
6482 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

Power Efficient MISO Caching With Practical
Subpacketization via User Scheduling

Soheil Mohajer , Member, IEEE, and Itsik Bergel , Senior Member, IEEE

Abstract— We present a novel power-efficient and low-
complexity scheme for cache-aided communication in networks
with a multi-antenna base station that serves multiple single-
antenna users. The scheme is based on transmitting coded
messages to disjoint groups of users simultaneously and achieves
an important trade-off between performance and complexity. The
subpacketization level of the proposed scheme is sub-optimum
compared to the state-of-the-art but is still feasible for a practical
range of network parameters. On the other hand, the scheme
achieves near-optimal performance and asymptotically achieves
the same degrees of freedom (DoF) as the best-known schemes
achieve. However, compared to other optimum achievable
rates, the proposed scheme suffers from minor performance
degradation due to power loss, which becomes negligible as the
signal-to-noise ratio or the number of users grows. In return, the
reductions in complexity and subpacketization allow for practical
implementation of this scheme even for a large number of users.
The presented scheme is also very flexible to the variation of the
network topology and can easily be generalized to heterogeneous
and dynamic scenarios.

Index Terms— Cache-aided communication, MISO, power
efficiency, subpacketization level.

I. INTRODUCTION

DESPITE recent improvements in wireless communication
technologies and data delivery networks, the rates

supported by these networks are not likely to keep up with
the overwhelming growth in demand. Caching the data at the
users is a strategy that offers benefits from off-peak hours
and shifts a part of the traffic to lower network traffic time.
The gain of traditional caching is limited to the cache size of
each individual user, which is typically negligible in practice.
The cache-aided communication technique was introduced by
Maddah-Ali and Niesen in [3], which allows for a global gain,
in addition to the gain offered by traditional caching. The

Manuscript received 28 December 2022; revised 29 June
2023 and 28 September 2023; accepted 29 October 2023. Date of publication
21 November 2023; date of current version 12 June 2024. The work of Soheil
Mohajer was supported in part by the National Science Foundation under
Grant CCF-1749981. An earlier version of this paper was presented in part
at the 2020 IEEE International Conference on Communications (ICC) [1]
and in part at the 2020 IEEE International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC) 2020 [2]. The associate
editor coordinating the review of this article and approving it for publication
was Y. Cui. (Corresponding author: Itsik Bergel.)

Soheil Mohajer is with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
soheil@umn.edu).

Itsik Bergel is with the Faculty of Engineering, Bar-Ilan University, Ramat
Gan 52900, Israel (e-mail: itsik.bergel@biu.ac.il).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2023.3332417.

Digital Object Identifier 10.1109/TWC.2023.3332417

global gain is due to the possibility of interference cancellation
at user v if a message sent to user u is cached by user v. This
yields a broadcasting opportunity that serves multiple users
simultaneously. The global gain scales with the aggregate size
of the cache distributed among all the users in the network
and can be substantial due to the large number of users in the
network.

The cache-aided communication or coded caching scheme
consists of a placement phase and a delivery phase [3]. During
the placement phase, before knowing the users’ requests,
we can store some packets from the database in each user’s
memory. Once the requests are revealed, the server generates
a set of coded messages and transmits them to the users
during the delivery phase. All users should be able to decode
their desired file from the received signal and their cache
content. The key feature of coded caching is the utility of
a packet cached at one user, even if it is requested by another
user. This provides an opportunity for multicasting combined
packets intended for many users and increases the number of
achievable degrees of freedom (DoF) by the number of copies
of the database cached among all the users.

The application of coded caching in wireless commu-
nication has received significant attention in recent years.
In particular, [4], [5], [6], [7], [8], [9] studied coded caching
in wireless networks in the presence of fading and/or erasure
channels. Coded caching in wireless networks with multiple
antennas at transmitters and/or receivers are considered in
[6], [10], [11], and [12]. Employment of coded caching in
wireless networks, and in particular, in cellular networks,
requires addressing several practical issues [13]. In a practical
system, each user has a channel with different statistics and
capacities. Cache allocation should be optimized depending on
network traffic, the user’s channel quality, the user’s available
storage, and other network characteristics. Coded caching for
heterogeneous networks with different channels and rates for
users (in the delivery phase) is studied in [14] for networks
with single transmit and receive antennas. In [14], each packet
transmission is subject to the rate of the weakest user among
those supposed to decode the packet.

A transmitter with L transmit antennas can spatially
multiplex its data to L users and achieve a DoF of
L. A homogeneous (with statistically identical channel
links) MISO network is studied in [12], where the spatial
multiplexing and multicasting gains are combined, and it is
shown that the performance improves as the number of users
grows. Interestingly, the spatial diversity gain and caching

1536-1276 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2254-1652
https://orcid.org/0000-0002-2507-612X

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6483

gains can be simultaneously achieved. In [11], Shariatpanahi,
Caire, and Khalaj showed that L+M degrees of freedom could
be achieved in a broadcast system with L transmit antennas at
the server and an aggregate cache size that can distributedly
store M copies of the database across the users. Throughout
this paper, we will refer to the scheme of [11] as the SCK
scheme. It is shown in [15] that L + M is the maximum DoF
that can be achieved with uncoded cache placement, i.e., the
pre-fetched data is a subset of raw packets of the files in the
database, and one-shot linear data delivery, in which no data
is transmitted more than once.

A critical concern in adopting cache-aided communication
for practical systems is the subpacketization level, which
refers to the number of segments to which each file must be
divided. A large subpacketization level leads to a complex
and computationally heavy scheme, where many short-length
file segments must be individually encoded at the transmitter
and decoded by the users. The problem of subpacketization in
cache-aided communication was widely studied for the single
antenna setting [16], [17], [18], [19]. In particular, the problem
is formulated as an optimization problem in [17] and [20]. The
tradeoff between the delivery rate and the subpacketization is
studied in [21], where some classes of codes with the optimum
tradeoff are introduced. Moreover, for a specific range of
parameters, combinatorial solutions are proposed [22], [23].

For the MISO setting with U users, the SCK scheme [11]
requires dividing each file into

(
U
M

)(
U−M−1

L−1

)
= O

(
UM+L−1

)
file segments. This is practically infeasible, especially
since cache-aided communication is attractive mostly for
networks with a large number of users. A placement
strategy based on hypercube combinatorial design is
proposed in [24] for an interference channel with multiple
transmitters and receivers. Applying this scheme to
a MISO network, we get a subpacketization level of(

U
M

)M(U/M−2
L/M−1

)(
U/M−1

L/M

)M−1((L
M

)
!
)M M !

L =O
(
UM+L−1

)
,

which is the same order as that of the SCK scheme. Note that
in both schemes [11], [24], the exponent of subpacketization
not only increases with the cache size but also with the
number of antennas.

In a seminal work, Lampiris and Elia [25] proposed a
scheme based on grouping and cache replication ideas. The
scheme of [25] treats the network as if there are only U/L
effective users, yet it achieves the optimum DoF of M + L.
The main drawback of this scheme is the requirement for
the number of copies of the database distributedly cached
across the users to be divisible by the number of antennas,
i.e., M/L should be an integer. In practice, M is typically
small, and hence, such a constraint is often not feasible. If this
requirement is not satisfied, the scheme’s efficiency decreases,
and the achievable DoF reduces by a multiplicative factor of
at most 2, compared to the optimal DoF. Even when L|M , and
the scheme achieves the optimal DoF, it still suffers from a
significant power loss compared to the SCK scheme [11], due
to the replacement of XOR operations with arithmetic signal
additions in the real or complex field.

In a recent pioneering paper, Salehi et al. introduced a
cyclic caching for the regime of L ≥ M , for which the
subpacketization level is (M+L)U , which only scales linearly

with the number of users [26]. This subpacketization level is
very convenient, and the applicability to L ≥ M covers a range
of parameters that are not covered in [25]. But, this scheme
suffers from the same power loss as [25] due to streaming
one message for each active user, compared to the proposed
scheme in which we send coded messages. As we will discuss
later, this power loss can be as large a multiplicative factor of
M + 1, which is significant in some scenarios.

In this work, we present a low-complexity cache-aided
communication scheme for multiple-antennas systems, which
is applicable to any integer value of M . Our proposed scheme
requires a subpacketization level of only

(
U
M

)
= O

(
UM

)
,

which is significantly smaller than O
(
UM+L−1

)
required by

the SCK scheme. Yet, we prove that the scheme performs
nearly as well as the SCK scheme and significantly better than
[25] and [26] in terms of power efficiency. Moreover, unlike
the SCK scheme, where users are simultaneously decoding
multiple messages, in the proposed scheme, each active user
receives and decodes only one message at each transmission
slot. While the scheme is presented for a homogeneous
network where users experience fading channels with identical
statistics, it can be extended to arbitrary network topologies
(see, for example [27].)

Paper Organization: In the following, we first present the
system model in Section II. The proposed scheme is described
in Section III. Our scheme requires scheduling, for which three
algorithms are discussed in Section IV. Section V presents an
extensive analytical comparison between the proposed and the
SCK schemes. Our analytical comparisons are corroborated by
numerical simulation presented in Section VI, and we conclude
the paper in Section VII.

Notation: For an integer n we use [n] to refer to set
{1, 2, . . . , n}. For integers n and k we have

(
n
k

)
= n!

k!(n−k)! .
We use bold letters (e.g. h) to denote vectors and calligraphic
letters (e.g. A) to refer to sets. The expected value is denoted
by E[·], the binary XOR operation is represented by ⊕, and
⌊x⌋ and ⌈x⌉ denote the floor and ceiling of x, respectively.

II. SYSTEM MODEL

We consider a network with U users, each with one receive
antenna and a single base station (BS) equipped with L
transmit antennas. We focus on a wideband communication
scenario in which the bandwidth, B, is divided into K
frequency bins (e.g., OFDM), and each bin k ∈ [K] carries one
modulated symbol at a time without inter-symbol-interference.
The nth received sample after matched filtering for the kth
frequency bin at user u is given by

rClyu,k[n] = hu,kxk[n] + zu,k[n], (1)

where xk[n] ∈ CL×1 is the transmit vector at time n,
zu,k[n] ∼ CN

(
0, B

K

)
is the additive white Gaussian noise

sample at User u in the frequency bin k, and hu,k ∈ C1×L is
the channel vector from the BS to user u in the frequency
bin k. We assume the BS has a total power constraint of
P = E

[
∥xk[n]∥2

]
. We also assume a homogeneous network,

where the fading channels are distributed as hu,k ∼ CN (0, I)
for every user u ∈ [U] and frequency band k ∈ [K].

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

6484 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

Finally, we assume that the perfect channel state information
is available at the BS and the receivers.

The BS has a dictionary of N files, namely
{W1, W2, . . . ,WN}, each of size F bits. Each user is
interested in one of the files. In a cache-aided communication
system, each user u ∈ [U] is equipped with a memory Zu

that can store up to MNF/U bits. That is, M copies of the
entire dictionary of the files can be distributedly stored across
the users. Cache placement, the process of filling the storage
of the users with partial information from the dictionary,
takes place before the users’ demands are revealed. Later,
each user, u, requests a file Wdu

from the dictionary, and the
BS serves the users during the delivery phase. At the end of
the delivery phase, each user, u, should be able to decode
Wdu

from Zu and the signal received from the BS.
Throughout this paper, for a subset of users A ⊆ [U] with

|A| ≤ L− 1, we use h⊥k [[A]] ∈ CL×1 to denote a unit-length
beamforming vector which is orthogonal to the channel vectors
of all users in A at frequency bin k. That is, ∥h⊥k [[A]]∥ = 1 and
hu,kh⊥k [[A]] = 0, for every u ∈ A and k ∈ [K]. Note that such
a vector is unique when |A| = L − 1 and the channel to the
users in A are linearly independent. Otherwise, h⊥k [[A]] refers
to any vector satisfying these conditions.

III. THE PROPOSED SCHEME

We use the placement strategy proposed in [3]. First, each
file is split into

(
U
M

)
segments, and labeled with subsets of [U]

of size M , namely, Wn ={WS
n :S ⊆ [U], |S|=M} for every

n∈ [N]. Then, the cache of user u ∈ [U] will be filled by all
file segments with labels including u, i.e.,

Zu =
⋃

n∈[N]
{WS

n : u ∈ S}. (2)

This implies |Zu| = N
(

U−1
M−1

)
F/
(

U
M

)
= NMF/U , and the

cache size constraint is satisfied.
After the placement phase is completed, the users reveal

their requests. Let Wdu
be the file requested by user u. The

delivery phase is divided into several time slots. In each time
slot, we can serve up to M + L users, which are partitioned
into groups of size M + 1. Therefore, the number of groups
served in each time slot is g ≜ M+L

M+1 . In the following, we first
describe the delivery phase for integer values of g. Then,
in Section III-B, we relax this constraint.

A. Integer Values of g

Consider all subsets of [U] of size M + 1, that is,
G ≜ {B ⊆ [U] : |B| = M + 1}. In the following, we refer
to each such subset as a group. In each time slot m, we can
serve g groups. In the following, we specify the properties of
groups that can be served together.

Definition 1 (Scheduling for Integer g): For integer value
of g, a scheduling is a table T with T rows and g columns,
where each row T [m] is a collection of at most g groups from
G, i.e., T [m] ⊂ G and |T [m]| ≤ g. Such scheduling is called
valid if and only if

(i) All groups are covered by T , i.e.,
⋃T

m=1 T [m] = G.
(ii) All groups in each row are disjoint, i.e., B ∩B′ = ∅, for

every m and every B,B′ ∈ T [m].

For a time slot m ∈ {1, 2, . . . , T}, the row T [m] determines
the set of groups to be served in time slot m. More
precisely, the set of active users in time slot m is given by
U [m] =

⋃
B∈T [m] B. Each user v ∈ B ∈ T [m] will be served

by the file segment W
B\{v}
dv

during the time slot m. To this
end, we first form a coded file segment for the group B, given
by WB ≜

⊕
u∈B W

B\{u}
du

. Then, we modulate this coded file
segment to a codeword wB of length τK. We further split the
codeword into K chunks, namely wB,k ∈ C1×τ for k ∈ [K],
and send each chunk in one frequency bin. The transmit signal
for time slot m in frequency bin k will be formed by

Xk[m] =
√

P/K · |T [m]|
∑

B∈T [m]

h⊥k [[U [m] \ B]]wB,k, (3)

where1 Xk[m] ∈ CL×τ and its ℓ-th row will be sent over
the ℓ-th transmit antenna at time slot m (which consists of
τ clock cycles). Note that |U [n] \ B| ≤ (g − 1)(M + 1) =
L−1
M+1 (M + 1) = L − 1, and hence zero-forcing at users in
U [n] \ B is feasible using L transmit antennas.

The received vector at user u in group B◦ ∈ T [m] is

yu,k[m]
= hu,kXk[m] + zu,k[m]

=

√
P

K · |T [m]|
∑

B∈T [m]

hu,kh⊥k [[U [m] \ B]]wB,k + zu,k[m]

(a)
=
√

P/K · |T [m]|hu,kh⊥k [[U [m]\B◦]]wB◦,k +zu,k[m], (4)

where (a) is due to the fact that hu,k is orthogonal to
h⊥k [[U [m] \ B]] for every B ̸= B◦. Receiving {yu,k[m]} for
all k ∈ [K], user u then decodes a single (coded) message
wB◦ . Note that since u ∈ B◦, all file segments W

B◦\{v}
n

(with v ̸= u) are stored in the cache of user u, and they
can be subtracted (XORed) from wB◦ to recover the desired
file segment W

B◦\{u}
du

.
After the completion of the transmission scheme for all

time slots m ∈ [T], each user u will retrieve all its file
segments WS

du
which are not cached in its memory, i.e., u /∈ S.

Concatenating these segments with those in the cache, user u
will be able to decode its desired file. The overall delay of
service for all users in T time slots, each of duration τ , will
be Tτ .

The following example demonstrates the delivery scheme
discussed above.

Example 1: Consider the wireless network with
U = 8 users that are served by a base station equipped
with L = 3 antennas. Each user has a memory in which
it can cache M/U = 1/8 of each file. Note that we have
g = L+M

M+1 = 4
2 = 2, which is an integer. In the placement

phase we divide each file Wn into
(

U
M

)
= 8 equal size

segments, and label them as W
{1}
n , W

{2}
n , . . . ,W

{8}
n . Then

user u ∈ {1, . . . , 8} will cache all the file segments whose

1It is worth mentioning that achieving the optimal performance would
require optimization of the power allocated to each frequency bin and
each codeword chunk, subject to the BS average power constraint. Yet, for
simplicity, we assume the power is equally distributed across the frequency
bins and the data streams.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6485

index is equal to {u}, that is, Zu = {W {u}
n : n = 1, . . . , N}.

Without loss of generality, we assume that user u requests
file Wu, i.e., du = u for u = 1, . . . , 8. In the delivery phase,
we need to serve

(
U

M+1

)
=
(
8
2

)
= 28 groups (pairs) of users.

In each time slot, we can serve g = 2 groups; hence, we need
T = 28/2 = 14 slots to complete the communication. To this
end, we use the schedule T given in (5), as shown at the
bottom of the page, where (·)⊺ denotes the matrix transpose.
Consider a time slot, say m = 3, with T [3] = {{1, 4}, {7, 8}}
during which the set of active users is U [3] = {1, 4, 7, 8}.
The file segments to be sent during this time slot are W

{4}
1 ,

W
{1}
4 , W

{8}
7 and W

{7}
8 , which form coded file segments

W{1,4} = W
{4}
1 ⊕ W

{1}
4 and W{7,8} = W

{8}
7 ⊕ W

{7}
8 .

After modulation to codewords and computing the codeword
chunks for each frequency bin, the base station sends

Xk[3]=
√

P/2K
(
h⊥k [[{7, 8}]]w{1,4},k+h⊥k [[{1, 4}]]w{7,8},k

)
,

in the frequency bin k. Let us consider user u = 4. Its received
signal will be

y4,k[3] = h4,kX4,k[3] + z4,k[3]

=
√

P/2Kh4,kh⊥k [[{7, 8}]]w{1,4},k + z4,k[3], (6)

since h4,kh⊥k [[{1, 4}]] = 0. Next, user 4 decodes W{1,4}
from y4,k[3] for all frequency bins k ∈ [K]. Recall that
W
{4}
1 ∈ Z4, and hence, user 4 can recover W

{1}
4 by removing

the interference, i.e., W
{1}
4 = W{1,4} ⊕ W

{4}
1 . Finally, user

4 can decode W4 by concatenating the delivered and cached
segments. All other users will be served in a similar manner
in T = 14 time slots. ⋄

B. Non-Integer Values of g

When g = M+L
M+1 is not an integer, we can still serve

M+L users simultaneously. However, the scheduling becomes
more complicated. In this case, the BS serves ⌊g⌋ groups as
before. In order to maintain the optimum DoF, it serves an
additional M + L− (M + 1)⌊g⌋ users. These additional users
will be chosen from one or two other groups, called partially
served groups. The remaining users of a partially served
group must be served in different time slots. In the following,
we present the properties of a valid scheduling for an arbitrary
value of g.

Definition 2 (Scheduling for Arbitrary g): An
(M + 1, M + L)-scheduling T over [U] is a table
T = (T [1], T [2], . . . , T [T]), where each T [m] is a
collection of pairs (A,B), such that B ⊆ [U] is a subset of
users of size |B| = M + 1 and A ⊆ B. A scheduling T is
called valid if it satisfies the following conditions:
(C1) All users in each group are served, i.e., for any B ∈ G,

we have B =
⋃T

m=1

⋃
(A,B)∈T [m]A.

(C2) The set of active sub-groups in each time slot are
disjoint, that is, A ∩ A′ = ∅, for every distinct pairs
(A,B) and (A′,B′) which are served in the same
time slot.

(C3) The interference caused by the message intended for
other groups can be zero forced, i.e., for each time slot
m and any (A,B) ∈ T [m], we have |U [m]\B| ≤ L−1,
where U [m] ≜

⋃
(A,B)∈T [m]A.

A pair (A,B) ∈ T [m] indicates that each user u ∈ A will
be served by a file segment W

B\{u}
du

in time slot m. When
A = B, the group B is completely served. If A ⊊ B, then B
is a partially served group, i.e., only users in A are served,
and the users in B \ A still need to be served in other time
slots. We illustrate a valid scheduling for a non-integer g in
Example 2.

Remark 1: Note that the scheduling in Definition 1 for
integer g is a special case of Definition 2, where all groups
are completely served, i.e., A = B for every (A,B) ∈ T [m]
and every m ∈ [T].

Remark 2: If (A,B) ∈ T [m] is partially served at time
m, then Condition (C1) implies that for each non-served user
v ∈ B\A there exist some m′ that v is served with file segment
WB in time slot m′. More precisely, there exist some m′ and
A′ such that v ∈ A′ ⊂ B and (A′,B) ∈ T [m′], i.e., v is
served in time m′.

Consider a scheduling T , and some pair (A,B) ∈ T [m].
The BS first forms a coded segment

W(A,B) ≜
⊕

u∈A
W
B\{u}
du

. (7)

The BS modulates this file segment to a codeword w(A,B),
which will be then divided into K chunks, each of length τ ,
denoted by w(A,B),k for k ∈ [K]. Then the BS broadcasts

Xk[m] =

√
P

K · |T [m]|
∑

(A,B)∈T [m]
h⊥k [[U [m]\B]]w(A,B),k,

at time slot m and frequency bin k. Here, Xk[m] ∈ CL×τ

determines the transmit signal for each transmit antenna at
each time slot of the slot. Note that Condition (C3) guarantees
that |U [m]\B| ≤ L−1 and hence zero-forcing using L transmit
antennas is feasible.

The received signal at an active user u ∈ A◦ with
(A◦,B◦) ∈ T [m] is given by

yu,k[m]
= hu,kXk[m] + zu,k[m]

=

√
P

K|T [m]|
∑

(A,B)∈T [m]

hu,kh⊥k [[U [m]\B]]w(A,B),k+zu,k[m].

Consider the term in the summation above corresponding to
a pair (A,B). If u ∈ U [m] \ B then hu,kh⊥k [[U [m] \ B]] = 0,

T =
[
T [1] T [2] T [3] T [4] T [5] T [6] T [7] T [8] T [9] T [10] T [11] T [12] T [13] T [14]

]⊺
=
[
{1, 2} {1, 3} {1, 4} {1, 5} {1, 6} {1, 7} {1, 8} {2, 4} {2, 5} {2, 6} {2, 7} {2, 8} {3, 6} {3, 7}
{3, 4} {5, 6} {7, 8} {2, 3} {4, 5} {6, 8} {3, 5} {5, 7} {6, 7} {4, 8} {3, 8} {4, 6} {4, 7} {5, 8}

]⊺

, (5)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

6486 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

i.e., the corresponding interference is zero-forced at user u.
Otherwise, we have u ∈ B. In this case, if A ≠ A◦, then
Condition (C2) implies A ∩ A◦ = ∅, and more importantly,
u /∈ A. Therefore, u has all the components of the coded
message W(A,B) in its cache (see (7)). Hence, it can construct
the coded version of W(A,B) and subtract it from the received
signal. The output after subtracting the cached interference is
given by

ỹu,k[m]

=yu,k[m]−

√
P

K|T [m]|
∑
(A,B)∈T [m]
B\A∋u

hu,kh⊥k [[U [m]\B]]w(A,B),k

=

√
P

K|T [m]|
hu,kh⊥k [[U [m]\B◦]]w(A◦,B◦),k +zu,k[m]. (8)

Since u ∈ A◦, all file segments W
B◦\{v}
n (with v ̸= u)

are stored in the cache of user u, and they can be removed
(XORed) from w(A◦,B◦) to recover the desired file segment

W
B◦\{u}
du

. Decoding the desired file segments for all other
users follows from a similar argument.

Remark 3: Note that (C3) implies that the number of active
users in each time slot satisfies

|U [m]| ≤ |U [m] \ B|+ |B| ≤ (L− 1) + (M + 1) = M + L.

More importantly, this condition has a special implication for
the feasibility of interference cancellation at partially served
groups. Let (A,B) be a partially served group in time slot m,
i.e., users in A receive W(A,B) during the mth time slot. The
other active users in U [m] \ A should be able to cancel the
interference caused by W(A,B). While we can only zero-force
this message at L−1 users, we may have |U [m] \ A| > L− 1.
Nevertheless, this interference can also be canceled using the
cached content at any user u ∈ B \ A. To this end, we need
W(A,B) to be cached at some active users in U [m] \ A.
This implies that even though user u ∈ B \ A does not
receive W

B\{u}
du

, but it is active, i.e., there exists another
(A′,B′) ∈ T [m] where u ∈ A′.

For instance, T [1] = (({3}, {1, 2, 3}), ({1, 2, 4}, {1, 2, 4}))
is valid row for a schedule with (M, L) = (2, 2) (see
Example 2 in Section IV-B). Here, U [1] = {1, 2, 3, 4}, and
group {1, 2, 4} is completely served, while group {1, 2, 3} is
partially served (only user 3 receives message W

{1,2}
d3

). The
interference caused by W

{1,2}
d3

can be cached out at users
1 and 2, and needs to be zero-forced only at user 4. In general,
Condition (C3) guarantees that there is a sufficiently large
overlap between U [m] \ A and B \ A, so that users in this
intersection can cache out the interference caused by W(A,B).

C. Beamforming Optimization

For simplicity of presentation, the delivery scheme proposed
in this section focuses on zero-forcing, which is more efficient
at high SNR. Yet, one should note that higher performance can
be obtained by optimizing the number of served users and their
beamforming vectors.

The beam optimization problem is not studied herein as
it is identical to the problem solved in [28], where for a
given set of active users and corresponding coded messages,
the beams are optimized to maximize the throughput (for the
worst active user). As a reference, we will only demonstrate
the performance of such optimization in Fig. 5, in Section VI.

It is important to note that the user scheduling approach
proposed in this work can be directly combined with the beam
optimization of [28]. More specifically, when g is an integer,
for every time slot, once the groups to be served are identified,
the beam optimization problem is identical to the minimization
problem in (37) of [28]. Thus, the exact same optimization can
be applied to each time slot. The case of non-integer g can
also be solved with minor adaptations.

However, the differences between the scheduling approach
in this work and that of [28] are worth noting. First, while the
scheme of [28] allows for simultaneously sending β messages
for each user (using a multiple access channel decoder),
we limit each user to decode only one message at a time
(β = 1). Second, while only an integer number of groups can
be served in [28], the proposed scheduling can be applied
to all system parameters. Third, the subpacketization level
of [28] is O(UM+L−1), but the proposed scheme requires
subpacketization of O(UM+1).

Lastly, due to the symmetry of the delivery scheme of [28]
with respect to all users, it turns out that our proposed
scheduling corresponds to a subset of time slots used in [28].
In that sense, for general a channel model (e.g., a narrowband
scenario), our specific choice of groups to be simultaneously
served may lead to a higher or lower rate than [28]. A channel-
aware greedy scheduling is proposed in [27], which selects
the groups to be jointly served in order to maximize overall
performance. The beam optimization of [28] can also be
adopted for the scheduling of [27] to achieve superior
performance. However, in a homogeneous wideband regime
(that is the focus of this work), the performance is averaged
over many narrowband channels, and the rate of the proposed
scheme (with optimized beams) is identical to that of [28].

IV. THE SCHEDULING ALGORITHMS

The success of the delivery scheme presented in Section III
substantially depends on the scheduling, which governs the
selection of users to be served in each time slot. As we have(

U
M+1

)
groups to be scheduled, and at most M + L users

can be served at each time slot, optimal scheduling takes
τ =

⌈
M+1
M+L

(
U

M+1

)⌉
time slots. When g = M+L

M+1 is an integer,
such scheduling exists and can be generated in a recursive
manner, as discussed in Section IV-A. Moreover, we introduce
a greedy scheduling algorithm in Section IV-B that can be used
for both integer and non-integer values of g, which is shown
to be efficient through simulations. The greedy algorithm is
proved to converge to optimal performance as the number of
users increases, at least when g is an integer.

A. An Optimum Scheduling for Integer-Valued g

Let g = M+L
M+1 be an integer. Recall from Definition 1

that an optimum scheduling is indeed a partitioning of all

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6487

possible groups in G = {B ⊆ [U] : |B| = M + 1} into
T =

⌈
M+1
M+L

(
U

M+1

)⌉
rows, such that the groups in each row

are pairwise disjoint.
A simple and optimal scheduling algorithm for this

regime can be developed based on independent sets
in a graph. Consider a graph KM+1

U ≜ (G, E),
where E = {(B,B′) : B,B′ ∈ G,B ∩ B′ ̸= ∅}. In other words,
in KM+1

U each vertex corresponds to an (M + 1)-group, and
two vertices B and B′ are connected via an edge if and only
if they are not disjoint. Then, a valid schedule introduced
in Definition 1 reduces to a partitioning of KM+1

U into T
independent sets, each of size at most g. Here, an independent
set (of vertices) is a subset of the vertices in a graph, where no
two of which are adjacent. The following theorem guarantees
the existence of such partitioning.

Theorem 1 ([29]): Let a1, a2, . . . , aT be positive integers
such that

∑T
j=1 aj =

(
U

M+1

)
. Then, the vertices in KM+1

U can
be partitioned into G = G1 ∪ G2 ∪ · · · ∪ GT where |Gj | = aj

and |N (u,Gj) − N (v,Gj)| ≤ 1 for every u, v ∈ [U] and
every j ∈ [T]. Here, N (u,Gj) :=

∑
B∈Gj :u∈B 1 is the number

of appearances of u in the partition Gj .
Proof: See Theorem 1 in [29]

To get the desired scheduling, we can set T =
⌈

1
g

(
U

M+1

)⌉
,

a1 = · · · = aT−1 = g, and aT =
(

U
M+1

)
− (T − 1)g ≤ g.

Then, the set of vertices in partition Gj is exactly the set of
groups to be served in time slot j. Note that for j = 1, . . . , T ,
we have∑

u∈[U]

N (u,Gj) =
∑

u∈[U]

∑
B∈Gj :u∈B

1 =
∑
B∈Gj

∑
u∈B

1 =
∑
B∈Gj

|B|

≤ g|B| = M + L

M + 1
(M + 1)=M + L ≤ U.

Now, if there exists some u ∈ [U] and j ∈ [T] with
N (u,Gj) ≥ 2, then

∑
u∈[U]N (u,Gj) ≤ U guarantees

that there should be another v ∈ [U] that satisfies
N (v,Gj) = 0. This leads to |N (u,Gj)−N (v,Gj)| ≥ 2, which
is in contradiction with the property guaranteed by Theorem 1.
Therefore, we have N (u,Gj) ≤ 1 for every u ∈ [U]. This
implies that each user appears at most once in each partition
Gj , and hence, the groups in Gj are disjoint.

B. The Greedy Algorithm

The optimal schedule in Section IV-A is rather complicated
and can be only applied for integer values of g. Thus, it is
useful to have a universal but perhaps suboptimal scheduling
algorithm that works for any g with a practical complexity.
In the following, we present a greedy approach for group
scheduling that is applicable to any system parameters. We do
not present a general analytical study of the algorithm’s
performance. However, Theorem 2 shows that the algorithm
performs close to optimum for a certain range of parameters
and a large enough U . More importantly, our numerical results
in Section VI show that the algorithm outperforms the bound
in Theorem 2 for several tested values of (U, M, L), with
integer and non-integer g, (see Fig. 2).

The greedy algorithm described in Algorithm 1 squeezes
as many users as possible into each row of the schedule.

Recall that we aim at serving all the groups in G. In each
row, we serve some of the groups completely, and possibly
some groups will be partially served. If all the M + 1 users
in a group are served with their designated message, then the
group is called to be completely served. Otherwise, if a subset
of the users in a group is served, then the group is called
partially-served group. Note that the remaining users of a
partially served group need to be served in other time slots
of the schedule.

Algorithm 1 The Greedy Algorithm
Input: Parameters M , L, U .
Output: Collision-Free Scheduling T .

1 Initializiation:
2 Global: m = 0;
3 G̃ = All Subsets of [U] of Size M + 1;
4 β = (M + L) mod (M + 1);
5 Buffer = ∅; T [] = An empty array;

6 while |G̃| > 0 do
7 m = m + 1, A∪ = ∅, B = {1};
8 if β > 0 then
9 if Buffer = ∅ then

10 B◦ = Grp(∅, 0, ∅);
11 Buffer = B◦;

12 A◦ = Buffer[1 : min{|Buffer|, β}] ;
13 B = Grp(B◦\A◦, |B◦\A◦|,A◦);
14 if B ̸= ∅ then
15 Buffer = Buffer \ A◦;
16 T [m] = {(A◦,B◦), (B,B)};
17 A∪ = A◦ ∪ B;
18 else
19 T [m] = {(Buffer,B◦)};
20 A∪ = Buffer;
21 Buffer = ∅;

22 while M + L− |A∪| ≥ M + 1 and B ̸= ∅ do
23 B = Grp(∅, 0,A∪);
24 T [m] = T [m] ∪ {(B,B)};
25 A∪ = A∪ ∪ B;

26 if M + L− |A∪| > 0 and B ̸= ∅ then
27 B◦ = Grp(A∪, |A∪| − L + 1, ∅);
28 A◦ = B◦ \ A∪ ;
29 T [m] = T [m] ∪ {(A◦,B◦)};
30 Buffer = B◦ \ A◦;

31 if |Buffer| > 0 then
32 T [m + 1] = {(A◦,B◦)};

We serve at most ⌊g⌋ complete groups in each time slot. Let
β = M +L−(M +1)⌊g⌋. If β = 0, all groups can be served
completely. If β > 0, the additional β users (from one or two
other partially-served groups) will be served in the time slot.

The algorithm uses a Buffer that contains the users of a
partial group that are yet to be served. This Buffer is initially
empty, but once a partial group of size M + 1 is selected, its
users are added to Buffer. Then, they will be removed from

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

6488 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

Algorithm 2 The Function Grp

1 Function B = Grp(C, m,A)
2 Q={X ∈ G̃ : |X ∩ C| = m and X ∩A=∅}
3 B = arg maxX∈Q Scr(X , G̃);
4 G̃ = G̃ \ B;

the Buffer as we serve them in some time slots. The selection
of users from partial groups is as follows:
• if β > |Buffer|, serve β users from Buffer, and remove them
from Buffer.
• otherwise, serve all users in Buffer. At the end of the
scheduling, choose another partial group B◦, and serve
β − |Buffer| users from B◦. The remaining users of B◦ will
be added to Buffer.
• A maximum of ⌊g⌋ complete groups that satisfy Definition 2
will be served in each time slot. The selection of complete
groups is based on the following criteria:
− The first complete group includes the non-served users of
the partial group, i.e., B◦ \ A◦.
− They should be disjoint from the set of active users in

other groups served in the time slot.
− Among all groups satisfying the above properties, the group
with the maximum score is selected by Algorithm 2. Note
that Scr(X , G̃) is a function that prioritizes a group among
all remaining groups. Intuitively, one would like to choose a
group whose members have previously been minimally served.
In particular, in our simulation results, we use

Scr(X , G̃) =
∑

x∈X
|{Y ∈ G̃ : x ∈ Y}|, (9)

which can be efficiently computed and updated throughout the
procedure. However, the algorithm works for a wide class of
scoring functions.
• If the algorithm fails to find a group satisfying the above
properties, it starts a new time slot.

An intuitive explanation for the success of the algorithm is
as follows. When the number of users is large, there are many
possible choices to fill the schedule of each time slot. Hence,
the greedy algorithm will almost always succeed in allocating
M +L users in each slot. A conflict where no available groups
comply with the conditions of Definition 2 may only occur at
the end of the allocation process. This will yield serving less
than M + L in the last time slots. This leads to a reduction
in the DoF. However, it turns out that the overall overhead
normalized by the required number of rows of the schedule is
negligible.

Example 2: Consider a wireless network with U = 5 users,
each has a memory to cache M/U = 2/5 of each file.
A base station with L = 2 antennas can serve (at most)
L + M = 4 users in each time slot. In the placement phase
we divide each file Wn into

(
U
M

)
= 10 equal size segments,

and label them as W
{1,2}
n , W

{1,3}
n , . . . ,W

{4,5}
n . Then user

u ∈ {1, . . . , 5} will cache all the file segments whose index is
of the form {u, v}, for some v ∈ {1, 2, 3, 4, 5} \ {u}. Without
loss of generality, we assume user u requests file Wu, i.e.,
du = u for u ∈ [5].

We serve groups of size M + 1 = 3. Each time slot
can serve up to β = M + L − (M + 1)⌊g⌋ = 1 users
from a partially served group. As shown in Table I, initially,
all the groups are candidates to be partially served. The
greedy algorithm starts by group {1, 2, 3} and identifies its
subset {1} of size β = 1 to be partially served at time slot
m = 1. For the complete group of the first time slot, the
algorithm picks a group that (1) includes {2, 3}, the non-
served members of the partially-served group, and (2) has the
lowest score among the candidates. As shown in the table, the
candidates are {2, 3, 4} and {2, 3, 5}, and both have score 2,
so, w.o.l.g., {2, 3, 4} will be selected. Hence, in this time slot,
we have T [1] = {({1}, {1, 2, 3}), ({2, 3, 4}, {2, 3, 4})}. The
server forms coded messages W({1},{1,2,3}) = W

{2,3}
1 and

W({2,3,4},{2,3,4}) = W
{3,4}
2 ⊕ W

{2,4}
3 ⊕ W

{2,3}
4 , modulates

them, finds the codeword chunks for each frequency bin, and
sends

Xk[1] =

√
P

2K

(
h⊥k [[{1}]]w({2,3,4},{2,3,4}),k

+h⊥k [[{4}]]w({1},{1,2,3}),k

)
, k ∈ [K].

Note that this transmission serves all the active users in
U [1] = {1, 2, 3, 4}, since users 1, 2, 3, and 4 can decode sub-
files W

{2,3}
1 , W

{3,4}
2 , W

{2,4}
3 , and W

{2,3}
4 , respectively.

In the next time slot, we still have to serve {2} from
the partially-served group {1, 2, 3}. The server can choose
between {1, 3, 4} and {1, 3, 5} for the complete group.
However, since user 5 is never served, the hence, {1, 3, 5}
has a lower score and will be selected. Then, we have
T [2] = {({2}, {1, 2, 3}), ({1, 3, 5}, {1, 3, 5})}.

In time slot m = 3, after serving the remaining part of
{1, 2, 3}, i.e., {3}, the server can choose between {1, 2, 4}
and {1, 2, 5}, which have equal scores and hence {1, 2, 4} is
selected.

For m = 4, we need a new group to be partially
served. Among the remaining groups, {1, 4, 5}, {2, 4, 5},
and {3, 4, 5} have the minimum score, and hence {1, 4, 5}
is selected, from which user {1} will be served. Our
candidates for a complete group are {2, 4, 5} and {3, 4, 5},
and the former is chosen as they have identical scores. Thus,
T [4] = {({1}, {1, 4, 5}), ({2, 4, 5}, {2, 4, 5})}.

As can be seen in Table I, the overall schedule is complete
in T = 8 time slots. Note that the minimum number of time
slots is also

⌈
1
g

(
U

M+1

)⌉
=
⌈

3
410
⌉
= 8, and hence the schedule

is optimum. Nevertheless, in time slot m = 8, the schedule
only serves 2 users instead of M + L = 4 users. This leads
to a tiny DoF reduction. We discuss the overhead and gap to
optimality of the proposed delivery method in Section V. ⋄
The following theorem proved in Appendix A provides an
upper bound for the duration of the schedule obtained by the
greedy algorithm.

Theorem 2: (a). For an integer g and any score function,
the duration of the schedule offered by the greedy algorithm
is upper-bounded by

T ≤ 1
g

(
U

M + 1

)
+

g − 1
g

L− 1
M !

UM + 1. (10)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6489

TABLE I
THE EXECUTION OF ALGORITHM 1 FOR SYSTEM PARAMETERS (U, M, L) = (5, 2, 2) AND g = 4/3, THAT TAKES T = 8 TIME SLOTS.

A CIRCLE AROUND THEIR SCORE MARKS GROUP CANDIDATES, AND THE SELECTED GROUPS ARE SHOWN BY ⊠

(b). For L = 2, there exists a score function such that the
duration of the schedule offered by the greedy algorithm is
upper-bounded by

T ≤ 1
g

(
U

M + 1

)
+

g − 1
g

(e− 1)UM + M + 1, (11)

where e ≈ 2.718 is the base of the natural logarithm.
We will use this theorem in Section V to theoretically

bound the gap between the duration of the greedy-based
schedule and that of an optimum schedule, where we show
that the overhead of this (possibly sub-optimum) scheduling
is of the order of 1/U , and thus, is negligible for sufficiently
large U . Our simulation results in Section VI suggest that
the algorithm offers a vanishing overhead (as U grows) for
general parameters, even though the theoretical proof for this
claim is challenging. Moreover, even though the proof of
part (b) is presented for a specific score function, in our
simulations, we use the score function proposed in (9), as it is
not only easier to evaluate but also demonstrates better overall
performance.

Finally, it is worth emphasizing that the complexity
of the greedy algorithm is due to the updating and
minimizing the groups’ scores (Line 3 of Algorithm 2), and it
is in the order of |G|2(M + 1), which practical compared to
the overall complexity of the network.

V. PERFORMANCE COMPARISON

In this section, we analyze the performance of the proposed
scheme and compare it with that of the SCK scheme [11].
The main factors of interest in our comparison are the receiver
complexity, the subpacketization level, and the overall delivery
delay. The comparison is also summarized and compared to
other schemes in the literature in Table II below.

A. Receiver Complexity

In the SCK scheme, in each time slot, the BS simultaneously
sends

(
M+L
M+1

)
messages, out of which each active user is

required to decode
(
M+L−1

M

)
messages. Thus, each user should

simultaneously decode all desired packets as in a multiple
access channel (MAC). Such a receiver is quite complex and
challenging to implement. In contrast, our scheme transmits
only one packet to each active user at any given time. Thus,
the receiver complexity is much lower.

B. The Subpacketization Level

Recall that for the scheme proposed in this paper, each
file is split into

(
U
M

)
segments. The delivery phase is solely

based on combining packets of size F/
(

U
M

)
, encoding them

using error correction codes, and modulating and sending
them from the BS. For the SCK scheme, however, even
though each file is initially divided into

(
U
M

)
segments in the

placement phase, further splitting is required for the delivery
phase. More precisely, each segment is split into

(
U−M−1

L−1

)
subsegments. Therefore, the overall subpacketization level is(

U
M

)(
U−M−1

L−1

)
, which is substantially larger than that of our

proposed scheme. Moreover, the overall number of codewords
to broadcast by the proposed scheme is

(
U

M+L

)
, while this

number is
(

U
M+L

)(
M+L
M+1

)
for the SCK scheme.

C. The Overall Delay

In the following, we first characterize the duration
(communication length) of the SCK scheme. Later, we use
this as a baseline to evaluate the potential overhead of the
proposed scheme compared to the SCK scheme.

Overall Delay of the SCK Scheme: The SCK scheme serves
M +L users in each time slot. Consider a time slot dedicated
to users of set Q (with |Q| = M + L). The BS sends a total

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

6490 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

of
(
M+L
M+1

)
coded messages in each time slot, out of which(

M+L−1
M

)
messages are intended for each user u ∈ Q. Thus,

the total received power at user u ∈ Q in frequency bin k is

P(
M+L
M+1

)
K

∑
Vu∈V⊆Q
|V|=M+1

∣∣hu,kh⊥k [[Q\V]]
∣∣2

=

(
M+L−1

M

)
P(

M+L
M+1

)
K

1(
M+L−1

M

) ∑
V:u∈V⊆Q
|V|=M+1

ηu,k,Q\V

=
P

gK

1(
M+L−1

M

) ∑
V:u∈V⊆Q
|V|=M+1

ηu,k,Q\V ,

where ηu,k,D =
∣∣hu,kh⊥k [[D]]

∣∣2. Since hu,k has a Gaussian
distribution and h⊥k [[D]] is unit-norm, the random variable
ηu,k,D admits an exponential distribution with mean of 1. In a
wideband communication scenario with bandwidth B, which
is divided into K frequency bins, the maximal decodable sum-
rate for messages intended for an active user u ∈ Q (in the
MAC) is given by

K∑
k=1

B

K
log2

(
1 +

P

gB

1(
M+L−1

M

) ∑
V:u∈V⊆Q
|V|=M+1

ηu,k,Q\V

)
. (12)

Using the law of large numbers (K → ∞) for the wideband
regime, the rate of (12) converges to

RSCK = BE

[
log2

(
1 +

P

gB

1(
M+L−1

M

) ∑
V:u∈V⊆Q
|V|=M+1

ηu,k,Q\V

)]
.

(13)

Note that this rate is the sum-rate of
(
M+L−1

M

)
messages where

each message is of length F/
(

U
M

)(
U−M−1

L−1

)
. Therefore, the

minimum length of each time slot is given by

τSCK =
F(

U
M

)(
U−M−1

L−1

)(RSCK(
M+L−1

M

))−1

=

(
M+L−1

M

)(
U
M

)(
U−M−1

L−1

) F

RSCK
.

Finally, note that the scheme requires a total of
T SCK =

(
U

M+L

)
time slots to serve all groups of size

|Q| = M + L. Therefore, the overall minimum delay of the
SCK scheme is given by

DSCK = T SCKτSCK =
U −M

M + L

F

RSCK
. (14)

Delay Analysis of the Proposed Scheme: Let T be a
scheduling satisfying (C1)–(C3) in Definition 2. The received
power at an active user u in group B◦ ∈ T [m] is given by
(see (8))

P

K · |T [m]|
ηu,k,U [m]\B◦ , (15)

where ηu,k,U [m]\B◦ admits an exponential distribution with
mean 1. Hence, given the wideband scenario, the decodable
rate at any active user can be evaluated as

R[m] = BE
[
log2

(
1 +

P

|T [m]|B
ηu,k,U [m]\B◦

)]
. (16)

As the length of each coded message is F/
(

U
M

)
, the duration

of the mth time slot is given by

τ [m] =
F(
U
M

)R[m]−1 =
1(
U
M

) F

R[m]
. (17)

If the schedule has T time slots, the overall delay of the
proposed scheme is given by

D =
T∑

m=1

τ [m] =
1(
U
M

) T∑
m=1

F

R[m]
. (18)

The overall delay of the proposed scheme is generally
larger than that of the SCK scheme due to four factors: (1)
the requirement of having an integer number of time slots,
(2) an excess number of time slots due to serving less than
M + L in some of the slots, (3) the possible power loss due
to the transmission to incomplete groups, and finally (4) the
rate reduction due to the loss of diversity. In the following,
we analyze each of these overhead terms and show that the
normalized number of excess time slots is negligible when
the number of users in the network is large. At the same time,
the effect of power loss and diversity will be negligible at a
sufficiently large signal-to-noise ratio (SNR).

1) The Method Overhead: In an ideal scenario, where g
groups are served in each time slot, the nominal number of
time slots to serve all users in G is TN = |G|/g =

(
U

M+1

)
/g.

However, if TN is not an integer, the minimal number of slots
is TI = ⌈TN⌉ = ⌈

(
U

M+1

)
/g⌉. We refer to

ζM =
TI

TN
− 1 =

⌈TN⌉
TN

− 1 ≤ 1
TN

(19)

as method overhead. Note that ζM = 0 whenever g divides(
U

M+1

)
. More importantly, as U grows, the method overhead

converges to zero as U−(M+1).
2) The Algorithm Overhead: Recall that while

the minimum length of the optimum scheduling is
TI = ⌈|G|/g⌉ = ⌈M+1

M+L

(
U

M+1

)
⌉, an actual scheduling

algorithm may require T ≥ TI time slots to serve all
the groups. We define the algorithm overhead as ζA = T−TI

TI
.

It is shown in Section IV-A that for any integer g, there is a
schedule with T = TI. Hence, when g is an integer, we have
ζA = 0. On the other hand, the duration of a schedule
obtained by the greedy algorithm is bounded by Theorem 2
(for some range of parameters). The following corollary
bounds the algorithm overhead for the greedy scheduling
algorithm, and its proof is presented in Appendix A.

Corollary 1: If g is an integer or L = 2, the greedy
algorithm provides a schedule with an algorithm overhead
ζA = O(1/U). This overhead vanishes when U grows.

While we do not have an analytical guarantee for the greedy
algorithm for non-integer values of g, our numerical results
show a low overhead for all tested scenarios (see Fig. 2 in
Section VI).

3) The Power Overhead: The proposed scheme with a
scheduling table T serves |T [m]| groups in time slot m. Recall
from (8) that the received SNR at an active user u in time
slot m is given in (15), which is inversely proportional to the
number of groups to be served.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6491

For any ℓ, we define Rℓ = BE
[
log2(1 + P

ℓB η)
]
, where η

admits an exponential distribution with mean 1. In an ideal
scenario, (i.e., when g is an integer and |T [m]| = g), we can
achieve a rate of Rg . However, in general, we may serve up
to ⌊g⌋+2 > g groups (including ⌊g⌋ groups to be completely
served and a maximum of 2 partially served groups), and this
leads to a power loss at the active users. We define the power

overhead as ζP ≜ Rg

R̄
− 1, where R̄ =

(
1
T

∑T
m=1

1
R[m]

)−1

is the harmonic mean of the rates achieved by the proposed
scheme, and R[m] = R|T [m]| is the rate achieved at time slot
m. We also denote by γ(ℓ) := |{m : |T [m]| = ℓ}| the number
of time slots during which exactly ℓ groups are served. In the
following, we bound ζP. To this end, we need the following
two lemmas, proved in Appendix B.

Lemma 1: For any ℓ ≥ 0, let Rℓ = BE
[
log
(
1 + P

ℓB η
)]

,
where η is an exponentially distributed random variable with
E[η] = 1. Then, Rℓ is a decreasing functions of ℓ, and ℓRℓ is
an increasing functions of ℓ.

Lemma 2: If the schedule obtained by Algorithm 1 has T
rows, then γ(⌊g⌋+ 2) ≤ β−1

M+1T .
Now, we have

Rg

R̄
=

1
T

T∑
m=1

Rg

R|T [m]|
=

1
T

⌊g⌋+2∑
ℓ=1

γ(ℓ)
Rg

Rℓ

=
1
T

⌊g⌋+1∑
ℓ=1

γ(ℓ)
Rg

Rℓ
+

γ(⌊g⌋+ 2)
T

Rg

R⌊g⌋+2

(a)

≤ 1
T

⌊g⌋+1∑
ℓ=1

γ(ℓ)
Rg

R⌊g⌋+1
+

γ(⌊g⌋+ 2)
T

Rg

R⌊g⌋+2

(b)
=

T − γ(⌊g⌋+ 2)
T

Rg

R⌊g⌋+1
+

γ(⌊g⌋+ 2)
T

Rg

R⌊g⌋+2

(c)

≤ T − γ(⌊g⌋+ 2)
T

⌊g⌋+ 1
g

+
γ(⌊g⌋+ 2)

T

⌊g⌋+ 2
g

=
⌊g⌋+ 1

g
+

γ(⌊g⌋+ 2)/T

g
(d)

≤ ⌊g⌋+ 1
g

+
(β − 1)/(M + 1)

g
(e)
= 1 +

M

(M + 1)g
= 1 +

M

M + L
, (20)

where in (a) we used the first part of Lemma 1
for ℓ ≤ ⌊g⌋+ 1, (b) follows from the fact that∑⌊g⌋+2

ℓ=1 γ(ℓ) = T , (c) holds since ℓRℓ is an increasing
function of ℓ, due to Lemma 1, in (d) we used the fact that
γ(⌊g⌋ + 2) ≤ β−1

M+1T from Lemma 2, and finally, (e) holds
since ⌊g⌋(M + 1) + β = M + L.

On the other, since |T [m]| ≤ ⌊g⌋+ 2, we have

R̄ ≥ R⌊g⌋+2 = BE
[
log2

(
1 +

P

(⌊g⌋+ 2)B
η

)]
≥ BE

[
log2

(
1 +

P

gB
η

)]
−B log2

⌊g⌋+ 2
g

= Rg −B log2

⌊g⌋+ 2
g

. (21)

Therefore, combining (20) and (21), we arrive at

ζP ≤
Rg

R̄
− 1 ≤ min

{
M

M + L
,

B

R⌊g⌋+2
log2

(
⌊g⌋+ 2

g

)}
.

While M
M+L is a universal upper bound for ζP, the power

overhead vanishes as SNR increases:

lim
P→∞

ζP = lim
P→∞

B log2

(
⌊g⌋+2

g

)
R⌊g⌋+2

= 0. (22)

4) The Diversity Overhead: Note that the expectation
in (16) is with respect to one exponentially distributed random
variable ηu,k,U [m]\B◦ , which reflects the random fading in
different frequency bins and the effective channel coefficients
after zero forcing.

In contrast, the rate of the SCK scheme in (13) depends on
the average of multiple η variables. This is due to the fact that
an active user u is simultaneously decoding

(
M+L−1

M

)
different

messages, each pre-coded by a different beamforming vector
(i.e., the coded message intended for users in group V (with
V ⊆ Q, |V| = M + 1, and u ∈ V) is transmitted in the
direction of h⊥k [[Q \ V]]). Consequently, the rate of the SCK
scheme depends on the average of identically distributed (and
perhaps dependent) variables ηu,k,Q\V over the choice of V .

Due to the concavity of the log2(·) function, the capacity
of a Gaussian channel with a similar SNR provides an upper
bound for both rates. Indeed, using the Jansen inequality,
we can write

RSCK ≤ B log2

1 +
P

gB

1(
M+L−1

M

) ∑
V:u∈V⊆Q
|V|=M+1

E
[
ηu,k,Q\V

]
= B log2

(
1 +

P

gB

)
≜ RAWGN. (23)

A similar bound also holds for Rg , the rate achieved when
exactly g groups are served in a time slot, that is, Rg ≤
RAWGN. However, the gap between RSCK and RAWGN is
smaller than the gap between Rg and RAWGN, especially
when the number of messages in the MAC, i.e.

(
M+L−1

M

)
,

is large. This holds even though the variables ηu,k,Q\V in the
summation are statistically dependent.

The effect of this averaging in the SCK scheme is similar
to receive diversity; hence, the SCK scheme offers a higher
rate compared to the proposed scheme. We use RAWGN as
a reference to compare the two rates. The following lemma
provides a bound on the gap between Rg and RAWGN.
We present the proof of this lemma in Appendix B-C.

Lemma 3: Let η be an exponentially distributed
random variable with E[η] = 1. Then, we have
E[log(1+sη)] ≥ 0.8 log(1 + s) for every s ≥ 0. Moreover,
lims→0[log(1+s)− E [log(1+sη)]] = 0.83.
Using Lemma 3 for s = P/gB, we can bound the diversity
overhead of the proposed scheme as

ζD ≜
RSCK

Rg
− 1 ≤ RAWGN

Rg
− 1 =

B log(1 + P/gB)
BE[log(1 + Pη/gB)]

− 1

=
1

0.8
− 1 ≤ 0.25, (24)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

6492 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

Fig. 1. Transmission time vs. the number of users. The performances of no
cache, the proposed scheme with the greedy algorithm, and the SCK scheme
[11] are compared. SNR is 35.7 dB, F = 10Mb and B = 1MHz.

for all values of P ≥ 0. Moreover, for high SNR, we can use
the second part of Lemma 3 to tighten this universal bound as

lim
P→∞

ζD = lim
P→∞

RSCK

Rg
− 1 = lim

P→∞

RAWGN

Rg
− 1

= lim
P→∞

0.83 B

BE[log2(1 + Pη/gB)]
= 0. (25)

This shows that the effect of channel diversity is negligible.
Next, having all the sources of loss analyzed, we can present

a convenient comparison between the rate of the proposed
scheme and that of the SCK scheme. Using (14) and (18) we
can write

D

DSCK

=

1

(U
M)

T∑
m=1

F
R[m]

U−M
M+L

F
RSCK

=
T

U−M
M+L

(
U
M

) Rg(
1
T

T∑
m=1

1
R[m]

)−1

RSCK

Rg

=
TI

TN
· T

TI
· Rg

R̄
· R

SCK

Rg
= (1+ζM)(1+ζA)(1+ζP)(1+ζD),

(26)

where we have TN = M+1
M+L

(
U

M+1

)
= U−M

M+L

(
U
M

)
and

R̄ =
(

1
T

∑T
m=1

1
R[m]

)−1

. This bounds the ratio between the
overall delay of the proposed scheme and that of the SCK
scheme. As can be seen from (19) and Corollary 1, ζM and
ζA are vanishing as U grows. Similarly, (22) and (25) imply
that ζP and ζD become negligible at sufficiently large SNR.

VI. NUMERICAL RESULTS

This section shows that the proposed scheme can perform
near optimally for the practical range of (M,L, U). We con-
sider files of size F = 10 Mb, a communication bandwidth
of B = 1 MHz, and a SNR of P/B = 35.61 dB. Thus,
in the absence of cache (i.e., M = 0), using zero-forcing with
L = 2 antennas at the transmitter we can achieve a per-user
rate of R=B

∫∞
0

log2(1 + 103.561η/2)e−ηdη≈10 Mbps, and
thus serve all users in U/L=U/2 seconds.

Fig. 2. Algorithm and method overheads as functions of the number of
users. Due to the semi-logarithmic scale of the figure, any missing marker for
5 ≤ U ≤ 35 should be interpreted as zero.

Fig. 3. Greedy algorithm overhead vs. the number of users. 1 ≤ M ≤ 10
and 2 ≤ L ≤ 20. Each color indicates a pair of (M, L). The figure shows
all cases in which U > 1.5(M + L) and

(U
M+1

)
≤ 105. The dashed line

depicts the 1/U slope (the line height is arbitrary).

Fig. 1 depicts the overall delay to serve all the users for
different cache size values and the number of transmitter
antennas. The SCK scheme is compared with the proposed
scheme combined with the greedy scheduling algorithm
presented in Section IV-B. It can be observed that cache-aided
communication can significantly shorten the transmission
delay, and except for a slight degradation, the proposed scheme
performs similarly to the SCK scheme.

However, it is worth noting that the proposed scheme
is more suitable for practical implementation compared
to the SCK scheme (see Table II). For example, for
(U,M, L) = (30, 3, 4), the SCK scheme requires a division of
each file into 10.5 million sub-packets, which is not feasible
for a file of size 10 Mb. The subpacketization level for the
proposed scheme under the same parameters is only 4060,
which yields packets of size 2.46 Kb.

To illustrate the gap between the proposed and the
SCK schemes, we depict the method overhead ζM and the
algorithmic overhead ζA in terms of the number of users in
Fig. 2. Note that these overhead terms do not depend on
SNR. The figure presents ζA and ζM for the greedy algorithm,

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6493

TABLE II
A GENERAL COMPARISON OF THE PROPOSED SCHEME IN THIS WORK AND OTHER SCHEMES IN THE LITERATURE. HERE, T DENOTES THE NUMBER OF

TIME SLOTS FOR THE ENTIRE COURSE OF COMMUNICATION, AND F DENOTES THE SUBPACKETIZATION LEVEL. THE NUMBER OF MESSAGES TO
BE DECODED BY EACH ACTIVE USER IN EACH TIME SLOT AND THE CONSTRAINTS ON THE SYSTEM PARAMETERS ARE LISTED IN THE

LAST TWO ROWS OF THE TABLE

as well as the analytical bound obtained in (28). It can be
readily seen that both ζM and ζA decay rapidly with the
number of users. The figure shows that the greedy algorithm
is very efficient for both integer and non-integer values of g
when the number of users is large.

Note that Fig. 2 is plotted in a semi-logarithmic scale.
Hence, it cannot show the zero overheads, and any missing
marker should be interpreted as 0. For instance, for
(U, M, L) = (15, 2, 1) we have g = 1.5 and

(
15
2

)
/g is an

integer, which leads to ζM = 0. Similarly, for (M,L) = (1, 3)
we have g = 2 and ζA = 0 for most of the values of U in the
range 5 ≤ U ≤ 35.

As we only have analytic bounds on the algorithm overhead
for integer g, we also performed a massive simulation that
tested many practical values of M and L. Fig. 3 depicts the
algorithm overhead for the greedy algorithm for all values of
U ≤ 100, 1 ≤ M ≤ 10 and 2 ≤ L ≤ 20, for which the number
of groups is bounded by2

(
U

M+1

)
≤ 105 and the number of

users satisfy U > 1.5(M + L). Recall that this is also shown
on a logarithmic scale, and zeros are not shown.

The figure shows that the algorithm overhead is below 10%
in all cases, and it decreases with the number of users. The
dashed line depicts the 1/U slope (the line height is arbitrary).
One can see that the 1/U scaling bounds all tested cases. Thus,
the figure demonstrates the efficiency of the greedy algorithm
for almost all scenarios of practical interest.

The power overhead ζP and the diversity overhead ζD versus
SNR are shown in Fig. 4. Note that ζP and ζD do not depend
on the number of users. While ζP is large for low SNR
(especially when M is large and L is small), it significantly
decays as the SNR grows and gets to less than 0.1 at 35 dB
SNR. The diversity overhead, however, does not exceed 0.2 for
the entire range of SNRs. It takes its maximum at ∼ 10 dB,
and decreases as SNR grows. Thus, both ζP and ζD become
negligible at high SNR and do not affect the number of DoF.

Finally, in Fig. 5 we present the performance comparison (in
terms of the overall communication delay) between the greedy

2The former condition limits the scheduling complexity to practical values.
The latter condition is required for the algorithm to have sufficient diversity
in the scheduling.

Fig. 4. Power overhead and diversity overhead (compared to those of [11]
as the baseline) as a function of SNR for various scenarios.

algorithm (this work), the cyclic caching [26], and the SCK
scheme [11], for two sets of parameters (M,L, U) = (1, 3, 30)
and (M,L, U) = (2, 7, 15). In both settings, the number of
groups to be served is an integer, namely, g = 2 and g = 3,
respectively. We used U = 30 and U = 15 to avoid interfering
curves for illustration purposes.

The cyclic scheme has the lowest overall subpacketization
but inferior performance in terms of the total transmission
time. The SCK scheme completes serving all the users faster
than the other two schemes. The small gaps between the curves
for the proposed scheme and those of the SCK scheme account
for the various overheads as characterized in (26). Note that
the evaluation of (28) (see the proof of Corollary 1) leads to
ζA ≤ 0.1379 for (M, L, U) = (1, 3, 30), and ζA ≤ 2.4066
and (M,L, U) = (2, 7, 15). However, even though the bound
is not promising for U = 15, the actual overhead obtained by
the greedy algorithm is much lower and leads to a small gap
compared to the overall delay of the SCK scheme.

It can be seen that the overall delay of the cyclic scheme is
larger than that of both other schemes. The primary reason
for this gap is the fact that both the SCK and proposed
schemes serve the users by broadcasting messages intended for
M + 1 users, while the cyclic scheme transmits one message

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

6494 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

Fig. 5. Total communication delay vs. SNR, for the greedy algorithm (this
work), the cyclic caching [26], and the SCK scheme [11].

per active user. This leads to a power loss of M + 1 (i.e.,
10 log10(2) ≈ 3 and 10 log10(3) ≈ 4.78 dB, for the two
scenarios, respectively).

As promised earlier, Fig. 5 also demonstrates the additional
gain that can be achieved by optimizing the number of used
DoF and beamforming vectors as in [28]. This optimization
can be applied to each of the three schemes but is shown only
for the novel greedy algorithm (marked as Greedy-BF in the
figure). As expected, such optimization has a significant gain
at low SNR, but its gain decreases when the SNR increases.
For example, for M = 2 and L = 7, at 0dB, the optimization
gain is nearly 5dB, while at 20dB, the gain is only 1.5dB.

As the optimization gain is applicable to all considered
schemes, it does not change our previous conclusions on
the advantages of each scheme. Yet, the Greedy-BF curve
emphasizes that at low SNR, it is important to also apply
the optimization with respect to the number of DoF used and
the beamforming vectors. Note that [27] takes this approach
one step further, and the greedy algorithm is used to adapt the
DoF at each time slot separately.

VII. CONCLUSION

We presented a novel scheme for cache-aided communi-
cation in cellular networks. The proposed scheme shows a
significant increase in the network throughput compared to the
no-cache case. The slight gap between the performance of the
scheme and that of the SCK scheme vanishes as the number
of users and SNR grow. However, the proposed scheme has
low complexity and significantly reduces the subpacketization
level. Unlike most previously known schemes, the presented
scheme offers a practical solution that supports any integer M
with any number of antennas and any number of users.

APPENDIX A
ANALYSIS OF THE GREEDY ALGORITHM

In this appendix, we prove Theorem 2 and Corollary 1.
The core of the proofs is the fact that the greedy algorithm
tries to serve g groups at a time as long as it can. This is
possible for the majority of time slots and only towards the
bottom of the table; some time slots might be wasteful, i.e.,

less than g groups are served during them. We first define
a scheduling block and present two lemmas that express the
formal statements of this claim. The proofs of the lemmas are
given after the proofs of Theorem 2 and Corollary 1.

Definition 3: In an (M, L, U) system, a scheduling block
is a minimal-size collection of groups that can be fully served
in a number of time slots.

Note that for integer g, a scheduling block spans only one
time slot, including g groups, while for L = 2 a scheduling
block spans M +1 time slots during which M +2 groups are
served.

Lemma 4: Let g = M+L
M+1 ∈ N be an integer, and G̃ ⊆ G be

a collection of (M + 1)-groups with

|G̃| > f(U, M, g) ≜

(
U

M + 1

)
−
(

U − (g − 1)(M + 1)
M + 1

)
.

Then, for any score function, the greedy algorithm finds g
pairwise disjoint groups. Moreover, we have

f(U, M, g) ≤ (L− 1)
M !

UM = c(M, g)UM .

Lemma 5: Let L = 2 and G̃ ⊆ G be any collection of
(M + 1)-groups with

|G̃| > f(U, M, g) ≜
M∑

k=1

1
k!

UM .

Then, a score function exists for which the greedy algorithm
finds a full scheduling block in G̃. Moreover,

f(U, M, g) ≤ (e− 1)UM = c(M, g).

Now, we are ready to present the proof of the theorem and
its corollary.

Proof of Theorem 2: The greedy algorithm gradually selects
groups to be served in each scheduling block according to
some scoring function for the groups. Let s be the number of
time slots in a scheduling block (where s = 1 when g is an
integer and s = M+1 for L = 2). Also, let G̃[m] denote the set
of groups that are not served by the end of the mth time slot.
Then, G̃[0] = G and the scheduling will be complete for some
T , where G̃[T] = ∅. Using Lemma 4 and Lemma 5, the greedy
algorithm is guaranteed to find a scheduling block as long
as |G̃[m]| > f(U, M, g). Note that as long as the algorithm
can identify a scheduling block, no communication resource is
wasted, and exactly L+M users are served in each time slot of
the block, leading to a total of s(M+L) users, and equivalently
sg groups to be completely served during a block. Thus,
after the bth scheduling block we have |G̃[bs]| = |G| − bsg,
provided that |G̃[bs]| > f(U, M, g). Assume b0 scheduling
blocks are generated, and no more blocks can be completed
by the algorithm. Then,

|G| − (b0 − 1)sg = |G̃[(b0 − 1)s]| > f(U, M, G)

≥ |G̃[b0s]| = |G| − b0sg, (27)

which implies b0 =
⌈

(U
M+1)−f(U,M,g)

sg

⌉
.

For a time slot m > sb0, the algorithm may need to schedule
the groups less efficiently. In the worst-case scenario, we may

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6495

serve the remaining groups one per time slot, requiring an
additional |G̃[b0s]| number of time slots. Hence, the number
of time slots in the schedule is upper-bounded by

T ≤ b0s + |G̃[b0s]| ≤

⌈(
U

M+1

)
−f(U,M, g)

sg

⌉
s+f(U, M, g)

≤ 1
g

(
U

M +1

)
+

g−1
g

f(U, M, g) + s.

Replacing the value of s for the two scenarios, we conclude
the proof of Theorem 2. ■

Proof of Corollary 1: First note that since

TI = ⌈TN⌉ ≥ TN =
1
g

(
U

M + 1

)
,

we can write ζA = T−TI
TI

≤ T−TN
TN

. Then, using the bound in
Theorem 2, we have

ζA ≤
T − TN

TN
≤

g−1
g f(U, M, g) + s

1
g

(
U

M+1

)
≤ (g − 1)c(M, g)UM + sg(

U
M+1

)M+1
= O

(
1
U

)
. (28)

Here, c(M, g) = L−1
M ! for integer g and c(M, g) = e−1 for

L=2. This completes the proof.
Proof of Lemma 4: We prove the lemma by induction on g.

First, for g = 1, we have f(U, M, g) = 0, and the claim holds
true. Next, assume that the claim holds for g− 1. Then, since
|G̃| > f(U, M, g) > f(U,M, g− 1), the induction assumption
implies that the greedy algorithm will succeed in choosing
g−1 non-overlapping groups. We denote the set of these non-
overlapping groups by Qg−1. We show that if the condition of
the lemma holds, we can always find a gth disjoint group to be
added to Qg−1 to form Qg . The selected g−1 groups include a
total of (g−1)(M +1) = L−1 users. The gth group should be
disjoint from all groups in Qg−1; hence, its elements should be
chosen from the remaining U−(L−1) users. Let us denote by
Ag ⊆ G the set of all groups which are disjoint from all groups
in Qg−1, where |Ag| =

(
U−(g−1)(M+1)

M+1

)
. Since Ag, G̃ ⊆ G,

we have |Ag ∪ G̃| ≤ |G| =
(

U
M+1

)
. Therefore,

|Ag ∩ G̃| = |Ag|+ |G̃| − |Ag ∪ G̃|

>

(
U − (g − 1)(M + 1)

M + 1

)
+ f(U, M, g)−

(
U

M + 1

)
= 0.

This implies that there is at least one group from Ag that
appears in G̃ and can be identified by the greedy algorithm.
Appending that groups to Qg−1, we obtain Qg . The inequality
in the lemma stems from Pascal’s identity:(

U

M + 1

)
−
(

U − (L− 1)
M + 1

)
=

L−1∑
t=1

(
U − t

M

)
≤ (L− 1)

(
U − 1

M

)
≤ (L− 1)UM

M !
.

■
Proof of Lemma 5: Note that when L = 2, we can

serve (up to) M + 2 users at a time, which includes

a completely-served group, as well as one user from a
partially-served group. In order to fully serve the partially-
served group (of size M + 1), we need M + 1 time slots.
Let A1,A2, . . . ,AM+1 be the completely-served groups in
in the block and A0 be the partially-served group. From
the definition of scheduling (see Definition 3), we have
|A0 ∩ Am| = M for m = 1, 2 . . . , M + 1. Let us define the
scoring function

Scr(A, G̃) ≜ min
a∈A

∣∣∣{B ∈ G̃ : A \ B = {a}
}∣∣∣ . (29)

If there exists any group A0 ∈ G̃ with Scr(A, G̃) > 0, then
G̃ contains a valid scheduling block with A0 as its partially-
served group. It remains to show the existence of such an A0.

We prove the lemma by induction over M . First, let M = 1
(where

∑1
k=1 1/k! = 1) and consider a collection of |G̃| ≥ U

groups. Consider the graph over ([U], G̃), that is, the graph
whose nodes are the elements of [U] and its edges are the
groups in G̃. Since |G̃| ≥ U = |[U]| (i.e., the number of
edges is not smaller than the number of nodes), the graph
has at least one cycle. If the cycle is of length 3, say
{{a, b}, {b, c}, {c, a}} ⊆ G̃, then the scheduling block consists
of T [m] = ({c}, {a, b}) and T [m + 1] = ({b}, {c, a}).
Otherwise, we have a cycle of length more than 3, which
includes a path {{a, b}, {b, c}, {c, d}} ⊆ G̃. In this case,
the scheduling block is formed as T [m] = ({c}, {a, b}) and
T [m + 1] = ({b}, {c, d}).

Next, we assume that the claim holds for M = m − 1,
and prove it for M = m. Consider an (M = m, L = 2, U)
systems, and let G̃ be a collection of (m + 1)-groups with
|G̃| ≥ Um

∑m
k=1 1/k!. We partition G̃ into non-overlapping

sets G̃u = {A ∈ G̃ : min(A) = u}, for u ∈ [U].
Also define G̃′u = {A \ {u} : A ∈ G̃u} for u ∈ [U].
Note that the elements of G̃′u are groups of size m, and
we have

∑U
u=1 |G̃′u| =

∑U
u=1 |G̃u| = |G̃| ≥ cmUm. However,

there might be an overlap between G̃′u and G̃′v . Define Su,v =
G̃′u ∩ G̃′v , and let u⋆ = arg maxu

∣∣∣⋃v:v ̸=u Su,v

∣∣∣ and G̃′ =⋃
v:v ̸=u⋆ Su⋆,v . We can write

m∑
k=1

1
k!

Um ≤
∣∣G̃∣∣= ∣∣∣∣⋃U

u=1
G̃′u
∣∣∣∣

=
∣∣∣∣(⋃U

u=1

(
G̃′u \

(⋃
v:v ̸=u

Su,v

)))
∪
(⋃U

u=1

(⋃
v:v ̸=u

Su,v

))∣∣∣∣
≤
∣∣∣∣⋃U

u=1

(
G̃′u \

(⋃
v:v ̸=u

Su,v

))∣∣∣∣+∑U

u=1

∣∣∣⋃
v:v ̸=u

Su,v

∣∣∣
(a)

≤
(

U

m

)
+U · |G̃′| ≤ Um

m!
+ U · |G̃′|,

where (a) holds since
⋃U

u=1

(
G̃′u \

(⋃
v:v ̸=u Su,v

))
is

a non-repeating collection of groups of size m, and∣∣∣⋃v:v ̸=u Su,v

∣∣∣ ≤ ∣∣∣⋃v:v ̸=u⋆ Su⋆,v

∣∣∣ = |G̃′| for every u ∈ [U].
The inequality above leads to

|G̃′| ≥ 1
U

(
m∑

k=1

1
k!
− 1

m!

)
Um = Um−1

m−1∑
k=1

1
k!

.

Hence, the induction assumption implies that a scheduling
block exists from the groups in G̃′. Let A′0,A′1, . . . ,A′m be

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

6496 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2024

the groups that form a scheduling block in G̃′ (where A′0 is
the partially-served group). Recall that G̃′ =

⋃
v:v ̸=u⋆ Su⋆,v ,

and hence every group in G̃′ is subset of [U] \ {u⋆} of
size m. Moreover, since A0 ∈ G̃′, there exists some v⋆

such that A0 ∈ Su⋆,v⋆ = G̃′u⋆ ∩ G̃′v⋆ . Now consider groups
Ai = A′i ∪ {u⋆} for i = 0, . . . ,m, and Am+1 = A′0 ∪ {v⋆}.
It is easy to verify that A0,A1, . . . ,Am ∈ G̃u⋆ ⊆ G̃ and
Am+1 ∈ G̃v⋆ ⊆ G̃. Moreover, for i = 1, . . . ,m we have

|Ai ∩ A0| = |(A′i ∪ {u⋆}) ∩ (A′0 ∪ {u⋆})|
= |A′i ∩ A′0|+ |{u⋆}| = (m− 1) + 1 = m.

Finally, we have

|Am+1 ∩ A0| = |(A′0 ∪ {v⋆}) ∩ (A′0 ∪ {u⋆})| = |A′0| = m.

These together imply that Scr(A0, G̃) > 0. This completes the
proof of the lemma. ■

APPENDIX B
PROOF OF THE AUXILIARY LEMMAS

A. Proof of Lemma 1

The proof of the first claim follows from the facts
that P

ℓ is increasing with ℓ, and log(·) is an increasing
function. To show the second claim, we use the fact that
1 + ax ≤ (1 + x)a for every x ≥ 0 and a ≥ 1,
or equivalently, log(1 + ax) ≤ a log(1 + x). Letting ℓ1 ≤ ℓ2,
and plugging x = Pη/ℓ2B and a = ℓ2

ℓ1
≥ 1 we

get log (1 + (ℓ2/ℓ1)(Pη/ℓ2B)) ≤ (ℓ2/ℓ1) log (1 + Pη/ℓ2B).
Multiplying both sides by Bℓ1, taking expectation with respect
to η, we get ℓ1Rℓ1 ≤ ℓ2Rℓ2 . ■

B. Proof of Lemma 2

First note that if β = 0, then g is an integer, and we
always serve (at most) g groups at any given time, and hence,
γ(⌊g⌋+ 2) = 0. Next, we focus on the regimes in which we
have β ≥ 1.

Consider the first M + 1 rows of the scheduling table
T . Recall that each row can fit up to β users from the
partially served groups. Hence, the total number of users
served as a part of the partially served groups in the first
M + 1 time slots is most β(M + 1), and thus, the number
of partially served groups contributing in these M + 1 time
slots is most β. Without loss of generality, let us denote
these groups by B1,B2, . . . ,Bβ . For a time slot m, we have
|T [m]| = ⌊g⌋ + 2, if and only if the algorithm starts row
m with |Buffer| < β users from a partially served group Bi,
continues with a selection of ⌊g⌋ complete groups, it finishes
the mth row by another partially serving group Bi+1 for some
i = 1, 2, . . . , β−1. Hence, the number of such m’s is at most
β− 1, which implies at most (β− 1)/(M +1) fraction of the
first M +1 rows can serve ⌊g⌋+2 groups. The same argument
can be applied to any other M + 1 consecutive rows of the
table and implies γ(⌊g⌋+ 2) ≤ β−1

M+1T . ■

C. Proof of Lemma 3

Define f(s) := e−1/s ln 2 (E [log (1+sη)]−0.8 log(1+s)),
where η admits an exponential distribution with E[η] = 1.
We aim to show that f(s) ≥ 0 for every s ≥ 0. We start with

E[log(1 + sη)] =
∫ ∞

0

log(1 + sη)e−ηdη

(a)
= − log(1 + sη)e−η

∣∣∣∞
0
−
∫ ∞

0

−se−η

(1 + sη) ln 2
dη

(b)
=

1
ln 2

∫ ∞

1/s

e−(t−1/s)

t
dt =

e1/s

ln 2

∫ ∞

1/s

e−t

t
dt,

where in (a) we used integration by parts with u = log(1+sη),
dv = e−ηdη and v = −e−η , and (b) is due to a change of
variable t = η + 1

s . Hence, we have

f(s) =
∫ ∞

1/s

e−t

t
dt− 0.8 e−1/s ln(1 + s).

Taking derivative of f(s), we get

df(s)
ds

=
e−1/s

s2

(
s− 0.8 ln(1 + s)− 0.8

s2

1 + s

)
. (30)

Now, for function g(s) := s− 0.8 ln(1+ s)− 0.8 s2

1+s we have

rCl
dg(s)
ds

= 1− 0.8
1

1 + s
− 0.8

s2 + 2s

(1 + s)2
=

(s− 1)2

5(s + 1)2
≥ 0.

This implies that g(s) is a non-decreasing function, and thus
g(s) ≥ g(0) = 0 for every s ≥ 0. This, together with (30),
lead to df(s)

ds ≥ 0, i.e., f(s) is also a non-decreasing function.
Note that lims→0 f(s) = 0, and thus, f(s) ≥ 0 for every
s ≥ 0.

On the other hand, we have

lim
s→∞

[log(1 + s)− E[log(1 + sη)]]

= lim
s→∞

[
log(1 + s)−

∫ ∞

0

log(1 + sη)e−ηdη

]
= lim

s→∞

∫ ∞

0

log
(

1 + s

1 + sη

)
e−ηdη

(c)
=
∫ ∞

0

lim
s→∞

log
(

1 + s

1 + sη

)
e−ηdη =−

∫ ∞

0

log η ·e−ηdη=0.833,

where (c) follows from the dominated convergence theorem
(with | log(1 + s)/(1 + sη) · e−η| being dominated by the
integrable function log 1/η ·e−η). This completes the proof of
the lemma. ■

REFERENCES

[1] S. Mohajer and I. Bergel, “MISO cache-aided communication with
reduced subpacketization,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2020, pp. 1–6, doi: 10.1109/ICC40277.2020.9149433.

[2] I. Bergel and S. Mohajer, “Practical scheme for MISO cache-
aided communication,” in Proc. IEEE 21st Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), May 2020, pp. 1–5, doi:
10.1109/SPAWC48557.2020.9154258.

[3] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[4] S. S. Bidokhti, M. Wigger, and A. Yener, “Gaussian broadcast channels
with receiver cache assignment,” in Proc. IEEE Int. Conf. Commun.
(ICC), May 2017, pp. 1–6.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ICC40277.2020.9149433
http://dx.doi.org/10.1109/SPAWC48557.2020.9154258

MOHAJER AND BERGEL: POWER EFFICIENT MISO CACHING WITH PRACTICAL SUBPACKETIZATION 6497

[5] M. Gregori, J. Gómez-Vilardebò, J. Matamoros, and D. Gündüz, “Joint
transmission and caching policy design for energy minimization in the
wireless backhaul link,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 1004–1008.

[6] S. Yang, K.-H. Ngo, and M. Kobayashi, “Content delivery with coded
caching and massive MIMO in 5G,” in Proc. 9th Int. Symp. Turbo Codes
Iterative Inf. Process. (ISTC), Sep. 2016, pp. 370–374.

[7] S. S. Bidokhti, M. Wigger, and R. Timo, “Noisy broadcast networks
with receiver caching,” IEEE Trans. Inf. Theory, vol. 64, no. 11,
pp. 6996–7016, Nov. 2018.

[8] S. S. Bidokhti, M. Wigger, and R. Timo, “Erasure broadcast networks
with receiver caching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2016, pp. 1819–1823.

[9] A. Ghorbel, M. Kobayashi, and S. Yang, “Content delivery in erasure
broadcast channels with cache and feedback,” IEEE Trans. Inf. Theory,
vol. 62, no. 11, pp. 6407–6422, Nov. 2016.

[10] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7253–7271,
Dec. 2016.

[11] S. P. Shariatpanahi, G. Caire, and B. H. Khalaj, “Multi-antenna coded
caching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2113–2117.

[12] K.-H. Ngo, S. Yang, and M. Kobayashi, “Scalable content delivery with
coded caching in multi-antenna fading channels,” IEEE Trans. Wireless
Commun., vol. 17, no. 1, pp. 548–562, Jan. 2018.

[13] S. Mohajer, I. Bergel, and G. Caire, “Cooperative wireless mobile
caching: A signal processing perspective,” IEEE Signal Process. Mag.,
vol. 37, no. 2, pp. 18–38, Mar. 2020.

[14] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Optimization of
heterogeneous caching systems with rate limited links,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[15] E. Lampiris, A. Bazco-Nogueras, and P. Elia, “Resolving the feedback
bottleneck of multi-antenna coded caching,” IEEE Trans. Inf. Theory,
vol. 68, no. 4, pp. 2331–2348, Apr. 2022.

[16] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Trans. Inf. Theory,
vol. 64, no. 4, pp. 3099–3120, Apr. 2018.

[17] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[18] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching
schemes: A hypergraph theoretical approach,” IEEE Trans. Inf. Theory,
vol. 64, no. 8, pp. 5755–5766, Aug. 2018.

[19] S. Jin, Y. Cui, H. Liu, and G. Caire, “A new order-optimal decentralized
coded caching scheme with good performance in the finite file
size regime,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5297–5310,
Aug. 2019.

[20] S. Jin, Y. Cui, H. Liu, and G. Caire, “Uncoded placement optimization
for coded delivery,” in Proc. 16th Int. Symp. Model. Optim. Mobile, Ad
Hoc, Wireless Netw. (WiOpt), May 2018, pp. 1–8.

[21] M. Cheng, Q. Yan, X. Tang, and J. Jiang, “Coded caching schemes with
low rate and subpacketizations,” 2017, arXiv:1703.01548.

[22] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded
caching with linear subpacketization is possible using ruzsa-Szeméredi
graphs,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 1237–1241.

[23] L. Tang and A. Ramamoorthy, “Low subpacketization schemes for
coded caching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2790–2794.

[24] X. Zhang, N. Woolsey, and M. Ji, “Cache-aided interference
management using hypercube combinatorial design with reduced
subpacketizations and order optimal sum-degrees of freedom,” IEEE
Trans. Wireless Commun., vol. 20, no. 8, pp. 4797–4810, Aug. 2021.

[25] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1176–1188, Jun. 2018.

[26] M. Salehi, E. Parrinello, S. P. Shariatpanahi, P. Elia, and A. Tölli,
“Low-complexity high-performance cyclic caching for large MISO
systems,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3263–3278,
May 2022.

[27] I. Bergel and S. Mohajer, “Channel aware greedy algorithm for MISO
cache-aided communication,” in Proc. IEEE 23rd Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Jul. 2022, pp. 1–5.

[28] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. H. Khalaj, “Multi-antenna
interference management for coded caching,” IEEE Trans. Wireless
Commun., vol. 19, no. 3, pp. 2091–2106, Mar. 2020.

[29] Z. Baranyai, “On the factorization of the complete uniform hypergraph,”
in Colloquia Mathematica Societatis János Bolyai. Infinite and Finite
Sets, Keszthely (Hungary), 1973, vol. 10, A. Hajnal, R. Rado, and
V. T. Sós, Eds. Amsterdam, The Netherlands: North Holland,
pp. 91–107.

Soheil Mohajer (Member, IEEE) received the B.Sc.
degree in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in 2004,
and the M.Sc. and Ph.D. degrees in communication
systems from the École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland, in 2005 and 2010,
respectively. He was a Post-Doctoral Researcher
with Princeton University, Princeton, NJ, USA,
from 2010 to 2011, and the University of California
at Berkeley from 2011 to 2013. He is currently
a McKnight Land-Grant Associate Professor with

the Department of Electrical and Computer Engineering, University of
Minnesota, Twin Cities. His research interests include information theory
and its applications in distributed storage systems, data delivery networks,
distributed optimization, and statistical machine learning. He received the
NSF CAREER Award in 2018. He has served as an Editor for IEEE
TRANSACTIONS ON COMMUNICATIONS from 2018 to 2021.

Itsik Bergel (Senior Member, IEEE) received the
B.Sc. degree in electrical engineering and the B.Sc.
degree in physics from the Ben-Gurion University
of the Negev, Israel, in 1993 and 1994, respectively,
and the M.Sc. and Ph.D. degrees in electrical
engineering from the University of Tel Aviv,
Tel-Aviv, Israel, in 2000 and 2005, respectively.
From 2001 to 2003, he was a Senior Researcher
with the Intel Communications Research Laboratory.
In 2005, he was a Post-Doctoral Researcher with
the Dipartimento di Elettronica, Politecnico di

Torino, Turin, Italy. He is currently an Associate Professor with the
Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel. His main
research interests include interference mitigation in wireless communications,
cooperative transmission in cellular networks, and coded caching. He was an
Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING.
He is currently an Editor of the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 22,2024 at 06:40:49 UTC from IEEE Xplore. Restrictions apply.

