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ABSTRACT: The World Climate Research Programme (WCRP) envisions a world “that uses sound,
relevant, and timely climate science to ensure a more resilient present and sustainable future
for humankind.” This bold vision requires the climate science community to provide actionable
scientific information that meets the evolving needs of societies all over the world. To realize its
vision, WCRP has created five Lighthouse Activities to generate international commitment and
support to tackle some of the most pressing challenges in climate science today. The overarching
goal of the Lighthouse Activity on Explaining and Predicting Earth System Change is to develop
an integrated capability to understand, attribute, and predict annual to decadal changes in the
Earth system, including capabilities for early warning of potential high impact changes and events.
This article provides an overview of both the scientific challenges that must be addressed, and the
research and other activities required to achieve this goal. The work is organized in three thematic
areas: (i) monitoring and modeling Earth system change; (ii) integrated attribution, prediction,
and projection; and (iii) assessment of current and future hazards. Also discussed are the benefits
that the new capability will deliver. These include improved capabilities for early warning of
impactful changes in the Earth system, more reliable assessments of meteorological hazard risks,
and quantitative attribution statements to support the Global Annual to Decadal Climate Update
and State of the Climate reports issued by the World Meteorological Organization.
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he formulation of robust policies for mitigation of, and adaptation to, climate change

requires quantitative understanding of how and why specific changes are unfolding in the

Earth system, and what might happen in the future. Quantitative explanation of observed
changes—through robust process-based detection and attribution—is also fundamental to
specification of confidence in climate assessments, predictions, and projections. However,
the capacity to deliver these capabilities is very limited, particularly for the annual to decadal
(A2D) time scales that lie between the time scales of days and seasons—the focus of numerical
weather prediction (NWP) and seasonal forecasting—and the multidecadal-to-century time
scales that are the primary focus of climate projection efforts. The World Climate Research
Programme (WCRP) Lighthouse Activity (LHA) on Explaining and Predicting Earth System
Change (EPESC) is intended to address this need. We adopt the nomenclature A2D to define
our time scales of interest to be consistent with the community working with initialized
predictions at subseasonal to seasonal (S2S), seasonal to interannual (S2I), and seasonal to
decadal (S2D) time scales (Meehl et al. 2021).

Given the current nonstationarity of the climate system and the limited sampling of extreme
events in our global observational records, climate statistics and probabilities of hazards and
extremes based on past observations are no longer adequate for infrastructure or disaster
planning (Milly et al. 2008). Indeed, in a changing climate, understanding the development
and precursors of extreme events, attributing causal factors, and determining the impacts
of background conditions on the likelihood of event occurrence is crucial (Stott et al. 2011).
Actionable predictions and risk assessments require full appraisal of all the relevant uncertain-
ties, including those stemming from uncertainties in observational records, from forcings and
climate responses, from internal variability, from climate model structural differences, and
from interactions between each of these sources of uncertainty (Hawkins and Sutton 2009;
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Frolicher et al. 2016; Lovenduski et al. 2016; Marzeion et al. 2020; Lehner et al. 2020;
Aschwanden et al. 2021). Understanding and quantifying these uncertainties is particularly
challenging for small regions and A2D time scales, yet information about these spatial and
temporal scales is needed to inform adaptation.

Decadal time scales were targeted by the WCRP Grand Challenge on Near-Term Climate
Prediction (Kushnir et al. 2019), where the authors highlighted the dual dependence on natural
climate variability and anthropogenically imposed climate change. As an outgrowth of this
large-scale international effort, multiannual forecasts are now routinely issued by the World
Meteorological Organization (WMO) Lead Centre for Annual to Decadal Climate Prediction
and in the WMO Global Annual to Decadal Climate Update (GADCU; Hermanson et al. 2022).
However, improved understanding and attribution of predicted signals is needed to gain
further confidence in the forecasts and to gain insight on how to improve these forecasts. In
addition, the WCRP Grand Challenge on Weather and Climate Extremes (Zhang et al. 2014)
targeted the improved understanding of climate-related hazards. This was organized around
four overarching themes, to document, understand, simulate, and attribute such extremes.
This LHA aims to build on the earlier efforts of the now-complete Grand Challenges by first
establishing and applying attribution methodologies to help explain A2D changes in the
climate system and their influence on hazards (including extremes), while also evaluating
the requirements needed to fully observe and model these changes. Additional effort will be
directed toward defining the elements of an operational capability that integrates attribution
and prediction methods to better understand and predict climate hazards on A2D time scales.
Outputs of these efforts will enhance the value of A2D climate forecasts issued by WMO.

The overarching objective of the WCRP Lighthouse Activity on EPESC is to design, and take
major steps toward delivery of, an integrated capability for quantitative observation, explana-
tion, early warning and prediction of Earth system change on global and regional scales, with
a focus on annual to decadal time scales.

On global to regional and A2D scales, changes in oceanic and atmospheric circulation and
their consequent impacts are of particular interest because of their importance in shaping
hazards, and because current capabilities to explain and predict changes in circulation are
particularly limited. Some examples of changes of interest include the rapid warming of the
North Atlantic Ocean that occurred in the 1990s (e.g., Robson et al. 2012; Yang et al. 2016;
Cheng et al. 2017; Yeager 2020), weakening of the North Atlantic subpolar gyre (Hakkinen
and Rhines 2004; Piecuch et al. 2017), changes in the phase of the interdecadal Pacific
oscillation (e.g., Thoma et al. 2015; Meehl et al. 2016), persistent marine heatwaves such as
in the North Pacific during 2013-16 (e.g., Di Lorenzo and Mantua 2016; Oliver et al. 2018),
persistent droughts such as in the Sahel during the 1970s and 1980s (e.g., Held et al. 2005),
and the apparent slowdown in global mean surface temperature rise that was observed in
the 2000s (e.g., England et al. 2014; Fyfe et al. 2016). This last example is a particularly fit-
ting case study of how natural decadal variability on top of long-term trends can combine to
produce a long-lasting signal that can capture both research and public attention (Fyfe et al.
2016; Risbey et al. 2018).

This LHA is concerned both with events that have A2D duration and also with understand-
ing how regional and larger-scale changes (e.g., broad atmospheric or oceanic circulation
changes) on these time scales influence the characteristics of hazards (e.g., severe convec-
tive storms, tropical and extratropical cyclones, atmospheric rivers, terrestrial and marine
heat waves, wildfires) occurring on shorter space and time scales. Examples of A2D vari-
ability influencing hazards can be found in the impact of Atlantic multidecadal variability
on tropical cyclones in the Caribbean basin (Goldenberg et al. 2001) or of El Nifio—Southern
Oscillation (ENSO) on droughts in the United States (e.g., Trenberth et al. 1988; Schubert
et al. 2009; Findell and Delworth 2010) or on fire weather in Australia (Squire et al. 2021)
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and their secondary impacts (Damany-Pearce et al. 2022). Physical predictions on A2D time
scales can be useful even for marine biological forecasting (Minobe et al. 2022).

Given the breadth of the targeted goals, we have found it useful to organize the scientific
challenges and opportunities around three major themes with associated working groups:

e theme 1: monitoring and modeling Earth system change;
e theme 2: integrated attribution, prediction, and projection of Earth system change; and
e theme 3: assessment of current and future hazards.

Figure 1 provides an overview of the three scientific themes, how they interact, and how
they will deliver benefits to society. Expertise in many areas relevant to these themes is found
in many of WCRP’s core projects and other Lighthouse Activities. Active communication
between EPESC and other WCRP entities is crucial to the success of this endeavor.

Three cross-cutting dimensions connect the work of the LHA’s three thematic elements.
First, the development of a capability to observe, explain, and predict changes in the Earth
system requires the tight integration of observations and models, including characterization
and quantification of uncertainties. Comprehensive model calibration and evaluation of model
skill each require observational datasets that capture the phenomena of interest, but also
computational frameworks for achieving rigorous model calibration. Just as observations can
be used to confront models, calibrate model parameters, and determine model skill,
models can be leveraged as tools to inform the design of efficient, targeted observing
systems (e.g., Fujii et al. 2019; Cheng and Zhu 2016). We envision an interactive workflow
between model and observing system improvement, as both represent incomplete yet
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Fig. 1. Key elements of the Lighthouse Activity. The bottom layer shows the importance of coordinated
observational and modeling efforts serving as key tools and inputs to the integrated attribution,
prediction, and projection efforts in the middle layer. Both of these layers feed into the outputs and
societal benefits displayed in the top layer: causal explanations, predictions and early warnings, and
hazard assessments. Arrows along the left side indicate that outputs (themes 2 and 3) and integration
(theme 2) can feedback to improve the inputs (theme 1). Fundamental physical process understanding

runs through all aspects of the Lighthouse Activity. [Causal explanations figure following Kretschmer
et al. (2021).]
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complementary knowledge bases. Similarly, identification of causal factors and processes
leading to large-scale climate regime shifts or changes in regional hazard risk require
integrated usage of both observations and modeling systems.

Second, initial steps to develop a capability to observe, explain, and predict Earth system
change will focus on a few (two or three) compelling case studies targeting climate “events”
that have occurred in recent decades, such as the examples given above. Through these case
studies, we seek to develop a systematic approach across all three themes to identify causal
factors shaping these events, to assess the potential for predictions of the events themselves,
to investigate opportunities for observations targeted at realizing predictability of the events,
and, where relevant, to determine the impact of the event on hazard likelihoods.

Finally, we envisage that large ensembles of single-forcing experiments will inform the
activities at the heart of each of the themes. These are essential to characterize the responses
to different forcing factors, thereby informing observing system design (theme 1), providing
quantitative process-based attribution (theme 2), and improving our understanding of the
drivers of changing hazard frequencies and intensities (theme 3).

Theme 1: Monitoring and modeling Earth system change
Key research questions.

1) What are the observational and modeling requirements to measure, explain, and predict
changes in the Earth system on A2D and regional to global scales?

2) How can we most effectively combine observations and models to quantify, explain, and
predict changes in the Earth system on A2D and regional to global scales?

3) Which enhanced observations will offer the greatest improvements in predictive and
explanatory skill, and where should those enhancements be targeted?

The Global Climate Observing System (GCOS) has developed over many decades, with a
steady expansion of the spatial coverage and physical quantities recorded, punctuated by
major advances in funding allocations and/or observing technologies (e.g., GCOS 2021). For
example, though satellite observations of environmental quantities began in the late 1950s,
the beginning of the satellite era is commonly recognized as 1979, when microwave mea-
surements were included in NOAA weather satellites, enabling measurement of tropospheric
temperature (Thorne et al. 2010) and sea ice cover in polar regions (Parkinson 2019). Similar
expansions occurred with the beginning of the era of satellite altimetry for monitoring sea
level change in 1992/93 (Fu et al. 2019). Observations of upper ocean temperature for climate
monitoring relied on hydrographic measurements from research vessels including buckets
and moorings (sea surface), Nansen bottles, mechanical bathythermographs (MBTs) (upper
250 m), and expendable bathythermographs (XBTs) (upper 700 m) since the late-nineteenth
century (Abraham et al. 2013). During the 1990s, increased subsurface measurement cover-
age of the global ocean using high-quality hydrographic sections was achieved as part of the
World Ocean Circulation Experiment (WOCE; Ganachaud and Wunsch 2000). Subsequently,
since around 2005, the Argo array began to dominate ocean observations, measuring the
upper 2,000 m at unprecedented resolution (Johnson et al. 2022). Plans for deep ocean Argo
measurements are well-developed (Roemmich et al. 2019), and would provide improved
capabilities for model initialization and verification for A2D understanding and applications
(Meehl et al. 2021).

Simultaneous development of global climate modeling capabilities over more than 60 years
has seen similar gradual improvements in complexity, resolution, and skill, with occasional
step changes in both theoretical understanding and computational capacity (e.g., Forster
2017; Manabe and Broccoli 2020; Balaji 2021). These largely separate (though interdependent)
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efforts have covered enormous ground and helped the climate science community substan-
tiate the unequivocal human influence on climate (IPCC 2021; Hegerl 2022). However, for
the near- and long-term climate-related challenges the world now faces, tighter integra-
tion between the global climate observing system and the climate modeling community is
necessary to address several interrelated obstacles. The joint consideration of observation and
modeling challenges (Fig. 1, bottom panel) provides a conceptual framework for identifying
major gaps and opportunities for progress in observing, monitoring, and modeling Earth
system variability and change.

Fundamental to this tighter integration is the need to better understand the observa-
tional and modeling requirements to measure, explain and predict changes in the Earth
system on A2D and global to regional scales, as well as the current limitations on these
capabilities. These requirements and limitations are certainly case specific, but through
the initial case studies discussed above, we aim to develop a systematic methodology
that can be applied subsequently to assess a wider set of events and address a number of
scientific questions. Foremost among these, How early were these events recognized as
significant and how well were they monitored by different elements of GCOS? Additionally,
we will need to assess how well models, analysis, and reanalyses represented these events.
Case studies will also prove useful for determining how well observations constrained the
underlying metrics (e.g., regional versus global ocean heat content anomalies; global mean
values as small residuals of large regional variations; climate anomalies at the margins of
the polar ice sheets), and if current observations allow for a mechanistic understanding of
the propagation or evolution of relevant anomalies. In particular, these case studies will
be testbeds to determine if observations were sufficient to provide coverage of “upstream”
or precursor processes that led to the events of interest. Many potential case studies are
active areas of research and may require additional investigation to determine which
measurable quantities are the most relevant upstream indicators. With this in mind, we
seek to develop methods that could inform quantitative observing system design, target-
ing scales relevant to EPESC goals, and help objectively determine what climate indices
are to be measured? What measurements constrain such indices? Where, and over what
time horizons should they be measured? How many observations are sufficient? What are
optimal combinations of different observing networks (satellite and in situ)? The observing
networks that operate under GCOS and the Global Ocean Observing System (GOOS 2020)
can play a major role in this approach. For such case studies, the value of these networks
could be assessed, major gaps (as well as potential redundancies) identified, and obser-
vational requirements formulated.

While addressing observational limitations on Earth system understanding, we can also
tackle persistent Earth system model and reanalysis biases through the use of comprehen-
sive estimation methods that bring modeling and (re-)analysis closer together and lead to
better usage of the diverse, heterogenous observing networks underlying the in situ ocean,
terrestrial, and atmospheric networks, in addition to satellite capabilities. This necessarily
touches on the need to harness and improve data assimilation (DA) efforts, viewed more
broadly as parameter estimation or inference methods, and objective analysis procedures.
This opportunity for a “DA for climate” initiative is being approached in partnership with
the Digital Earths Lighthouse Activity. This collaborative effort allows for a focus on major
climate-specific needs (e.g., initial condition estimation versus model parameter calibration)
and issues that might not receive much attention in other data assimilation applications
(e.g., conservation laws and other physical constraints that are key on climate time scales,
but not of primary concern in NWP). In addition, the exploration of synergies between data
assimilation and machine learning concepts will be beneficial (e.g., Schneider et al. 2017;
Abarbanel et al. 2018; Ham et al. 2019; Gordon et al. 2021).
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A parallel issue relates to the data available for assimilation. We currently have
both sparse observational sampling of various elements of the Earth system, and an underuti-
lization of the wide array of observational data which are collected. Underobserved variables
allow for errors to be hidden during assimilation of observed quantities (e.g., altering soil
moisture when assimilating near-surface temperature and humidity; Mahfouf et al. 2009).
Model calibration efforts could benefit from expanded use of GCOS and GOOS observations,
and at the same time, optimization techniques could be harnessed to identify regions of
Earth where enhanced observations could offer substantive improvements in predictive and
explanatory skill (e.g., Hakim et al. 2020) or reduce uncertainty in chosen climate indices
(e.g., Loose and Heimbach 2021). All of this must include novel approaches for dealing with
the combined stream of uncertainties from observations and models.

Another important objective is the development of calibration and uncertainty quantifica-
tion (UQ) strategies for existing or emerging models, observations, and methodologies (e.g.,
data assimilation). Quantifying uncertainties of global and regional changes in relevant cli-
mate metrics, based either on observations, models, or synthesis/data assimilation products,
remains a great challenge, in part because of the computational complexity of the underlying
problem (e.g., Oden et al. 2010, for a general perspective). Inspired by examples described in
Bui-Thanh et al. (2012), Kalmikov and Heimbach (2014), Schneider et al. (2017), Loose et al.
(2020), and Aschwanden et al. (2021), an activity should develop frameworks and workflows
that will account jointly for uncertainties in observations (instrument error, representation
error, sampling, etc.), models (parametric errors, structural model errors, etc.), and assimi-
lation strategies (to the extent that they exist) into comprehensive uncertainty propagation
flows that seek to combine these error sources and, for example, propagate them onto specific
target metrics relevant to climate diagnostics. Ensemble methods used in the climate model-
ing community would benefit from such a systematic approach, both at the point of ensemble
generation and—even more so—when using observations to “constrain” the ensemble, or to
reduce uncertainty in these calculations. Coordination with efforts that focus on developing
and building communities for novel modeling approaches, such as the Digital Earths LHA,
will be crucial.

Theme 2: Integrated attribution, prediction, and projection of Earth system change
Key research questions.

1) How can we best identify and attribute the drivers of changes in the Earth system on
global to regional and A2D scales?

2) What are the requirements for an operational integrated attribution and prediction
capability focused on global to regional and A2D scales to provide early warnings to
inform decision making?

On A2D time scales, climate is influenced by many factors, including internal variability
and external forcing from greenhouse gases, aerosols, ozone, solar variations, volcanic
eruptions, and land-use changes (Cassou et al. 2018; Kushnir et al. 2019; Merryfield et al.
2020). Climate model simulations are essential to disentangle the relative roles of these
different factors. Promising results demonstrate that there is initial state skill extending
into A2D time scales (Meehl et al. 2021, and references therein). At the same time, other
evidence shows that even if most of the A2D time scale skill is coming from external forc-
ing, the initial state of the climate system can substantively impact the forcing trajectory
(e.g., Bordbar et al. 2019). However, climate models are imperfect, with issues of model bias
and drift posing challenges for A2D predictions (Meehl et al. 2022). Additionally, currently
available simulations do not take into account the latest estimates of, and uncertainties in,
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the various radiative forcings. Developing a prototype operational attribution capability
therefore requires two initial stages:

1) Critical assessment of the ability of models to simulate the full range of relevant internal
variability and responses to radiative forcings. A key outcome of this stage will be recom-
mended strategies to eliminate, reduce, or adjust for model errors.

2) Operationalization of attribution simulations using the latest estimates of radiative
forcings and uncertainties, and application of corrections diagnosed in stage 1.

Taken at face value, large ensemble historical simulations suggest a dominant role for
irreducible internal variability in regional climate change on decadal time scales (Deser
et al. 2020). However, there is mounting evidence that climate models may underestimate
atmospheric circulation signals in subseasonal (Domeisen et al. 2020; Charlton-Perez et al.
2019), seasonal (Eade et al. 2014; Scaife et al. 2014; Baker et al. 2018; Lee and Ha 2015),
interannual (Dunstone et al. 2016), and decadal (Athanasiadis et al. 2020; Smith et al.
2020) predictions, and in historical simulations (Lee et al. 2014; Zhang and Kirtman 2019;
Sévellec and Drijfhout 2019; Klavans et al. 2021; Zhang et al. 2021). This error is especially
clear in the North Atlantic, although there is some ongoing debate about the potential role
of nonstationarity and sampling issues (Christiansen et al. 2022; Weisheimer et al. 2019). On
decadal time scales it appears to occur in most regions where there is skill for atmospheric
circulation (Smith et al. 2019, 2020). Figure 2 illustrates this error for decadal predictions of
the North Atlantic Oscillation (NAO). The left panel shows that the ensemble mean has little
signal and high uncertainty. However, there is high correlation (0.79) between the forecast
ensemble mean and the observations such that ensemble mean forecasts scaled to match the
observed variance more closely follow the observed changes over this period (Fig. 2, right
panel). The mismatch between the high correlation and small signal of the ensemble mean
occurs because the models underestimate the predictable signal by an order of magnitude.
Attribution of A2D changes in climate is therefore complicated by the possibility that models
may not properly represent the relative roles of internal variability and external factors (Scaife
and Smith 2018), and due to the difficulties of providing robust statistical verification for
decadal forecasts (Christiansen et al. 2022; Weisheimer et al. 2019).

Understanding the causes of the signal-to-noise problem, and improving models so that
the problem does not arise, are major long-term challenges. In the meantime, given the cur-
rent landscape of model capability, the proposed way forward for this LHA is to diagnose the
response to individual forcing factors from the mean of large ensembles, and then to assess
their relative roles (and their additivity) by scaling to reconstruct the observed historical
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Fig. 2. Decadal predictions of the NAO. (left) Observed (black) and model forecast (years 2-9; red) 8-yr running mean boreal
winter NAO index (hPa). The red curve shows the ensemble mean; the red shading shows the 5%-95% confidence interval
diagnosed from the individual members. (right) As in left panel, but the ensemble mean has been adjusted to have the same
variance as the observations and the confidence interval has been diagnosed from the errors. Adapted from Smith et al. (2020).
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record and treating the residual as internal variability. Such single forcing experiments have
been proposed by the Detection and Attribution Model Intercomparison Project (DAMIP;
Gillett et al. 2016). However, these experiments are generally low priority and modeling
centers have either not completed them, or produced only a few ensemble members. Hence,
a key objective of theme 2 is to develop large ensembles of single forcing historical simula-
tions (LESFs). A LESF Model Intercomparison Project (LESFMIP) based on this initiative is
detailed in Smith et al. (2022), with tier 1 experiments detailed in Table 1 below. Multiple
modeling centers have already committed to producing these large ensembles. Additional
centers are welcome and would not be required to contribute all of the experiments if the
computational demands are too high. These LESFMIP experiments are expected to provide
information on model behavior that will feed back on the model development process. Ideally,
these experiments will also inform the theme 1 activities designed to identify high-priority
regions for expansion of observational networks, though the complexity of this task should
not be underestimated.

Analysis of the LESFs will provide scaling factors for the different forcings (Table 1) and
hence corrections for the model simulations. A key part of the analysis of LESFMIP will
be to exploit differences between the models to diagnose the real-world situation. Hence,
multimodel simulations are essential, though understanding the causes of model errors
and developing emergent constraints will be a significant challenge. This will likely involve
detailed analysis of recent case studies, assessment of observational and forcing uncertain-
ties alongside model biases, and exploration of possible nonlinear interactions between the
responses to different forcings. Initial analysis will likely focus on explaining A2D changes
in sea surface temperatures (SSTs) in the Atlantic, Pacific, and Indian Oceans, with a goal
of providing initial attribution statements to upcoming WMO reports on the State of Climate
and GADCU (Hermanson et al. 2022). Subsequent efforts will go beyond this analysis of SST
changes and focus on their associated impacts (e.g., tropical and extratropical cyclones,
droughts, wildfires, marine heatwaves).

In order for an operational system of attribution simulations to produce measures of the
relative importance of different forcing factors in the observed changes shortly after their
occurrence, real-time estimates of individual forcing factors, together with their obser-
vational uncertainties, will be required. Theme 2 will therefore seek to identify annually
updated sources of forcing information. There will also be a need for research to explore
how results from near-real-time attribution can be used to constrain and improve decadal
predictions. This could involve, for example, exploring the sensitivity of predictions to
the modification or exclusion of individual forcing factors, or sampling large ensembles to
match recent observations (Sparrow et al. 2018; Mahmood et al. 2022). Overall, this new
integrated approach to attribution and prediction promises to provide a step change in our

Table 1. Large ensemble single forcing experiments. All experiments to cover the time period
1850-2020, and then to be extended with real-time estimates of radiative forcings. All experiments
are part of DAMIP (Gillett et al. 2016) except for hist-LU. Target ensemble size is 50 members for all
simulations, with a minimum of 10 members. Tier 1 experiments are listed here; see Smith et al. (2022)
for further details of experiments and analysis plan.

Experiment name Description

hist-GHG Well-mixed greenhouse gas—only historical simulations (WMGHGs)

hist-aer Anthropogenic-aerosol-only historical simulations (BC, 0C, SO,, SO,, NO , NH,, CO, NMVOC)
hist-sol Solar-only historical simulations (solar irradiance)

hist-volc Volcanic-only historical simulations (stratospheric aerosol)

hist-total03 0zone-only historical simulations (stratospheric and tropospheric ozone)

hist-lu Historical simulations with only land-use changes
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understanding of the drivers of A2D climate changes and in our ability to provide early
warnings for decision-making.

Theme 3: Assessment of current and future hazards
Key research questions.

1) How do internal variability and external forcings influence the characteristics and occur-
rence of meteorological hazards on A2D scales in different regions?

2) How can we use observations, models, and process understanding to deliver robust
assessments of current and future hazards for specific regions and hazard classes?

Climate hazards and disasters are increasingly costly to human lives and livelihoods, with
the best estimates for 2021 alone indicating roughly 10,500 lives lost and $343 billion (U.S.
dollars) in worldwide economic losses (Aon 2022). Given the enormity of those numbers,
improved understanding of the causal factors influencing a wide range of meteorological
hazards and improved predictions of such hazards merits substantial investments in climate
science. As such, a key goal of this LHA is to better understand, quantify, and predict changes
in the characteristics and likelihoods of regional weather and climate hazards on A2D scales,
taking into account nonstationarity and multidecadal variability, particularly on large scales
like those associated with ENSO or the Atlantic meridional overturning circulation (AMOC).
Hazards of interest include tropical and extratropical cyclones, droughts, floods, heatwaves,
wildfires, and cold air outbreaks. The theme 3 portion of Fig. 1 (upper-right frame) indicates
that tropical cyclone (TC) frequency is a critically important quantity for this LHA to assess, in
part because of the documented regional dependence of TCs on A2D variability (e.g., ENSO;
Lin et al. 2021; the Atlantic meridional overturning circulation; Dunstone et al. 2011; Smith
etal. 2010). Figure 3 provides an additional example of a relevant hazard metric assessing the
changing risk of fire weather days across the globe. We aim to quantify the current likelihood
of specific weather and climate hazards, as well as changes in weather and climate hazards
on A2D scales. A key component of quantifying those changes must be improved understand-
ing of the processes connecting changes in hazards to natural and anthropogenic drivers of
climate variability and change. Each climate hazard brings its own particular requirements

0.9
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- 0.0
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95th percentile FFDI trend [d y 1]
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Fig. 3. Trend in the number of days per year between 1970 and 2020 for which the forest fire danger
index (FFDI) exceeds the climatological 95th percentile, adapted from Richardson et al. (2022). Based on
data from the reanalysis product JRA-55 (Japan Meteorological Agency 2013). Shading is the Theil-Sen
slope. Stippling indicates a statistically significant result from the Mann-Kendall trend test, treated for
multiple testing and autocorrelation. See Richardson et al. (2022) for details.
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in terms of the strength of observational data and modeling underpinning current under-
standing, and in terms of the complexity of the hazard in human systems. As such, dedicated
analysis is required for each type of climate hazard. Our initial efforts will be focused on TCs
because of their high salience for climate impacts (Fig. 1, theme 3 highlight, top-right corner).

There are many knowledge gaps impeding the quantification of the impacts of natural and
anthropogenic drivers on hazards. This is in part due to the limited length and limited spatial
coverage of reliable observational records and the relatively rare occurrences of many types
of hazards. These factors make it challenging to identify statistically significant trends and
to distinguish internal variability from responses to external forcings. Our current capability
to explain hazard changes is also limited due to a lack of process understanding about how
drivers of large-scale changes may affect hazards, making this a key focal point of this theme.
One example is the debate on whether Arctic warming impacts midlatitude extreme weather
(e.g., Barnes and Screen 2015; Blackport et al. 2019). In general, hazards or weather/climate
extremes are often regarded as the tail of the distribution of a climate variable, and strong
observational or theoretical constraints do not exist for most types of hazards.

Our current capability to predict and project hazard changes is limited due to several fac-
tors, many of which have already been touched upon in discussion of the other themes. First,
many types of hazards are related to mesoscale, or even convective-scale processes (such as
TCs and tornadoes), or are closely tied to the coupling between different components of the
climate system (such as the role of land—atmosphere interactions in droughts or heat waves),
neither of which are adequately represented in most global models. Additionally, even if a
model skillfully predicts the mean regional change, there are often large biases in the regional
distribution of hazards, leading to deficiencies in capturing the impacts of climate variability
or changes in these hazards. Model biases, sparse observations, and technical difficulties
also present major challenges to the comprehensive calibration and balanced initialization
of coupled prediction systems (theme 1). Furthermore, as discussed above, large intermodel
spread exists in predicted and projected climate changes on the regional scale, due to dif-
ferences in model formulation (e.g., physics parameterizations and resolution), and signals
related to anthropogenic forcing are often weak compared to internal variability (theme 2).
Finally, computationally demanding large ensembles are required to adequately sample rare
events. Use of the LESFs discussed in theme 2 will allow us to improve our ability to quantify
current and future risk of hazards, and attribute changes in hazard risk to internal or external
climate drivers. These efforts in combination will enable us to assess the predictability and
uncertainty of changes in hazard risk.

Additionally, a range of experimental designs will be useful to make progress with the
challenges in this theme, including hindcast datasets to quantify current risk (e.g., Thompson
etal. 2017; Squire et al. 2021); coupled single-forcing experiments (as described in theme 2);
large ensemble atmospheric general circulation model (GCM) experiments, possibly including
regional downscaling (e.g., Mizuta et al. 2017; Imada et al. 2020); and targeted nudging and/or
pacemaker experiments (e.g., Kosaka and Xie 2013; Watanabe et al. 2014). While atmospheric
GCM experiments cannot fully address predictability and fixed SST experiments can provide
biased estimates of changes in climate extremes (Fischer et al. 2018), they can nonetheless
be helpful to provide mechanistic understanding of the natural and anthropogenic contribu-
tions to changing hazards, such as the regional risk of heavy precipitation (Imada et al. 2020).

A gap also exists between the research and user communities regarding A2D prediction
products that are useful, usable, beneficial, and feasible to produce, especially at regional
scales. For example, although research has demonstrated the predictability of basinwide
statistics of TCs (e.g., Smith et al. 2010; Dunstone et al. 2011; Caron et al. 2018), users are
often more interested in landfalling TC statistics. With increasing computing power, improved
climate models, and a better understanding of A2D predictability sources, skillful predictions
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of landfalling TC statistics are achievable over some basins (Chang and Wang 2020).
In addition, there is likely a middle ground, and codesign between researchers and users is
needed for it to be identified. These overlapping challenges highlight the benefit of combining
the proposed activities under the broad umbrella of this LHA.

Conclusions

The WCRP Strategic Plan (WCRP JSC 2019) for the coming decade highlights four scientific
objectives, three of which relate directly to the objectives of this Lighthouse Activity. Funda-
mental understanding of the climate system (objective 1) and prediction of the near-term
evolution of the climate system (objective 2) are at the heart of this LHA’s effort to explain and
predict annual to decadal-scale Earth system change. Furthermore, this LHA will ensure that
advances in fundamental understanding of Earth system change are targeted to meet the
needs of decision-makers facing climate-related risks and opportunities. Societal benefits to be
delivered by this LHA include early warning of significant global- and regional-scale changes
in the climate system, and quantification of current and future hazard risk on regional scales.
The benefits of this new actionable information will be enhanced through codevelopment
with diverse stakeholders (e.g., governments, businesses, public), and thereby offer a major
contribution to WCRP’s efforts to bridge climate science and society (objective 4).

WCRP’s new Lighthouse Activities constitute a bold effort to tackle some of the most per-
sistent and difficult issues in climate science today. These efforts will require close collabo-
ration with many different groups within WCRP and beyond to undertake a full, integrated
assessment of our observational and modeling capabilities that cross component (ocean,
atmosphere, land, ice) and disciplinary boundaries, and help push forward the capabilities
of explanation, prediction, and uncertainty quantification for annual to decadal time scales.
Successfully addressing these issues calls for collaboration and coordination of climate scien-
tists around the world and will require support from funding agencies that is commensurate
with the magnitude of the task at hand.
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