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A self-excitation point process model for quantifying 
nanoparticle agglomeration
Samarth Motagi, James Harris, Alberto Mello, Foram Madiyar and Sirish Namilae

Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, 
USA

ABSTRACT  
Nanoparticle agglomeration refers to the spontaneous 
clustering of nanoparticles caused by the attractive forces. 
Agglomeration impacts the physical and mechanical 
properties of nanoparticles and their composites. 
Understanding and controlling nanoparticle agglomeration 
is crucial for optimizing various applications, from 
nanomedicine to nanoelectronics. In this work, we 
formulated a self-exciting point process model to analyse 
nanoparticle agglomeration based on microstructural input. 
The model is utilised to categorise a specific set of points 
within the microstructure as either independent (dispersed) 
or dependent (agglomerated), along with their respective 
probabilities. We employed this approach to study two 
distinct scenarios: (a) Agglomeration in experimentally 
generated microstructures of titanium nanoparticles, and 
(b) Analysing agglomeration patterns in simulated 
microstructures of carbon nanotube networks, generated 
using a stochastic microstructure model. We obtain a 
quantitative understanding of the connection between the 
sonication duration and the level of agglomeration in 
titanium nanoparticles. As the sonication period increases, 
both the agglomeration percentage and the size of the 
agglomerates decrease. Furthermore, our analysis of 
simulated carbon nanotube microstructures, including 
equiaxed and rope-like agglomeration, shows a close 
alignment between results obtained from the point process 
model and those generated by the stochastic 
microstructure model.
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1. Introduction

Nanoparticles often possess distinct physical and chemical characteristics that 
differ from bulk materials, giving rise to unique behaviours. Agglomeration is 
one such phenomenon where nanoparticles come together, forming larger 
assemblies through spontaneous clustering or aggregation. The different 
factors that contribute to nanoparticle agglomeration, include van der Waals 
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forces, electrostatic interactions, surface chemistry, solvent effects, and 
external factors like temperature and pH [1–4]. Agglomeration of nanoparticles 
leads to several outcomes, including reduced surface area [5], altered 
optical properties [6], change in mechanical properties [7], and loss of 
homogeneity [8].

Various characterisation methods have been used to study nanoparticle 
agglomeration, such as dynamic light scattering [9], transmission electron 
microscopy (TEM) [10], scanning electron microscopy (SEM) [11], atomic 
force microscopy (AFM) [12], and spectroscopic methods [13]. Verleysen 
et al. [14] employed a quantitative approach for assessing stable dispersions, 
which involves TEM imaging in conjunction with semi-automated image 
analysis. This methodology yields number-based distributions of key par
ameters, allowing for the measurement of size, shape, and surface character
istics of TiO2 particles in their unbound, aggregated, and agglomerated 
states. Rao et al. [15] employed AFM to analyse the morphology, dimensions, 
and size distribution of various ceramic nanoparticle agglomerates. Jia et al. 
[16] performed real-time sizing during the colloidal processing of metal 
oxide nanoparticles (MONs) using dynamic light scattering.

Modelling of nanoparticle agglomeration involves mathematical or compu
tational approaches to simulate how nanoparticles cluster together, considering 
factors like size, shape, surface charge, environmental conditions, and external 
forces. Models often based on stochastic methods are used to understand 
agglomeration kinetics, predict agglomerate size distributions, and assess nano
particle dispersion stability. Kim et al. [17] investigated the aggregation kinetics 
of gold nanoparticles through a combination of experimental methods and 
Monte Carlo simulations. This study predicts the time needed for the initial 
color change in a gold nanoparticle suspension, offering insights into the 
design and optimisation of colorimetric sensors utilizing gold nanoparticle 
aggregation. Liu et al. [18] applied a constant-number Direct Simulation 
Monte Carlo (DSMC) model to study nanoparticle agglomeration in aqueous 
suspensions. They used classical Derjaguin–Landau–Verwey–Overbeek 
(DLVO) theory, factoring in Brownian motion’s effect on collision frequency. 
The model’s outcomes aligned closely with dynamic light scattering measure
ments for particle size distribution and average agglomerate size. Morán 
et al. [19] introduce a new method to enhance the accuracy of Monte Carlo 
simulations for predicting dynamics and agglomeration of suspended nanopar
ticles. This approach incorporates persistent distance and time steps based on 
Langevin dynamics simulations and a probability model for particle displace
ments. Gbaguidi et al. [20,21] employed a two-dimensional Monte Carlo 
percolation model to investigate the impact of carbon nanotube (CNT) agglom
eration on the electrical and electromechanical properties of both monofiller 
and hybrid nanocomposites. Bhoi et al. [22] developed a mathematical popu
lation balance model to characterize the evolution of Al2O3 nano-agglomerates 
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in a spouted bed. Agglomeration process is simulated using an Equipartition of 
Kinetic Energy (EKE) kernel, signifying the equal distribution of kinetic energy 
among particles, enabling collective formation into agglomerates. In contrast, 
for breakage, two distinct functions are employed: the Dirac delta function indi
cating immediate and concentrated particle breakage, and a function represent
ing confined uniform binary breakage, where particles break into fragments 
with a uniform size distribution. The model exhibits good agreement with 
experimental observations concerning the temporal evolution of both the 
area and volume-weighted average sizes of nano-agglomerates, as well as 
their final size distribution.

In addition to stochastic methods, approaches like Molecular Dynamics have 
been used to understand the interparticle forces that contribute to agglomera
tion. Liao et al. [23] employed molecular dynamics simulations to investigate 
the factors that impact the formation of agglomeration structures in Cu–Ar 
nanofluids. Wang et al. [24] conducted equilibrium molecular dynamics simu
lations and the Schmidt–Ott equation to analyse the fractal dimensions of the 
nanoparticle aggregations with various morphologies. The findings suggested 
that achieving lower fractal dimensions can lead to enhanced thermal conduc
tivity. Alian et al. [25] conducted molecular dynamic simulations that con
sidered both the curvature and agglomeration of carbon nanotubes to 
analyse their influence on the interfacial strength and load transfer capacity 
in thermoset nanocomposites.

In this study, we introduce a new approach based on point process modelling 
to analyse nanoparticle agglomeration. A point process model is a statistical 
framework used to describe and analyse the spatial or temporal distribution 
of points or events in a particular region or over a specific period. Hawkes 
process, also known as self-exciting point process, is a branching point 
process model [26]. It describes a random sequence of clustered events or 
points wherein the presence of one point (or event) increases the likelihood 
of subsequent points (or events) occurring in its spatial or temporal vicinity. 
While the application of self-exciting point process models originated in the 
field of earthquake analysis to categorise mainshock and aftershock events 
from earthquake data, it has found applications across diverse domains. 
These domains include crime event analysis [27], tweet popularity prediction 
[28], epidemiological studies [29], as well as the analysis of instances involving 
mass killings and school shootings [30], email network [31], and financial data 
analysis [32].

The Hawkes process is parameterised by two functions, the background 
intensity, which describes the average rate of occurrence of events in the 
absence of any previous events. The excitation function, which describes how 
the occurrence of an event affects the probability of subsequent events. The 
parameters of self-exciting point process models can be estimated from 
data. This allows the models to be used to make predictions about future 
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events. Self-exciting point process models are a powerful tool for analysing 
sequences of events. They have been used to make significant contributions 
to a wide range of fields.

Hawkes point process model used in this study has the ability to capture 
spatial and temporal clustering, account for intensity variation, and facilitate 
statistical inference and prediction. Therefore, these models offer a novel 
statistical framework that can analyse the characteristics of agglomeration pro
cesses, making it a potentially effective approach. While this model has not yet 
been used in materials science and can bring a fresh perspective and could poss
ibly be adapted to other similar materials science problems.

We apply this approach to analyse nanoparticle agglomeration in two dis
tinct contexts: (a) experimentally generated microstructures of titanium nano
particles, and (b) simulated microstructures of carbon nanotube agglomeration 
derived from a stochastic microstructure model. Experimental micrographs of 
titanium nanoparticles with various degrees of agglomeration were achieved by 
subjecting solutions with the same concentration to different durations of ultra
sonic treatment. Simulated CNT microstructures exhibiting a range of agglom
eration patterns for carbon nanotubes, including both equiaxed and rope-like 
morphologies were obtained using a stochastic microstructure model. Using 
these micrographs, we extracted the nanoparticle locations and applied a 
point process model to analyse the nanoparticle agglomeration. Our findings 
indicate that the point process model is an effective tool for analysing agglom
eration and holds potential for further applications in nucleation-growth pro
cesses in materials science.

2. Methodology

2.1. Generation of experimental microstructures

99.9% pure spherical titanium nanoparticles – product number 1121XH from 
SkySpring Nanomaterials Inc., were procured for utilisation in this study. To 
prepare the nanoparticle solution, 0.001 g of titanium nanoparticle powder 
was combined with 8 ml of isopropyl alcohol (IPA), resulting in a solution 
with a concentration of 0.125 mg/ml. The SCILOGEX MX-T6-S Analog 
Tube Roller was employed to disperse titanium nanoparticles in the solution 
and reduce agglomeration. The nanoparticle solution inside a vial with SiC 
balls was placed within the tube roller for 24 h, operating at a speed of 
50 rpm, effectively breaking apart the nanoparticle clusters and reducing the 
size of the agglomerates. Additionally, ultrasonication is employed to further 
break apart the nanoparticle agglomerates. Ultrasonication produces high-fre
quency sound waves within the liquid medium, resulting in the formation of 
pressure waves and cavitation bubbles. As these bubbles collapse, they generate 
micro-turbulence and shear forces, effectively dispersing and breaking the 
agglomerated nanoparticles [33]. Consequently, ultrasonication facilitates the 

4 S. MOTAGI ET AL.



even distribution of nanoparticles throughout the liquid medium, serving as an 
effective measure to prevent or reduce agglomeration. Different levels of 
agglomeration were achieved by subjecting individual solutions to ultrasonic 
treatment for different durations with 5, 10, 20, 30, 60, 90 and 120 min. 
Subsequently, 40 µl droplets of each solution were dispersed onto an epoxy 
polymer substrate using a micro-pipette. The solution was immediately 
deposited onto the substrate within a minute of ultrasonication to prevent 
reagglomeration. To facilitate solvent evaporation, the prepared samples were 
subjected to a temperature of 50°C using an Aluminium top hotplate. 
The resulting micrographs displayed differing levels of nanoparticle agglomera
tion in the samples. Notably, the application of one hour or more of ultrasonic 
treatment duration was correlated with the uniform dispersion of the 
nanoparticles across the sample. Conversely, shorter durations of ultrasonic 
treatment resulted in a more noticeable agglomeration in the samples, as 
shown in Figure 1. When the as-prepared nanoparticle solution without soni
cation is used to generate microstructures, large agglomerates are present. 

Figure 1. Titanium nanoparticles dispersed on the substrate at different sonication times 
(a) 5 min (b) 30 min (c) 1 h and (d) 2 h.
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The agglomerates reduce in size with increasing sonication duration. 
Additional sonication time did not reduce the particle size further. This particle 
size is measured using dynamic light scattering (DLS) measurements. After 
two hours of sonication, we observe that particles of about 200 nm size and 
are uniformly distributed.

We performed SEM micrographic analysis to further characterise the par
ticle size distribution after ultrasonication for 120 min as shown in Figure 2. 
Scanning electron microscopy ascertained that the average particle size of tita
nium nanoparticles is 197 nm. Particle size is also confirmed using Dynamic 
Light Scattering – Malvern Zetasizer ZS90 to measure the size of particles in 
an IPA solution at 25°C. The technique relies on analysing the fluctuations 
in light scattering intensity caused by the Brownian motion of particles sus
pended in a liquid. By analysing the intensity fluctuations, DLS can determine 
the size of the particles in the solution, typically in the range of a few nano
metres to a few micrometres. After 120 min of ultrasonication, the DLS 
measurements recorded a particle size of 195.37 nm and a zeta potential of 
−32.5 mV. This closely matches SEM analysis.

2.2. Generation of simulated microstructures

Simulated microstructures of agglomerated CNTs were generated using a sto
chastic microstructural model. These CNTs were generated within a Represen
tative Area Element (RAE) with dimensions (Lx and Ly). Each CNT took the 
form of a line segment with a midpoint (xic, yic), a starting point (xi

1, yi
1), and 

an endpoint (xi
2, yi

2). Additionally, the length and polar angle of each CNT 
were represented by li and Øi, respectively. Different microstructures are gen
erated by stochastically varying all of these parameters, simulating the complex
ity found in real-world microstructures. To calculate the volume fraction, all the 

Figure 2. SEM micrograph of the nanoparticles after ultrasonication for 120 min.
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CNTs in the RAE are assumed to have a uniform diameter DCNT. The CNT 
volume fraction is defined as the ratio of the total volume encompassed by 
all the CNTs (π×ri2

0 ×li) to the area of the RAE (Lx × Ly). To achieve the 
desired CNT volume fraction, nanotubes were added to the RAE until the 
specified volume fraction was attained. The centre of each CNT consistently 
falls within the confines of the RAE. In some instances, CNTs may intersect 
with one or even both edges of the RAE. To handle this situation, we employed 
periodic boundary conditions. These conditions efficiently relocated any line 
segments that extended beyond the RAE’s boundaries, placing them on the 
opposite side of the RAE to ensure that they always remained contained 
within the RAE. The microstructure generation is described in detail in [34].

We modify this approach to generate microstructures featuring different 
quantities and morphologies of CNT agglomerates. This process begins with 
the generation of a seed layer consisting of completely randomised and uni
formly distributed fillers. Subsequently, we introduce additional fillers in a 
manner that results in the formation of agglomerates around a portion of the 
initial seed layer. The total volume fraction of CNTs (Vf) within the RAE is 
determined by summing the volume fractions of both agglomerated (Vf

agg) 
and non-agglomerated CNTs (Vf

non−agg). The agglomeration level or volume 
fraction of agglomeration is then modelled by ξagg = Vf

agg/Vf. Two distinct 
microstructural configurations were generated by varying parameters related 
to agglomeration: the rope-like and equiaxed agglomerates. The formation of 
these structures was governed by two key parameters, ξagg and αagg. The 
agglomeration parameter, ξagg, dictated the proportion of CNTs that were 
organised into agglomerates. For instance, when ξagg = 0, CNTs are uniformly 
distributed throughout the representative area element without any agglomera
tion. As ξagg increased, the degree of agglomeration increased. When ξagg =  
10%, in the first step the CNTs are uniformly distributed throughout the 
RAE without any agglomeration and then the additional small fraction of 
CNT fillers is added which results in the formation of agglomerates. Similar, 
procedure is carried out for varying levels of CNT agglomeration. The agglom
eration angle, αagg, is used to model the spatial arrangement of CNTs within an 
agglomerate. The newly added CNTs are positioned at a randomly varied angle 
between 0 and αagg with respect to one of the pre-existing CNTs in the micro
structure. When αagg = 0°, CNTs within an agglomerate are all aligned in par
allel, resulting in the formation of rope-like agglomerates within the 
microstructure. Conversely, when αagg = 180°, CNTs within an agglomerate 
exhibit varied orientation, giving rise to equiaxed or star-like agglomerate for
mations. Figure 3 (a) and (b) illustrated microstructures showcasing the 
equiaxed and rope-like agglomerates, respectively, with agglomeration level 
of 50%. These details are presented in detail in [21]. For each agglomeration 
level, 25 microstructures were generated from the stochastic model to 
account for statistical variations in the point process agglomeration analysis.
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2.3. Point process model formulation for agglomeration analysis

Consider a microstructure that consists of N points which represent the 
location of nanoparticles. ri is the distance of a point i from origin.

l(r) = m+
􏽘

i:ri,r
gA, a(r  ri). (1) 

Here, l is the limiting expected distribution of points. The model classifies the 
nanoparticles in the dataset into two categories, uniformly dispersed nanopar
ticles and agglomerated nanoparticles. Uniformly dispersed nanoparticles are 
assumed to be distributed independently at an areal density m . 0. This 
model primarily addresses discrete agglomeration state as described by a micro
graph at a given location and time.

gA,a(r  ri) is the probability density function (PDF) of the occurrence of an 
agglomerated nanoparticle at a distance ri and is modelled as follows:

gA,a(r  ri) =
A ∗a ∗ exp[ a ∗ (r  ri)], r . ri ,
0 , r ≤ ri.

􏼚

(2) 

The conditional intensity function l(r|Hr) can now be expressed as follows:

l(r) = m+ A
􏽘

i:ri,r
a.e a(r ri). (3) 

In this case, α denotes the decay rate in distance for the occurrence of an 
agglomerated nanoparticle, and A is the preexponential parameter describing 
the magnitude of excitation. Notably, gA,a is the function that describes the 
delta r  ri between an agglomerated and corresponding uniformly dispersed 
seed nanoparticle. The model is defined by three unknown parameters 
u = (m, A, a). While fitting the model to the microstructure data, these par
ameters are computed using maximum likelihood estimation. The log- 

Figure 3. (a) Equiaxed agglomeration and (b) Rope-like agglomeration of carbon nanotubes.
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likelihood function [35] is given a distance series of microstructure data con
sisting of N points {(ri), i = 1, . . . , N} in an area.

l(u|Hr) =
􏽘N

i=1
loglu(ri|Hri) 

􏽚R

0

lu(r|Hr)dr. (4) 

The Davidon–Fletcher–Powell (DFP) approach, a gradient-based nonlinear 
optimisation procedure, is used to derive the maximum likelihood estimate 
(MLE) [32]. The DFP method works by iteratively updating an approximation 
to the inverse Hessian matrix. This approximation is used to generate a search 
direction, which is then used to update the current estimate of the minimum. 
The process is repeated until the convergence criteria are met. The probability 
that point i triggered point j, i.e. the probability that a nanoparticle j is in an 
agglomerate with nanoparticle i as a seed is given by:

pij =

gA,a(rj  ri)
l(rj|Hrj )

, rj . ri,

0 , rj ≤ ri.

⎧
⎨

⎩
(5) 

Hence, the probability of nanoparticle j being an agglomerated nanoparticle is 

pj =
􏽐j 1

i=1
pij. Consequently, the probability of nanoparticle j being a uniformly 

dispersed nanoparticle is:

1 pj =
m

l(rj|Hrj )
. (6) 

Based on the probability values pj obtained from the model of N nanoparticle 
points can be classified into uniformly dispersed and agglomerated nanoparti
cles. This categorisation allows us to compute the microstructure’s agglomera
tion level and the average agglomeration size of nanoparticles in a given 
microstructure. Pseudocode outlining the algorithm of the Hawkes point 
process model is shown in Figure 4.

The point process model described above relies on input data consisting of the 
distances of individual nanoparticles from the origin. To acquire these data, we first 
need to extract the nanoparticle locations from both experimental and simulated 
microstructures. We employed a widely used tool WebPlotDigitizer [36] to 
extract nanoparticle positions from the experimental microstructures. In the case 
of simulated microstructure, the centre of the CNT location is extracted directly 
from the model data. Subsequently, we calculated the distance of individual nano
particle from the origin. This data is used as an input for the point process model.

Two or more nanoparticles at different angles may have the same radial dis
tance from the origin. To avoid the overlapping of such nanoparticles, segments 
are created to allocate unique locations for the CNTs as shown in Figure 5. If 
any of the clustered nanoparticles (especially CNTs) are split across segments, 
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then the particles that are closest to one another are forced to fall within the 
same segment. Figure 5 shows two CNT clusters inside segments 1 and 4; in 
this example, the nanoparticles are assigned a unique position within their respect
ive segments. In this case, when we see that one cluster is split across two segments 
(i.e. segments 2 and 3), so we create a buffer segment to ensure that the cluster is 
not divided across the segments, and any particles that are close by within the 
buffer segment are considered in the same segment. In this scenario, CNTs are con
sidered in segment 2 and ignored in segment 3 to avoid recurrence. These scenarios 
are more common for high aspect ratio particles like CNTs.

Figure 4. Pseudocode outlining the algorithm of Hawkes Point Process Model.

Figure 5. Allocation of unique location to CNTs in a micrograph.
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3. Results

3.1. Analysis of experimental microstructures

The digitised nanoparticle positions from the experimental micrographs cap
tured at various sonication times are as shown in Figure 6. Due to the 
limited contrast between the nanoparticles and the substrate, we used a 
manual process to extract the nanoparticle locations. However, this process 
can be easily automated using higher contrast particles. Once we have obtained 
the nanoparticle location data, we utilise MATLAB code to create segmentation 
that assigns unique identifiers to these locations as explained in Section 2.3. 
This dataset is used as input for the point process model, enabling the classifi
cation of nanoparticles into two categories: those that are uniformly dispersed 
and agglomerated nanoparticles.

The point process model provides output in terms of probability values that 
play a crucial role in classifying nanoparticle behaviour. Equation (5) is used to 
compute the probability that a given particle is uniformly dispersed. This prob
ability value is the basis for the classification of all points as independent (i.e. 
dispersed) or dependent (i.e. part of an agglomerate. All agglomerates will 
still contain one particle that is classified as an independent point and the sur
rounding particles close to this independent particle would have low probability 
values indicating that they are a part of the agglomerate. The choice of the prob
ability value 0.8 was determined as a threshold through visual examination, 
where it was noted that nanoparticles are in an agglomerated state when the 
probability that they are independent was below 0.8. Figure 7 shows the micro
structure of titanium nanoparticles alongside a corresponding contour plot of 

Figure 6. Extracted titanium nanoparticle location dispersed on the substrate at different soni
cation time (a) 5 min (b) 30 min (c) 1 h and (d) 2 h.
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the probability values. After undergoing 5 min of sonication, the microstruc
ture exhibits a relatively high level of agglomeration. The corresponding 
contour plot for most particles depicts a low probability that the particles are 
not agglomerated, indicating high levels of nanoparticle agglomeration. Con
versely, the titanium microstructure subjected to 2 h of sonication tends to 
exhibit much lower levels of agglomeration. In the figure, the corresponding 
contour plot reveals higher probability values, depicted in red, signifying uni
formly dispersed nanoparticles.

We investigated the agglomeration behaviour of titanium nanoparticles in 
relation to varying sonication durations. Commercially available titanium 
nanoparticles in a dry powder state are found to be agglomerated into particles 
that are several hundred nanometres in size [37, 38]. For each specific soni
cation duration, we capture three micrographs and subsequently quantify the 
agglomeration percentage based on the probability values generated by the 
point-process model. The findings presented in Figure 8 illustrate that a 
higher percentage of titanium nanoparticle agglomeration is observed when 
sonication times are shorter. It is quite evident that when a shorter duration 
of ultrasonication was employed, it was insufficient to effectively disperse the 
nanoparticle agglomerates, consequently resulting in a higher agglomeration 
percentage. As we progress from sonication duration A to G (see Figure 7), 
the agglomeration percentage consistently decreases indicating that a higher 
duration of ultrasonication results in uniform dispersion of the nanoparticles. 
The error bars depicted in Figure 7 signify the standard deviation of the nano
particle agglomeration percentage corresponding to each sonication duration. 
This trend signifies that the nanoparticle agglomerates gradually break apart 
as the sonication time extends. The model can effectively capture the 
dynamic relationship between sonication duration and titanium nanoparticle 
agglomeration.

Once the nanoparticle classification as dispersed or agglomerated particles is 
completed, we employ a post-processing MATLAB code to determine the size 
of the nanoparticle agglomerate. This is accomplished by identifying 

Figure 7. (a) Titanium microstructure sonicated after 5 min, (b) contour plot based on prob
ability values form the model for sonication time 5 min, (c) titanium microstructure sonicated 
after 2 h and (d) contour plot based on probability values for sonication time 2 h. Note the 
contour legend corresponds to both (a) and (b), the size of the micrographs is 25 µm × 25 µm.
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agglomerate boundary based on the aforementioned probability values. Given 
that our input data consists of a sequential series of nanoparticle distances from 
the origin. We use the probability values to identify continuous sequences of 
values that consistently fall below 0.8. This pattern of consecutive low values is 
indicative of the existence of nanoparticle clusters. In contrast, if the values 
remain consistently above 0.8, it signifies that the nanoparticles are uniformly dis
persed. By adopting this method, we can pinpoint nanoparticle agglomerate clus
ters and calculate the size of a given agglomerate, and the average agglomeration 
size for the micrograph. In Figure 9, as we progress from point A to point F, cor
responding to increasing sonication times, it becomes evident that the agglomera
tion size consistently decreases. This observation indicates the gradual breakdown 
of nanoparticle agglomerates in response to longer sonication times.

To validate the point process model results, we compared the point process 
agglomeration analysis with microstructural analysis. The agglomeration stat
istics were manually extracted from the same micrographs that were used for 
point process analysis. The comparison between the two approaches shown 
in Table 1 indicates that point process model accurately captures the agglom
eration behaviour.

3.2. Analysis of simulated microstructures

The same methodology is applied to the simulated microstructures containing 
carbon nanotubes, generated within a Representative Area Element measuring 

Figure 8. Agglomeration of titanium nanoparticles with respect to sonication time. Note the 
contour legend corresponds from A to G micrographs and the size of the micrographs is 
25 µm × 25 µm.
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25 × 25 micrometres. In Figure 10, we present a randomly generated micro
structure, featuring a 50% agglomeration of CNT nanoparticles. We can 
discern two distinct nanoparticle behaviours as depicted in the figure. First, 
we observe CNT nanoparticle entanglement, which is referred to as agglomer
ated nanoparticles. Second, there are uniformly dispersed CNT nanoparticles, 
which appear isolated without nearby CNTs or entanglements. To distinguish 
between these two behaviours, we utilise a point-process model to calculate 
probability values for the classification. The corresponding contour plot in 
Figure 10 represents these nanoparticles based on the probability values 
obtained from the model. Equation (5) serves as the probability equation for 
uniformly dispersed nanoparticles, forming the foundation for classification. 
When the value derived from this equation is below 0.8, it indicates that the 
nanoparticles are in an agglomerated state. Conversely, when the value 

Figure 9. Agglomerate size of titanium nanoparticles with respect to sonication time.

Table 1. Comparison of point process results with manual microstructural analysis in terms of 
agglomerate size.

Ultrasonication time
Microscopic analysis Point process analysis

% DifferenceMean agglomerate size Mean agglomerate size

5 min 2939 nm 2842 nm 3.3
10 min 1009 nm 956 nm 5.2
1 h 744 nm 768 nm −3.2
2 h 199 nm 226 nm −13.56
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exceeds 0.8, it signifies uniform dispersion of the nanoparticles. Uniformly dis
persed nanoparticles are depicted as orange to red nanoparticles in the contour 
plot. In contrast, agglomerated nanoparticles are represented as yellow to blue 
dots in the contour plot. This approach allows us to effectively differentiate 
between uniformly dispersed and agglomerated CNT nanoparticles within 
the simulated microstructure, which helps to quantify nanoparticle agglomera
tion characteristics.

3.2.1. Equiaxed vs. rope-like agglomerated microstructures
Based on the processing conditions, agglomerates in carbon nanotubes have 
been found to exhibit two types of morphologies: equiaxed [39, 40] and 
rope-like [41, 42]. Equiaxed agglomeration of carbon nanotubes refers to a 
specific clustering pattern of CNTs where the agglomerates take on spherical 
or star-like shapes. In Figure 11, we can see that the simulated microstructure 
transitions from uniformly dispersed CNTs to various levels of equiaxed 
agglomerated microstructures, and this transformation is achieved using a sto
chastic microstructure model. To quantify these changes, corresponding 
contour plots represent the probability that a given CNT is in a dispersed 
state. These values are derived from a point process model. In the first micro
graph (a), where CNTs are uniformly dispersed, the probability values are close 
to 1. This signifies that the CNTs are evenly distributed throughout the micro
structure with minimal clustering. As we progress to micrographs (b), (c), and 
(d), we observe a decrease in probability values, indicating higher levels of 
agglomeration in the micrographs. In (b), with 30% agglomeration, some 

Figure 10. Randomly generated microstructure with 50% agglomeration of CNT nanoparticles 
and contour plot of representation of nanoparticles based on probability values obtained from 
point-process model.
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clustering of CNTs has begun to occur. In (c), with 50% agglomeration, the 
clustering becomes more pronounced. Finally, in (d), with 99% agglomeration, 
the probability value is at its lowest, signifying that a significant portion of 
CNTs has aggregated into equiaxed agglomerates, forming spherical or star- 
like structures.

In contrast to equiaxed agglomeration, rope-like agglomeration of carbon 
nanotubes refers to bundling together CNTs parallel to each other into struc
tures that resemble ropes or fibres. Figure 14 shows the evolution of the simu
lated rope-like microstructures, varying from uniformly dispersed to increasing 
levels of rope-like agglomeration. These variations are obtained by changing the 
input parameters to the stochastic microstructure model as described in Section 
2.2. Figure 12 displays simulated micrographs and corresponding contour plots 
indicating the probability of CNT dispersion. For the completely dispersed state 
shown in Figure 12 (a), the probability values are close to 1. This signifies that 
the point process model computes that the CNTs are uniformly distributed 
throughout the microstructure, with minimal clustering. Figure 10b–d presents 
micrographs with increasing agglomeration and corresponding probability 
contours. For both rope-like and equiaxed agglomerated microstructures, the 
point process model computes the dispersion probabilities effectively which 
are used for further analysis.

We employed the point process model to categorise nanoparticle distri
butions as either uniformly dispersed or agglomerated and used this infor
mation to quantify the level of agglomeration within a given microstructure. 
We analysed 25 microstructures of specific agglomeration characteristics 
to account for statistical variation. We find that the results independently 
obtained from the point process model closely align with the input parameters 
used by the stochastic microstructure model to model the microstructures. 

Figure 11. Randomly generated microstructure and contour plot of CNT nanoparticles based 
on probability values (a) 0% agglomeration (b) 30% agglomeration (c) 70% agglomeration 
and (d) 99% agglomeration. Note that the size of the micrographs is 25 µm × 25 µm.
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Error bars represent the standard deviation associated with the nanoparticle 
agglomeration percentages. Figure 13 shows these results for equiaxed micro
structure and similar results for rope-like microstructures are shown in 
Figure 14.

3.2.2. Agglomerate size variation
We utilised the same post-processing MATLAB code used for experimental 
microstructures, to analyse the size of the nanoparticle agglomerates for the 
simulated microstructures as well. Figure 15 presents the average agglomerate 
size for a given agglomeration percentage for both equiaxed and rope-like 
microstructures. For equiaxed and rope-like agglomerates, the agglomeration 
size consistently increases with a corresponding rise in the agglomeration per
centage. The equiaxed agglomerate exhibits a larger agglomerate size compared 
to the rope-like agglomerate. This size difference arises from the distinctive 
star-like shape found in equiaxed agglomerates, whereas rope-like agglomera
tions are characterised by their fiber-like structure. The reduction in agglom
eration size in the rope-like formation is attributed to the alignment of 
carbon nanotubes, causing a decrease in size along the radial direction. This 
alignment results in an overall decrease in agglomeration size at higher rates 
of agglomeration.

4. Discussion

Controlled agglomeration offers the advantage of tailoring material properties 
to meet specific performance requirements. For instance, as agglomeration 
increases, particle-to-particle distances shorten, intensifying magnetic dipole 
interparticle interactions. This results in a more pronounced ferromagnetic 

Figure 12. Rope-like generated microstructure and contour plot of CNT nanoparticles based on 
probability values (a) 0% agglomeration (b) 30% agglomeration (c) 70% agglomeration and (d) 
99% agglomeration.
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behaviour with hysteresis losses, valuable for tumour treatment by selectively 
targeting cancer cells without harming surrounding healthy tissue [43]. 
Conversely, nanoparticle agglomeration can diminish the potential improve
ment in mechanical properties in nanocomposites due to restricted interfacial 
area. In orthopaedic applications [44], ceramic nanoparticles inherent 

Figure 13. Comparison of percentage of agglomerated microstructure generated from stochas
tic model with the point process model.

Figure 14. Comparison of percentage of rope-like agglomerated microstructure generated 
from stochastic model with the point process model.
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tendency to form larger agglomerates in a polymer matrix compromise 
mechanical performance. In materials’ microstructure characterisation, 
nanoparticles have played an important role in determining strain maps and 
finding strain localisations via digital image correlation (DIC). In this case, 
properly dispersed particles must cover the area of interest, allowing the con
struction of displacement fields [45, 46]. The growing use of nanoparticles in 
everyday products raises concerns about their release into water sources 
and wastewater. In water treatment and wastewater sludge, nanoparticles 
and agglomerates with particle sizes less than 100 nm can be slow settling, 
prolong suspension, and hinder effective removal, increasing the risk of 
environmental toxicity [47]. Agglomerated nanoparticles often possess 
reduced effective surface areas compared to individual dispersed nanoparticles, 
limiting reactivity critical in applications like catalysis [48]. Additionally, 
agglomerates may exhibit diminished mobility and diffusion rates, impacting 
their effectiveness in applications requiring free nanoparticle movement, 
such as drug delivery [49]. Therefore, it is of utmost importance to gain a com
prehensive understanding of nanoparticle behaviour with regard to aspects 
such as morphology, agglomeration percentage, agglomeration size, and 
associated factors.

Mathematical models to describe and predict nanoparticle agglomeration 
provide invaluable insights into the complex dynamics of nanoparticles 
coming together, forming clusters, and influencing various material properties. 
Several modelling approaches including stochastic percolation models [50], 
fractal analysis [51], Smoluchowski equation [52] and Kinetic Monte Carlo 
[53] have been used to study agglomeration. These models describe how 

Figure 15. The average agglomeration size with error bars is represented for equiaxed and 
rope-like agglomerate with respect to agglomeration percent.
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nanoparticles come together and form aggregates over time, taking into 
account factors such as particle concentration, collision frequency, and the 
probability of aggregation. Despite these developments, there is a limited cor
relation between modelling and experimental studies. Furthermore, there is a 
lack of modelling approaches that can quantitatively analyse a given experimen
tal or simulated microstructure for agglomeration characteristics. The point 
process model proposed in this study effectively addresses this aspect.

Statistical methods offer distinct advantages in quantifying the agglomera
tion phenomenon compared to analytical methods. Considering the inherent 
stochasticity of agglomeration processes, statistical methods provide a robust 
framework for analysing and interpreting data. Unlike analytical techniques, 
statistical methods allow researchers to not only describe the central tendencies 
of agglomeration phenomena but also assess the variability, distribution, and 
trends within datasets, as well as quantify uncertainties and reveal patterns 
and correlations that might be overlooked by purely analytical methods. Self- 
exciting point process is an effective approach to model discrete history-depen
dent interrelated spatio-temporal events or points. Consequently, it has been 
used extensively in various domains with such data including earthquake 
occurrences [35], epidemiology[28], crime [26], financial markets [54], etc.

Despite the success of Hawkes point process models in various domains, they 
have not been utilised in materials science. To our knowledge, this study rep
resents the first application of the Hawkes point process model to a problem 
in materials science. Self-excitation point process models are well-suited for 
analysing agglomeration due to the following reasons: (a) Discretisation: 
Point process models handle discrete points or events in the spatiotemporal 
domain. In the context of agglomeration, these discrete points can represent 
individual nanoparticles which are either dispersed or in clusters. (b) History 
or Path Dependence: Another prerequisite for applying point process models 
is the history dependence of the events or points. Agglomeration processes 
inherently exhibit history dependence, meaning the current state of agglomera
tion is influenced by the existing locations of the particles. The applied model 
uses a 2D dataset but holds the potential for adaptation to 3D datasets. For 
adapting to 3D, one would use volumetric data and convert x, y, and z positions 
to distance from origin in sub cells. This would be similar to the procedure 
described in section 2.3 except for including volumetric slices instead of 
planar segments. However, this would complicate the model and require 3D 
characterisation data. Some of the techniques used for 3D characterisation of 
nanoparticles include X-ray computed microtomography [55], confocal laser 
scanning microscopy [56] and transmission electron microscopy [57].

We acknowledge the limitations of optical microscopy, particularly when 
working with complex structures in three dimensions. Optical microscopy, 
while valuable for visualizing particle distributions, has inherent resolution 
limits that can introduce uncertainties in size measurements and the detailed 
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characterisation of nanoparticle agglomerates. These uncertainties primarily 
arise from diffraction limits and the inability to resolve features below the wave
length of light used in the microscope. Therefore, we complemented optical 
microscopy with Scanning Electron Microscopy (SEM) and Dynamic Light 
Scattering (DLS) spectroscopy to characterize the particle size distributions 
for high ultrasonication times. Another limitation is with respect to particle 
count. In the microstructures we have considered, the particle count varies 
from 621 to 89. The background rate used in the calculation is dependent on 
the number of particles. It is always desirable to analyse microstructures with 
a larger number of particles.

Here we have quasi-statically analysed the agglomeration in microstructures. 
The model and methodology are highly adaptable and can be readily extended 
to accommodate dynamic processes. For instance, the analysis in Figure 8, pre
sents an opportunity to explore the spatiotemporal evolution of microstruc
tures under the influence of sonication. By transitioning from quasi-static 
analysis to dynamic analysis, one can examine how microstructures change 
over time as a result of sonication. This will facilitate the time-dependent 
behaviour and responses of such structures and applications. Furthermore, 
many phenomena in material science can be discretised and have path depen
dence. For example, nucleation growth processes like solidification and equili
brium phase transformations. The self-excitation point process models can 
potentially be used for analysing such processes.

5. Conclusion

This study presents an innovative application of the self-exciting point process 
model to investigate nanoparticle agglomeration. Experimentally generated 
titanium nanoparticle microstructures were analysed, revealing a direct corre
lation between sonication duration and nanoparticle agglomeration. With 
increasing sonication time, it was observed that a simultaneous reduction in 
both agglomeration percentage and size. Additionally, our analysis extends to 
simulated carbon nanotube microstructures, encompassing a wide range of 
agglomeration patterns, including equiaxed and rope-like morphologies. The 
outcomes derived from the point process model align closely with those 
obtained from the microstructure model. Agglomeration size consistently 
increases alongside the agglomeration percentage for equiaxed and rope-like 
agglomerates, with equiaxed structures displaying larger agglomerates due to 
their star-like shape, while rope-like agglomerations are defined by their 
fibre-like structure. This study demonstrates that self-exciting point process 
models can be used for analysing phenomenon in materials science that can 
be broken down into discrete events or points, and exhibit path dependence. 
While we focus on agglomeration in this study, the approach can potentially 
be extended to other nucleation and growth-type processes.
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