
mal sample complexity has been open for decades, although
some upper and lower bounds are derived. The matrix of our
consideration in this work is of rank r ≥ 2. Thus, we make
progress on this long-standing open problem by exploiting the
structural property posed by our considered application.

2) Algorithms for Recommender Systems With Graph Side

Information: The idea of exploring the value of incorporating
graph side information into collaborative filtering approaches
has gained a lot of attention from the research commu-
nity [3]. There are two primary approaches of collaborative
learning [1]: (i) latent factor approach, and (ii) neighborhood
approach. Latent factor approach learns latent features for
users and items from the observed ratings. Most successful
realizations of this approach hinge on matrix factorization
which characterizes the latent characteristics of users and
items by two low-rank user and item-feature matrices inferred
from the rating patterns. One direction to integrate graph side
information in this approach is by adding some regulariza-
tion terms to the loss function of the matrix factorization
model [4], [5], [6], [7], [8]. Another direction is to develop
matrix factorization frameworks that fuse the user-item rating
matrix with the social network of the users [9], [10], [11],
[12]. Moreover, a robust online matrix completion on graphs
is designed and analyzed in [13] that exploits the graph
information to recover the incomplete rating matrix entries
in the presence of outlier noise. On the other hand, for the
neighborhood approach, the prediction of rating information
is based on computing the relationships among items or
users. The recommendation accuracy in this approach can be
enhanced by incorporating the information provided by the
social graphs into the neighborhood definition [14], [15], [16],
[17], [18], [19]. Lately, recent works have proposed novel
architectures for graph convolutional neural networks that fully
exploit the structure of item/user graphs [20], [21].

Few works in the literature have provided theoretical
insights on the usefulness of side information for the matrix
completion problem, e.g., [22] and [23]. Chiang et al. [22]
proposed a dirty statistical model to exploit the feature-
based side information, yet to be robust to feature noise,
in matrix completion applications. They provided theoretical

guarantees that the proposed model achieves lower sample
complexity than the standard matrix completion (with no graph
information) under the condition that the features are not too
noisy. Rao et al. [23] proposed a scalable graph regularized
matrix completion, and derived consistency guarantees to
demonstrate the gain due to the graph side information. It is
worth mentioning that the maximal achievable gain due to
graph side information is not characterized in these works.
Prior works [24], [25] revealed the information-theoretic limit,
though the assumption that users in a cluster share the same
rating vector limits the practicality of the considered model.
We relax the assumption on the rank of the rating matrix by
considering a more generalized framework, which is a rank-r
matrix.

3) Connection to Community Detection in Stochastic Block

Model: The statistical model that we consider for the the-
oretical analysis of our proposed algorithm relies on the
hierarchical SBM, which has been shown to well respect
many practically-relevant scenarios [47], [48]. The proposed
algorithm builds in part upon prominent clustering [49], [50]
and hierarchical clustering [51], [52] algorithms, although
it exhibits a notable distinction in other matrix-completion-
related procedures.

4) Connection to Clustering Problems With Side Informa-

tion: Recently, some works explored a dual problem where
clustering is performed with a partially observed matrix as
side information. Ashtiani et al. [53] proved that having
few pairwise queries leads to more efficient k-means cluster-
ing, which is NP-hard in general. Mazumdar and Saha [54]
explored the benefits of the similarity matrix, which is used
to cluster similar points together, to reduce the adaptive query
complexity. In both works, information-theoretic lower bounds
are proved, and efficient clustering algorithms are designed.
The matrix completion problem with graph side information
can be seen as a natural extension to the clustering problem if
we shift our focus to recovering the structure of (hierarchical)
clusters instead of reconstructing the rating matrix. While the
focus of [54] is on finding the clusters, we are interested in
revealing the structures of groups and matrix completion.

B. Notation

Row vectors and matrices are denoted by lowercase letters
(e.g., v) and uppercase letters (e.g., X), respectively. Random
matrices are denoted by boldface uppercase letters (e.g., X),
while their realizations are denoted by uppercase letters
(e.g., X). Sets are denoted by calligraphic letters (e.g., Z).
Let Fq be a finite field of order q for some prime number q.
Let 0n×m and 1n×m be all-zero and all-one matrices of
dimension n × m, respectively. For a matrix X ∈ F

n×m
q ,

let X⊺ denote the transpose of X . Let X(r, t) denote the
matrix entry at row r and column t. Furthermore, let X(i, :)
and X(:, j) denote the ith row and jth column of matrix X ,
respectively. Furthermore, for sets I and J , the submatrix
of X , that is obtained by rows i ∈ I and columns j ∈ J ,
is denoted by X(I,J ). Let Λ (X,Y ) denote the number of
different entries between matrices X and Y for X,Y ∈ F

n×m
q .

For u, v ∈ F
1×m
q , we use [u; v] to denote [u⊺ v⊺]⊺. Let v(t)
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denote the tth entry of v. Moreover, the Hamming distance
between two vectors u and v is denoted by dH (u, v). It is
defined as the number of entries in which u and v differ.
Let ∥u∥1 denote the ℓ1 norm of vector u. For an integer n ≥ 1,
let [n] denote the set of integers {1, 2, . . . , n}. For integers n
and m where n ≤ m, define [n : m] as {n, n + 1, . . . ,m}.
Let {0, 1, . . . , q−1}n be the set of all n-digit sequences whose
digits are drawn from Fq. Moreover, we use 1 [·] to denote the
indicator function. Finally, G = ([n], E) denotes an undirected
graph G where [n] is the set of n vertices labeled by integers
in [n]; and E is the set of undirected edges. The elements of E
are given by pairs (a, b) for a, b ∈ [n].

C. Paper Outline

The remainder of this paper is organized as follows. We first
present the problem formulation of the rating matrix and hier-
archical similarity graph in Section II. Then, the main results
and implications of the results are presented in Section III.
Next, the achievability proof is presented in Section IV, while
the converse proof is presented in Section V. In Section VI,
we show that the proposed algorithm achieves the optimal
sample complexity via experimental results. Finally, the paper
is concluded and directions for future research are discussed
in Section VII.

II. PROBLEM FORMULATION

Consider a rating matrix X ∈ F
n×m
q where n denotes

the number of users and m denotes the number of items.
The ratings of the rth user over m items are given by the
rating vector that corresponds to the rth row of X for
r ∈ [n]. The user similarity graphs (e.g., social graphs) are
leveraged as side information during the matrix completion
procedure to enhance the item recommendation quality. More
specifically, we consider a hierarchical similarity graph that
consists of c disjoint clusters, and each cluster comprises g
disjoint sub-clusters (or that we call ªgroupsº). For the sake
of tractable mathematical analysis, we assume equal-sized
clusters and groups. The theoretical guarantees, however, hold
as long as the group sizes are order-wise same (see Section III).
According to social homophily theory [2], users within the
same community (i.e., who are more likely to be connected in
a social graph) are more likely to share similar preferences of
items. This results in a low-rank structure of the rating matrix
since the rows of the rating matrix associated with such users
are highly likely to be similar [30]. To capture this crucial
fact in our model, we make the following assumptions: (i) the
rating vectors of the users who belong to the same group are
equal, and hence there are gc distinct rating vectors in total;
(ii) the rating vectors of the groups of a given cluster are
different, yet intimately-related to each other through a linear
subspace of r basis vectors for some integer r ≤ g. Let v(x)

i

denote the rating vector of the users in cluster x and group i
for x ∈ [c] and i ∈ [g]. Let R(x) ∈ F

g×m
q denote a matrix

whose rows are the rating vectors of the groups in cluster x
for x ∈ [c]. The set of g rows of R(x) (i.e., set of g rating
vectors of the groups in cluster x) is spanned by any subset
of r rows of R(x).

Let X0 denote the ground truth rating matrix. Each
instance of the problem corresponds to a rating matrix X0.
Equivalently, X0 can be represented by a set of rating
vectors V0 = {u(x)

i : x ∈ [c], i ∈ [g]} and a user partition-
ing Z0. For instance, consider a problem with n = 12 users in
c = 2 clusters and g = 3 groups. If the rating matrix is given
by

X0 =
[
u

(1)
1 ; u

(1)
2 ; u

(2)
1 ; u

(2)
3 ; u

(1)
3 ; u

(1)
2 ; u

(2)
2 ; u

(2)
1 ; u

(1)
3 ;

u
(2)
3 ; u

(2)
2 ; u

(1)
1

]
, (1)

then we have the set of rating vectors as

V0 =
{
u

(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3

}
, (2)

and the user partitioning as

Z0 ={Z0(1, 1)={1, 12}, Z0(1, 2)={2, 6}, Z0(1, 3)={5, 9},
Z0(2, 1)={3, 8}, Z0(2, 2)={7, 11}, Z0(2, 3)={4, 10}}.

(3)

Formally, Z0 is a family of subsets of [n] that partitions the
set of all users [n] into c clusters and g groups (per cluster).
That is,

Z0 =

{
{Z0(x, i)}x∈[c], i∈[g] : Z0(x, i) ⊆ [n],

Z0(x, i) ∩ Z0(y, j) = ∅ for (x, i) ̸= (y, j),
⋃

x∈[c]

⋃
i∈[g]

Z0(x, i) = [n]

}
, (4)

where Z0(x, i) denotes the set of users who belong to cluster x
and group i for x ∈ [c] and i ∈ [g].

The main goal of the problem of interest is to find the
best estimate of X0 with the knowledge of two types of
observations:

1) partial and noisy observation Y of X0. For every r ∈ [n]
and t ∈ [m], let Y (r, t) ∈ Fq ∪ {∗}, where ∗ denotes
no observation. Let the set of observed entries of X0 be
denoted by Ω = {(r, t) ∈ [n]× [m] : Y (r, t) ̸= ∗}. The
partial observation is modeled by assuming that each
entry of X0 is observed with probability p ∈ [0, 1],
independently from others. Moreover, the potential
noise in the observation is modeled by considering a
random uniform noise distribution, that is, the noise
is not adversarial (i.e., not deterministic). In partic-
ular, we assume that each observed entry X0(r, t),
for (r, t) ∈ Ω, can be possibly flipped to any element
of the set {0, 1, . . . , q − 1} \X0(r, t) with a uniform
probability of θ/(q − 1) for θ ∈ [0, (q − 1)/q). The
reasons behind choosing this noise model are: (i) the
uniform noise distribution is the worst-case distribution
in discrete channels; and (ii) this model captures the
fact that there may exist a fraction of group members
whose ratings are close to the majority ratings, yet they
are not exactly identical. Hence, the majority ratings can
be considered as the ground truth, while the ratings of
this fraction of users can be seen as noisy versions
of the ground truth. Furthermore, since this fraction
of users have some ratings that are different from the
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majority, each of such ratings can take a value that is
randomly and uniformly selected from the set of all
possible ratings different from that of the majority;

2) user similarity graph G = ([n], E). A vertex represents a
user, and an edge captures a social connection between
two users. The set [n] of vertices is partitioned into c
disjoint clusters, each of which is of size n/c users. Each
cluster is further partitioned into g disjoint groups, each
of which is of size n/(cg) users. The user similarity
graph is generated as per the hierarchical stochastic
block model (HSBM) [51], [55], which is a generative
model for random graphs exhibiting hierarchical cluster
behavior. In this model, every two nodes in the graph are
connected by an edge, independent of all other nodes,
with probabilities given by

α̃ := P [(a, b) ∈ E : a, b ∈ Z0(x, i)] , for x ∈ [c], i ∈ [g],

β̃ := P [(a, b) ∈ E : a ∈ Z0(x, i), b ∈ Z0(x, j)] ,

for x ∈ [c], i, j ∈ [g], i ̸= j,

γ̃ := P [(a, b) ∈ E : a ∈ Z0(x, i), b ∈ Z0(y, j)] ,

for x, y ∈ [c], x ̸= y, i, j ∈ [g]. (5)

Here, we assume that edge probabilities are scaling with
the size of the problem. In particular, we assume

α̃ = α
log n

n
, β̃ = β

log n

n
, γ̃ = γ

log n

n
, (6)

where α, β and γ are positive real numbers such
that α ≥ β ≥ γ. In other words, there is an edge between
two users in the same group within a cluster with
probability α logn

n ; there is an edge between two users in
different groups but within the same cluster with prob-
ability β logn

n ; and there is an edge between two users
in different clusters with probability γ logn

n . Here, log n
n

refers to a scaling factor implying that the term becomes
relatively smaller as the number of nodes n increases,
signifying that the growth rate of edges in the graph
is slower compared to the logarithm of the number of
nodes [56]. Note that the considered edge probabilities
guarantee the disappearance of isolated vertices (i.e.,
vertices of degree zero) in the user similarity graph,
which is a necessary property for exact recovery in the
stochastic block model (SBM). Furthermore, motivated
by the social homophily theory [2], we study the prob-
lem of interest when users within the same group (or
cluster) are more likely to be connected than those in
different groups (or clusters). That is why we assume
that α ≥ β ≥ γ.

Let ψ denote an estimator (decoder) that takes as input a
pair (Y,G) where Y is the incomplete and noisy rating matrix
and G is the user similarity graph and outputs a completed
rating matrix X ∈ F

n×m
q . Note that both the set of rating

vectors V and the user partitioning1 Z can be recovered from
the completed rating matrix X and vice versa. Hence, with
a slight abuse of notation, we may interchangeably use X

1To be more precise, Z can be recovered from X up to a relabeling of the
clusters and groups, i.e., we can only identify which users belong to the same
group/cluster, but the label associated to a group/cluster cannot be identified.

or (V,Z) as the output of the estimator. The former notation
is adopted when we are interested in the entries of the rating
matrix, while the latter notation is used when we are interested
in either the set of rating vectors or the user partitioning.

One key parameter that is instrumental in both expressing
the main result (see Section III) as well as proving the main
theorem is the discrepancy between the rating vectors. Let δg
be the minimum normalized Hamming distance among distinct
pairs of rating vectors of groups within the same cluster.
Let δc be the counterpart with respect to distinct pairs of rating
vectors across different clusters. More formally, δg and δc are
given by

δg =
1

m
min
x∈[c]

min
i,j∈[g]
i ̸=j

dH

(
u

(x)
i , u

(x)
j

)
,

δc =
1

m
min
i,j∈[g]

x,y∈[c],x ̸=y

dH

(
u

(x)
i , u

(y)
j

)
. (7)

As will be elaborated on in the next section, our result
hinges on δ := (δg, δc). We provide theoretical guarantees
for the recovery of all rating matrices M in which the rating
vectors maintain a minimum level of dissimilarity. Formally,
we define M(δ) to be the set of rating matrices M = (V,Z)
such that the following properties are satisfied:

• the set of rating vectors V must satisfy the property that
the minimum normalized Hamming distance among the
rating vectors in different groups within the same cluster
and those in different clusters are not smaller than δg and
δc, respectively;

• the user partitioning Z must satisfy the property that the
size of clusters is n/c users, while the size of the groups
is n/(gc) users.

The performance metric we consider to provide theoretical
guarantees on the quality of recommendation is the worst-
case probability of error Pe. In other words, the quality of
the estimator is defined by its accuracy of estimation of the
most difficult ground truth matrix M = (V,Z) ∈ M(δ).
Therefore, we apply a minimax optimization approach wherein
the objective is to find the estimator that minimizes the
maximum risk (i.e., minimizes the worst-case probability of
error). This can be expressed as

inf
ψ
P (δ)
e (ψ) = inf

ψ
max

M∈M(δ)
P [ψ(Y,G) ̸= M ] . (8)

Based on the proposed problem formulation and performance
metric, we aim at characterizing the optimal sample complex-
ity (i.e., the minimum number of entries of the rating matrix
that is required to be observed). For X0 ∈ R

n×m
q , this number

is concentrated around nmp⋆ in the limit of n and m, for exact
rating matrix recovery. Here, p⋆ denotes a sharp threshold on
the observation probability such that the following conditions,
in the limit of n and m, are satisfied:

• when p > p⋆, there exists an estimator such that the error
probability can be made arbitrarily close to 0;

• when p < p⋆, the error probability does not converge to
zero no matter what and whatsoever.
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p⋆=
1

(√
1−θ −

√
θ
q−1

)2 max

{
gc

g−r+1

logm

n
,

log n

δgm

(
1−
(√
α−
√
β
)2

gc

)
,

log n

δcm

(
1−
(√
α−√γ

)2
+ (g−1)

(√
β−√γ

)2

gc

)}
.

(9)

p⋆ =
1

(√
1− θ −

√
θ
)2 max

{
3

logm

n
,

log n

δgm

(
1−

(√
α−
√
β
)2

6

)
,

log n

δcm

(
1−

(√
α−√γ

)2

6
−
(√
β−√γ

)2

3

)}
. (10)

III. MAIN RESULTS

A. Information-Theoretic Limits

As in [28], we assume that m = ω(log n) and logm = o(n)
hold in order to ease the proof via large deviation theories.
These assumptions are also practically relevant as they rule
out the possibility of having highly asymmetric matrices (i.e.,
extremely tall and wide matrices).

Theorem 1 (Optimal Sample Complexity): Let m=ω(log n)
and logm = o(n). Also, consider (q, θ, c, g, r) to be constants
such that q is prime, θ ∈ [0, (q − 1)/q), and r ≤ g. Let p⋆ be
given by (9), shown at the top of the page.

For any constant ϵ > 0, if p ≥ (1 + ϵ)p⋆, there exists
an estimator ψ that outputs a rating matrix X ∈M(δ)

given Y and G such that limn→∞ P
(δ)
e (ψ) = 0. Conversely,

if p ≤ (1− ϵ)p⋆, then limn→∞ P
(δ)
e (ψ) ̸= 0 for any

estimator ψ.
Remark 1 (Technical Novelty): The technical distinctions

with respect to the prior works [24], [25], [28] are four-folded.
First, the likelihood computation requires more involved
combinatorial arguments due to the hierarchical structure of
the similarity graph; see Lemma 1 in Section IV. Second, more
sophisticated upper and lower bounding techniques that exploit
the relational structure across different groups are developed
in Lemmas 3 and 4. Next, novel typical and atypical error
analyses are proposed in Lemmas 5 and 6. Finally, novel
failure proof techniques are presented in Section V.

The following remark demonstrates that the problem setting
considered in [28] is a special case of the general setting
considered in this paper, and their result is subsumed by our
generalized result presented in Theorem 1.

Remark 2: Setting (c, g, r, q) = (2, 3, 2, 2), the optimal
observation probability p⋆ reduces to (10), shown at the top of
the page, which is equal to the shape threshold on p charac-
terized2 by [28] under the setting of (c, g, r, q) = (2, 3, 2, 2).

B. Implications of Theorem 1

We investigate the relationship between the optimal sam-
ple complexity nmp⋆, where p⋆ is characterized by (9) in
Theorem 1, and different parameters related to the rating
matrix as well as the hierarchical user similarity graph.

Remark 3: The optimal sample complexity increases as δg
(or δc) decreases. This is due to the fact that as the Hamming
distance between rating vectors of two users in different groups

2The optimal sample complexity for general (c, g, r, q), given by (9),
is conjectured by [28]. However, the achievability and converse proofs are
provided only for (c, g, r, q) = (2, 3, 2, 2) in [28]. In this paper, we present
complete achievability and converse proofs for any (c, g, r, q).

within the same cluster (or in different clusters) decreases,
it becomes harder to distinguish the rating vectors, and hence
it leads to imperfect user grouping (or clustering). Thus, one
has to sample more entries of the rating matrix in order to
exactly recover the rating matrix.

Remark 4: It is evident from (9) that the optimal sam-
ple complexity increases as θ grows. Furthermore, as θ
approaches (q − 1)/q, each sampled entry of the rating matrix
can take any of the q possible values with a uniform probability
of 1/q, and hence an infinite sample complexity is theoret-
ically required to exactly recover the entries of the rating
matrix.

1) Quality of the Hierarchical Similarity Graph: In order
to better illustrate the relationship between the optimal sample
complexity and the quality of the hierarchical graph, we define
the following quality parameters:

Iα,β :=
(√

α−
√
β
)2

, Iα,γ :=
(√
α−√γ

)2
,

Iβ,γ :=
(√

β −√γ
)2

. (11)

Intuitively, as Iα,β increases, it becomes easier to distinguish
users in different groups within the same cluster. On the
other hand, larger values of Iα,γ and Iβ,γ lead to better
user clustering. The optimal sample complexity reads different
values depending on the quality parameters of the hierarchical
graph. More specifically, we define three regimes as follows:

1) the first term in the right-hand-side (RHS) of (9) is
activated when Iα,β , Iα,γ and Iβ,γ are large enough
so that the grouping and clustering information is reli-
able. Hence, this regime is coined as ªperfect cluster-

ing/grouping regimeº;
2) the second term in the RHS of (9) is activated when Iα,β

is small such that the grouping information is not
reliable. Therefore, this regime is coined as ªgrouping-

limited regimeº;
3) the third term in the RHS of (9) is activated when Iα,γ

and Iβ,γ are small such that the clustering information
is not reliable, and3 δg > δc. Thus, this regime is coined
as ªclustering-limited regimeº.

In what follows, we analyze the optimal sample complexity
under each regime and highlight the novel technical contri-
butions in the achievability proof (see Section IV) as well as
the converse proof (see Section V). For illustrative simplicity,
we focus on the noiseless case where θ = 0.

Remark 5: (Perfect Clustering/Grouping Regime) The opti-
mal sample complexity reads (gc/(g− r+ 1))m logm. Since

3It is evident from (9) and α ≥ β ≥ γ that the third term in the RHS
of (9) is inactive whenever δg ≤ δc.
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the grouping and clustering information is reliable, groups and
clusters can be recovered from the similarity graph. However,
further increments of the values of these quality parameters
do not yield further improvement in the sample complexity,
and hence, the sample complexity gain from the similarity
graph is saturated in this regime. Moreover, it should be noted
that a naive generalization of [24], [25] requires crm logm
observations since there are r independent rating vectors to
be estimated for each of the c clusters, and each rating
vector requires m logm observations under the considered
random sampling due to the coupon-collecting effect. On the
other hand, we leverage the relational structure (i.e., linear
dependency) across rating vectors of different groups, reflected
by the underlying linear MDS code structure (to be detailed
in Section IV), and hence this serves to estimate the rc rating
vectors more efficiently, precisely by a factor of r(g−r+1)/g
improvement, thus yielding (gc/(g − r + 1))m logm.

Remark 6: (Grouping-Limited Regime) The optimal sam-
ple complexity reads

1

δg

(
1−

(√
α−
√
β
)2

gc

)
n log n =

1

δg

(
1− Iα,β

gc

)
n log n,

which is a decreasing function of Iα,β . This sample complexity
coincides with that of [25] in which the considered similarity
graph consists of only gc clusters. This implies that exploiting
the relational structure across different groups does not help
improve sample complexity when grouping information is
not reliable. Furthermore, since the clustering information is
reliable, clusters can be recovered from the similarity graph.
However, further increments of Iα,γ and Iβ,γ do not yield
further reduction in the sample complexity, and hence the
sample complexity gain from these two quality parameters is
saturated in this regime.

Remark 7: (Clustering-Limited Regime) The optimal sam-
ple complexity reads

1

δc

(
1−

(√
α−√γ

)2
+ (g − 1)

(√
β −√γ

)2

gc

)
n log n

=
1

δc

(
1− Iα,γ + (g − 1)Iβ,γ

gc

)
n log n,

which is a decreasing function of Iα,γ and Iβ,γ . This is
the most challenging scenario which has not been explored
by any prior works. Since the clustering information is not
reliable, it is not possible to recover the groups and clusters
from the similarity graph. Moreover, it should be noted that
when β = γ, i.e., groups and clusters are indistinguishable,
we have Iα,β = Iα,γ and Iβ,γ = 0. As a result, it boils down
to a problem setting of gc clusters, and hence the optimal
sample complexity reads

1

δc

(
1−

(√
α−√γ

)2

gc

)
n log n =

1

δc

(
1− Iα,β

gc

)
n log n,

Compared to the optimal sample complexity expression for
the grouping-limited regime, the only distinction appears in
the denominator, in which δg is replaced with δc due to the
fact that δc < δg .

Fig. 1. Let (n, m, θ, c, g, r, q) = (4000, 500, 0, 10, 5, 3, 5). (a) The differ-
ent regimes of the optimal sample complexity reported in (9) for δg > δc.
(b) The different regimes of the optimal sample complexity reported in (9)
for δg < δc. For both sub-figures, diagonal stripes, dots, and horizontal stripes
refer to the perfect clustering/grouping, grouping-limited, and clustering-lim-
ited regime, respectively.

Consider a problem setting where n = 4000, m = 500, θ =
0, c = 10, g = 5, r = 3 and q = 5. Fig. 1a and Fig. 1b depict
the different regimes of the optimal sample complexity as a
function of (Iα,β , Iβ,γ). In Fig. 1a, where δg = 1/3 and δc =
1/6, the region depicted by diagonal stripes corresponds to
the perfect clustering/grouping regime and the first term in
the RHS of (9) is active. The graph quality parameters Iα,β ,
Iβ,γ , and consequently Iα,γ are large, and graph information is
rich enough to perfectly retrieve the clusters and groups. The
region depicted by dots corresponds to the grouping-limited
regime, where the second term in the RHS of (9) is active.
In this regime, graph information suffices to exactly recover
the clusters, but we need to rely on rating observation to
exactly recover the groups. Finally, the third term in the RHS
of (9) is active in the region captured by horizontal stripes.
This indicates the clustering-limited regime, where neither
clustering nor grouping is exact without the side information
of the rating vectors. On the other hand, Fig. 1b depicts the
case where δg = 1/6 and δc = 1/3. It is worth noting that
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Fig. 2. Let (n, m, θ, c, g, r, q) = (4000, 500, 0, 10, 5, 3, 5). Comparison
between the sample complexity reported in (9) and that of [25] for β = 5,
γ = 1, δg = 1/3 and δc = 1/6.

in practically-relevant systems, we have δg < δc, i.e., rating
vectors of users in the same cluster are expected to be more
similar than those in a different cluster. Therefore, the third
regime (i.e., clustering-limited regime) vanishes in Fig. 1b.

2) Benefit of Hierarchical Graph Structure: Consider a
problem setting where n = 4000, m = 500, θ = 0, c = 10,
g = 5, r = 3 and q = 5. Fig. 2 compares the optimal sample
complexity, as a function of Iα,β , between the one reported
in (9) and that of [25] for δg = 1/3, δc = 1/6, β = 5 and γ =
1. It should be noted that [25] leverages neither the hierarchical
structure of the graph nor the linear dependency among the
rating vectors. Thus, the problem formulated in Section II will
be translated to a graph that consists of gc clusters whose
rating vectors are linearly independent in the setting of [25].
Also, note that the minimum Hamming distance for [25] is
δc. In Fig. 2, we can see that the noticeable gain in the
sample complexity of our result in the diagonal parts of
the plot (i.e., clustering-limited and grouping-limited regimes
on the left side) is due to leveraging the hierarchical graph
structure, while the improvement in sample complexity in the
flat part of the plot (i.e., perfect clustering/grouping regime) is
a consequence of exploiting the relational structure (i.e., linear
dependency) among the rating vectors within each cluster.

IV. THE ACHIEVABILITY PROOF

In this section, we prove the achievability part of The-
orem 1, that is if the condition on p in (9) holds, then
there exists an estimator ψ such that limn→∞ P

(δ)
e (ψ) = 0.

To this end, we prove that limn→∞ P
(δ)
e (ψML) = 0 where

ψML is the maximum likelihood (ML) estimator if all the
following inequalities hold:

Perfect Clustering/Grouping Regime:

g − r + 1

gc
nIr ≥ (1 + ϵ) logm, (12)

Grouping-Limited Regime:

δgmIr +
Iα,β
gc

log n ≥ (1 + ϵ) logn, (13)

Clustering-Limited Regime:

δcmIr +
Iα,γ
gc

log n+
(g − 1)Iβ,γ

gc
log n ≥ (1 + ϵ) logn,

(14)

where

Ir := p

(
√

1−θ −
√

θ

q−1

)2

, Iα,β := (
√
α−
√
β)2,

Iα,γ := (
√
α−√γ)2, Iβ,γ := (

√
β−√γ)2.

(15)

Throughout the proof, let p = Θ((logn)/n), and let q
and θ be constants such that q is prime and θ ∈ [0, 1].
We first present the structure of the ground truth rating
matrix and the underlying linear maximum distance sepa-
rable code (MDS) code structure in Section IV-A. Next,
we introduce a number of auxiliary lemmas in Section IV-B.
Finally, we present the achievability proof of Theorem 1 in
Section IV-C.

The achievability proof is based on maximum likelihood
estimation (MLE). We first evaluate the likelihood for a given
clustering/grouping of users and the corresponding rating
matrix. Next, we provide an upper bound on the worst-case
probability of error, which is given by the probability that the
likelihood of the ground truth rating matrix is less than that of a
candidate rating matrix. Then, we partition the candidate rating
matrices into two sets, typical and atypical sets. A typical (or
atypical) set denotes the set of rating matrices that have a
relatively small (or large) number of error entries compared
to the ground truth matrix. Finally, we conduct typical and
atypical error analyses as follows. In the typical error analysis,
we provide a tight upper bound on the cardinality of the
typical set and a loose upper bound on the error probability
of a candidate matrix. On the other hand, in the atypical error
analysis, we provide a loose upper bound on the cardinality of
the typical set and a tight upper bound on the error probability
of a candidate matrix. These analyses are based on the fact
that the size of the set candidate matrices with a small number
of error entries is relatively larger than the one with a large
number of error entries. Based on these bounds, we show that
the probability of error for any candidate matrix in the typical
set is negligibly smaller than the cardinality of the typical set
of matrices, and hence, this leads to convergence of the overall
worst-case probability of error to zero as n and m goes to
infinity. Hence, the worst-case probability of error vanishes
in the limit of n and m. This completes the achievability
proof.

A. The Structure of Ground Truth Rating Matrix

For X0 ∈M(δ), let X0 = (V0,Z0) denote the ground truth
rating matrix, where

V0 =
{
u

(x)
i : x∈ [c], i∈ [g]

}
, Z0 =

{
{Z0(x, i)}x∈[c], i∈[g]

}
, (16)

and Z0 follows the conditions given in (4), but omitted for
the sake of brevity. For x ∈ [c], let R(x)

0 ∈ F
g×m
q be a

matrix obtained by stacking all the rating vectors of cluster x,
i.e., {u(x)

i : i ∈ [g]}. Consequently, X0 is an n × m matrix
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where its rth row is equal to u(x)
i if and only if r ∈ Z0(x, i).

Furthermore, let the output of an estimator ψ (i.e., the com-
pleted rating matrix) be denoted by X = (V,Z), where X ∈
F
n×m
q ,

V=
{
v
(x)
i : x ∈ [c], i ∈ [g]

}
, Z=

{
{Z(x, i)}x∈[c], i∈[g]

}
, (17)

and Z follows the conditions listed in (4).
We construct a ground truth rating matrix X0 that we are

supposed to recover using the maximum likelihood estima-
tor ψML. Recall from Section II that the hierarchical graph
consists of c clusters, and each cluster comprises g equal-sized
groups. The set of g rating vectors of cluster x is spanned
by any subset of r rating vectors for x ∈ [c]. Without loss of
generality, assume that the set of users who belong to cluster x
and group i is given by {k+1, k+2, . . . , k+n

cg} for x∈ [c], i∈ [g]
and k=(x−1)nc+(i−1) ncg . Let us consider a (g, r) linear MDS
code over the finite field Fq, where g is the length of the code
and r is its dimension. This code can be defined as a linear
subspace of the vector space F

g
q with dimension r. From the

literature of error-correcting codes, a (g, r) linear MDS code
in Fq exhibits a minimum distance of g − r + 1, and hence
reaches the Singleton bound [57]. Let the set of g ground
truth rating vectors of the groups in cluster x be a (g, r) MDS
code. Hence, the set of g rows of R(x)

0 spanned by any subset
of r rows of R(x)

0 . Let Φ(x) ∈ F
g×r
q be a generator matrix of

the (g, r) MDS code, and W (x) ∈ F
r×m
q be the basis matrix

(with rank r), such that

R
(x)
0 = Φ(x)W (x), for x ∈ [c]. (18)

In the remaining of this paper, without loss of generality,
we make the following assumptions:

• the first row of R(1)
0 be given by R(1)

0 (1, :) = 11×n;
• for x ∈ [c], let Φ(x) = Φ where Φ is a systematic genera-

tor matrix such that Φ = [Ir×r A
⊺]

⊺ and A ∈ F
(g−r)×r
q .

This ensures that the first r rows of Φ(x) are linearly
independent, and hence the first r rows of R

(x)
0 are

linearly independent by (18).
Based on the aforementioned assumptions4, the entries of
each column of X0 can take values from a set of qcr−1

possible column vectors. This is due to the fact that the first
row of X0 is fixed to all-one vector, and the last g − r
rows of R

(x)
0 , for x ∈ [c], can be constructed by linear

combinations of its first r rows. Hence, we have a total
of qcg−(1+c(g−r)) = qcr−1 different choices. Let the set of
columns of X0 be partitioned into qcr−1 sections, where the
columns of each section correspond to one choice of the
possible qcr−1 vectors. Let the number of columns of each
section be sℓm, where 0 ≤ sℓ ≤ 1 for ℓ ∈ {0, 1, . . . , q−1}cr−1

and
∑
ℓ∈{0,1,...,q−1}cr−1 sℓ = 1. Let Sℓ denote the ℓth column

section of X0, and hence sℓ = |Sℓ|/m. Accordingly, let each
row u

(x)
i of X0 be partitioned into qcr−1 sections, denoted5

4The purpose of introducing the first assumption about R
(1)
0 is to simplify

the achievability proof. Nevertheless, it is important to mention that the same
proof can be used for scenarios where the first row of R

(1)
0 is not exactly an

all-one vector. As long as the rating vectors of R
(1)
0 follow the MDS code

structure, the proof remains valid.
5A similar interpretation goes for {v(x)

i (ℓ) :ℓ ∈ {0, 1, . . . , q − 1}cr−1}.

by {u(x)
i (ℓ) : ℓ ∈ {0, 1, . . . , q−1}cr−1}, for x ∈ [c] and i ∈ [g].

We assume that the MDS code structure is known a priori,
and hence, the output matrix follows the MDS code structure
imposed on the construction of X0. In the following example,
we give an illustrative description of the proposed construction
of the ground truth rating matrix X0.

1) Illustrative Example: Consider the setting with parame-
ters (c, g, r, q) = (2, 3, 2, 2). Under this setting, the generator
matrix and the basis matrix of each cluster are given by (22)
and (23), shown at the top of the next page, respectively,
in which 0 ≤ sℓ ≤ 1 for ℓ ∈ {0, 1}3, and

∑
ℓ∈{0,1}3 sℓ = 1.

Therefore, from (18), we obtain (24), shown at the top of the
next page, Consequently, X0 is given by (25), shown at the
top of the next page, which is the same construction of X0

provided in [28] for the special case of (c, g, r, q) = (2, 3, 2, 2).
♦

B. The Auxiliary Lemmas

We present six auxiliary lemmas used to prove the achiev-
ability part of Theorem 1. Before each lemma, we introduce
the necessary terminologies and notations.

Let L(X) denotes6 the negative log-likelihood of a candidate
rating matrix X = (V,Z) given a fixed input pair (Y,G). More
formally, we have

L(X) =

{
− log P [(Y,G) | X = X] if X ∈M(δ),
∞ otherwise.

(19)

We show that the likelihood expression hinges on two factors:
(i) the difference between the estimated ratings (entries of X)
and the observed ratings (elements of Y ); and (ii) the
dissimilarity between the graph induced by the partitioning
in Z and the observed graph G. As defined in Section I-B,
we denote by Λ(X,Y ) the number of mismatched entries
between X and Y . For a user partitioning Z , let Pα (Z)
denote the set of pairs of users within any group; Pβ (Z)
denote the set of pairs of users in different groups within any
cluster; and Pγ (Z) denote the set of pairs of users in different
clusters. Formally, we have

Pα (Z) = {(a, b) : a ∈ Z(x, i), b ∈ Z(x, I),

for x ∈ [c], i ∈ [g]} ,
Pβ (Z) = {(a, b) : a ∈ Z(x, i), b ∈ Z(x, j),

for x ∈ [c], i, j ∈ [g], i ̸= j} ,
Pγ (Z) = {(a, b) : a ∈ Z(x, i), b ∈ Z(y, j),

for x, y ∈ [c], x ̸= y, i, j ∈ [g]} . (20)

Recall from Section II that the user partitioning induced by
any rating matrix in M(δ) should satisfy the property that all
groups have equal sizes of n/(cg) users. This implies that the
sizes of Pα (Z), Pβ (Z) and Pγ (Z) are constants and are
given by

|Pα (Z) | = gc

(
n/(gc)

2

)
, |Pβ (Z) | = c

(
g

2

)
(n/(gc))

2
,

|Pγ (Z) | =
(
c

2

)
(n/c)

2
, (21)

6With a slight abuse of notation, we omit the dependence on (Y, G) in the
likelihood function for notational compactness.
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Φ(1) = Φ(2) = Φ =




1 0
0 1
1 1


 . (22)

W (1) =

[
11×s000m 11×s001m 11×s010m 11×s011m 11×s100m 11×s101m 11×s110m 11×s111m

01×s000m 01×s001m 01×s010m 01×s011m 11×s100m 11×s101m 11×s110m 11×s111m

]
.

W (2) =

[
01×s000m 01×s001m 11×s010m 11×s011m 01×s100m 01×s101m 11×s110m 11×s111m

01×s000m 11×s001m 01×s010m 11×s011m 01×s100m 11×s101m 01×s110m 11×s111m

]
. (23)

R
(1)
0 = Φ(1)W (1) =




11×s000m 11×s001m 11×s010m 11×s011m 11×s100m 11×s101m 11×s110m 11×s111m

01×s000m 01×s001m 01×s010m 01×s011m 11×s100m 11×s101m 11×s110m 11×s111m

11×s000m 11×s001m 11×s010m 11×s011m 01×s100m 01×s101m 01×s110m 01×s111m


 .

R
(2)
0 = Φ(2)W (2) =




01×s000m 01×s001m 11×s010m 11×s011m 01×s100m 01×s101m 11×s110m 11×s111m

01×s000m 11×s001m 01×s010m 11×s011m 01×s100m 11×s101m 01×s110m 11×s111m

01×s000m 11×s001m 11×s010m 01×s011m 01×s100m 11×s101m 11×s110m 01×s111m


 . (24)

X0 =




1n
6 ×s000m 1n

6 ×s001m 1n
6 ×s010m 1n

6 ×s011m 1n
6 ×s100m 1n

6 ×s101m 1n
6 ×s110m 1n

6 ×s111m

0n
6 ×s000m 0n

6 ×s001m 0n
6 ×s010m 0n

6 ×s011m 1n
6 ×s100m 1n

6 ×s101m 1n
6 ×s110m 1n

6 ×s111m

1n
6 ×s000m 1n

6 ×s001m 1n
6 ×s010m 1n

6 ×s011m 0n
6 ×s100m 0n

6 ×s101m 0n
6 ×s110m 0n

6 ×s111m

0n
6 ×s000m 0n

6 ×s001m 1n
6 ×s010m 1n

6 ×s011m 0n
6 ×s100m 0n

6 ×s101m 1n
6 ×s110m 1n

6 ×s111m

0n
6 ×s000m 1n

6 ×s001m 0n
6 ×s010m 1n

6 ×s011m 0n
6 ×s100m 1n

6 ×s101m 0n
6 ×s110m 1n

6 ×s111m

0n
6 ×s000m 1n

6 ×s001m 1n
6 ×s010m 0n

6 ×s011m 0n
6 ×s100m 1n

6 ×s101m 1n
6 ×s110m 0n

6 ×s111m



. (25)

for any user partitioning. Furthermore, for a graph G and a
user partitioning Z , define eα (G,Z) as the number of edges
within any group; eβ (G,Z) as the number of edges across
groups within any cluster; and eγ (G,Z) as the number of
edges across clusters. More formally, we have

eµ (G,Z) =
∑

(a,b)∈Pµ(Z)

1 [(a, b) ∈ E ] , (26)

for µ ∈ {α̃, β̃, γ̃}. The following lemma provides a precise
expression of L(X).

Lemma 1: For a given (and fixed) input pair (Y,G) and
any X ∈M(δ), we have

L(X) = log

(
(q − 1)

1− θ
θ

)
Λ (Y,X)

+
∑

µ∈{α̃,β̃,γ̃}

[
log

(
1−µ
µ

)
eµ (G,Z)− log(1−µ)|Pµ (Z)|

]
,

(27)

where α̃, β̃ and γ̃ are the edge probabilities defined in (5).
Proof: We refer to Appendix A for the proof of Lemma 1.

The following lemma provides an upper bound on the worst-
case probability of error P (δ)

e (ψML).
Lemma 2: For the maximum likelihood estimator ψML,

we have

P (δ)
e (ψML) ≤

∑

X ̸=X0

P [L(X0) ≥ L(X)] . (28)

Proof: We refer to Appendix B for the proof of Lemma 2.

For a ground truth rating matrix X0 = (V0,Z0); a candidate
rating matrix X = (V,Z); and a tuple T ∈ T (δ), define the
following disjoint sets:

• define Pd = Pd(X0, X) as the set of matrix entries
where X ̸= X0. Formally, we have

Pd = {(r, t) ∈ [n]× [m] : X(r, t) ̸= X0(r, t)} ; (29)

• define Pβ̃→α̃ = Pβ̃→α̃(Z0,Z) as the set of pairs of
users where the two users of each pair belong to different
groups of the same cluster in X0 (and therefore they are
connected with probability β̃), but they are estimated to
be in the same group in X (and hence, given the estimator
output, the belief for the existence of an edge between
these two users is α̃). Formally, we have

Pβ̃→α̃ = {(a, b) : a ∈ Z0(x, i1) ∩ Z(y, j),

b ∈ Z0(x, i2) ∩ Z(y, j),

for x, y ∈ [c], i1, i2, j ∈ [g], i1 ̸= i2} . (30)

On the other hand, define Pα̃→β̃ = Pα̃→β̃(Z0,Z) as

Pα̃→β̃ = {(a, b) : a ∈ Z0(x, i) ∩ Z(y, j1),

b ∈ Z0(x, i) ∩ Z(y, j2),

for x, y ∈ [c], i, j1, j2 ∈ [g], j1 ̸= j2} ; (31)

• define Pγ̃→α̃ = Pγ̃→α̃(Z0,Z) as the set of pairs of users
where the two users of each pair belong to different
clusters in X0 (and therefore they are connected with
probability γ̃), but they are estimated to be in the same
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group in X (and hence, given the estimator output, the
belief for the existence of an edge between these two
users is α̃). Formally, we have

Pγ̃→α̃ = {(a, b) : a∈Z0(x1, i1)∩Z(y, j),

b∈Z0(x2, i2)∩Z(y, j), for x1, x2, y ∈ [c],

x1 ̸=x2, i1, i2, j ∈ [g]}. (32)

On the other hand, define Pα̃→γ̃ = Pα̃→γ̃(Z0,Z) as

Pα̃→γ̃ = {(a, b) : a∈Z0(x, i)∩Z(y1, j1),

b∈Z0(x, i)∩Z(y2, j2), for x, y1, y2 ∈ [c],

y1 ̸=y2, i, j1, j2 ∈ [g]}; (33)

• define Pγ̃→β̃ = Pγ̃→β̃(Z0,Z) as the set of pairs of users
where the two users of each pair belong to different
clusters in X0 (and therefore they are connected with
probability γ̃), but they are estimated to be in different
groups of the same cluster in X (and hence, given the
estimator output, the belief for the existence of an edge
between these two users is β̃). Formally, we have

Pγ̃→β̃ = {(a, b) : a ∈ Z0(x1, i1) ∩ Z(y, j1),

b ∈ Z0(x2, i2)∩Z(y, j2), for x1, x2, y∈ [c],

x1 ̸= x2, i1, i2, j1, j2 ∈ [g], j1 ̸= j2} . (34)

On the other hand, define Pβ̃→γ̃ = Pβ̃→γ̃(Z0,Z) as

Pβ̃→γ̃ = {(a, b) : a ∈ Z0(x, i1) ∩ Z(y1, j1),

b ∈ Z0(x, i2) ∩ Z(y2, j2), for x, y1, y2 ∈ [c],

y1 ̸= y2, i1, i2, j1, j2 ∈ [g], i1 ̸= i2} . (35)

Let B
(σ)
i denote the ith Bernoulli random variable with param-

eter σ ∈ {p, θ, 1
q−1 , α̃, β̃, γ̃}. Define the following sets of

independent Bernoulli random variables:
{

B
(p)
i : i ∈ Pd

}
,
{

B
(θ)
i : i ∈ Pd

}
,

{
B

( 1
q−1 )
i : i ∈ Pd

}
,

{
B

(µ)
i : i ∈ Pµ→ν , µ, ν ∈

{
α̃, β̃, γ̃

}
, µ ̸= ν

}
. (36)

Now, define B = B

(
Pd, {Pµ→ν : µ, ν ∈ {α̃, β̃, γ̃}, µ ̸= ν}

)

as given in (42), shown at the bottom of the page. In the
following lemma, we write each summand in (28) in terms
of (42).

Lemma 3: For any X ∈ X (T ) and T ∈ T (δ), we have

P [L (X0) ≥ L(X)] = P [B ≥ 0] . (37)

Proof: We refer to Appendix C for the proof of Lemma 3.

The following lemma provides an upper bound of the RHS
of (37).

Lemma 4: For any {Pµ→ν : µ, ν ∈ {α̃, β̃, γ̃}, µ ̸= ν},
we have

P [B ≥ 0] ≤ exp

[
− (1+o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n

+Pα̃↔γ̃ Iα,γ
log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]
, (38)

where

Pα̃↔β̃ =

∣∣∣Pβ̃→α̃

∣∣∣+
∣∣∣Pα̃→β̃

∣∣∣
2

, Pα̃↔γ̃ =
|Pγ̃→α̃|+ |Pα̃→γ̃ |

2
,

Pβ̃↔γ̃ =

∣∣∣Pγ̃→β̃

∣∣∣+
∣∣∣Pβ̃→γ̃

∣∣∣
2

. (39)

Proof: We refer to Appendix D for the proof of Lemma 4.

In the following, we show that the error event in (28),
i.e., {L(X0) ≥ L(X) : X ̸= X0}, depends solely on two sets
of key parameters which dictate the relationship between X
and X0:

1) the first set includes counters to identify the number of
users in cluster x and group i whose rating vector u(x)

i

in X0 is changed to the rating vector v(y)
j of users in

cluster y and group j in X , for x, y ∈ [c] and i, j ∈ [g].
Formally, we define

n
(x,y)
i,j = |{r : r ∈ Z0(x, i) ∩ Z(y, j)}| , (40)

for 0 ≤ n(x,y)
i,j ≤ n

gc ;
2) the second set provides the Hamming distance between

vectors u(x)
i and v(x)

i , for x ∈ [c] and i ∈ [g]. Formally,
we define

d
(x,y)
i,j = dH

(
u

(x)
i , v

(y)
j

)
, (41)

where 0 ≤ d(x,y)
i,j ≤ m.

B := log

(
(q − 1)

1− θ
θ

)∑

i∈Pd

B
(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

+

(
log

(1− β̃)α̃

(1− α̃)β̃

)


∑

i∈P
β̃→α̃

B
(β̃)
i −

∑

i∈P
α̃→β̃

B
(α̃)
i


+

(
log

1− α̃
1− β̃

)(∣∣∣Pβ̃→α̃

∣∣∣−
∣∣∣Pα̃→β̃

∣∣∣
)

+

(
log

(1− γ̃)α̃
(1− α̃)γ̃

)


∑

i∈Pγ̃→α̃

B
(γ̃)
i −

∑

i∈Pα̃→γ̃

B
(α̃)
i


+

(
log

1− α̃
1− γ̃

)
(|Pγ̃→α̃| − |Pα̃→γ̃ |)

+

(
log

(1− γ̃)β̃
(1− β̃)γ̃

)


∑

i∈P
γ̃→β̃

B
(γ̃)
i −

∑

i∈P
β̃→γ̃

B
(β̃)
i


+

(
log

1− β̃
1− γ̃

)(∣∣∣Pγ̃→β̃

∣∣∣−
∣∣∣Pβ̃→γ̃

∣∣∣
)
. (42)
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Based on these two parameters, the set of rating matrices
M(δ) is partitioned into a number of classes of matrices X (T ).
Here, each matrix class X (T ) is defined as the set of rating
matrices that is characterized by a tuple T where

T =

({
n

(x,y)
i,j

}

x,y∈[c], i,j∈[g]
,
{
d
(x,y)
i,j

}

x,y∈[c], i,j∈[g]

)
. (43)

Define T (δ) as the set of all non-all-zero tuples T . Therefore,
we can write M(δ) =

⋃
T∈T (δ) X (T ).

Next, we analyze the performance of the ML decoder by
comparing the ground truth user partitioning with that of the
decoder. For a non-negative constant

τ ∈ (0, (ϵ logm−(2+ϵ) log(2q))/(2(1+ϵ) logm)),

with

ϵ > max

{
2 log 2

log n
,
2(g − r + 1) log 2

log(2qm)
,

2 log(2q)

log(m/2q)

}
,

define σ(x, i) as the set of pairs of cluster and group in
Z whose number of overlapped users with Z0(x, i) exceeds
a (1− τ)-fraction of the group size. Formally, we have

σ(x, i)=

{
(y, j)∈ [c]×[g] : |Z0(x, i) ∩ Z(y, j)| ≥ (1−τ) n

gc

}
.

(44)

Note that τ < 0.5, which implies that |σ(x, i)| ≤ 1 since
the size of any group is n/(gc) users. For |σ(x, i)| = 1,
let σ(x, i) = {(σ(x), σ(i|x))}. Accordingly, partition the
set T (δ) into two subsets T (δ)

small and T (δ)
large that are defined as

follows:

T (δ)
small =

{
T ∈ T (δ) : ∀(x, i) ∈ [c]× [g] s.t. |σ(x, i)| = 1,

d
(x, σ(x))
i, σ(i|x) ≤ τmmin{δc, δg}

}
, (45)

T (δ)
large =

{
T ∈ T (δ) : ∃(x, i) ∈ [c]× [g] s.t. (|σ(x, i)| = 0)

}

∪
{
T ∈ T (δ) : ∀(x, i) ∈ [c]×[g] s.t. |σ(x, i)| = 1,

∃(x, i)∈ [c]×[g] s.t. d(x, σ(x))
i, σ(i|x) > τmmin{δc, δg}

}
.

(46)

Intuitively, when T ∈ T (δ)
small, the class of matrices X (T )

corresponds to the typical (i.e., small) error set. On the
other hand, when T ∈ T (δ)

large, the class of matrices X (T )
corresponds to the atypical (i.e., large) error set that has
negligible probability mass.

The following two lemmas provide an upper bound on
the RHS of (38) under different classes of candidate rating
matrices, and evaluating the limits as n and m tend to infinity.

Lemma 5: For any {Pµ→ν : µ, ν ∈ {α̃, β̃, γ̃}, µ ̸= ν},
we have7

lim
n,m→∞

∑

T∈T
(δ)

small

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir

+
log n

n

(
Pα̃↔β̃Iα,β + Pα̃↔γ̃Iα,γ + Pβ̃↔γ̃Iβ,γ

))]
= 0.

(47)

7As n tends to infinity, m also tends to infinity since m = ω(log n).

Proof: We refer to Appendix E for the proof of Lemma 5.

Lemma 6: For any {Pµ→ν : µ, ν ∈ {α̃, β̃, γ̃}, µ ̸= ν},
we have

lim
n,m→∞

∑

T∈T
(δ)

large

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir

+
log n

n

(
Pα̃↔β̃Iα,β + Pα̃↔γ̃Iα,γ + Pβ̃↔γ̃Iβ,γ

))]
= 0.

(48)

Proof: We refer to Appendix F for the proof of Lemma 6.

C. The Achievability Proof of Theorem 1

The worst-case probability of error P
(δ)
e (ψML) is upper

bounded by

P (δ)
e (ψML)

≤
∑

X ̸=X0

P [L(X0) ≥ L(X)] (49)

=
∑

X ̸=X0,

X∈M(δ)

P [L(X0) ≥ L(X)] (50)

=
∑

T∈T (δ)

∑

X∈X (T )

P [L(X0) ≥ L(X)] (51)

≤
∑

T∈T (δ)

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir

+
log n

n

(
Pα̃↔β̃Iα,β + Pα̃↔γ̃Iα,γ + Pβ̃↔γ̃Iβ,γ

))]
(52)

=
∑

T∈T
(δ)

small

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir

+
log n

n

(
Pα̃↔β̃Iα,β + Pα̃↔γ̃Iα,γ + Pβ̃↔γ̃Iβ,γ

))]

+
∑

T∈T
(δ)

large

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir

+
log n

n

(
Pα̃↔β̃Iα,β +Pα̃↔γ̃Iα,γ+Pβ̃↔γ̃Iβ,γ

))]
, (53)

where (49) follows from Lemma 2; (50) follows from the
definition of negative log-likelihood in (19); (51) follows
from the definition of the tuples characterizing matrix classes
in (43); (52) follows from Lemma 3 and Lemma 4; and
finally (53) follows from the definitions of T (δ)

small and T (δ)
large

in (45) and (46), respectively.
Finally, following Lemma 5 and Lemma 6, as n and m

tend to infinity, the limit of the worst-case probability of
error P (δ)

e (ψML) in (53) can be evaluated as (54), shown at the
top of the next page. This concludes the achievability proof
of Theorem 1. ■

V. THE CONVERSE PROOF

In this section, we prove the converse part of Theorem 1.
More precisely, we show that if the condition on p in (9) holds,
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lim
n,m→∞

P (δ)
e (ψML)

≤ lim
n,m→∞



∑

T∈T
(δ)

small

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

+
∑

T∈T
(δ)

large

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]



= 0. (54)

then limn→∞ P
(δ)
e (ψ) ̸= 0 for any estimator ψ. To this end,

we prove that limn→∞ P
(δ)
e (ψ) ̸= 0 for any estimator ψ and

any ground truth rating matrix X0 ∈ M(δ), if either of the
following conditions holds:

Perfect Clustering/Grouping Regime:

g − r + 1

gc
nIr ≤ (1− ϵ) logm, (55)

Grouping-Limited Regime:

δgmIr +
Iα,β
gc

log n ≤ (1− ϵ) logn, (56)

Clustering-Limited Regime:

δcmIr +
Iα,γ
gc

log n+
(g − 1)Iβ,γ

gc
log n ≤ (1− ϵ) logn,

(57)

where Ir, Iα,β , Iα,γ and Iβ,γ are defined in (15). Throughout
the proof, let p = Θ((logn)/n), and let q and θ be constants
such that q is prime and θ ∈ [0, 1]. We first present a number
of auxiliary lemmas in Section V-A. Then, we present the
converse proof of Theorem 1 in Section V-B.

In the converse proof, we establish a lower bound on
the error probability and show that it is minimized when
employing the maximum likelihood estimator. Next, we prove
that if p is smaller than any of the three terms in the
RHS of (9), then there exists another solution that yields a
larger likelihood, compared to the ground truth matrix. More
precisely, for any estimator and any ground truth rating matrix,
we have the following three cases:

• if

p ≤ (1− ϵ)gc logm
(√

1− θ −
√

θ
(q−1)

)2

(g − r + 1)n

,

there exists a class of matrices that is obtained by replac-
ing one column of the ground truth rating matrix with a
carefully chosen sequence and yields a larger likelihood
than the one of the ground truth rating matrix;

• if

p≤ log n
(√

1−θ −
√

θ
(q−1)

)2

δgm

(
(1−ϵ)− (

√
α−√γ)2
gc

)
,

there exists a class of rating matrices that is obtained
by swapping the rating vectors of two users in the same

cluster yet from distinct groups such that the Hamming
distance between their rating vectors is mδg . We show
that the likelihood of any rating matrix from this class is
greater than the one of the ground truth rating matrix;

• and finally, if

p ≤ log n
(√

1− θ −
√

θ
(q−1)

)2

δcm

(
(1− ϵ)

−
(√
α−√γ

)2
+ (g − 1)

(√
β −√γ

)2

gc

)
,

there exists a class of rating matrices, which is obtained
by swapping the rating vectors of two users in distinct
clusters such that the Hamming distance between their
rating vectors is mδc. We demonstrate that any rating
matrix from this class yields a larger likelihood than the
one of the ground truth rating matrix.

For each case, we show that the maximum likelihood estimator
will fail in the limit of n and m by selecting one of the rating
matrices from the respective class instead of the ground truth
rating matrix.

A. The Auxiliary Lemmas

We present three auxiliary lemmas that are used to prove the
converse part of Theorem 1. Before each lemma, we introduce
terminologies and notations needed for the statement of the
lemma.

First, let S denote the success event that a rating matrix is
correctly estimated (i.e., exactly recovered). It is defined as

S :=
⋂

X ̸=X0

[L(X) > L(X0)] , (58)

where L(X) is the negative log-likelihood of a candidate rating
matrix X , defined in (19). The following lemma introduces a
lower bound on the infimum of the worst-case probability of
error.

Lemma 7: For any estimator ψ, we have

inf
ψ
P (δ)
e (ψ) ≥ P [Sc] . (59)

Proof: We refer to Appendix G for the proof of Lemma 7.
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Next, we will use the following lemma together with
Lemma 3, to provide a lower bound on the probability
that L(X0) is greater than or equal to L(X).

Lemma 8: For any
{
Pµ→ν : |Pµ→ν | = |Pν→µ| , µ, ν ∈

{
α̃, β̃, γ̃

}
, µ ̸= ν

}
,

we have

P [B ≥ 0]

≥ 1

4
exp

[
− (1 + o(1))

(
|Pd|Ir +

∣∣∣Pβ̃→α̃

∣∣∣ Iα,β
log n

n

+ |Pγ̃→α̃| Iα,γ
log n

n
+
∣∣∣Pγ̃→β̃

∣∣∣ Iβ,γ
log n

n

)]
, (60)

where the random variable B is defined in (42).
Proof: We refer to Appendix H for the proof of Lemma 8.

Finally, we present a lemma that guarantees the existence
of two subsets of users with specific properties.

Lemma 9: Consider sets Z0(x, i) and Z0(y, j) for distinct
pairs (x, i), (y, j) ∈ [c] × [g]. As n→∞, with probability
approaching 1, there exist two subsets Z̃0(x, i) ⊂ Z0(x, i) and
Z̃0(y, j) ⊂ Z0(y, j) with cardinalities |Z̃0(x, i)| ≥ n

log3 n
and

|Z̃0(y, j)| ≥ n
log3 n

such that there are no edges between the

vertices in Z̃0(x, i) ∪ Z̃0(y, j). That is,

E ∩
((
Z̃0(x, i)∪Z̃0(y, j)

)
×
(
Z̃0(x, i)∪Z̃0(y, j)

))
=∅. (61)

Proof: We refer to Appendix I for the proof of Lemma 9.

B. The Converse Proof of Theorem 1

In order to prove the converse part of Theorem 1, we demon-
strate that limn,m→∞ P [S] = 0 if any of the conditions given
by (55), (56) or (57) holds. In the following, we show the
claim for each condition in (55), (56) or (57) separately.

1) Failure in the Perfect Clustering/Grouping Regime: In
this proof, we introduce a class of rating matrices, where each
matrix in this class is obtained by replacing one column of X0

with a carefully chosen sequence. Then, we prove that if (55)
holds, then, with high probability, the ML estimator will fail
by selecting one of the rating matrices from this class instead
of X0.

Recall the partitioning of the columns of X0 defined
in Section IV, and note that there exists (at least) one
section Sℓ such that sℓ = |Sℓ|/m is bounded away from
zero (i.e., not vanishing with m and n). For each k ∈ Sℓ,
define X⟨k⟩ ∈ F

n×m
q as a rating matrix that is identical to X0

except for its kth, which will be determined below. Recall from
Section IV that R(1)

0 ∈ F
g×m
q , the submatrix of X0 associated

with the first cluster, is obtained by stacking some codeword
vectors from a (g, r) MDS code with generator matrix Φ(1).
Let w ∈ F

g×1
q be another codeword from this MDS code

such that

dH

(
w, R

(1)
0 (:, k)

)
= g − r + 1. (62)

The existence of such a column vector w is guaranteed due
to the fact that the (g, r) MDS code in Fq has a minimum
distance of g − r + 1. Consequently, the entries of X⟨k⟩ are
given by

X⟨k⟩(r, t) =





w(1) if r ∈ Z(1, 1) and t = k,
w(2) if r ∈ Z(1, 2) and t = k,

...
...

w(g) if r ∈ Z(1, g) and t = k,
X0(r, t) otherwise.

(63)

Furthermore, given X0 and X⟨k⟩, we have

Pd =
{
(r, k) :r∈Z(1, i) for i∈ [g], X⟨k⟩(r, k) ̸=X0(r, k)

}
,

Pβ̃→α̃ = Pα̃→β̃ = ∅,

Pγ̃→α̃ = Pα̃→γ̃ = ∅,

Pγ̃→β̃ = Pβ̃→γ̃ = ∅, (64)

according to their definitions in (29)±(34). Therefore, the
cardinalities of the sets in (64) are given by

|Pd| =
n

gc
(g − r + 1),

∣∣∣Pβ̃→α̃

∣∣∣ = |Pα̃→γ̃ | = 0,

|Pγ̃→α̃| = |Pα̃→γ̃ | = 0,∣∣∣Pγ̃→β̃

∣∣∣ =
∣∣∣Pβ̃→γ̃

∣∣∣ = 0. (65)

For each X⟨k⟩ where k ∈ Sℓ, the probability that the
negative log-likelihood of X⟨k⟩ is greater than that of X0 is
upper bounded by

P
[
L(X⟨k⟩) > L(X0)

]

= 1− P
[
L(X⟨k⟩) ≤ L(X0)

]

= 1− P

[
log

(
(q − 1)

1− θ
θ

)

×
∑

i∈Pd

B
(p)
i

((
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

)
≥ 0

]
(66)

= 1− P

[
log

(
(q − 1)

1− θ
θ

)

×
n
gc

(g−r+1)∑

i=1

B
(p)
i

((
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

)
≥ 0

]
(67)

≤ 1− 1

4
exp

(
−(1 + o(1))

g − r + 1

gc
nIr

)
(68)

≤ exp

[
−1

4
exp

(
−(1 + o(1))

g − r + 1

gc
nIr

)]
, (69)

where (66) follows from Lemma 3 and (64); (67) follows
from (65); and (68) is an immediate consequence of Lemma 8.

Finally, since sℓ is bounded away from zero, the probability
of exact rating matrix recovery is upper bounded by

P[S] ≤ P

[
⋂

k∈Sℓ

(
L(X⟨k⟩) > L(X0)

)
]

(70)

=
∏

k∈Sℓ

P
[
L(X⟨k⟩) > L(X0)

]
(71)
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≤
(

exp

[
−1

4
exp

(
−(1+o(1))

g − r + 1

gc
nIr

)])sℓm

(72)

= exp

[
−1

4
sℓ exp

(
−(1 + o(1))

g − r + 1

gc
nIr + logm

)]

≤ exp

[
−1

4
sℓ exp

(
−
(
(1 + o(1))(1− ϵ)− 1

)
logm

)]
(73)

≤ exp

[
−1

4
sℓ exp

((
ϵ− o(1)(1− ϵ)

)
logm

)]
, (74)

where (70) follows from the definition in (58); (71) holds
since the events {L(X⟨k⟩) > L(X0) : k ∈ Sℓ} are mutually
independent due to the fact that each event corresponds to a
different column k within Sℓ; (72) follows from (69); and (73)
follows from the condition in (55). Therefore, we obtain

lim
n,m→∞

P [S]

≤ lim
n,m→∞

exp

[
−1

4
sℓ exp

((
ϵ− o(1)(1− ϵ)

)
logm

)]
= 0,

(75)

which shows that if the condition in (55) holds, then the ML
estimator will fail to find X0 with high probability.

2) Failure in the Grouping-Limited Regime: Without loss
of generality, assume δgm = dH

(
u

(1)
1 , u

(1)
2

)
, i.e., the rating

vectors of groups 1 and 2 in cluster 1 have the minimum
Hamming distance among distinct pairs of rating vectors of
groups within the same cluster. In this proof, we introduce a
class of rating matrices, which are obtained by switching two
users between groups 1 and 2 in cluster 1. Then, we prove that
if (56) holds, then, with high probability, the ML estimator
will fail by selecting one of the rating matrices from this class
instead of X0.

Applying Lemma 9 to (x, i) = (1, 1) and (y, j) = (1, 2),
we conclude that there exist some subsets Z̃0(1, 1) ⊂ Z0(1, 1)
and Z̃0(1, 2) ⊂ Z0(1, 2) with |Z̃0(1, 1)| = |Z̃0(1, 2)| = n

log3 n
,

such that the subgraph induced by all the vertices in the
set Z̃0(1, 1) ∪ Z̃0(1, 2) is edge-free. Define X⟨a,b⟩ ∈ F

n×m
q ,

for a ∈ Z̃0(1, 1) and b ∈ Z̃0(1, 2), as a rating matrix that
is identical to X0 except for its ath and bth rows, which are
swapped. More formally, the entries of X⟨a,b⟩ are given by

X⟨a,b⟩(r, :) =





X0(b, :) = u
(1)
2 if r = a,

X0(a, :) = u
(1)
1 if r = b,

X0(r, :) otherwise.

(76)

The user partitioning Z⟨a,b⟩ induced by X⟨a,b⟩ is given by

Z⟨a,b⟩(x, i) =





Z0(1, 1) ∪ {b} \ {a} if (x, i) = (1, 1),
Z0(1, 2) ∪ {a} \ {b} if (x, i) = (1, 2),

Z0(x, i) otherwise.

(77)

Furthermore, given X0 and X⟨a,b⟩, we have

Pd =
{
(r, t) : r ∈ {a, b}, t ∈ [m] , X⟨a,b⟩(r, t) ̸= X0(r, t)

}
,

Pβ̃→α̃={(a, h) :h∈Z0(2, 1)\{b}}∪{(b, h) :h∈Z0(1, 1)\{a}},
Pα̃→β̃={(a, h) :h∈Z0(1, 1)\{a}}∪{(b, h) :h∈Z0(1, 2)\{b}},
Pγ̃→α̃ = Pα̃→γ̃ = ∅,

Pγ̃→β̃ = Pβ̃→γ̃ = ∅, (78)

according to their definitions in (29)±(34). Therefore, the
cardinalities of the sets in (78) are given by

|Pd| = dH
(
X⟨a,b⟩(a,:), X0(a,:)

)
+dH

(
X⟨a,b⟩(b,:), X0(b,:)

)

= dH (X0(b, :), X0(a, :)) + dH (X0(a, :), X0(b, :))

= 2δgm,
∣∣∣Pβ̃→α̃

∣∣∣ = |Pα̃→γ̃ | = 2

(
n

cg
− 1

)
,

|Pγ̃→α̃| = |Pα̃→γ̃ | = 0,∣∣∣Pγ̃→β̃

∣∣∣ =
∣∣∣Pβ̃→γ̃

∣∣∣ = 0. (79)

For each X⟨a,b⟩ where a ∈ Z̃0(1, 1) and b ∈ Z̃0(1, 2),
we have

L(X0)− L
(
X⟨a,b⟩

)

= log

(
(q − 1)

1− θ
θ

)∑

i∈Pd

B
(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

+ log

(
(1− β̃)α̃

(1− α̃)β̃

)
∑

j∈P
β̃→α̃

(
B

(β̃)
j − B

(α̃)
j

)
(80)

= log

(
(q − 1)

1− θ
θ

) 2δgm∑

i=1

B
(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

+ log

(
(1− β̃)α̃

(1− α̃)β̃

) 2( n
cg

−1)∑

j=1

(
B

(β̃)
j − B

(α̃)
j

)
, (81)

where (80) follows from Lemma 3 and (78); and (81) follows
from (79). Therefore, the probability that the negative log-
likelihood of X⟨a,b⟩ is greater than that of X0 is upper
bounded by

P
[
L
(
X⟨a,b⟩

)
> L(X0)

]

= 1− P
[
L(X0)− L

(
X⟨a,b⟩

)
≥ 0
]

≤ 1− 1

4
exp

[
−(1+o(1))

(
2δgmIr+2

(
n

cg
−1

)
Iα,β

log n

n

)]

(82)

≤exp

[
−1

4
exp

[
−(1+o(1))

(
2δgmIr + 2

(
n

cg
−1

)
Iα,β

log n

n

)]]
,

(83)

where (82) follows from (81) and Lemma 8.
Finally, the probability of exact rating matrix recov-

ery is upper bounded by (89), shown at the top of
the next page, where (84), shown at the top of the
next page, follows from the definition in (58); (85),
shown at the top of the next page, holds since the
events {L

(
X⟨a,b⟩

)
> L(X0) : a ∈ Z̃0(1, 1), b ∈ Z̃0(1, 2)} are

mutually independent, which is a consequence of the fact that
there are no edges among the vertices in Z̃0(1, 1) ∪ Z̃0(1, 2),
as per Lemma 9; (86), shown at the top of the next page,
follows from (83); in (87), shown at the top of the next
page, we used the fact that |Z̃0(1, 1)| = |Z̃0(1, 2)| = n

log3 n
;

and (88), shown at the top of the next page, follows from the
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P[S] ≤ P




⋂

a∈Z̃0(1,1)

b∈Z̃0(1,2)

(
L
(
X⟨a,b⟩

)
> L(X0)

)


 (84)

=
∏

a∈Z̃0(1,1)

b∈Z̃0(1,2)

P
[
L
(
X⟨a,b⟩

)
> L(X0)

]
(85)

≤
(

exp

[
−1

4
exp

[
−(1 + o(1))

(
2δgmIr + 2

(
n

cg
− 1

)
Iα,β

log n

n

)]])|Z̃0(1,1)|·|Z̃0(1,2)|
(86)

= exp

[
− n2

4 log6 n
exp

[
−(1 + o(1))

(
2δgmIr + 2

(
n

cg
− 1

)
Iα,β

log n

n

)]]
(87)

≤ exp

(
− n2

4 log6 n
exp (−2(1 + o(1))(1− ϵ) logn)

)
(88)

≤ exp

(
−n

2(ϵ−o(1)(1−ϵ))

4 log6 n

)
. (89)

condition in (56). Therefore, we obtain

lim
n,m→∞

P[S] ≤ lim
n,m→∞

exp

(
−n

2(ϵ−o(1)(1−ϵ))

4 log6 n

)
= 0,

which shows that if the condition in (56) holds, then the ML
estimator will fail to find X0 with high probability.

3) Failure in the Clustering-Limited Regime: The proof
follows the same structure as that presented in Section V-B.2
where the condition in (56) holds. Without loss of generality,
assume that the rating vectors of group 1 in cluster 1 and group
2 in cluster 2 have the minimum Hamming distance among
distinct pairs of rating vectors across different clusters, i.e.,
dH

(
u

(1)
1 , u

(2)
2

)
= δcm. Note that the corresponding groups

defined by such rating vectors belong to different clusters,
as opposed to the same cluster in Section V-B.2. In this proof,
we introduce a class of rating matrices, which are obtained
by switching two users between group 1 in cluster 1 and
group 2 in cluster 2. Then, we prove that if (57) holds, then,
with high probability, the ML estimator will fail by selecting
one of the rating matrices from this class, instead of X0.

We use Lemma 9 for (x, i) = (1, 1) and (y, j) =
(2, 2). This implies that there exist subsets Z̃0(1, 1) ⊂ Z0(1, 1)
and Z̃0(2, 2) ⊂ Z0(2, 2) with |Z̃0(1, 1)| = |Z̃0(2, 2)| = n

log3 n
,

such that the subgraph induced by all the vertices in the
set Z̃0(1, 1) ∪ Z̃0(2, 2) is edge-free. Similar to (76) and (77)
in Section V-B.2, define X⟨a,b⟩ ∈ F

n×m
q , for a ∈ Z̃0(1, 1)

and b ∈ Z̃0(2, 2), as

X⟨a,b⟩(r, :) =





X0(b, :) = u
(2)
2 if r = a,

X0(a, :) = u
(1)
1 if r = b,

X0(r, :) otherwise.

(90)

The corresponding user partitioning Z⟨a,b⟩ for the rating
matrix in (90) is given by

Z⟨a,b⟩(x, i) =





Z0(1, 1) ∪ {b} \ {a} if (x, i) = (1, 1),
Z0(2, 2) ∪ {a} \ {b} if (x, i) = (2, 2),

Z0(x, i) otherwise. (91)

Furthermore, given X0 and X⟨a,b⟩, we can identify the fol-
lowing sets

Pd =
{
(r, t) :r ∈{a, b}, t∈ [m] ,X⟨a,b⟩(r, t) ̸= X0(r, t)

}
,

Pβ̃→α̃ = Pα̃→β̃ = ∅,

Pγ̃→α̃ ={(a, h): h∈Z0(2, 2)\{b}} ∪ {(b, h): h∈Z0(1, 1)\{a}},
Pα̃→γ̃ ={(a, h): h∈Z0(1, 1)\{a}} ∪ {(b, h): h∈Z0(2, 2)\{b}},

Pγ̃→β̃ =



(a, h): h∈

⋃

i∈[g]\{2}

Z0(2, i)



∪



(b, h): h∈

⋃

i∈[g]\{1}

Z0(1, i)



,

Pβ̃→γ̃ =



(a, h): h∈

⋃

i∈[g]\{1}

Z0(1, i)



∪



(b, h): h∈

⋃

i∈[g]\{2}

Z0(2, i)



,

(92)

according to their definitions in (29)±(34). Thus, the size of
the sets in (92) are given by

|Pd| =dH
(
X⟨a,b⟩(a,:), X0(a,:)

)
+dH

(
X⟨a,b⟩(b,:), X0(b,:)

)

= dH (X0(b, :), X0(a, :)) + dH (X0(a, :), X0(b, :))

= 2δcm,∣∣∣Pβ̃→α̃

∣∣∣ = |Pα̃→γ̃ | = 0,

|Pγ̃→α̃| = |Pα̃→γ̃ | = 2

(
n

cg
− 1

)
,

∣∣∣Pγ̃→β̃

∣∣∣ =
∣∣∣Pβ̃→γ̃

∣∣∣ = 2

(
g − 1

gc

)
n. (93)

For each X⟨a,b⟩ with a ∈ Z̃0(1, 1) and b ∈ Z̃0(2, 2), we have

L(X0)− L
(
X⟨a,b⟩

)

= log

(
(q − 1)

1− θ
θ

)∑

i∈Pd

B
(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

+

(
log

(1− γ̃)α̃
(1− α̃)γ̃

) ∑

i∈Pγ̃→α̃

(
B

(γ̃)
i − B

(α̃)
i

)
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+

(
log

(1− γ̃)β̃
(1− β̃)γ̃

)
∑

i∈P
γ̃→β̃

(
B

(γ̃)
i − B

(β̃)
i

)
(94)

= log

(
(q − 1)

1− θ
θ

) 2δcm∑

i=1

B
(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

+

(
log

(1− γ̃)α̃
(1− α̃)γ̃

) 2( n
cg

−1)∑

i=1

(
B

(γ̃)
i − B

(α̃)
i

)

+

(
log

(1− γ̃)β̃
(1− β̃)γ̃

) 2( g−1
gc )n∑

i=1

(
B

(γ̃)
i − B

(β̃)
i

)
, (95)

where (94) follows from Lemma 3 and (92); and (95) fol-
lows from (93). Thus, the probability that the negative log-
likelihood of X⟨a,b⟩ is greater than that of X0 is upper
bounded by

P
[
L
(
X⟨a,b⟩

)
> L(X0)

]

= 1− P

[
B

(
2δcm, 0, 2

(
n

cg
− 1

)
, 2

(
g − 1

gc

)
n

)
≥ 0

]

≤ 1− 1

4
exp

[
−(1+o(1))

(
2δcmIr + 2

(
n

cg
−1

)
Iα,γ

log n

n

+2

(
g − 1

gc

)
nIβ,γ

log n

n

)]
(96)

≤ exp

[
−1

4
exp

[
−(1+o(1))

(
2δcmIr+2

(
n

cg
−1

)
Iα,γ

log n

n

+2

(
g − 1

gc

)
nIβ,γ

log n

n

)]]
, (97)

where (96) follows from (95) and Lemma 8.
Finally, the probability of exact matrix recovery is upper

bounded by (102) presented at the bottom of this page.
Note that (98), shown at the bottom of the page, follows
from (58); (99), shown at the bottom of the page, holds since
the events {L

(
X⟨a,b⟩

)
> L(X0) : a ∈ Z̃0(1, 1), b ∈ Z̃0(2, 2)}

are mutually independent (as there are no edges between the
vertices in Z̃0(1, 1)∪Z̃0(2, 2)), as per Lemma 9; (100), shown
at the bottom of the page, follows from (96); and (101), shown

at the bottom of the page, follows from the condition in (57),
and |Z̃0(1, 1)| = |Z̃0(1, 2)| = n

log3 n
. Thus, we obtain

lim
n,m→∞

P[S] = lim
n,m→∞

exp

(
−n

2(ϵ−o(1)(1−ϵ))

4 log6 n

)
= 0,

which shows that if the condition in (57) holds, then the ML
estimator will fail to find X0 with high probability.

Since limn,m→∞ P [S] = 0 is proved under each of the three
conditions stated in (55), (56) and (57), the converse proof of
Theorem 1 is concluded. ■

VI. SIMULATION RESULTS

We conduct several Monte Carlo experiments to show
that our proposed algorithm achieves p∗ characterized by
Theorem 1. The proposed algorithm is built in part upon
the computationally efficient matrix completion algorithm,
proposed in [28]. The idea is to first find a good initial estimate
of clusters, groups, and ratings and then successively refine this
estimate until the optimal solution is reached. The distinction
of our proposed algorithm compared to [28] is the stage of
exact recovery of rating vectors, which is based on maximum
likelihood (ML) decoding of users’ ratings based on the partial
and noisy observations. The overview of this phase is as
follows: for x ∈ [c], and t ∈ [m], we count the number of
corresponding ratings between tth column of the observation
matrix of cluster x and candidate rating vectors that follow
the structure of (g, r) MDS code. Then, we set the one rating
vector that corresponds the most as an estimated vector.

To formalize the given description in a mathematical
framework, let Z(x, i) denote the initial estimation users
of cluster x and group i, and let Z(x, :) = ∪i∈[g]Z(x, i).
The maximum likelihood (ML) decoder is denoted by Π(v),
which performs the aforementioned comparisons and counting
on v, and then outputs a column vector, which is denoted
by û

(x)
t ∈ F

(n/c)×1
q . Let the jth element of the rating

vector û(x)
t be denoted by ûxt (j), for x ∈ [c], and t ∈ [m].

The pseudocode of the phase is given by Algorithm 1. The
term û

(x)
t

(
n
gc (i− 1) + 1

)
in line 4 of Algorithm 1 refers to

P[S] ≤ P




⋂

a∈Z̃0(1,1)

b∈Z̃0(2,2)

(
L
(
X⟨a,b⟩

)
> L(X0)

)


 (98)

=
∏

a∈Z̃0(1,1)

b∈Z̃0(2,2)

P
[
L
(
X⟨a,b⟩

)
> L(X0)

]
(99)

≤
(

exp

[
−1

4
exp

[
−(1 + o(1))

(
2δcmIr + 2

(
n

cg
− 1

)
Iα,γ

log n

n
+ 2

(
g − 1

gc

)
nIβ,γ

log n

n

)]])|Z̃0(1,1)|·|Z̃0(2,2)|

(100)

≤ exp

(
− n2

4 log6 n
exp (−2(1 + o(1))(1− ϵ) logn)

)
(101)

≤ exp

(
−n

2(ϵ−o(1)(1−ϵ))

4 log6 n

)
. (102)
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Fig. 3. The success rate of the proposed algorithm as a function of p/p⋆ for different values of n, m, and α. The problem setting is characterized by
(c, g, q, r) = (3, 4, 5, 3), θ = 0.01, (β, γ) = (9, 0.5), and (δg , δc) = (1/3, 1/3). The MDS code structure is given by u

(x)
4 = u

(x)
1 + u

(x)
2 + u

(x)
3

for x ∈ [3]. We study the two cases: (a) perfect clustering/grouping regime (α = 49); and (b) grouping-limited regime where (α = 27).

Algorithm 1 Exact Recovery of Rating Vectors
1: function VECRCV (n,m, Y )
2: for x ∈ [c] and t ∈ [m] do

3: û
(x)
t ← Π(Y (Z(x, :), t))

4: v̂
(x)
i (t)← û

(x)
t

(
n
gc (i− 1) + 1

)

5: end for

6: return {v̂(x)
i : x ∈ [c], i ∈ [g]}

7: end function

the rating of group i. Note that pseudocodes of other phases
can be obtained just by replacing the number of clusters and
groups with c and g in the pseudocodes in [28], respectively.
Thus, we omit the pseudocode of other phases in this paper.

The synthetic data is generated as per the model in
Section II. We consider a problem setting in which we
have c = 3 clusters, g = 4 groups per cluster, finite field
of order q = 5, and r = 3 basis vectors per group. The
MDS code structure is given by u

(x)
4 = u

(x)
1 + u

(x)
2 + u

(x)
3

for x ∈ [3]. Furthermore, the parameters of observation noise,
graph, and rating vectors are set to θ = 0.01, (β, γ) = (9, 0.5)
and (δg, δc) = (1/3, 1/3), respectively.

In Figs. 3a and 3b, we evaluate the performance of the
proposed algorithm and quantify the empirical success rate
as a function of the normalized sample complexity p/p⋆

over 100 randomly drawn realizations of rating vectors and
hierarchical graphs. The results are reported for various values
of n and m, while the ratio n/m = 4 is preserved. Fig. 3a
depicts the case of α = 49, which corresponds to the perfect
clustering/grouping regime, while Fig. 3b illustrates the case
of α = 27, which corresponds to the grouping-limited regime.
In both figures, we observe a phase transition8 in the success
rate at p = p⋆, and the phase transition gets sharper as n and
m increase. Figs. 3a and 3b imply that our proposed algorithm

8The transition is ideally a step function at p = p⋆ as n, m → ∞.

achieves p∗ characterized by Theorem 1 in different regimes
when the graph side information is not scarce.

Next, we highlight the sample complexity gain from
leveraging the relational structure among the rating vectors.
We compare the performance of the proposed algorithm
against that of [24], which does not consider the relational
structure among the rating vectors under the two different
settings. In Figs. 4a and 4b, we consider a problem setting
in which we have n = 1200 users, m = 300 items, c =
2 clusters, g = 3 groups per cluster, r = 2 basis vectors per
group, and finite field of size q = 2. The MDS code structure
is given by u(x)

3 = u
(x)
1 + u

(x)
2 for x ∈ [2]. In Figs. 4c and 4d,

we set (n,m, θ, γ, c, g, r, q) = (2400, 600, 0, 0.5, 3, 4, 3, 5),
and the MDS code structure is given by u

(x)
4 = u

(x)
1 +

u
(x)
2 + u

(x)
3 for x ∈ [3]. In both cases, the parameters of

observation noise and rating vectors are set to θ = 0 and
(δg, δc) = (1/2, 1/2), respectively. Figs. 4a and 4c depict the
success rates of the proposed algorithm under various values of
p and Iα,β , while Figs. 4b and 4d depict those of the algorithm
presented in [25].

We set the range of values of Iα,β to span the grouping-
limited and perfect clustering/grouping regimes, where we
set γ = 0.5. The empirical success rate is depicted by the
grayscale heat map, averaged over 100 randomly drawn real-
izations of rating vectors and hierarchical graphs. The orange
line reflects the optimal sample complexity characterized by
Theorem 1, where the vertical line implies the sample com-
plexity in the perfect clustering/grouping regime, while the
diagonal line means the sample complexity in the grouping-
limited regime. In Fig. 4a and 4c, the phase transition occurs
near the vertical line in the perfect clustering/grouping regime.
However, the transition in Fig. 4b and 4d does not occur at
the optimal observation probability p∗ given in Theorem 1,
which demonstrates the sample complexity gain resulting
from leveraging the relational structure among the rating
vectors.
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Fig. 4. A comparison between the success rates of the proposed algorithm, denoted as (a) and (c), in contrast to those presented in [24], labeled as (b) and
(d). The problem setting for cases (a) and (b) is characterized by (n, m, θ, γ, c, g, r, q) = (1200, 300, 0, 0.5, 2, 3, 2, 2), and (δg , δc) = (1/2, 1/2). On the
other hand, for cases (c) and (d), the problem is defined by (n, m, θ, γ, c, g, r, q) = (2400, 600, 0, 0.5, 3, 4, 3, 5), and (δg , δc) = (1/2, 1/2).

VII. CONCLUSION

In this paper, we consider a rating matrix that consists of n
users and m items, and a hierarchical similarity graph that
consists of c disjoint clusters, and each cluster comprises g dis-
joint groups. The rating vectors of the groups in a given
cluster are different but related to each other through a linear
subspace of r basis vectors. We characterize the optimal
sample complexity to jointly recover the hierarchical structure
of the similarity graph as well as the rating matrix entries.
We propose a matrix completion algorithm that is based on the
maximum likelihood estimation and achieves the characterized
sample complexity. The optimality of the proposed achievable
scheme was demonstrated through a matching converse proof.
We demonstrate that the optimal sample complexity hinges on
the quality of side information of the hierarchical similarity
graph. We also highlight the fact that leveraging the graph
side information enables us to achieve a significant gain
in sample complexity, compared to existing schemes that
identify different groups without taking into consideration the
hierarchical structure across them.

An important research follow-up direction is to develop
a computationally efficient algorithm to achieve the sharp
threshold on the optimal sample complexity characterized in
this paper. Another research direction is to characterize the

optimal sample complexity for a more general case of c clus-
ters, each of which comprises an arbitrary number of groups
of possibly different numbers of users.

APPENDIX A
PROOF OF LEMMA 1

From the definition in (19), the negative log-likelihood of a
candidate rating matrix X = (V,Z), for X ∈ M(δ), given a
fixed input pair (Y,G) can be written as

L(X) = − log P [(Y,G) | X = X]

= − log (P [Y | X = X] P [G | X = X])

= − log P [Y | X = X]− log P [G | X = X] , (103)

where

P [Y |X = X] = p|Ω| (1− p)nm−|Ω|

(
θ

q − 1

)Λ(Y,X)

× (1− θ)|Ω|−Λ(Y,X), (104)

P [G | X = X] = α̃eα(G,Z)(1− α̃)|Pα(Z)|−eα(G,Z)

× β̃eβ(G,Z)(1− β̃)|Pβ(Z)|−eβ(G,Z)

× γ̃eγ(G,Z)(1− γ̃)|Pγ(Z)|−eγ(G,Z). (105)
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Consequently, L(X) is given by

L(X)= log

(
(q − 1)

1− θ
θ

)
Λ (Y,X)

+
∑

µ∈{α̃,β̃,γ̃}

[
log

(
1−µ
µ

)
eµ (G,Z)−log(1−µ)|Pµ(Z)|

]
.

(106)

This completes the proof of Lemma 1. ■

APPENDIX B
PROOF OF LEMMA 2

The worst-case probability of error P
(δ)
e (ψML) for the

maximum likelihood estimator ψML is upper bounded by

P (δ)
e (ψML) = max

M∈M(δ)
P [ψML(Y,G) ̸= M ]

= P [ψML(Y,G) ̸= X0 |M = X0] (107)

= P



⋃

X ̸=X0

L(X) ≤ L(X0)


 (108)

≤
∑

X ̸=X0

P [L(X) ≤ L(X0)] , (109)

where (107) holds since X0 ∈M(δ) by the construction of X0

presented in Section IV, and the error event {ψML(Y,G) ̸= M}
is statistically identical over all M ∈M(δ); (108) follows from
the fact that the output of the maximum likelihood estimator
is different from the ground truth rating matrix X0 only if
there exists a candidate rating matrix X whose negative log-
likelihood is less than or equal to that of X0; and (109) follows
from the union bound. This completes the proof of Lemma 2.

■

APPENDIX C
PROOF OF LEMMA 3

By Lemma 1, the LHS of (37) can be written as

L (X0)− L(X)

= log

(
(q − 1)

1− θ
θ

)
(Λ (Y,X0)− Λ (Y,X))︸ ︷︷ ︸

Term1

+
∑

µ∈{α̃,β̃,γ̃}

[
log

(
1− µ
µ

)
(eµ (G,Z0)− eµ (G,Z))

]

︸ ︷︷ ︸
Term2

+
∑

µ∈{α̃,β̃,γ̃}
[log(1− µ) (|Pµ (Z)| − |Pµ (Z0)|)]

︸ ︷︷ ︸
Term3

. (110)

In what follows, we evaluate each of the three terms in (110).
Recall from Section I-B that Λ (A,B) denotes the number

of different entries between the matrices An×m and Bn×m.
Therefore, Term1 can be expanded as

Term1

= Λ(Y,X0)− Λ (Y,X)

=
∑

(r,t)∈Ω

(1 [Y (r, t) ̸=X0(r, t)])−
∑

(r,t)∈Ω

(1 [Y (r, t) ̸=X(r, t)])

=
∑

(r,t)∈Ω

(nm−1 [Y (r, t)=X0(r, t)])−(nm−1 [Y (r,t)=X(r, t)])

=
∑

(r,t)∈Ω:
X(r,t) ̸=X0(r,t)

1 [Y (r, t)=X(r, t)]− 1 [Y (r, t)=X0(r, t)] (111)

=
∑

i∈|{(r,t)∈[n]×[m] :
X(r,t) ̸=X0(r,t)}|

B
(p)
i B

( θ
q−1 )
i − B

(p)
i

(
1− B

(θ)
i

)
(112)

=
∑

i∈|{(r,t)∈[n]×[m] :
X(r,t) ̸=X0(r,t)}|

B
(p)
i

[
B

(θ)
i B

( 1
q−1 )
i −

(
1−B

(θ)
i

)]
(113)

=
∑

i∈Pd

B
(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]
, (114)

where (111) follows since

1 [Y (i, j) = X(i, j)] = 1 [Y (i, j) = X0(i, j)]

if X(i, j) = X0(i, j), the first term of each summand in (112)
follows since the probability that the observed rating matrix
entry is X(i, j), which is not equal to X0(i, j), is p(θ/(q−1)),
while the second term of each summand in (112) follows
since the probability that the observed rating matrix entry
is X0(i, j) is p(1−θ), for every (i, j) ∈ [n]×[m]; (113) follows
since B

(θ/(q−1))
l = B

(θ)
l B

(1/(q−1))
l ; and finally (114) follows

from (29).
Next, we expand Term2 in (110). We first evaluate the

quantity eα (G,Z0) − eα (G, Z) as (118), shown at the top
of the next page, where (117), shown at the top of the next
page, holds since the edges that remain after the subtraction
are: (i) edges that exist in the same group in Z0, but are
estimated to be in different groups within the same cluster
in Z; (ii) edges that exist in the same group in Z0, but are
estimated to be in different clusters in Z; (iii) edges that exist
in different groups within the same cluster in Z0, but are
estimated to be in the same group in Z; (iv) edges that exist
in different clusters in Z0, but are estimated to be in the same
group in Z; and finally, (118) follows from (31)±(32). In a
similar way, one can evaluate the following quantities:

eβ̃ (G,Z0)− eβ̃ (G,Z)

=

P
β̃→α̃∑

i=1

B
(β̃)
i +

P
β̃→γ̃∑

i=1

B
(β̃)
i −

P
α̃→β̃∑

i=1

B
(α̃)
i −

P
γ̃→β̃∑

i=1

B
(γ̃)
i , (115)

eγ̃ (G,Z0)− eγ̃ (G,Z)

=

Pγ̃→α̃∑

i=1

B
(γ̃)
i +

P
γ̃→β̃∑

i=1

B
(γ̃)
i −

Pα̃→γ̃∑

i=1

B
(α̃)
i −

P
β̃→γ̃∑

i=1

B
(β̃)
i . (116)

Consequently, Term2 can be written as (120), shown at the
top of the next page, where (119), shown at the top of the next
page, follows from (116)±(118).
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eα (G,Z0)− eα (G, Z)

= |{(a, b) ∈ E : a ∈ Z0(x, i) ∩ Z(y, j1), b ∈ Z0(x, i) ∩ Z(y, j2), for x, y ∈ [c], i, j1, j2 ∈ [g], j1 ̸= j2}|
+ |{(a, b) ∈ E : a ∈ Z0(x, i) ∩ Z(y1, j1), b ∈ Z0(x, i) ∩ Z(y2, j2), for x, y ∈ [c], y1 ̸= y2, i, j1, j2 ∈ [g]}|
− |{(a, b) ∈ E : a ∈ Z0(x, i1) ∩ Z(y, j), b ∈ Z0(x, i2) ∩ Z(y, j), for x, y ∈ [c], i1, i2, j ∈ [g], i1 ̸= i2}|
− |{(a, b) ∈ E : a ∈ Z0(x1, i1) ∩ Z(y, j), b ∈ Z0(x2, i2) ∩ Z(y, j), for x1, x2, y ∈ [c], x1 ̸= x2, i1, i2, j ∈ [g]}| (117)

=

P
α̃→β̃∑

i=1

B
(α̃)
i +

Pα̃→γ̃∑

i=1

B
(α̃)
i −

P
β̃→α̃∑

i=1

B
(β̃)
i −

Pγ̃→α̃∑

i=1

B
(γ̃)
i . (118)

Term2 =
∑

µ∈α̃,β̃,γ̃

[
log

(
1− µ
µ

)
(eµ (G,Z0)− eµ (G,Z))

]

= log

(
1− α̃
α̃

)


∑

i∈P
α̃→β̃

B
(α̃)
i +

∑

i∈Pα̃→γ̃

B
(α̃)
i −

∑

i∈P
β̃→α̃

B
(β̃)
i −

∑

i∈Pγ̃→α̃

B
(γ̃)
i




+ log

(
1− β̃
β̃

)


∑

i∈P
β̃→α̃

B
(β̃)
i +

∑

i∈P
β̃→γ̃

B
(β̃)
i −

∑

i∈P
α̃→β̃

B
(α̃)
i −

∑

i∈P
γ̃→β̃

B
(γ̃)
i




+ log

(
1− γ̃
γ̃

)


∑

i∈Pγ̃→α̃

B
(γ̃)
i +

∑

i∈P
γ̃→β̃

B
(γ̃)
i −

∑

i∈Pα̃→γ̃

B
(α̃)
i −

∑

i∈P
β̃→γ̃

B
(β̃)
i


 (119)

=

(
log

(1− β̃)α̃

(1− α̃)β̃

)


∑

i∈P
β̃→α̃

B
(β̃)
i −

∑

i∈P
α̃→β̃

B
(α̃)
i


+

(
log

(1− γ̃)α̃
(1− α̃)γ̃

)


∑

i∈Pγ̃→α̃

B
(γ̃)
i −

∑

i∈Pα̃→γ̃

B
(α̃)
i




+

(
log

(1− γ̃)β̃
(1− β̃)γ̃

)


∑

i∈P
γ̃→β̃

B
(γ̃)
i −

∑

i∈P
β̃→γ̃

B
(β̃)
i


 . (120)

Finally, Term3 is evaluated as (126), shown at the top of
the next page, where (124), shown at the top of the next page
follows from

Pµ (Z0) =
⋃

ν∈{α̃,β̃,γ̃}
Pµ→ν , Pµ (Z) =

⋃

ν∈{α̃,β̃,γ̃}
Pν→µ; (121)

and (125), shown at the top of next page holds
since {Pµ→ν : µ, ν ∈ {α̃, β̃, γ̃}, µ ̸= ν} is a collection of dis-
joint sets. Plugging (114), (120), and (126), shown at the top
of next page into (110), we arrive at (127), shown at the top
of next page, which implies (37). This completes the proof of
Lemma 3.

■

APPENDIX D
PROOF OF LEMMA 4

We start by defining three groups of random variables.
Recall from Section IV that B

(σ)
i with σ ∈ {p, θ, 1

q−1 , α̃, β̃, γ̃}
denotes a Bernoulli random variable with parameter σ, that
is, P[B

(σ)
i = 1]=1−P[B

(σ)
i =0]=σ. For p = Θ

(
log n
n

)
,

a constant θ ∈ [0, 1] and i ∈ Pd, we define the first (group of)
random variable Ui = Ui(p, θ, q) as

Ui(p, θ, q)

= log

(
(q − 1)

1− θ
θ

)
B

(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

=





− log
(
(q−1) 1−θ

θ

)
w.p. p(1− θ),

0 w.p. (1−p)+pθ
(
1− 1

q−1

)
,

log
(
(q − 1) 1−θ

θ

)
w.p. pθ 1

q−1 .

(122)

The moment generating function (MGF) MUi(p,θ,q) (t) of
Ui(p, θ, q) at t = 1/2 is evaluated as

MUi(p,θ,q)

(
1

2

)

= E

[
exp

(
1

2
Ui(p, θ, q)

)]

=

[
p(1− θ) exp

(
−1

2
log

(
(q − 1)

1− θ
θ

))]

+

[
1−p+ pθ

(
1− 1

q − 1

)]

+

[
pθ

q − 1
exp

(
1

2
log

(
(q − 1)

1− θ
θ

))]

= p

√
θ(1− θ)
q − 1

+ 1− p+ pθ

(
1− 1

q − 1

)
+ p

√
θ(1− θ)
q − 1

= 1− p
(

1− θ − 2

√
θ(1− θ)
q − 1

+
θ

q − 1

)

= 1− p
(√

1− θ −
√
θ/(q − 1)

)2

, (123)
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Term3 =
∑

µ∈{α̃,β̃,γ̃}
[log(1− µ) (|Pµ (Z)| − |Pµ (Z0)|)]

=
∑

µ∈{α̃,β̃,γ̃}


log(1− µ)

∣∣∣∣∣∣∣

⋃

ν∈{α̃,β̃,γ̃}
Pν→µ

∣∣∣∣∣∣∣


−

∑

µ∈{α̃,β̃,γ̃}


log(1− µ)

∣∣∣∣∣∣∣

⋃

ν∈{α̃,β̃,γ̃}
Pµ→ν

∣∣∣∣∣∣∣


 (124)

=
∑

µ∈{α̃,β̃,γ̃}

[
log(1−µ)

(
|Pα̃→µ|+

∣∣∣Pβ̃→µ

∣∣∣+|Pγ̃→µ|
)]
−
∑

µ∈{α̃,β̃,γ̃}

[
log(1−µ)

(
|Pµ→α̃|+

∣∣∣Pµ→β̃

∣∣∣+|Pµ→γ̃ |
)]

(125)

= log(1− α̃)
(∣∣∣Pβ̃→α̃

∣∣∣+ |Pγ̃→α̃|
)
− log(1− α̃)

(∣∣∣Pα̃→β̃

∣∣∣+ |Pα̃→γ̃ |
)

+ log(1− β̃)
(∣∣∣Pα̃→β̃

∣∣∣+
∣∣∣Pγ̃→β̃

∣∣∣
)

− log(1− β̃)
(∣∣∣Pβ̃→α̃

∣∣∣+
∣∣∣Pβ̃→γ̃

∣∣∣
)

+ log(1− γ̃)
(
|Pα̃→γ̃ |+

∣∣∣Pβ̃→γ̃

∣∣∣
)
− log(1− γ̃)

(
|Pγ̃→α̃|+

∣∣∣Pγ̃→β̃

∣∣∣
)

=

(
log

1−α̃
1−β̃

)(∣∣∣Pβ̃→α̃

∣∣∣−
∣∣∣Pα̃→β̃

∣∣∣
)

+

(
log

1−α̃
1−γ̃

)
(|Pγ̃→α̃|−|Pα̃→γ̃ |) +

(
log

1−β̃
1−γ̃

)(∣∣∣Pγ̃→β̃

∣∣∣−
∣∣∣Pβ̃→γ̃

∣∣∣
)
.

(126)

L (X0)− L(X) = log

(
(q − 1)

1− θ
θ

)∑

i∈Pd

B
(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

+

(
log

(1− β̃)α̃

(1− α̃)β̃

)


∑

i∈P
β̃→α̃

B
(β̃)
i −

∑

i∈P
α̃→β̃

B
(α̃)
i


+

(
log

1− α̃
1− β̃

)(∣∣∣Pβ̃→α̃

∣∣∣−
∣∣∣Pα̃→β̃

∣∣∣
)

+

(
log

(1− γ̃)α̃
(1− α̃)γ̃

)


∑

i∈Pγ̃→α̃

B
(γ̃)
i −

∑

i∈Pα̃→γ̃

B
(α̃)
i


+

(
log

1− α̃
1− γ̃

)
(|Pγ̃→α̃| − |Pα̃→γ̃ |)

+

(
log

(1− γ̃)β̃
(1− β̃)γ̃

)


∑

i∈P
γ̃→β̃

B
(γ̃)
i −

∑

i∈P
β̃→γ̃

B
(β̃)
i


+

(
log

1− β̃
1− γ̃

)(∣∣∣Pγ̃→β̃

∣∣∣−
∣∣∣Pβ̃→γ̃

∣∣∣
)
. (127)

and hence, we have

− logMUi(p,θ,q)

(
1

2

)
= −log


1−p

(
√

1−θ−
√

θ

q−1

)2



= p

(
√

1−θ−
√

θ

q−1

)2

+O
(
p2
)

(128)

= (1+o(1))

(
√

1−θ−
√

θ

q−1

)2

p

= (1+o(1))Ir, (129)

where (128) follows from the Taylor expansion of the func-

tion log(1−x) at x = p
(√

1− θ −
√

θ
q−1

)2

, which converges

for p = Θ
(

log n
n

)
. Next, for µ, ν = Θ

(
log n
n

)
and i ∈ Pµ→ν ,

define the second (set of) random variables Vi = Vi(µ, ν) as

Vi(µ, ν) =

(
log

(1− µ)ν

(1− ν)µ

)(
B

(µ)
i − B

(ν)
i

)

=





− log (1−µ)ν
(1−ν)µ w.p. (1− µ)ν,

0 w.p. (1− µ)(1− ν) + µν,

log (1−µ)ν
(1−ν)µ w.p. µ(1− ν).

(130)

The MGF of Vi(µ, ν) at t = 1/2 is evaluated as

MVi(µ,ν)

(
1

2

)
= E

[
exp

(
1

2
Vi(µ, ν)

)]

=

[
(1−µ)ν exp

(
−1

2
log

(1−µ)ν

(1−ν)µ

)]

+ [(1−µ)(1−ν) + µν]+

[
µ(1−ν) exp

(
1

2
log

(1−µ)ν

(1−ν)µ

)]

= (1− µ)ν

√
(1− ν)µ
(1− µ)ν

+ (1− µ)(1− ν) + µν

+ (1− ν)µ
√

(1− µ)ν

(1− ν)µ
= µν + 2

√
(1− µ)(1− ν)µν + (1− µ)(1− ν)

=
(√

µν +
√

(1− µ)(1− ν)
)2

. (131)

Therefore, we have

− logMVi(µ,ν)

(
1

2

)

= −2 log
(√

µν +
√

(1− µ)
√

(1− ν)
)

= −2 log

[√
µν+

(
1− 1

2
µ+O

(
µ2
))(

1− 1

2
ν+O

(
ν2
))]

(132)
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= −2 log

[√
µν +

(
1− 1

2
µ− 1

2
ν +O

(
µ2 + ν2

))]

= −2 log

[
1−

(
1

2
µ+

1

2
ν −√µν +O

(
µ2 + ν2

))]

=
(√
µ−
√
ν
)2

+O
(
µ2 + ν2

)
(133)

= (1 + o(1))
(√
µ−
√
ν
)2

=





(1 + o(1))Iα,β
log n
n if µ = β̃, ν = α̃,

(1 + o(1))Iα,γ
log n
n if µ = γ̃, ν = α̃,

(1 + o(1))Iβ,γ
logn
n if µ = γ̃, ν = β̃,

(134)

where (132) follows form the Taylor expansion of the func-
tions

√
1− µ and

√
1− ν, which both converge since µ, ν =

Θ
(

log n
n

)
; and (133) follows from the Taylor expansion of the

function log(1−x), for x = 1
2µ+ 1

2ν −
√
µν +O

(
µ2 + ν2

)
,

which also converges for µ, ν = Θ
(

log n
n

)
.

Finally, for µ, ν = Θ
(

log n
n

)
and i ∈ Pµ→ν , define the

third (group of) random variable Wi = Wi(µ, ν) as

Wi(µ, ν) =

(
log

1− ν
1− µ

)
+

(
log

(1− µ)ν

(1− ν)µ

)
B

(µ)
i

=

{
log ν

µ w.p. µ,
log 1−ν

1−µ w.p. (1− µ).
(135)

The moment generating function MWi(µ,ν) (t) of Wi(µ, ν) at
t = 1/2 is evaluated as

MWi(µ,ν)

(
1

2

)

= E

[
exp

(
1

2
Wi(µ, ν)

)]

=

[
µ exp

(
1

2
log

ν

µ

)]
+

[
(1− µ) exp

(
1

2
log

1− ν
1− µ

)]

=
√
µν +

√
(1− µ)(1− ν). (136)

Thus, we can write

− logMWi(µ,ν)

(
1

2

)

= − log
(√

µν +
√

(1− µ)
√

(1− ν)
)

=
1

2
(1 + o(1))

(√
µ−
√
ν
)2

=





1
2 (1 + o(1))Iα,β

log n
n if µ = β̃, ν = α̃,

1
2 (1 + o(1))Iα,γ

log n
n if µ = γ̃, ν = α̃,

1
2 (1 + o(1))Iβ,γ

logn
n if µ = γ̃, ν = β̃,

(137)

where (137) follows from (134). Next, we present the follow-
ing proposition that is used in the proof of Lemma 4. The proof
of the proposition is presented at the end of this appendix.

Proposition 1: For µ, ν = Θ
(

log n
n

)
, let A = A(µ, ν) be

a random variable that is defined as

A(µ, ν) =

(
log

(1− µ)ν

(1− ν)µ

)


∑

i∈Pµ→ν

B
(µ)
i −

∑

i∈Pν→µ

B
(ν)
i




+

(
log

1− ν
1− µ

)
(|Pµ→ν | − |Pν→µ|) , (138)

where {B(µ)
i : i ∈ Pν→µ} and {B(ν)

i : i ∈ Pν→µ} are sets of
independent and identically distributed Bernoulli random vari-
ables. The moment generating function MA(µ,ν) (t) of A(µ, ν)
at t = 1/2 is given by

MA(µ,ν) (t)

= exp

(
−(1 + o(1))

|Pµ→ν |+ |Pν→µ|
2

(√
µ−
√
ν
)2
)

=





exp
(
−(1 + o(1))Pα̃↔β̃ Iα,β

log n
n

)
if µ= β̃, ν= α̃,

exp
(
−(1 + o(1))Pα̃↔γ̃ Iα,γ

logn
n

)
if µ= γ̃, ν= α̃,

exp
(
−(1 + o(1))Pβ̃↔γ̃ Iβ,γ

log n
n

)
if µ= γ̃, ν= β̃.

(139)

Let {Ui(p, θ, q) : i∈Pd}, and {A(β̃, α̃),A(γ̃, α̃),A(γ̃, β̃)}
be sets of independent and identically distributed random
variables defined as per (122), and (138) in Proposition 1. Note
that the sets {Pµ→ν : µ, ν ∈ {α̃, β̃, γ̃}, µ ̸= ν} are disjoint
as per their definitions given by (29)±(34). Consequently, the
LHS of (38) is upper bounded by

P [B ≥ 0]

= P

[(
∑

i∈Pd

Ui(p, θ, q)

)
+A(β̃, α̃)+A(γ̃, α̃)+A(γ̃, β̃)≥0

]

≤
(
MUi(p,θ,q)

(
1

2

))|Pd|(
M

A(β̃,α̃)

(
1

2

))

×
(
MA(γ̃,α̃)

(
1

2

))(
M

A(γ̃,β̃)

(
1

2

))
(140)

= exp

(
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n

+Pα̃↔γ̃ Iα,γ
log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

))
, (141)

where in (140) we used the Chernoff bound at t = 1
2 for

mutually independent random variables {Ui(p, θ, q) : i ∈ Pd},
and {A(β̃, α̃),A(γ̃, α̃),A(γ̃, β̃)}; and finally (141) follows
from (129), and (139) in Proposition 1. This completes the
proof of Lemma 4. ■

It remains to prove Proposition 1. In the following,
we present the proof of the proposition. Proof: [Proof of
Proposition 1] We distinguish two cases based on the sizes of
the sets Pµ→ν and Pν→µ. First, assume |Pµ→ν | ≥ |Pν→µ|.
In this case, the random variable A(µ, ν) can be expressed as

A(µ, ν) =
∑

i∈Pν→µ

((
log

(1− µ)ν

(1− ν)µ

)(
B

(µ)
i − B

(ν)
i

))

+
∑

i∈Pµ→ν\Pν→µ

((
log

1− ν
1− µ

)
+

(
log

(1− µ)ν

(1− ν)µ

)
B

(µ)
i

)

(142)

=
∑

i∈Pν→µ

Vi +
∑

i∈Pµ→ν\Pν→µ

Wi, (143)

where (142) holds since the sets Pν→µ and Pµ→ν are disjoint;
and (143) follows from (130) and (135).
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Then, we have

MA(µ,ν)

(
1

2

)
= E

[
exp

(
1

2
A(µ, ν)

)]

= E






∏

i∈Pν→µ

exp

(
1

2
Vi(µ, ν)

)


×




∏

i∈Pµ→ν\Pν→µ

exp

(
1

2
Wi(µ, ν)

)




=




∏

i∈Pν→µ

E

[
exp

(
1

2
Vi(µ, ν)

)]


×




∏

i∈Pµ→ν\Pν→µ

E

[
exp

(
1

2
Wi(µ, ν)

)]
 (144)

=



∏

i∈Pν→µ

MVi(µ,ν)

(
1

2

)




∏

i∈Pµ→ν\Pν→µ

MWi(µ,ν)

(
1

2

)


=
[
exp

(
−(1 + o(1))

(√
µ−
√
ν
)2)]|Pν→µ|

×
[
exp

(
−1

2
(1 + o(1))

(√
µ−
√
ν
)2
)]|Pµ→ν |−|Pν→µ|

(145)

= exp

(
−(1 + o(1))

|Pµ→ν |+ |Pν→µ|
2

(√
µ−
√
ν
)2
)
,

(146)

in which, (144) follows from the fact that the random
variables {Vi : i ∈ Pν→µ} and {Wi : i ∈ Pµ→ν \Pν→µ} are
independent; and (145) is a consequence of (134) and (137).
This shows the claim of the proposition for the first case.

Next, consider the second case, where |Pµ→ν | ≤ |Pν→µ|.
In a similar way, the random variable A can be written as

A(µ, ν) =
∑

i∈Pµ→ν

[(
log

(1− µ)ν

(1− ν)µ

)(
B

(µ)
i − B

(ν)
i

)]

+
∑

i∈Pν→µ\Pµ→ν

[(
log

1− µ
1− ν

)
+

(
log

(1− ν)µ
(1− µ)ν

)
B

(ν)
i

]

=
∑

i∈Pµ→ν

Vi +
∑

i∈Pν→µ\Pµ→ν

Wi. (147)

Following the same procedure presented above, one can show
that MA(µ,ν)

(
1
2

)
for the second case can also be simplified

to the expression given in (146). This completes the proof of
Proposition 1.

APPENDIX E
PROOF OF LEMMA 5

The LHS of (47) is given by (152), shown at the bottom of
the page. In what follows, we derive upper bounds on Term1

and Term2 of (152) for a fixed non-all-zero tuple T ∈ T (δ)
small,

given by

T =

({
n

(x,y)
i,j

}

x,y∈[c], i,j∈[g]
,
{
d
(x,y)
i,j

}

x,y∈[c], i,j∈[g]

)
, (148)

according to (43).
(1) Upper Bound on Term1: The size of the set X (T ) is

given by (153), shown at the top of the next page, which
follows from the fact that the number of ways to count
the rating matrices subject to {n(x,y)

i,j : x, y ∈ [c], i, j ∈ [g]},
and subject to {d(x,y)

i,j : x, y ∈ [c], i, j ∈ [g]} are independent.
We denote the first and second term of (153) by Term1,1

and Term1,2, respectively. Next, we provide upper bounds on
Term1,1 and Term1,2.

(1-1) Upper Bound on Term1,1: We can write

Term1,1 =
∣∣∣X
({
n

(x,y)
i,j : x, y ∈ [c], i, j ∈ [g]

}
,

{
d̂

(x,y)
i,j = 0 : x, y ∈ [c], i, j ∈ [g]

})∣∣∣

=
∏

x∈[c]

∏

i∈[g]

(
n/(gc)

n
(x,1)
i,1 , · · · , n(x,1)

i,g , n
(x,2)
i,1 , · · · , n(x,c)

i,g

)

(149)

≤
∏

x∈[c]

∏

i∈[g]

(
n

gc

)∑
(y,j) ̸=(σ(x),σ(i|x)) n

(x,y)
i,j

(150)

≤
∏

x∈[c]

∏

i∈[g]

exp






∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j


 log n




= exp


log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j




.

(151)

Note that the equality in (149) follows from the definitions
in (40) and (43); (150) follows from the definition of a
multinomial coefficient, and the fact that

(
n
k

)
≤ nk.

(1-2) Upper Bound on Term1,2: An upper bound on Term1,2

is given by (154), shown at the top of the next page.
Recall from Section II that R(x)

0 ∈ F
g×m
q denotes a matrix

that is obtained by stacking all the rating vectors of cluster x
given by {u(x)

i : i ∈ [g]} for x ∈ [c], and whose columns are
elements of (g, r) MDS code. Similarly, define R(x) ∈ F

g×m
q

lim
n,m→∞

∑

T∈T
(δ)

small

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

= lim
n,m→∞

∑

T∈T
(δ)

small

|X (T )|︸ ︷︷ ︸
Term1

exp

[
− (1+o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

︸ ︷︷ ︸
Term2

. (152)
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Term1 =
∣∣∣X
({
n

(x,y)
i,j : x, y ∈ [c], i, j ∈ [g]

}
,
{
d̂

(x,y)
i,j = 0 : x, y ∈ [c], i, j ∈ [g]

})∣∣∣
︸ ︷︷ ︸

Term1,1

×
∣∣∣X
({
n̂

(x,y)
i,j = 0 : x, y ∈ [c], i, j ∈ [g]

}
,
{
d
(x,y)
i,j : x, y ∈ [c], i, j ∈ [g]

})∣∣∣
︸ ︷︷ ︸

Term1,2

, (153)

Term1,2 =
∣∣∣X
({
n̂

(x,y)
i,j = 0 : x, y ∈ [c], i, j ∈ [g]

}
,
{
d
(x,y)
i,j : x, y ∈ [c], i, j ∈ [g]

})∣∣∣

≤
∣∣∣X
({
n̂

(x,y)
i,j = 0 : x, y ∈ [c], i, j ∈ [g]

}
,
{
d
(x,σ(x))
i,σ(i|x) : x ∈ [c], i ∈ [g]

}
,

{
d̂

(x,y)
i,j = t : 0 ≤ t ≤ m,x, y ∈ [c], i, j ∈ [g], (y, j) ̸= (σ(x), σ(i|x))

})∣∣∣

≤
∏

z∈[c]

∣∣∣X
({
n̂

(x,y)
i,j = 0 : x, y ∈ [c], i, j ∈ [g]

}
,
{
d
(z,σ(z))
i,σ(i|z) : i ∈ [g]

}
,

{
d̂

(x,σ(x))
i,σ(i|x) = t : 0 ≤ t ≤ m, x ∈ [c] \ {z}, i ∈ [g]

}
,

{
d̂

(x,y)
i,j = t : 0≤ t ≤ m,x, y ∈ [c], i, j ∈ [g], (y, j) ̸= (σ(x), σ(i|x))

})∣∣∣ . (154)

as a matrix that is obtained by stacking all the rating vectors
of cluster x given by {u(x)

i : i ∈ [g]} for x ∈ [c], and whose
columns are also elements of (g, r) MDS code. Furthermore,
define the binary matrix R̂(x) ∈ F

g×m
q as follows:

R̂(x)(i, t)=1

[
R

(x)
0 (i, t) ̸=R(x)(i, t)

]
,

for x ∈ [c], i∈ [g], and t∈ [m]. Note that R̂(x)(i, t) = 1 when
there is an error in estimating the rating of the users in cluster
x and group i for item t for x ∈ [c], i ∈ [g] and t ∈ [m]. Let
any non-zero column of R̂(x) be denoted as an ªerror columnº.

Then, for a given cluster x ∈ [c], we enumerate all possible
matrices R̂(x) subject to a given number of error columns.
To this end, define f (x) as the total number of error columns
of R̂(x). Moreover, define κ as the number of possible config-
urations of an error column. Let {wk : k ∈ [κ]} be the set of
all possible error columns. Note that this set only depends on
the problem setting and the MDS code structure. For instance,
for (c, g, q, r) = (2, 3, 2, 2) and u(x)

3 = u
(x)
1 +u

(x)
2 for x ∈ [2],

we have κ = 3 since the possible configurations of an error
column are given by

w1 =




1
0
1


 , w2 =




1
1
0


 , wκ = w3 =




0
1
1


 .

For x ∈ [c] and k ∈ [κ], let f
(x)
k denote the num-

ber of columns in the matrix R̂(x) that are equal to wk.
Note that 0 ≤ f (x)

k ≤ f (x) and
∑κ
k=1 f

(x)
k = f (x). For clus-

ter x ∈ [c], let R(x)(f (x), {wk : k ∈ [κ]}) denote the set of
matrices R(x) ∈ F

g×m
q characterized by f (x) and {wk : k ∈

[κ]}. The size of R(x)(f (x), {wk : k ∈ [κ]}) can be bounded
by

∣∣∣R(x)
(
f (x), {wk : k ∈ [κ]}

)∣∣∣

≤
(
m

f (x)

)(
f (x) + κ− 1

κ− 1

)
(q − 1)gf

(x)

(155)

≤ mf(x)

2f
(x)+κ−1 qgf

(x)

(156)

≤ 2q
g−1qg(2qm)f

(x)

, (157)

where
• (155) follows by first choosing f (x) columns from m

columns to be error columns, then counting the number
of integer solutions of

∑κ
k=1 f

(x)
k = f (x), and lastly

counting the number of estimation error combination
within the g entries of each of the f (x) error columns;

• (156) follows from bounding the first binomial coeffi-
cient by

(
a
b

)
≤ ab, and the second binomial coefficient

by
(
a
b

)
≤∑a

i=1

(
a
i

)
= 2a, for a ≥ b;

• and finally (157) follows from κ ≤ qg , that is due to the
fact that each entry of a rating matrix column can take
one of q values.

Next, for a given cluster x ∈ [c], we evaluate the maximum
number of error columns among all candidate matrices R(x).
On one hand, row-wise counting of the error entries in R(x),
compared to R(x)

0 , yields
∑

i∈[g]

d
(x,σ(x))
i,σ(i|x) . (158)

On the other hand, column-wise counting of the error entries
in R̂(x) (i.e., number of ones) yields

∑

k∈[κ]

∥wk∥1 f
(x)
k . (159)

From (154), we are interested in the class of candidate rating
matrices where the clustering and grouping are done correctly
without any errors in user associations to their respective
clusters and groups. Therefore, the expressions given by (158)
and (159) count the elements of the same set, and hence we
obtain

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x) =

∑

k∈[κ]

∥wk∥1 f
(x)
k

≥ (g − r + 1)
∑

k∈[κ]

f
(x)
k (160)

= (g − r + 1)f (x), (161)
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where (160) follows since the MDS code structure is known at
the decoder side, and the fact that minimum distance between
any two codewords in a (g, r) linear MDS code is g − r + 1.
Therefore, by (161), we get

max f (x) =
1

g − r + 1

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x) . (162)

Finally, by (154) and (162), Term1,2 can be further upper
bounded by

Term1,2 ≤
∏

z∈[c]

max f(z)∑

ℓ=1

∣∣∣R(z)
(
f (z) = ℓ, {wk : k ∈ [κ]}

)∣∣∣

≤
∏

z∈[c]

max f(z)∑

ℓ=1

2q
g−1 qg (2qm)ℓ (163)

≤
∏

z∈[c]

2q
g−1 qg mmax f(z)

max f(z)∑

ℓ=1

(2q)ℓ

≤
∏

z∈[c]

2q
g−1 qg mmax f(z)

(2q)max f(z)+1 (164)

=
∏

z∈[c]

2q
g

qg+1 (2qm)max f(z)

=
(
2q

g

qg+1
)c

(2qm)

∑
x∈[c]

max f(x)

= c0 exp


 log(c1m)

g − r + 1

∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


 , (165)

where in (163) we used the bound in (157); (164) follows
from

∑L
ℓ=1 x

ℓ ≤ ∑L
ℓ=0 x

ℓ = (xL+1 − 1)/(x − 1) ≤ xL+1

for x > 2; and (165) follows by setting c0 =
(
2q

g

qg+1
)c ≥

1 and c1 = 2q ≥ 1.
Substituting (151) and (165) into (153), an upper bound

on Term1 is thus given by

Term1 ≤ c0 exp


log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j




+
log(c1m)

g − r + 1



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)




 . (166)

(2) Upper Bound on Term2: To this end, we derive lower
bounds on the cardinalities of different sets in the exponent
of Term2. Recall from (45) that

T (δ)
small =

{
T ∈ T (δ) : ∀(x, i) ∈ [c]× [g] s.t. |σ(x)| = 1,

|σ(i|x)| = 1, d
(x, σ(x))
i, σ(i|x) ≤ τmmin{δg, δc}

}
,

=
{
T ∈ T (δ) : ∀(x, i) ∈ [c]× [g] s.t.

n
(x,σ(x))
i,σ(i|x) ≥ (1−τ) n

gc
, d

(x,σ(x))
i,σ(i|x) ≤τmmin{δg, δc}

}
,

(167)

where (167) follows from (44).
(2-1) Lower Bound on |Pd|: For T ∈ T (δ)

small, a lower bound
on |Pd| is given in (171), shown at the bottom of the page,
where (168), shown at the bottom of the page, follows from the
definitions in (29), (40) and (41); (169), shown at the bottom
of the page, follows from (167) and the triangle inequality;
and (170), shown at the bottom of the page, follows from (167)
and the fact that the minimum Hamming distance between any
two different rating vectors in V is min{δg, δc}m.

|Pd| =
∑

x∈[c]

∑

i∈[g]

∑

y∈[c]

∑

j∈[g]

n
(x,y)
i,j d

(x,y)
i,j (168)

=



∑

x∈[c]

∑

i∈[g]

n
(x,σ(x))
i,σ(i|x) d

(x,σ(x))
i,σ(i|x)


+



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j d

(x,σ(x))
i,j


+



∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j d

(x,y)
i,j




≥



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)

(
(1− τ) n

gc

)
+

(
∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j

(
dH

(
v
(σ(x))
σ(i|x) , v

(σ(x))
j

)
− d(x,σ(x))

i,σ(i|x)

))

+

(
∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j

(
dH

(
v
(σ(x))
σ(i|x) , v

(y)
j

)
− d(x,σ(x))

i,σ(i|x)

))
(169)

≥ (1− τ) n
gc



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


+ (δgm− δgτm)



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j




+ (δcm− δcτm)



∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j


 (170)

= (1−τ)


 n
gc



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


+ δgm



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j


+ δcm



∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j




.

(171)
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(2-2) Lower Bound on |Pβ̃→α̃| and |Pα̃→β̃ |: For T ∈ T (δ)
small,

a lower bound on |Pβ̃→α̃| is given by

|Pβ̃→α̃| =
∑

x∈[c]

∑

y∈[c]

∑

i∈[g]

∑

j∈[g]\i

∑

k∈[g]

n
(x,y)
i,k n

(x,y)
j,k (172)

≥
∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\i

∑

k∈[g]

n
(x,σ(x))
i,k n

(x,σ(x))
j,k

≥
∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\i

∑

k∈[g]\σ(i|x)

n
(x,σ(x))
i,k n

(x,σ(x))
j,k

=
∑

x∈[c]

∑

i∈[g]

∑

k∈[g]\σ(i|x)

n
(x,σ(x))
i,k



∑

j∈[g]\i

n
(x,σ(x))
j,k




≥
∑

x∈[c]

∑

i∈[g]

∑

k∈[g]\σ(i|x)

n
(x,σ(x))
i,k

(
(1− τ) n

gc

)
(173)

= (1− τ) n
gc

∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j , (174)

where (172) follows from (40) and (30), and (173) follows
from (167). Similarly, |Pα̃→β̃ | can be bounded by

|Pα̃→β̃ | =
∑

x∈[c]

∑

y∈[c]

∑

i∈[g]

∑

j∈[g]

∑

k∈[g]\j

n
(x,y)
i,j n

(x,y)
i,k (175)

≥
∑

x∈[c]

∑

i∈[g]

∑

j∈[g]

∑

k∈[g]\j

n
(x,σ(x))
i,j n

(x,σ(x))
i,k

≥
∑

x∈[c]

∑

i∈[g]

∑

k∈[g]\σ(i|x)

n
(x,σ(x))
i,σ(i|x) n

(x,σ(x))
i,k

≥
∑

x∈[c]

∑

i∈[g]

∑

k∈[g]\σ(i|x)

(1− τ) n
gc
n

(x,σ(x))
i,k

= (1− τ) n
gc

∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j , (176)

where (175) follows from the definitions in (40) and (31).
Therefore, by (174) and (176), we obtain

|Pβ̃→α̃|+ |Pα̃→β̃ |
2

≥ (1− τ) n
gc

∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j .

(177)

(2-3) Lower Bound on |Pγ̃→α̃| and |Pα̃→γ̃ |: For T ∈ T (δ)
small,

a lower bound on |Pγ̃→α̃| is given by

|Pγ̃→α̃| =
∑

x∈[c]

∑

y∈[c]

∑

z∈[c]\x

∑

i∈[g]

∑

j∈[g]

∑

k∈[g]

n
(x,y)
i,j n

(z,y)
k,j (178)

≥
∑

x∈[c]

∑

y∈[c]\σ(x)

∑

z∈[c]\x

∑

i∈[g]

∑

j∈[g]

∑

k∈[g]

n
(x,y)
i,j n

(z,y)
k,j

=
∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j



∑

z∈[c]\x

∑

k∈[g]

n
(z,y)
k,j




≥
∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j

(
(1− τ) n

gc

)

(179)

= (1− τ) n
gc

∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j , (180)

where (178) follows from (40) and (32), and (179) follows
from (167). Similarly, we can bound |Pα̃→γ̃ | as

|Pα̃→γ̃ | =
∑

x∈[c]

∑

y∈[c]

∑

z∈[c]\y

∑

i∈[g]

∑

j∈[g]

∑

k∈[g]

n
(x,y)
i,j n

(x,z)
i,k (181)

≥
∑

x∈[c]

∑

z∈[c]\σ(x)

∑

i∈[g]

∑

k∈[g]

∑

j∈[g]

n
(x,σ(x))
i,j n

(x,z)
i,k

≥
∑

x∈[c]

∑

z∈[c]\σ(x)

∑

i∈[g]

∑

k∈[g]

n
(x,σ(x))
i,σ(i|x) n

(x,z)
i,k

=
∑

x∈[c]

∑

z∈[c]\σ(x)

∑

i∈[g]

∑

k∈[g]

(1− τ) n
gc
n

(x,z)
i,k

= (1− τ) n
gc

∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j , (182)

where (181) follows from the definitions in (40) and (33).
Therefore, by (180) and (182), we obtain

|Pγ̃→α̃|+ |Pα̃→γ̃ |
2

≥ (1− τ) n
gc

∑

x∈[c]

∑

y∈[c]\x

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j .

(183)

(2-4) Lower Bound on |Pγ̃→β̃ | and |Pβ̃→γ̃ |: For T ∈ T (δ)
small,

a lower bound on |Pγ̃→β̃ | is given by

|Pγ̃→β̃ | =
∑

x∈[c]

∑

y∈[c]

∑

z∈[c]\x

∑

i∈[g]

∑

k∈[g]

∑

j∈[g]

∑

ℓ∈[g]\j

n
(x,y)
i,j n

(z,y)
k,ℓ

(184)

≥
∑

x∈[c]

∑

y∈[c]\σ(x)

∑

z∈[c]\x

∑

i∈[g]

∑

k∈[g]

∑

j∈[g]

∑

ℓ∈[g]\j

n
(x,y)
i,j n

(z,y)
k,ℓ

=
∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j



∑

ℓ∈[g]\j

∑

z∈[c]\x

∑

k∈[g]

n
(z,y)
k,ℓ




≥
∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j



∑

ℓ∈[g]\j

(1− τ) n
gc




(185)

= (g − 1) (1− τ) n
gc

∑

x∈[c]

∑

y∈[c]\x

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j , (186)

where (184) follows from (40) and (34), and (185) follows
from (167). Similarly, |Pβ̃→γ̃ | can be bounded by

|Pβ̃→γ̃ | =
∑

x∈[c]

∑

y∈[c]

∑

z∈[c]\y

∑

i∈[g]

∑

k∈[g]\i

∑

j∈[g]

∑

ℓ∈[g]

n
(x,y)
i,j n

(x,z)
k,ℓ

(187)

≥
∑

x∈[c]

∑

z∈[c]\σ(x)

∑

i∈[g]

∑

k∈[g]\i

∑

j∈[g]

∑

ℓ∈[g]

n
(x,σ(x))
i,j n

(x,z)
k,ℓ

=
∑

x∈[c]

∑

z∈[c]\σ(x)

∑

k∈[g]

∑

i∈[g]\k

n
(x,σ(x))
i,σ(x|i)

∑

ℓ∈[g]

n
(x,z)
k,ℓ

≥
∑

x∈[c]

∑

z∈[c]\σ(x)

∑

k∈[g]

∑

i∈[g]\k

(1− τ) n
gc

∑

ℓ∈[g]

n
(x,z)
k,ℓ

=
∑

x∈[c]

∑

z∈[c]\σ(x)

∑

k∈[g]

(g − 1) (1− τ) n
gc

∑

ℓ∈[g]

n
(x,z)
k,ℓ

= (g − 1) (1− τ) n
gc

∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j ,

(188)
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Term2 = exp

[
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

≤ exp


−(1− τ)


nIr
gc



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


+

(
δgmIr +

nIα,β
gc

log n

n

)

∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j




+

(
δcmIr +

nIα,γ
gc

log n

n
+

(g − 1)nIβ,γ
gc

log n

n

)

∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j








≤ exp


−(1− τ)(1 + ϵ)


 logm

g − r + 1



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


+ log n



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j




+ logn



∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j






 (189)

≤ exp


−

(
1 +

ϵ

2

)

 log(c1m)

g − r + 1



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


+ log n



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j




+ log n



∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j






 (190)

= exp


−

(
1 +

ϵ

2

)

 log(c1m)

g − r + 1



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


+ log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j






 . (191)

where (187) follows from the definitions in (40) and (35).
Therefore, from (186) and (188), we obtain

|Pγ̃→β̃ |+ |Pβ̃→γ̃ |
2

≥ (1− τ) (g − 1)
n

gc

∑

x∈[c]

∑

y∈[c]\x

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j . (192)

Plugging (171), (177), (183) and (192) into definition
of Term2 in (152), we can upper bound Term2 as given
in (191), shown at the top of the page. Here, (189), shown
at the top of the page, follows from the sufficient conditions
in (12), (13) and (14); and (190), shown at the top of the page,
holds since

τ ≤ ϵ logm− (2 + ϵ) log(2q)

2(1 + ϵ) logm)
,

which implies

(1− τ)(1 + ϵ) logm ≥
(
1 +

ϵ

2

)
log(c1m),

and

(1− τ)(1 + ϵ) ≥ 1 +
ϵ

2
.

Finally, using (166) and (191), we can upper bound the
function in the RHS of (152), as given in (200), shown at the
bottom of the next page. Here,

• in (196), shown at the top of the next page, readily follows
from (167);

• in (197), shown at the top of the next page, we break
the summation into three summations, and use the fact
that the enumeration of the first element of the set is
independent of the enumeration of the second element;

• in (198), shown at the top of the next page, we use the
fact that the number of integer solutions of

∑n
i=1 xi = s

is equal to
(
s+n−1
n−1

)
;

• in (199), shown at the top of the next page,
for a ≥ b, we bound the binomial coefficient
by
(
a
b

)
≤
∑a
i=0

(
a
i

)
≤ 2a;

• and finally in (200), we evaluate the infinite geometric
series, where

ϵ > max

{
2 log 2

log n
,
2(g − r + 1) log 2

logm

}
.

Therefore, from (200), the RHS of (152) can be simplified as
given in (201), shown at the bottom of the next page. Note
that as n tends to infinity, the condition on ϵ becomes

ϵ > lim
n,m→∞

max

{
2 log 2

log n
,

2(g − r + 1) log 2

log(c1m)
,

2 log c1
log(m/c1)

}

= 0. (193)

This completes the proof of Lemma 5. ■

APPENDIX F
PROOF OF LEMMA 6

In order to prove the lemma, we first partition the set T (δ)
large

into two disjoint subsets (regimes), denoted by R1 and R2.
They are defined as

R1 =
{
T ∈ T (δ)

large : ∃(x, i) ∈ [c]×[g] s.t. |σ(x, i)| = 0
}
,

(194)

R2 =
{
T ∈T (δ)

large : ∀(x, i)∈ [c]×[g] s.t. |σ(x, i)|=1, and

∃(x, i)∈ [c]×[g] s.t. d(x,σ(x))
i,σ(i|x) >τmmin{δc, δg}

}
.

(195)
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∑

T∈T
(δ)

small

|X (T )| exp

[
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]
.

≤
∑

T∈T
(δ)

small

c0 exp


− ϵ

2


 log(c1m)

g − r + 1



∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x)


+ log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j






 .

=

gcτ min{δg,δc}m∑

ℓ1=0

τn∑

ℓ2=0

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x) = ℓ1,

∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j = ℓ2





∣∣∣∣∣∣

× exp

(
− ϵ log(c1m)

2(g − r + 1)
ℓ1 −

ϵ log n

2
ℓ2

)
(196)

=

gcτ min{δg,δc}m∑

ℓ1=1

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x) = ℓ1





∣∣∣∣∣∣

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j = 0





∣∣∣∣∣∣
exp

(
− ϵ log(c1m)

2(g − r + 1)
ℓ1

)

+

τn∑

ℓ2=1

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x) = 0





∣∣∣∣∣∣

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j = ℓ2





∣∣∣∣∣∣
exp

(
−ϵ log n

2
ℓ2

)

+

gcτ min{δg,δc}m∑

ℓ1=1

τn∑

ℓ2=1

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

d
(x,σ(x))
i,σ(i|x) = ℓ1





∣∣∣∣∣∣

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j = ℓ2





∣∣∣∣∣∣

× exp

(
− ϵ log(c1m)

2(g − r + 1)
ℓ1 −

ϵ log n

2
ℓ2

)
(197)

=

gcτ min{δg,δc}m∑

ℓ1=1

(
ℓ1 + gc

gc

)
exp

(
− ϵ log(c1m)

2(g − r + 1)
ℓ1

)
+

τn∑

ℓ2=1

(
ℓ2 + gc

gc

)
exp

(
−ϵ log n

2
ℓ2

)

+

gcτ min{δg,δc}m∑

ℓ1=1

τn∑

ℓ2=1

(
ℓ1 + gc− 1

gc− 1

)(
ℓ2 + gc− 1

gc− 1

)
exp

(
− ϵ log(c1m)

2(g − r + 1)
ℓ1 −

ϵ log n

2
ℓ2

)
(198)

≤
gcτ min{δg,δc}m∑

ℓ1=1

2(ℓ1 + gc) (c1m)

(
− ϵ

2(g − r + 1)
ℓ1

)

+

τn∑

ℓ2=1

2(ℓ2 + gc) n

(
− ϵ

2
ℓ2
)

+

gcτ min{δg,δc}m∑

ℓ1=1

2(ℓ1 + gc) (c1m)

(
− ϵ

2(g − r + 1)
ℓ1

)(
τn∑

ℓ2=1

2(ℓ2 + gc) n

(
− ϵ

2
ℓ2
))

(199)

≤ 2gc
∞∑

ℓ1=1


2 (c1m)

(
− ϵ

2(g − r + 1)

)


ℓ1

+ 2gc
∞∑

ℓ2=1

(
2n

(
− ϵ

2

))ℓ2

+ 22gc
∞∑

ℓ1=1


2 (c1m)

(
− ϵ

2(g − r + 1)

)


ℓ1 


∞∑

ℓ2=1

(
2n

(
− ϵ

2

))ℓ2



= 2gc
2 (c1m)

(
− ϵ

2(g−r+1)

)

1− 2 (c1m)

(
− ϵ

2(g−r+1)

) + 2gc
2n

(
− ϵ

2

)

1− 2 n

(
− ϵ

2

) + 22gc 2 (c1m)

(
− ϵ

2(g−r+1)

)

1−2 (c1m)

(
− ϵ

2(g−r+1)

)
2n

(
−ϵ

2

)

1− 2 n

(
−ϵ

2

) . (200)

lim
n,m→∞

∑

T∈T
(δ)

small

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]
= 0. (201)
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lim
n,m→∞

∑

T∈T
(δ)

large

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

≤ lim
n,m→∞

∑

T∈T
(δ)

large

|X (T )| exp

[
−
(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]
(202)

= lim
n,m→∞

(
∑

T∈R1

|X (T )| exp

[
−
(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

+
∑

T∈R2

|X (T )| exp

[
−
(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)])
. (203)

Now, we can start from the LHS of (48), and simplify it
as given in (203), shown at the top of the page. Note that the
summand in (48) does not depend on the actual rating matrix
X , and hence the effect of the inner summation is only the
number of such matrices, i.e., |X (T )|, as given in (202), shown
at the top of the page. In what follows, we derive upper bounds
on each summation term corresponding to regimesR1 andR2.

A. Large Grouping Error Regime

This regime corresponds to R1 characterized by (194).
Suppose that there exist a cluster x0 ∈ [c] and a group i0 ∈ [g]
such that |σ(x0, i0)| = 0. From (44), we get

n
(x0,y)
i0,j

= |Z0(x0, i0)∩Z(y, j)|≤(1−τ) n
gc
, (204)

for every ∀(y, j) ∈ [c] × [g]. We further partition the set R1

into three sub-regimes, namely R1,1, R1,2, and R1,3, that are
defined as

R1,1 =
{
T∈R1: ∃µ>0, ∃(y1, j1)∈ [c]×[g], ∃(y2, j2)∈ [c]×[g]

s.t. n(x0,y1)
i0,j1

≥ µn, n(x0,y2)
i0,j2

≥ µn
}
, (205)

R1,2 =
{
T ∈R1: ∃µ>0, ∃(y1, j1)∈ [c]×[g] s.t. n(x0,y1)

i0,j1
≥µn

}
,

(206)

R1,3 =
{
T ∈R1: ∀µ>0, ∀(y, j)∈ [c]×[g] s.t. n(x0,y)

i0,j
<µn

}
.

(207)

(1) Sub-regime 1-1: Consider the sub-regime R1,1 as given
in (205). Suppose that there exist a constant µ > 0, and two
distinct pairs (y1, j1), (y2, j2) ∈ [c]× [g] such that

n
(x0,y1)
i0,j1

≥ µn, and n(x0,y2)
i0,j2

≥ µn. (208)

Recall that there are a total of n users, each of which belongs
to one of the gc groups. Hence, the number of user-to-group
associations can be (loosely) bounded by (gc)n. On the other
hand, there are m items, each with a rating in Fq from each of
the gc groups of users. Hence, each item rating vector can be
one of qgc possible vectors across all users. Therefore, a loose
upper bound on the number of matrices that belong to matrix
class X (T ) is given by

|X (T )| ≤ (gc)n (qgc)
m
, ∀T ∈ T (δ). (209)

Next, we can lower bound the cardinality of the set Pd as

|Pd| =
∑

x∈[c]

∑

i∈[g]

∑

y∈[c]

∑

j∈[g]

n
(x,y)
i,j d

(x,y)
i,j (210)

≥ n(x0,y1)
i0,j1

d
(x0,y1)
i0,j1

+ n
(x0,y2)
i0,j2

d
(x0,y2)
i0,j2

> µn
(
d
(x0,y1)
i0,j1

+ d
(x0,y2)
i0,j2

)
(211)

≥ µn dH

(
v
(y1)
j1

, v
(y2)
j2

)
(212)

≥ µmin {δg, δc}nm, (213)

where (210) follows from the definitions of Pd, n
(x,y)
i,j ,

and d
(x,y)
i,j in (29), (40) and (41), respectively; (211) fol-

lows from (208); (212) follows from the triangle inequal-
ity; and (213) holds since the minimum Hamming distance
between any two different rating vectors in V is min{δg, δc}m.
Furthermore, if y1 = y2, then |Pα̃→β̃ | is lower bounded by

|Pα̃→β̃ | =
∑

x∈[c]

∑

y∈[c]

∑

i∈[g]

∑

k∈[g]

∑

j∈[g]\k

n
(x,y)
i,j n

(x,y)
i,k (214)

≥ n(x0,y1)
i0,j1

n
(x0,y2)
i0,j2

≥ (µn)2, (215)

where (214) follows from the definitions in (40) and (31).
On the other hand, if y1 ̸= y2, then |Pα̃→γ̃ | is lower bounded
by

|Pα̃→γ̃ | =
∑

x∈[c]

∑

z∈[c]

∑

y∈[c]\z

∑

i∈[g]

∑

k∈[g]

∑

j∈[g]

n
(x,y)
i,j n

(x,z)
i,k (216)

≥ n(x0,y1)
i0,j1

n
(x0,y2)
i0,j2

≥ (µn)2, (217)

where (216) follows from (40) and (33).
Finally, the first summation term in the RHS of (202) is

upper bounded by
∑

T∈R1,1

|X (T )| exp

[
−
(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n

+Pα̃↔γ̃ Iα,γ
log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

≤
∑

T∈R1,1

|X (T )| exp

[
−
(
|Pd|Ir +

Iα,β
2

log n

n
|Pα̃→β̃ |

+
Iα,γ
2

log n

n
|Pα̃→γ̃ |

)]

= exp

[
−
(
c2nm

logm

n
+ c3

log n

n
n2

)] ∑

T∈R1,1

|X (T )|

(218)
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|Pd| =
∑

x∈[c]

∑

i∈[g]

∑

y∈[c]

∑

j∈[g]

n
(x,y)
i,j d

(x,y)
i,j ≥ n(x0,y0)

i0,j0
d
(x0,y0)
i0,j0

>

(
(1− τ) n

gc

)
(τmmin{δc, δg}) (219)

=

(
(1− τ)τ min{δc, δg}

2gc

)
mn+

(
(1− τ)τ min{δc, δg}

2gc

)
mn

≥
(

(1− τ)τ min{δc, δg}
2gc

)
mn+ ((1− τ)m)



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=σ(x,i)

n
(x,y)
i,j


 (220)

=

(
(1−τ)τ min{δc, δg}

2gc

)
mn+ ((1−τ)m)



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j +

∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j




≥ c4mn+ ((1− τ)m)


δg



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j


+ δc



∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j




 . (221)

≤ exp [− (c2m logm+ c3n log n) + n log(gc) +mgc log q]

(222)

= exp [− (m (c2 logm−gc log q) + n (c3 log n− log(gc)))],

(223)

where c2 and c3 in (218) are some positive constants; (218)
follows from (12), (213), (215) and (217); and (222) follows
from (209).

(2) Sub-regime 1-2: This sub-regime corresponds to R1,2

characterized by (206). Suppose that there exists only one
pair (y1, j1) ∈ [c] × [g], and a constant µ > 0 such that
n

(x0,y1)
i0,j1

≥ µn. This implies that

n
(x0,y)
i0,j

<
τ

(gc− 1)gc
n, for (y, j) ̸= (y0, j0). (224)

Therefore, by (224), we have

n
(x0,y0)
i0,j0

=
n

gc
−

∑

(y,j) ̸=(y0,j0)

n
(x0,y)
i0,j

>
n

gc
− (gc− 1)

τ

(gc− 1)

n

gc
= (1− τ) n

gc
. (225)

However, this is in contradiction with (204). Hence,
we conclude that sub-regime R1,2 is impossible to exist.

(3) Sub-regime 1-3: This sub-regime corresponds to R1,3

characterized by (207). Due to the fact that
∑

y∈[c]

∑

j∈[g]

n
(x0,y)
i0,j

=
n

gc
, (226)

there should be at least one pair (y1, j1) with n(x0,y1)
i0,j1

≥ µn,
for some µ > 0. However, this is in contradiction with (207).
Thus, we conclude that sub-regime R1,3 is impossible to exist.

As a result, we conclude that
∑

T∈R1

|X (T )| exp

[
−
(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n

+Pα̃↔γ̃ Iα,γ
log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

≤ exp [− (m (c2 logm−gc log q)+n (c3 log n− log(gc)))].

(227)

B. Large Rating Estimation Error Regime

This regime corresponds to R2 characterized by (195).
Suppose that the following conditions hold:

• For every (x, i)∈ [c]×[g], there is a pair (y, j) ∈ [c]× [g]
such that |σ(x, i)| = 1. More precisely, (from (44)) for
every (x, i)∈ [c]× [g] we have

∃(y, j) = (σ(x), σ(i|x)) ∈ [c]×[g] :

n
(x,y)
i,j = |Z0(x, i)∩Z(y, j)| ≥ (1−τ) n

gc
; (228)

• There exists (x0, i0)∈ [c]× [g] with |σ(x0, i0)|= 1, and

d
(x0,y0)
i0,j0

= d
(x0,σ(x0))
i0,σ(i0|x0)

> τmmin{δc, δg}. (229)

We first provide an upper bound on |X (T )|. By (153),
(151) and (209), an upper bound on |X (T )| is given by

|X (T )| ≤ (qgc)
m

exp






∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=
(σ(x),σ(i|x))

n
(x,y)
i,j


log n


.

(230)

Next, we provide a lower bound on |Pd|. Based on (228),
if there exists at least one other pair (ŷ, ĵ) ̸= (σ(x), σ(i|x))
for some (x, i) ∈ [c]× [g] such that

n
(x,ŷ)

i,̂j
=
∣∣∣Z0(x, i) ∩ Z(ŷ, ĵ)

∣∣∣ ≥ µn, (231)

for some constant µ > 0, then the analysis of this case
boils down to Sub-regime 1-1. Therefore, we assume that for
every (x, i) ∈ [c]× [g], we have

n
(x,y)
i,j < µn, ∀(y, j) ̸= (σ(x), σ(i|x)), ∀µ > 0. (232)

Consequently, the size of the set Pd can be lower bounded
as in (221), shown at the top of the page. Here, (219),
shown at the top of the page, follows from (228) and (229);
(220), shown at the top of the page, follows from (232) for
µ = (τ min{δg, δc})/(2(gc− 1)(gc)2); and (221) follows by
setting c4 = ((1−τ)τ min{δc, δg})/(2gc), where 0≤ c4< 1.
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On the other hand, recall from (177), (183) and (192) that

|Pβ̃→α̃|+ |Pα̃→β̃ |
2

≥ (1−τ)n
gc

∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j ,

(233)

|Pγ̃→α̃|+ |Pα̃→γ̃ |
2

≥ (1−τ)n
gc

∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j ,

(234)

and

|Pγ̃→β̃ |+ |Pβ̃→γ̃ |
2

≥ (g−1)
(1−τ)n
gc

∑

x∈[c]

∑

y∈[c]\σ(x)

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j . (235)

Finally, the second term in the RHS of (202) is upper
bounded as in (243), given at the bottom of this page. Here,

∑

T∈R2

|X (T )| exp

[
−
(
|Pd|Ir + Pα̃↔β̃ Iα,β

log n

n
+ Pα̃↔γ̃ Iα,γ

log n

n
+ Pβ̃↔γ̃ Iβ,γ

log n

n

)]

≤
∑

T∈R2

|X (T )| exp

(
−c4mn

logm

n

)
exp


−(1− τ)



(
δgmIr +

n

gc
Iα,β

log n

n

) ∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j

+

(
δcmIr +

nIα,γ
gc

log n

n
+

(g − 1)nIβ,γ
gc

log n

n

) ∑

x∈[c]

∑

y∈[c]\x

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j




 (236)

≤
∑

T∈R2

exp


log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=σ(x,i)

n
(x,y)
i,j




× (qgc)

m
exp (−c4m logm)

× exp


−(1− τ)(1 + ϵ) logn



∑

x∈[c]

∑

i∈[g]

∑

j∈[g]\σ(i|x)

n
(x,σ(x))
i,j +

∑

x∈[c]

∑

y∈[c]\x

∑

i∈[g]

∑

j∈[g]

n
(x,y)
i,j




 (237)

≤
∑

T∈R2

(qgc)
m

exp (−c4m logm) exp


log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=σ(x,i)

n
(x,y)
i,j






× exp


−

(
1 +

ϵ

2

)
log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=σ(x,i)

n
(x,y)
i,j




 (238)

= exp [−m (c4 logm−gc log q)]
∑

T∈R2

exp


− ϵ

2
log n



∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=σ(x,i)

n
(x,y)
i,j






= exp [−m (c4 logm−gc log q)]

τn∑

ℓ=0

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j = ℓ





∣∣∣∣∣∣
exp

(
−ϵ log n

2
ℓ

)
(239)

= exp [−m (c4 logm−gc log q)]




∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j = 0





∣∣∣∣∣∣

+

τn∑

ℓ=1

∣∣∣∣∣∣




∑

x∈[c]

∑

i∈[g]

∑

(y,j) ̸=(σ(x),σ(i|x))

n
(x,y)
i,j = ℓ





∣∣∣∣∣∣
exp

(
−ϵ log n

2
ℓ

)
 (240)

= exp [−m (c4 logm−gc log q)]

[
1 +

τn∑

ℓ=1

(
ℓ+ gc

gc

)
exp

(
−ϵ log n

2
ℓ

)]
(241)

≤ exp [−m (c4 logm−gc log q)]

[
1 +

τn∑

ℓ2=1

2(ℓ2 + gc) n

(
− ϵ

2
ℓ2
)]

(242)

≤ exp [−m (c4 logm−gc log q)]

[
1 + 2gc

∞∑

ℓ2=1

(
2n−ϵ/2

)ℓ2
]

= exp [−m (c4 logm−gc log q)]

[
1 + 2gc

2n−ϵ/2

1− 2 n−ϵ/2

]
. (243)
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• in (236), shown at the bottom of the previous page,
follows from (221) and (233)-(235);

• in (237), shown at the bottom of the previous page, fol-
lows from the sufficient conditions in (12), (13) and (14);

• in (238), shown at the bottom of the previous page,
follows from

τ ≤ [ϵ logm− (2 + ϵ) log(2q)]/[2(1 + ϵ) logm)],

which implies that (1− τ)(1 + ϵ) ≥ (1 + (ϵ/2));
• in (239), shown at the bottom of the previous page,

readily follows from (228);
• in (240), shown at the bottom of the previous page,

we break the summation into two summations and use
the fact that the enumeration of the first element of the set
is independent of the enumeration of the second element;

• in (241), shown at the bottom of the previous page,
we use the fact that the number of integer solutions of∑n
i=1 xi = s is equal to

(
s+n−1
n−1

)
;

• in (242), shown at the bottom of the previous page,
for a ≥ b, we bound each binomial coefficient
by
(
a
b

)
≤∑a

i=0

(
a
i

)
≤ 2a;

• and finally in (243),we evaluate the infinite geometric
series, where ϵ > (2 log 2)/ log n.

By (227) and (243), the RHS of (203) is upper bounded by

lim
n,m→∞

∑

T∈T
(δ)

large

∑

X∈X (T )

exp

[
− (1 + o(1))

(
|Pd|Ir +

log n

n

(
Pα̃↔β̃Iα,β + Pα̃↔γ̃Iα,γ + Pβ̃↔γ̃Iβ,γ

))]

≤ lim
n,m→∞

(
exp [− (m (c2 logm−gc log q)

+n (c3 log n− log(gc)))]

+ exp [−m (c4 logm−gc log q)]

[
1 + 2gc

2n− ϵ
2

1− 2 n− ϵ
2

])

= 0. (244)

Note that as n tends to infinity, the condition on ϵ becomes

ϵ > lim
n,m→∞

max

{
2 log 2

log n
,
2(g−r+1) log 2

log(c1m)
,

2 log c1
log(m/c1)

}
= 0.

(245)

This completes the proof of Lemma 6. ■

APPENDIX G
PROOF OF LEMMA 7

We start with the proof with the minimax optimization
approach in (8) to minimize the maximum worst-case
probability of error as follows:

inf
ψ
P (δ)
e (ψ)

= inf
ψ

max
M∈M(δ)

P
[
ψ(Y Ω, G) ̸= M

]

≥ inf
ψ

max
M∈M(δ)

P
[
ψ(Y Ω, G) ̸= M, M = M

]

= inf
ψ

max
M∈M(δ)

P
[
ψ(Y Ω, G) ̸= M |M = M

]
(246)

= inf
ψ

max
M∈M(δ)

∑

X ̸=M

P
[
ψ(Y Ω, G) = X |M = M

]

= max
M∈M(δ)

∑

X ̸=M

P
[
ψML(Y Ω, G) = X |M = M

]
(247)

≥
∑

X ̸=X0

P
[
ψML(Y Ω, G) = X |M = X0

]
(248)

=
∑

X ̸=X0

P [L(X) ≤ L(X0)] (249)

≥ P



⋃

X ̸=X0

(L(X) ≤ L(X0))


 (250)

= P [Sc] , (251)

where (246) holds for M with uniform distribution; (247)
follows from the fact that the maximum likelihood estimator is
optimal under a uniform prior; (248) follows since X0 ∈M(δ)

whose construction is given in Section IV; (249) follows
by the definition of maximum likelihood estimation; (250)
follows from the union bound; and finally (251) follows
from (58). This completes the proof of Lemma 7. ■

APPENDIX H
PROOF OF LEMMA 8

Recall from Appendix D the definition of Ui = Ui(p, θ, q)
in (122), and the expression of − logMUi(p,θ,q)

(
1
2

)
in (129).

Define a related random variable Ûi = Ûi(p, θ, q) that has
the same sample space as Ui(p, θ, q), but its probability mass
function is given by

f
Ûi(p,θ,q)

(u) =
exp

(
1
2u
)
fUi(p,θ,q)(u)

MUi(p,θ,q)(
1
2 )

. (252)

More formally, Ûi(p, θ, q) is defined as

Ûi(p, θ, q)

=





− log
(
(q − 1) 1−θ

θ

)
w.p. 1

MUi(
1
2 )

√
θ(1−θ)
q−1 p,

0 w.p.
(1−p)+pθ(1− 1

q−1 )
MUi(

1
2 )

,

log
(
(q − 1) 1−θ

θ

)
w.p. 1

MUi(
1
2 )

√
θ(1−θ)
q−1 p,

(253)

from which one can readily show that

E

[
Ûi(p, θ, q)

]
= 0, (254)

Var

[
Ûi(p, θ, q)

]
=

2
(
log
(
(q − 1) 1−θ

θ

))2√ θ(1−θ)
q−1 p

1−
(√

1− θ −
√

θ
q−1

)2

p

= O(p). (255)

Similarly, we can use the definition of Vj = Vj(µ, ν) in (130)
in Appendix D, and the expression of − logMVj(µ,ν)

(
1
2

)

in (134). Define a related random variable V̂j = V̂j(µ, ν)
that has the same sample space as Vj(µ, ν), but its probability
mass function is given by

f
V̂j(µ,ν)

(v) =
exp( 1

2v)fVj(µ,ν)(v)

MVj(µ,ν)(
1
2 )

. (256)
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More formally, V̂j(µ, ν) is defined as

V̂j(µ, ν)=





− log (1−µ)ν
(1−ν)µ w.p.

√
(1−µ)(1−ν)µν

MVj (
1
2 )

,

0 w.p. ((1−µ)(1−ν)+µν)

MVj (
1
2 )

,

log (1−µ)ν
(1−ν)µ w.p

√
(1−µ)(1−ν)µν

MVj (
1
2 )

.

(257)

Note that V̂j(µ, ν) is a random variable that takes only
three values, and hence its mean and variance can be easily
evaluated as

E

[
V̂j(µ, ν)

]
= 0, (258)

Var

[
V̂j(µ, ν)

]
=

2
(
log (1−µ)ν

(1−ν)µ

)2√
(1− µ)(1− ν)µν

(√
µν +

√
(1− µ)(1− ν)

)2

= O (
√
µν) . (259)

Let

{Ui(p, θ, q) : i ∈ Pd},
{Vj(β̃, α̃) : j ∈ Pβ̃→α̃},
{Vk(γ̃, α̃) : k ∈ Pγ̃→α̃},
{Vℓ(γ̃, β̃) : ℓ ∈ Pγ̃→β̃}

be sets of independent and identically distributed random
variables defined as per (122) and (130). Note that the sets
Pd, Pβ̃→α̃, Pγ̃→α̃ and Pγ̃→β̃ (defined by (29), (30), (32)
and (34), respectively) are disjoint sets. Similarly, let

{Ûi(p, θ, q) : i ∈ Pd},
{V̂j(β̃, α̃) : j ∈ Pβ̃→α̃},
{V̂k(γ̃, α̃) : k ∈ Pγ̃→α̃},
{V̂ℓ(γ̃, β̃) : ℓ ∈ Pγ̃→β̃}

be sets of independent and identically distributed random
variables defined as per (252) and (256).

For {Pµ→ν : |Pµ→ν | = |Pν→µ| , µ, ν ∈ {α̃, β̃, γ̃}, µ ̸= ν},
we express the random variable of interest B from (42) as

B =
∑

i∈Pd

log

(
(q − 1)

1− θ
θ

)
B

(p)
i

[(
1 + B

( 1
q−1 )
i

)
B

(θ)
i − 1

]

+
∑

j∈P
β̃→α̃

log

(
(1− β̃)α̃

(1− α̃)β̃

)(
B

(β̃)
j − B

(α̃)
j

)

+
∑

k∈Pγ̃→α̃

log

(
(1− γ̃)α̃
(1− α̃)γ̃

)(
B

(γ̃)
k − B

(α̃)
k

)

+
∑

ℓ∈P
γ̃→β̃

log

(
(1− γ̃)β̃
(1− β̃)γ̃

)(
B

(γ̃)
ℓ − B

(β̃)
ℓ

)
,

=
∑

i∈Pd

Ui(p, θ, q) +
∑

j∈P
β̃→α̃

Vj(β̃, α̃)

+
∑

k∈Pγ̃→α̃

Vk(γ̃, α̃) +
∑

ℓ∈P
γ̃→β̃

Vℓ(γ̃, β̃). (260)

Following a similar proof technique used for the proof
of [58, Lemma 5.2], the probability that B is non-negative

can be lower bounded by (268), shown at the top of the next
page, where

• the summation in (265), shown at the top of the next
page, is over

R(ξ)=
{
{ui}i∈Pd

, {vj}j∈P
β̃→α̃

, {vk}j∈Pγ̃→α̃
, {vℓ}j∈P

γ̃→β̃
:

0 ≤



∑

i∈Pd

ui +
∑

j∈P
β̃→α̃

vj +
∑

k∈Pγ̃→α̃

vk +
∑

ℓ∈P
γ̃→β̃

vℓ


< ξ



;

moreover, (265) follows from the independence of the
random variables {Ui : i ∈ Pd}, {Vj : j ∈ Pβ̃→α̃},
{Vk : k ∈ Pγ̃→α̃} and {Vℓ : ℓ ∈ Pγ̃→β̃}.

• in (266), shown at the top of the next page, holds since

exp


1

2



∑

i∈Pd

ui +
∑

j∈P
β̃→α̃

vj +
∑

k∈Pγ̃→α̃

vk +
∑

ℓ∈P
γ̃→β̃

vℓ




< exp

(
ξ

2

)
;

• in (267), shown at the top of the next page, follows
from (252) and (256); and

• in (268), is a consequence of (129) and (134), and the fact
that random variables {Ûi : i ∈ Pd}, {V̂j : j ∈ Pβ̃→α̃},
{V̂k : k ∈ Pγ̃→α̃} and {V̂ℓ : ℓ ∈ Pγ̃→β̃} are
independent.

It should be noted that (268) holds for any value of ξ. In partic-
ular, we choose ξn that satisfies the following two conditions:

lim
n→∞

ξn

|Pd|Ir +
(|Pβ̃→α̃

|Iα,β+|Pγ̃→α̃|Iα,γ+|P
γ̃→β̃

|Iβ,γ) logn

n

= 0,

(261)

lim
n→∞

|Pd|p+|Pβ̃→α̃|
√
α̃β̃+|Pγ̃→α̃|

√
α̃γ̃+|Pγ̃→β̃ |

√
β̃γ̃

ξ2n
=0,

(262)

for any Pd, Pβ̃→α̃, Pγ̃→α̃ and Pγ̃→β̃ such that at least one
of these sets is non-empty.9 One instance of ξn that satisfies
both (261) and (262) is given by

ξn =

(
max

{
|Pd| ,

∣∣∣Pβ̃→α̃

∣∣∣ , |Pγ̃→α̃| ,
∣∣∣Pγ̃→β̃

∣∣∣
} log n

n

) 2
3

.

(263)

Consequently, (261) implies that the exponent of the expo-
nential term in (268) can be asymptotically approximated as

− (1 + o(1))

[
|Pd|Ir +

log n

n

(
|Pβ̃→α̃|Iα,β

+|Pγ̃→α̃|Iα,γ + |Pγ̃→β̃ |Iβ,γ
)]
− 1

2
ξn

≃ −(1 + o(1))

[
|Pd|Ir + |Pβ̃→α̃|Iα,β

log n

n

+|Pγ̃→α̃|Iα,γ
log n

n
+ |Pγ̃→β̃ |Iβ,γ

log n

n

]
.

(264)

9If the sets Pd, P
β̃→α̃

, Pγ̃→α̃ and P
γ̃→β̃

are all empty, then (60) is
trivially true.
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P [B ≥ 0]

= P



∑

i∈Pd

Ui(p, θ, q) +
∑

j∈P
β̃→α̃

Vj(β̃, α̃) +
∑

k∈Pγ̃→α̃

Vk(γ̃, α̃) +
∑

ℓ∈P
γ̃→β̃

Vℓ(γ̃, β̃) ≥ 0




≥ P


0 ≤

∑

i∈Pd

Ui(p, θ, q) +
∑

j∈P
β̃→α̃

Vj(β̃, α̃) +
∑

k∈Pγ̃→α̃

Vk(γ̃, α̃) +
∑

ℓ∈P
γ̃→β̃

Vℓ(γ̃, β̃) < ξ




=
∑

R(ξ)



∏

i∈Pd

fUi(p,θ,q)(ui)
∏

j∈P
β̃→α̃

f
Vj(β̃,α̃)(vj)

∏

k∈Pγ̃→α̃

fVk(γ̃,α̃)(vk)
∏

ℓ∈P
γ̃→β̃

f
Vℓ(γ̃,β̃)(vℓ)


 (265)

≥
(
MUi(p,θ,q)

(
1
2

))|Pd|
(
M

Vj(β̃,α̃)

(
1
2

))|Pβ̃→α̃
| (
MVk(γ̃,α̃)

(
1
2

))|Pγ̃→α̃|
(
M

Vℓ(γ̃,β̃)

(
1
2

))|Pγ̃→β̃
|

exp
(

1
2ξ
)

×
∑

R(ξ)



∏

i∈Pd

exp
(

1
2ui
)
fUi(p,θ,q)(ui)

MUi(p,θ)

(
1
2

)
∏

j∈P
β̃→α̃

exp
(

1
2vj
)
f
Vj(β̃,α̃)(vj)

M
Vj(β̃,α̃)

(
1
2

)

×
∏

k∈Pγ̃→α̃

exp
(

1
2vk
)
fVk(γ̃,α̃)(vk)

MVk(γ̃,α̃)

(
1
2

)
∏

ℓ∈P
γ̃→β̃

exp
(

1
2vℓ
)
f
Vℓ(γ̃,β̃)(vℓ)

M
Vℓ(γ̃,β̃)

(
1
2

)


 (266)

= exp

[
|Pd| logMUi(p,θ,q)

(
1

2

)
+ |Pβ̃→α̃| logM

Vj(β̃,α̃)

(
1

2

)

+|Pγ̃→α̃| logMVk(γ̃,α̃)

(
1

2

)
+ |Pγ̃→β̃ | logM

Vℓ(γ̃,β̃)

(
1

2

)
− 1

2
ξ

]

×
∑

R(ξ)



∏

i∈Pd

f
Ûi(p,θ,q)

(ui)
∏

j∈P
β̃→α̃

f
V̂j(β̃,α̃)(vj)

∏

k∈Pγ̃→α̃

f
V̂k(γ̃,α̃)(vk)

∏

ℓ∈P
γ̃→β̃

f
V̂ℓ(γ̃,β̃)(vℓ)


 (267)

= exp

[
−(1 + o(1))

(
|Pd|Ir + |Pβ̃→α̃|Iα,β

log n

n
+ |Pγ̃→α̃|Iα,γ

log n

n
+ |Pγ̃→β̃ |Iβ,γ

log n

n

)
− 1

2
ξ

]

× P


0 ≤

∑

i∈Pd

Ûi(p, θ, q) +
∑

j∈P
β̃→α̃

V̂j(β̃, α̃) +
∑

k∈Pγ̃→α̃

V̂k(γ̃, α̃) +
∑

ℓ∈P
γ̃→β̃

V̂ℓ(γ̃, β̃) < ξ


 . (268)

Furthermore, the probability term in (268) can be lower
bounded as

P


0 ≤

∑

i∈Pd

Ûi(p, θ, q) +
∑

j∈P
β̃→α̃

V̂j(β̃, α̃)

+
∑

k∈Pγ̃→α̃

V̂k(γ̃, α̃) +
∑

ℓ∈P
γ̃→β̃

V̂ℓ(γ̃, β̃) < ξn




≥ 1

2
−P



∑

i∈Pd

Ûi(p, θ, q) +
∑

j∈P
β̃→α̃

V̂j(β̃, α̃)

+
∑

k∈Pγ̃→α̃

V̂k(γ̃, α̃) +
∑

ℓ∈P
γ̃→β̃

V̂ℓ(γ̃, β̃) ≥ ξn


 (269)

≥ 1

2
− 1

ξ2n

(
|Pd|Var

[
Ûi(p, θ)

]
+ |Pβ̃→α̃|Var

[
V̂j(β̃, α̃)

]

+|Pγ̃→α̃|Var

[
V̂k(γ̃, α̃)

]
+ |Pγ̃→β̃ |Var

[
V̂ℓ(γ̃, β̃)

])

(270)

=
1

2
− 1

ξ2n

(
|Pd|O(p) + |Pβ̃→α̃|O(

√
α̃β̃)

+ |Pγ̃→α̃|O(
√
α̃γ̃) + |Pγ̃→β̃ |O(

√
β̃γ̃)

)
(271)

=
1

2
− o(1) >

1

4
, (272)

where (269) is due to the symmetry of the random variables
Ûi, V̂j , V̂k and V̂ℓ; (270) follows from Chebyshev’s
inequality; (271) holds by substituting the variances
with (255) and (259); and finally (272) is a consequence
of (262). Plugging (264) and (272) into (268), we obtain

P

[
B
(
Pd,Pβ̃→α̃,Pγ̃→α̃,Pγ̃→β̃

)
≥ 0
]

≥ 1

4
exp

[
−(1 + o(1))

(
|Pd|Ir

+
log n

n

(
|Pβ̃→α̃|Iα,β + |Pγ̃→α̃|Iα,γ + |Pγ̃→β̃ |Iβ,γ

))]
,

which is the desired bound in (60). This concludes the proof
of Lemma 8. ■
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APPENDIX I
PROOF OF LEMMA 9

The proof hinges on the alteration method [59]. We present
a construction to show the existence of subsets Z̃0(x, i)
and Z̃0(y, j) with the desired property. Define r := n

log3 n
.

We start by sampling two random subsets Z0(x, i) ⊂ Z0(x, i)
and Z0(y, j) ⊂ Z0(y, j) with cardinalities |Z0(x, i)| = 2r
and |Z0(y, j)| = 2r, respectively. Then, we prune these sets
to obtain the desired edge-free subsets. To this end, for any
pair of nodes a, b ∈ Z0(x, i) ∪ Z0(y, j), we remove both a
and b from Z0(x, i) ∪ Z0(y, j) if (a, b) ∈ E . We continue this
process until the remaining set of nodes is edge-free. Let P
be the set of nodes that we remove from Z0(x, i) ∪ Z0(y, j)
throughout the pruning process. The expected value of |P| is
upper bounded by

E[|P|] ≤ 2E




∑

a,b ∈ Z0(x,i)∪Z0(y,j)

1 [(a, b) ∈ E ]




= 2




∑

a,b∈Z0(x,i)

E[1 [(a, b) ∈ E ]] +
∑

a,b∈Z0(y,j)

E[1 [(a, b) ∈ E ]]

+
∑

a∈Z0(x,i)

∑

b∈Z0(y,j)

E[1 [(a, b) ∈ E ]]




= 2




∑

a,b∈Z0(x,i)

α̃+
∑

a,b∈Z0(y,j)

α̃+
∑

a∈Z0(x,i)

∑

b∈Z0(y,j)

β̃




= 2

[(
2r

2

)
α̃+

(
2r

2

)
α̃+ (2r)2β̃

]
≤ 16 r2α̃, (273)

where the last inequality holds since β̃ ≤ α̃. Using Markov’s
inequality for the non-negative random variable |P|, we obtain

P [|P|≥r] ≤ E [N ]

r
≤ 16n

log3 n
α̃= Θ

(
n

log3 n
×log n

n

)
= o(1).

(274)

Therefore, the number of remaining nodes (after pruning)
satisfies

P
[
|Z0(x, i) ∪ Z0(y, j) \ P| > 3r

]

= P [|P| < r] = 1− P [|P| ≥ r] = 1− o(1).

Hence, Z0(x, i) \ P and Z0(y, j) \ P both have at least 3r
elements. This, together with |Z0(x, i)| = |Z0(y, j)| = 2r,
implies that Z0(x, i) \ P and Z0(y, j) \ P each have at least
r elements. Therefore, we can choose r elements from each
of Z0(x, i) \ P and Z0(y, j) \ P to form the desired sets
Z̃0(x, i) and Z̃0(y, j), respectively. This completes the proof
of Lemma 9. ■
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