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ABSTRACT ARTICLE HISTORY
Nanoparticle agglomeration refers to the spontaneous Received 20 October 2023
clustering of nanoparticles caused by the attractive forces. Accepted 19 June 2024

Agglomeration impacts the physical and mechanical

properties of nanoparticles and their composites. Nanoparticle agglomeration;
pnderstgndlng and cpnjcrplllng na!nopartlcle'agglomeratlon self-excitation point process,
is crucial for optimizing various applications, from model; titanium
nanomedicine to nanoelectronics. In this work, we nanoparticles; carbon
formulated a self-exciting point process model to analyse nanotubes
nanoparticle agglomeration based on microstructural input.

The model is utilised to categorise a specific set of points

within the microstructure as either independent (dispersed)

or dependent (agglomerated), along with their respective

probabilities. We employed this approach to study two

distinct scenarios: (a) Agglomeration in experimentally

generated microstructures of titanium nanoparticles, and

(b) Analysing agglomeration patterns in simulated

microstructures of carbon nanotube networks, generated

using a stochastic microstructure model. We obtain a

quantitative understanding of the connection between the

sonication duration and the level of agglomeration in

titanium nanoparticles. As the sonication period increases,

both the agglomeration percentage and the size of the

agglomerates decrease. Furthermore, our analysis of

simulated carbon nanotube microstructures, including

equiaxed and rope-like agglomeration, shows a close

alignment between results obtained from the point process

model and those generated by the stochastic

microstructure model.

KEYWORDS

1. Introduction

Nanoparticles often possess distinct physical and chemical characteristics that
differ from bulk materials, giving rise to unique behaviours. Agglomeration is
one such phenomenon where nanoparticles come together, forming larger
assemblies through spontaneous clustering or aggregation. The different
factors that contribute to nanoparticle agglomeration, include van der Waals
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forces, electrostatic interactions, surface chemistry, solvent effects, and
external factors like temperature and pH [1-4]. Agglomeration of nanoparticles
leads to several outcomes, including reduced surface area [5], altered
optical properties [6], change in mechanical properties [7], and loss of
homogeneity [8].

Various characterisation methods have been used to study nanoparticle
agglomeration, such as dynamic light scattering [9], transmission electron
microscopy (TEM) [10], scanning electron microscopy (SEM) [11], atomic
force microscopy (AFM) [12], and spectroscopic methods [13]. Verleysen
et al. [14] employed a quantitative approach for assessing stable dispersions,
which involves TEM imaging in conjunction with semi-automated image
analysis. This methodology yields number-based distributions of key par-
ameters, allowing for the measurement of size, shape, and surface character-
istics of TiO, particles in their unbound, aggregated, and agglomerated
states. Rao et al. [15] employed AFM to analyse the morphology, dimensions,
and size distribution of various ceramic nanoparticle agglomerates. Jia et al.
[16] performed real-time sizing during the colloidal processing of metal
oxide nanoparticles (MONs) using dynamic light scattering.

Modelling of nanoparticle agglomeration involves mathematical or compu-
tational approaches to simulate how nanoparticles cluster together, considering
factors like size, shape, surface charge, environmental conditions, and external
forces. Models often based on stochastic methods are used to understand
agglomeration kinetics, predict agglomerate size distributions, and assess nano-
particle dispersion stability. Kim et al. [17] investigated the aggregation kinetics
of gold nanoparticles through a combination of experimental methods and
Monte Carlo simulations. This study predicts the time needed for the initial
color change in a gold nanoparticle suspension, offering insights into the
design and optimisation of colorimetric sensors utilizing gold nanoparticle
aggregation. Liu et al. [18] applied a constant-number Direct Simulation
Monte Carlo (DSMC) model to study nanoparticle agglomeration in aqueous
suspensions. They wused classical Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory, factoring in Brownian motion’s effect on collision frequency.
The model’s outcomes aligned closely with dynamic light scattering measure-
ments for particle size distribution and average agglomerate size. Moran
et al. [19] introduce a new method to enhance the accuracy of Monte Carlo
simulations for predicting dynamics and agglomeration of suspended nanopar-
ticles. This approach incorporates persistent distance and time steps based on
Langevin dynamics simulations and a probability model for particle displace-
ments. Gbaguidi et al. [20,21] employed a two-dimensional Monte Carlo
percolation model to investigate the impact of carbon nanotube (CNT) agglom-
eration on the electrical and electromechanical properties of both monofiller
and hybrid nanocomposites. Bhoi et al. [22] developed a mathematical popu-
lation balance model to characterize the evolution of Al,O; nano-agglomerates
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in a spouted bed. Agglomeration process is simulated using an Equipartition of
Kinetic Energy (EKE) kernel, signifying the equal distribution of kinetic energy
among particles, enabling collective formation into agglomerates. In contrast,
for breakage, two distinct functions are employed: the Dirac delta function indi-
cating immediate and concentrated particle breakage, and a function represent-
ing confined uniform binary breakage, where particles break into fragments
with a uniform size distribution. The model exhibits good agreement with
experimental observations concerning the temporal evolution of both the
area and volume-weighted average sizes of nano-agglomerates, as well as
their final size distribution.

In addition to stochastic methods, approaches like Molecular Dynamics have
been used to understand the interparticle forces that contribute to agglomera-
tion. Liao et al. [23] employed molecular dynamics simulations to investigate
the factors that impact the formation of agglomeration structures in Cu-Ar
nanofluids. Wang et al. [24] conducted equilibrium molecular dynamics simu-
lations and the Schmidt-Ott equation to analyse the fractal dimensions of the
nanoparticle aggregations with various morphologies. The findings suggested
that achieving lower fractal dimensions can lead to enhanced thermal conduc-
tivity. Alian et al. [25] conducted molecular dynamic simulations that con-
sidered both the curvature and agglomeration of carbon nanotubes to
analyse their influence on the interfacial strength and load transfer capacity
in thermoset nanocomposites.

In this study, we introduce a new approach based on point process modelling
to analyse nanoparticle agglomeration. A point process model is a statistical
framework used to describe and analyse the spatial or temporal distribution
of points or events in a particular region or over a specific period. Hawkes
process, also known as self-exciting point process, is a branching point
process model [26]. It describes a random sequence of clustered events or
points wherein the presence of one point (or event) increases the likelihood
of subsequent points (or events) occurring in its spatial or temporal vicinity.
While the application of self-exciting point process models originated in the
field of earthquake analysis to categorise mainshock and aftershock events
from earthquake data, it has found applications across diverse domains.
These domains include crime event analysis [27], tweet popularity prediction
[28], epidemiological studies [29], as well as the analysis of instances involving
mass killings and school shootings [30], email network [31], and financial data
analysis [32].

The Hawkes process is parameterised by two functions, the background
intensity, which describes the average rate of occurrence of events in the
absence of any previous events. The excitation function, which describes how
the occurrence of an event affects the probability of subsequent events. The
parameters of self-exciting point process models can be estimated from
data. This allows the models to be used to make predictions about future
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events. Self-exciting point process models are a powerful tool for analysing
sequences of events. They have been used to make significant contributions
to a wide range of fields.

Hawkes point process model used in this study has the ability to capture
spatial and temporal clustering, account for intensity variation, and facilitate
statistical inference and prediction. Therefore, these models offer a novel
statistical framework that can analyse the characteristics of agglomeration pro-
cesses, making it a potentially effective approach. While this model has not yet
been used in materials science and can bring a fresh perspective and could poss-
ibly be adapted to other similar materials science problems.

We apply this approach to analyse nanoparticle agglomeration in two dis-
tinct contexts: (a) experimentally generated microstructures of titanium nano-
particles, and (b) simulated microstructures of carbon nanotube agglomeration
derived from a stochastic microstructure model. Experimental micrographs of
titanium nanoparticles with various degrees of agglomeration were achieved by
subjecting solutions with the same concentration to different durations of ultra-
sonic treatment. Simulated CNT microstructures exhibiting a range of agglom-
eration patterns for carbon nanotubes, including both equiaxed and rope-like
morphologies were obtained using a stochastic microstructure model. Using
these micrographs, we extracted the nanoparticle locations and applied a
point process model to analyse the nanoparticle agglomeration. Our findings
indicate that the point process model is an effective tool for analysing agglom-
eration and holds potential for further applications in nucleation-growth pro-
cesses in materials science.

2, Methodology
2.1. Generation of experimental microstructures

99.9% pure spherical titanium nanoparticles — product number 1121XH from
SkySpring Nanomaterials Inc., were procured for utilisation in this study. To
prepare the nanoparticle solution, 0.001 g of titanium nanoparticle powder
was combined with 8 ml of isopropyl alcohol (IPA), resulting in a solution
with a concentration of 0.125 mg/ml. The SCILOGEX MX-T6-S Analog
Tube Roller was employed to disperse titanium nanoparticles in the solution
and reduce agglomeration. The nanoparticle solution inside a vial with SiC
balls was placed within the tube roller for 24 h, operating at a speed of
50 rpm, effectively breaking apart the nanoparticle clusters and reducing the
size of the agglomerates. Additionally, ultrasonication is employed to further
break apart the nanoparticle agglomerates. Ultrasonication produces high-fre-
quency sound waves within the liquid medium, resulting in the formation of
pressure waves and cavitation bubbles. As these bubbles collapse, they generate
micro-turbulence and shear forces, effectively dispersing and breaking the
agglomerated nanoparticles [33]. Consequently, ultrasonication facilitates the
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even distribution of nanoparticles throughout the liquid medium, serving as an
effective measure to prevent or reduce agglomeration. Different levels of
agglomeration were achieved by subjecting individual solutions to ultrasonic
treatment for different durations with 5, 10, 20, 30, 60, 90 and 120 min.
Subsequently, 40 pl droplets of each solution were dispersed onto an epoxy
polymer substrate using a micro-pipette. The solution was immediately
deposited onto the substrate within a minute of ultrasonication to prevent
reagglomeration. To facilitate solvent evaporation, the prepared samples were
subjected to a temperature of 50°C using an Aluminium top hotplate.
The resulting micrographs displayed differing levels of nanoparticle agglomera-
tion in the samples. Notably, the application of one hour or more of ultrasonic
treatment duration was correlated with the uniform dispersion of the
nanoparticles across the sample. Conversely, shorter durations of ultrasonic
treatment resulted in a more noticeable agglomeration in the samples, as
shown in Figure 1. When the as-prepared nanoparticle solution without soni-
cation is used to generate microstructures, large agglomerates are present.

Figure 1. Titanium nanoparticles dispersed on the substrate at different sonication times
(@) 5 min (b) 30 min (c) 1 h and (d) 2 h.
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Figure 2. SEM micrograph of the nanoparticles after ultrasonication for 120 min.

The agglomerates reduce in size with increasing sonication duration.
Additional sonication time did not reduce the particle size further. This particle
size is measured using dynamic light scattering (DLS) measurements. After
two hours of sonication, we observe that particles of about 200 nm size and
are uniformly distributed.

We performed SEM micrographic analysis to further characterise the par-
ticle size distribution after ultrasonication for 120 min as shown in Figure 2.
Scanning electron microscopy ascertained that the average particle size of tita-
nium nanoparticles is 197 nm. Particle size is also confirmed using Dynamic
Light Scattering — Malvern Zetasizer ZS90 to measure the size of particles in
an IPA solution at 25°C. The technique relies on analysing the fluctuations
in light scattering intensity caused by the Brownian motion of particles sus-
pended in a liquid. By analysing the intensity fluctuations, DLS can determine
the size of the particles in the solution, typically in the range of a few nano-
metres to a few micrometres. After 120 min of ultrasonication, the DLS
measurements recorded a particle size of 195.37 nm and a zeta potential of
—32.5 mV. This closely matches SEM analysis.

2.2. Generation of simulated microstructures

Simulated microstructures of agglomerated CNTs were generated using a sto-
chastic microstructural model. These CNTs were generated within a Represen-
tative Area Element (RAE) with dimensions (L, and L,). Each CNT took the
form of a line segment with a midpoint (x;, yi.), a starting point (x}, y;), and
an endpoint (x5, y5). Additionally, the length and polar angle of each CNT
were represented by |; and ©;, respectively. Different microstructures are gen-
erated by stochastically varying all of these parameters, simulating the complex-
ity found in real-world microstructures. To calculate the volume fraction, all the
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CNTs in the RAE are assumed to have a uniform diameter Doyr. The CNT
volume fraction is defined as the ratio of the total volume encompassed by
all the CNTs (nxrigxl) to the area of the RAE (L, x L,). To achieve the
desired CNT volume fraction, nanotubes were added to the RAE until the
specified volume fraction was attained. The centre of each CNT consistently
falls within the confines of the RAE. In some instances, CNTs may intersect
with one or even both edges of the RAE. To handle this situation, we employed
periodic boundary conditions. These conditions efficiently relocated any line
segments that extended beyond the RAE’s boundaries, placing them on the
opposite side of the RAE to ensure that they always remained contained
within the RAE. The microstructure generation is described in detail in [34].
We modify this approach to generate microstructures featuring different
quantities and morphologies of CNT agglomerates. This process begins with
the generation of a seed layer consisting of completely randomised and uni-
formly distributed fillers. Subsequently, we introduce additional fillers in a
manner that results in the formation of agglomerates around a portion of the
initial seed layer. The total volume fraction of CNTs (V) within the RAE is
determined by summing the volume fractions of both agglomerated (V)
and non-agglomerated CNTs (V;*"~*2). The agglomeration level or volume
fraction of agglomeration is then modelled by &= Vi*/V. Two distinct
microstructural configurations were generated by varying parameters related
to agglomeration: the rope-like and equiaxed agglomerates. The formation of
these structures was governed by two key parameters, &, and a,g,. The
agglomeration parameter, &,q,, dictated the proportion of CNTs that were
organised into agglomerates. For instance, when &g, = 0, CNTs are uniformly
distributed throughout the representative area element without any agglomera-
tion. As &, increased, the degree of agglomeration increased. When &4, =
10%, in the first step the CNTs are uniformly distributed throughout the
RAE without any agglomeration and then the additional small fraction of
CNT fillers is added which results in the formation of agglomerates. Similar,
procedure is carried out for varying levels of CNT agglomeration. The agglom-
eration angle, a,gg, is used to model the spatial arrangement of CNTs within an
agglomerate. The newly added CNTs are positioned at a randomly varied angle
agg With respect to one of the pre-existing CNTs in the micro-
structure. When a,g, = 0°, CNTs within an agglomerate are all aligned in par-
allel, resulting in the formation of rope-like agglomerates within the
microstructure. Conversely, when da,g, = 180°, CNTs within an agglomerate
exhibit varied orientation, giving rise to equiaxed or star-like agglomerate for-
mations. Figure 3 (a) and (b) illustrated microstructures showcasing the
equiaxed and rope-like agglomerates, respectively, with agglomeration level
of 50%. These details are presented in detail in [21]. For each agglomeration
level, 25 microstructures were generated from the stochastic model to
account for statistical variations in the point process agglomeration analysis.

between 0 and «a.



8 S.MOTAGI ET AL.

i:‘ /V /\\éf‘i\x\/ g - ‘\WLZ x= \{/
20 s 3 )\\/ 20 v \\‘U //
LR T A W TR X =X

10 <~ — 10 \

I Vs NV 1
Y 5 = \\ :

E e N I S NN

0%/?‘//\&// \/(\ ’ 0\<\;\— \k

Figure 3. (a) Equiaxed agglomeration and (b) Rope-like agglomeration of carbon nanotubes.

2.3. Point process model formulation for agglomeration analysis

Consider a microstructure that consists of N points which represent the
location of nanoparticles. r; is the distance of a point i from origin.

Ar) =+ D gas olr —1i). (1)

ri<<r

Here, A is the limiting expected distribution of points. The model classifies the
nanoparticles in the dataset into two categories, uniformly dispersed nanopar-
ticles and agglomerated nanoparticles. Uniformly dispersed nanoparticles are
assumed to be distributed independently at an areal density w > 0 This
model primarily addresses discrete agglomeration state as described by a micro-
graph at a given location and time.

gao(r — 1;) is the probability density function (PDF) of the occurrence of an
agglomerated nanoparticle at a distance r; and is modelled as follows:

oy _ JAxaxexp[—ax(r—r)], r>r,
aa(r—r1) = {0 r<r. (2)

The conditional intensity function A(r|H,) can now be expressed as follows:

AMr)=p+AY ae ), 3)

i <r

In this case, « denotes the decay rate in distance for the occurrence of an
agglomerated nanoparticle, and A is the preexponential parameter describing
the magnitude of excitation. Notably, ga, is the function that describes the
delta r — r; between an agglomerated and corresponding uniformly dispersed
seed nanoparticle. The model is defined by three unknown parameters
0 = (u, A, a). While fitting the model to the microstructure data, these par-
ameters are computed using maximum likelihood estimation. The log-



PHILOSOPHICAL MAGAZINE (&) 9

likelihood function [35] is given a distance series of microstructure data con-

sisting of N points {(r;), i = 1, ..., N} in an area.
N R
I6IH,) = ) _ logha(rilHy) — [ Ao(r|H,)dr. (4)
i=1 0

The Davidon-Fletcher-Powell (DFP) approach, a gradient-based nonlinear
optimisation procedure, is used to derive the maximum likelihood estimate
(MLE) [32]. The DFP method works by iteratively updating an approximation
to the inverse Hessian matrix. This approximation is used to generate a search
direction, which is then used to update the current estimate of the minimum.
The process is repeated until the convergence criteria are met. The probability
that point i triggered point j, i.e. the probability that a nanoparticle j is in an
agglomerate with nanoparticle i as a seed is given by:

gA,a(Tj — 1)
S V1> 1
pi=19 A(rlHy) ! (5)
0 » 1) = T

Hence, the probability of nanoparticle j being an agglomerated nanoparticle is
-1

pj = Y pij. Consequently, the probability of nanoparticle j being a uniformly
i=1

dispersed nanoparticle is:

7
L= h =S5y ©)
Based on the probability values p; obtained from the model of N nanoparticle
points can be classified into uniformly dispersed and agglomerated nanoparti-
cles. This categorisation allows us to compute the microstructure’s agglomera-
tion level and the average agglomeration size of nanoparticles in a given
microstructure. Pseudocode outlining the algorithm of the Hawkes point
process model is shown in Figure 4.

The point process model described above relies on input data consisting of the
distances of individual nanoparticles from the origin. To acquire these data, we first
need to extract the nanoparticle locations from both experimental and simulated
microstructures. We employed a widely used tool WebPlotDigitizer [36] to
extract nanoparticle positions from the experimental microstructures. In the case
of simulated microstructure, the centre of the CNT location is extracted directly
from the model data. Subsequently, we calculated the distance of individual nano-
particle from the origin. This data is used as an input for the point process model.

Two or more nanoparticles at different angles may have the same radial dis-
tance from the origin. To avoid the overlapping of such nanoparticles, segments
are created to allocate unique locations for the CNTs as shown in Figure 5. If
any of the clustered nanoparticles (especially CNTs) are split across segments,
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Algorithm: Simulation of Hawkes Point Process Model

1.

Extract the location of each of the N nanoparticle in the RAE. (For both experimentally and
computationally generated microstructures.)

Calculate the distance from the origin (r) for particle i. Find {(r;),i = 1,..,N}.

Find background intensity rate y(r) corresponding to uniformly distributed microstructure
with no agglomerates.

Calculate the conditional intensity function A(r) = |-1+Zi;r‘<rg/l,a (r —7;) in the space
interval R= [Sstart, Send] for @ given background intensity (r).

inputs:

8o - initial guess for the model parameters 6 = (u, 4, @)

u(r) - background rate

k-0

Start loop

use Bxand get B+

= l(r/TH,.) - Probability values for uniformly dispersed nanoparticles

j
k= k+1

. until [(8]|H,) = T, logAe (r;|Hy) — fOR Ag(r|H)dr - Maximum Likelihood Estimation is
optimized for the model parameters 8 = (y, 4, a)

. return 6

. Post analysis: based on the probability values obtained from the model nanoparticles are

classified as dispersed (when p; < 0.9) or agglomerated particles (when p; > 0.9)

.Based on the probability values and particle locations agglomeration levels and

agglomerate sizes are quantified for a given microstructure

Figure 4. Pseudocode outlining the algorithm of Hawkes Point Process Model.

then the particles that are closest to one another are forced to fall within the
same segment. Figure 5 shows two CNT clusters inside segments 1 and 4; in

this example, the nanoparticles are assigned a unique position within their respect-

ive segments. In this case, when we see that one cluster is split across two segments

(i.e. segments 2 and 3), so we create a buffer segment to ensure that the cluster is

not divided across the segments, and any particles that are close by within the

buffer segment are considered in the same segment. In this scenario, CNTs are con-
sidered in segment 2 and ignored in segment 3 to avoid recurrence. These scenarios
are more common for high aspect ratio particles like CNTs.

segments

AN
Segment 1 / N )
s t2 X , Buffer

%54 2.8 segment
b

7

7’

.

7
Ségment 3
Segment 4

Origin (0,0)

Figure 5. Allocation of unique location to CNTs in a micrograph.
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3. Results
3.1. Analysis of experimental microstructures

The digitised nanoparticle positions from the experimental micrographs cap-
tured at various sonication times are as shown in Figure 6. Due to the
limited contrast between the nanoparticles and the substrate, we used a
manual process to extract the nanoparticle locations. However, this process
can be easily automated using higher contrast particles. Once we have obtained
the nanoparticle location data, we utilise MATLAB code to create segmentation
that assigns unique identifiers to these locations as explained in Section 2.3.
This dataset is used as input for the point process model, enabling the classifi-
cation of nanoparticles into two categories: those that are uniformly dispersed
and agglomerated nanoparticles.

The point process model provides output in terms of probability values that
play a crucial role in classifying nanoparticle behaviour. Equation (5) is used to
compute the probability that a given particle is uniformly dispersed. This prob-
ability value is the basis for the classification of all points as independent (i.e.
dispersed) or dependent (i.e. part of an agglomerate. All agglomerates will
still contain one particle that is classified as an independent point and the sur-
rounding particles close to this independent particle would have low probability
values indicating that they are a part of the agglomerate. The choice of the prob-
ability value 0.8 was determined as a threshold through visual examination,
where it was noted that nanoparticles are in an agglomerated state when the
probability that they are independent was below 0.8. Figure 7 shows the micro-
structure of titanium nanoparticles alongside a corresponding contour plot of

Figure 6. Extracted titanium nanoparticle location dispersed on the substrate at different soni-
cation time (a) 5 min (b) 30 min (c) 1 h and (d) 2 h.
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Figure 7. (a) Titanium microstructure sonicated after 5 min, (b) contour plot based on prob-
ability values form the model for sonication time 5 min, (c) titanium microstructure sonicated
after 2 h and (d) contour plot based on probability values for sonication time 2 h. Note the
contour legend corresponds to both (a) and (b), the size of the micrographs is 25 um x 25 pm.

the probability values. After undergoing 5 min of sonication, the microstruc-
ture exhibits a relatively high level of agglomeration. The corresponding
contour plot for most particles depicts a low probability that the particles are
not agglomerated, indicating high levels of nanoparticle agglomeration. Con-
versely, the titanium microstructure subjected to 2 h of sonication tends to
exhibit much lower levels of agglomeration. In the figure, the corresponding
contour plot reveals higher probability values, depicted in red, signifying uni-
formly dispersed nanoparticles.

We investigated the agglomeration behaviour of titanium nanoparticles in
relation to varying sonication durations. Commercially available titanium
nanoparticles in a dry powder state are found to be agglomerated into particles
that are several hundred nanometres in size [37, 38]. For each specific soni-
cation duration, we capture three micrographs and subsequently quantify the
agglomeration percentage based on the probability values generated by the
point-process model. The findings presented in Figure 8 illustrate that a
higher percentage of titanium nanoparticle agglomeration is observed when
sonication times are shorter. It is quite evident that when a shorter duration
of ultrasonication was employed, it was insufficient to effectively disperse the
nanoparticle agglomerates, consequently resulting in a higher agglomeration
percentage. As we progress from sonication duration A to G (see Figure 7),
the agglomeration percentage consistently decreases indicating that a higher
duration of ultrasonication results in uniform dispersion of the nanoparticles.
The error bars depicted in Figure 7 signify the standard deviation of the nano-
particle agglomeration percentage corresponding to each sonication duration.
This trend signifies that the nanoparticle agglomerates gradually break apart
as the sonication time extends. The model can effectively capture the
dynamic relationship between sonication duration and titanium nanoparticle
agglomeration.

Once the nanoparticle classification as dispersed or agglomerated particles is
completed, we employ a post-processing MATLAB code to determine the size
of the nanoparticle agglomerate. This is accomplished by identifying
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Figure 8. Agglomeration of titanium nanoparticles with respect to sonication time. Note the
contour legend corresponds from A to G micrographs and the size of the micrographs is
25 um X 25 pm.

agglomerate boundary based on the aforementioned probability values. Given
that our input data consists of a sequential series of nanoparticle distances from
the origin. We use the probability values to identify continuous sequences of
values that consistently fall below 0.8. This pattern of consecutive low values is
indicative of the existence of nanoparticle clusters. In contrast, if the values
remain consistently above 0.8, it signifies that the nanoparticles are uniformly dis-
persed. By adopting this method, we can pinpoint nanoparticle agglomerate clus-
ters and calculate the size of a given agglomerate, and the average agglomeration
size for the micrograph. In Figure 9, as we progress from point A to point F, cor-
responding to increasing sonication times, it becomes evident that the agglomera-
tion size consistently decreases. This observation indicates the gradual breakdown
of nanoparticle agglomerates in response to longer sonication times.

To validate the point process model results, we compared the point process
agglomeration analysis with microstructural analysis. The agglomeration stat-
istics were manually extracted from the same micrographs that were used for
point process analysis. The comparison between the two approaches shown
in Table 1 indicates that point process model accurately captures the agglom-
eration behaviour.

3.2. Analysis of simulated microstructures

The same methodology is applied to the simulated microstructures containing
carbon nanotubes, generated within a Representative Area Element measuring
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Figure 9. Agglomerate size of titanium nanoparticles with respect to sonication time.

25 x 25 micrometres. In Figure 10, we present a randomly generated micro-
structure, featuring a 50% agglomeration of CNT nanoparticles. We can
discern two distinct nanoparticle behaviours as depicted in the figure. First,
we observe CNT nanoparticle entanglement, which is referred to as agglomer-
ated nanoparticles. Second, there are uniformly dispersed CNT nanoparticles,
which appear isolated without nearby CNTs or entanglements. To distinguish
between these two behaviours, we utilise a point-process model to calculate
probability values for the classification. The corresponding contour plot in
Figure 10 represents these nanoparticles based on the probability values
obtained from the model. Equation (5) serves as the probability equation for
uniformly dispersed nanoparticles, forming the foundation for classification.
When the value derived from this equation is below 0.8, it indicates that the
nanoparticles are in an agglomerated state. Conversely, when the value

Table 1. Comparison of point process results with manual microstructural analysis in terms of
agglomerate size.

Microscopic analysis Point process analysis
Ultrasonication time Mean agglomerate size Mean agglomerate size % Difference
5 min 2939 nm 2842 nm 33
10 min 1009 nm 956 nm 5.2
1h 744 nm 768 nm -32

2h 199 nm 226 nm -13.56
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Uniformly dispersed nanoparticles

Figure 10. Randomly generated microstructure with 50% agglomeration of CNT nanoparticles
and contour plot of representation of nanoparticles based on probability values obtained from
point-process model.

exceeds 0.8, it signifies uniform dispersion of the nanoparticles. Uniformly dis-
persed nanoparticles are depicted as orange to red nanoparticles in the contour
plot. In contrast, agglomerated nanoparticles are represented as yellow to blue
dots in the contour plot. This approach allows us to effectively differentiate
between uniformly dispersed and agglomerated CNT nanoparticles within
the simulated microstructure, which helps to quantify nanoparticle agglomera-
tion characteristics.

3.2.1. Equiaxed vs. rope-like agglomerated microstructures

Based on the processing conditions, agglomerates in carbon nanotubes have
been found to exhibit two types of morphologies: equiaxed [39, 40] and
rope-like [41, 42]. Equiaxed agglomeration of carbon nanotubes refers to a
specific clustering pattern of CNTs where the agglomerates take on spherical
or star-like shapes. In Figure 11, we can see that the simulated microstructure
transitions from uniformly dispersed CNTs to various levels of equiaxed
agglomerated microstructures, and this transformation is achieved using a sto-
chastic microstructure model. To quantify these changes, corresponding
contour plots represent the probability that a given CNT is in a dispersed
state. These values are derived from a point process model. In the first micro-
graph (a), where CNTs are uniformly dispersed, the probability values are close
to 1. This signifies that the CNTs are evenly distributed throughout the micro-
structure with minimal clustering. As we progress to micrographs (b), (c), and
(d), we observe a decrease in probability values, indicating higher levels of
agglomeration in the micrographs. In (b), with 30% agglomeration, some
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Figure 11. Randomly generated microstructure and contour plot of CNT nanoparticles based
on probability values (a) 0% agglomeration (b) 30% agglomeration (c) 70% agglomeration
and (d) 99% agglomeration. Note that the size of the micrographs is 25 um x 25 pm.

clustering of CNTs has begun to occur. In (c), with 50% agglomeration, the
clustering becomes more pronounced. Finally, in (d), with 99% agglomeration,
the probability value is at its lowest, signifying that a significant portion of
CNTs has aggregated into equiaxed agglomerates, forming spherical or star-
like structures.

In contrast to equiaxed agglomeration, rope-like agglomeration of carbon
nanotubes refers to bundling together CNTs parallel to each other into struc-
tures that resemble ropes or fibres. Figure 14 shows the evolution of the simu-
lated rope-like microstructures, varying from uniformly dispersed to increasing
levels of rope-like agglomeration. These variations are obtained by changing the
input parameters to the stochastic microstructure model as described in Section
2.2. Figure 12 displays simulated micrographs and corresponding contour plots
indicating the probability of CNT dispersion. For the completely dispersed state
shown in Figure 12 (a), the probability values are close to 1. This signifies that
the point process model computes that the CNTs are uniformly distributed
throughout the microstructure, with minimal clustering. Figure 10b-d presents
micrographs with increasing agglomeration and corresponding probability
contours. For both rope-like and equiaxed agglomerated microstructures, the
point process model computes the dispersion probabilities effectively which
are used for further analysis.

We employed the point process model to categorise nanoparticle distri-
butions as either uniformly dispersed or agglomerated and used this infor-
mation to quantify the level of agglomeration within a given microstructure.
We analysed 25 microstructures of specific agglomeration characteristics
to account for statistical variation. We find that the results independently
obtained from the point process model closely align with the input parameters
used by the stochastic microstructure model to model the microstructures.
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Figure 12. Rope-like generated microstructure and contour plot of CNT nanoparticles based on
probability values (a) 0% agglomeration (b) 30% agglomeration (c) 70% agglomeration and (d)
99% agglomeration.

Error bars represent the standard deviation associated with the nanoparticle
agglomeration percentages. Figure 13 shows these results for equiaxed micro-
structure and similar results for rope-like microstructures are shown in
Figure 14.

3.2.2. Agglomerate size variation

We utilised the same post-processing MATLAB code used for experimental
microstructures, to analyse the size of the nanoparticle agglomerates for the
simulated microstructures as well. Figure 15 presents the average agglomerate
size for a given agglomeration percentage for both equiaxed and rope-like
microstructures. For equiaxed and rope-like agglomerates, the agglomeration
size consistently increases with a corresponding rise in the agglomeration per-
centage. The equiaxed agglomerate exhibits a larger agglomerate size compared
to the rope-like agglomerate. This size difference arises from the distinctive
star-like shape found in equiaxed agglomerates, whereas rope-like agglomera-
tions are characterised by their fiber-like structure. The reduction in agglom-
eration size in the rope-like formation is attributed to the alignment of
carbon nanotubes, causing a decrease in size along the radial direction. This
alignment results in an overall decrease in agglomeration size at higher rates
of agglomeration.

4, Discussion

Controlled agglomeration offers the advantage of tailoring material properties
to meet specific performance requirements. For instance, as agglomeration
increases, particle-to-particle distances shorten, intensifying magnetic dipole
interparticle interactions. This results in a more pronounced ferromagnetic
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Figure 13. Comparison of percentage of agglomerated microstructure generated from stochas-
tic model with the point process model.

behaviour with hysteresis losses, valuable for tumour treatment by selectively
targeting cancer cells without harming surrounding healthy tissue [43].
Conversely, nanoparticle agglomeration can diminish the potential improve-
ment in mechanical properties in nanocomposites due to restricted interfacial
area. In orthopaedic applications [44], ceramic nanoparticles inherent
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Figure 14. Comparison of percentage of rope-like agglomerated microstructure generated
from stochastic model with the point process model.
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Figure 15. The average agglomeration size with error bars is represented for equiaxed and
rope-like agglomerate with respect to agglomeration percent.

tendency to form larger agglomerates in a polymer matrix compromise
mechanical performance. In materials’ microstructure characterisation,
nanoparticles have played an important role in determining strain maps and
finding strain localisations via digital image correlation (DIC). In this case,
properly dispersed particles must cover the area of interest, allowing the con-
struction of displacement fields [45, 46]. The growing use of nanoparticles in
everyday products raises concerns about their release into water sources
and wastewater. In water treatment and wastewater sludge, nanoparticles
and agglomerates with particle sizes less than 100 nm can be slow settling,
prolong suspension, and hinder effective removal, increasing the risk of
environmental toxicity [47]. Agglomerated nanoparticles often possess
reduced effective surface areas compared to individual dispersed nanoparticles,
limiting reactivity critical in applications like catalysis [48]. Additionally,
agglomerates may exhibit diminished mobility and diffusion rates, impacting
their effectiveness in applications requiring free nanoparticle movement,
such as drug delivery [49]. Therefore, it is of utmost importance to gain a com-
prehensive understanding of nanoparticle behaviour with regard to aspects
such as morphology, agglomeration percentage, agglomeration size, and
associated factors.

Mathematical models to describe and predict nanoparticle agglomeration
provide invaluable insights into the complex dynamics of nanoparticles
coming together, forming clusters, and influencing various material properties.
Several modelling approaches including stochastic percolation models [50],
fractal analysis [51], Smoluchowski equation [52] and Kinetic Monte Carlo
[53] have been used to study agglomeration. These models describe how
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nanoparticles come together and form aggregates over time, taking into
account factors such as particle concentration, collision frequency, and the
probability of aggregation. Despite these developments, there is a limited cor-
relation between modelling and experimental studies. Furthermore, there is a
lack of modelling approaches that can quantitatively analyse a given experimen-
tal or simulated microstructure for agglomeration characteristics. The point
process model proposed in this study effectively addresses this aspect.

Statistical methods offer distinct advantages in quantifying the agglomera-
tion phenomenon compared to analytical methods. Considering the inherent
stochasticity of agglomeration processes, statistical methods provide a robust
framework for analysing and interpreting data. Unlike analytical techniques,
statistical methods allow researchers to not only describe the central tendencies
of agglomeration phenomena but also assess the variability, distribution, and
trends within datasets, as well as quantify uncertainties and reveal patterns
and correlations that might be overlooked by purely analytical methods. Self-
exciting point process is an effective approach to model discrete history-depen-
dent interrelated spatio-temporal events or points. Consequently, it has been
used extensively in various domains with such data including earthquake
occurrences [35], epidemiology[28], crime [26], financial markets [54], etc.

Despite the success of Hawkes point process models in various domains, they
have not been utilised in materials science. To our knowledge, this study rep-
resents the first application of the Hawkes point process model to a problem
in materials science. Self-excitation point process models are well-suited for
analysing agglomeration due to the following reasons: (a) Discretisation:
Point process models handle discrete points or events in the spatiotemporal
domain. In the context of agglomeration, these discrete points can represent
individual nanoparticles which are either dispersed or in clusters. (b) History
or Path Dependence: Another prerequisite for applying point process models
is the history dependence of the events or points. Agglomeration processes
inherently exhibit history dependence, meaning the current state of agglomera-
tion is influenced by the existing locations of the particles. The applied model
uses a 2D dataset but holds the potential for adaptation to 3D datasets. For
adapting to 3D, one would use volumetric data and convert x, y, and z positions
to distance from origin in sub cells. This would be similar to the procedure
described in section 2.3 except for including volumetric slices instead of
planar segments. However, this would complicate the model and require 3D
characterisation data. Some of the techniques used for 3D characterisation of
nanoparticles include X-ray computed microtomography [55], confocal laser
scanning microscopy [56] and transmission electron microscopy [57].

We acknowledge the limitations of optical microscopy, particularly when
working with complex structures in three dimensions. Optical microscopy,
while valuable for visualizing particle distributions, has inherent resolution
limits that can introduce uncertainties in size measurements and the detailed
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characterisation of nanoparticle agglomerates. These uncertainties primarily
arise from diffraction limits and the inability to resolve features below the wave-
length of light used in the microscope. Therefore, we complemented optical
microscopy with Scanning Electron Microscopy (SEM) and Dynamic Light
Scattering (DLS) spectroscopy to characterize the particle size distributions
for high ultrasonication times. Another limitation is with respect to particle
count. In the microstructures we have considered, the particle count varies
from 621 to 89. The background rate used in the calculation is dependent on
the number of particles. It is always desirable to analyse microstructures with
a larger number of particles.

Here we have quasi-statically analysed the agglomeration in microstructures.
The model and methodology are highly adaptable and can be readily extended
to accommodate dynamic processes. For instance, the analysis in Figure 8, pre-
sents an opportunity to explore the spatiotemporal evolution of microstruc-
tures under the influence of sonication. By transitioning from quasi-static
analysis to dynamic analysis, one can examine how microstructures change
over time as a result of sonication. This will facilitate the time-dependent
behaviour and responses of such structures and applications. Furthermore,
many phenomena in material science can be discretised and have path depen-
dence. For example, nucleation growth processes like solidification and equili-
brium phase transformations. The self-excitation point process models can
potentially be used for analysing such processes.

5. Conclusion

This study presents an innovative application of the self-exciting point process
model to investigate nanoparticle agglomeration. Experimentally generated
titanium nanoparticle microstructures were analysed, revealing a direct corre-
lation between sonication duration and nanoparticle agglomeration. With
increasing sonication time, it was observed that a simultaneous reduction in
both agglomeration percentage and size. Additionally, our analysis extends to
simulated carbon nanotube microstructures, encompassing a wide range of
agglomeration patterns, including equiaxed and rope-like morphologies. The
outcomes derived from the point process model align closely with those
obtained from the microstructure model. Agglomeration size consistently
increases alongside the agglomeration percentage for equiaxed and rope-like
agglomerates, with equiaxed structures displaying larger agglomerates due to
their star-like shape, while rope-like agglomerations are defined by their
fibre-like structure. This study demonstrates that self-exciting point process
models can be used for analysing phenomenon in materials science that can
be broken down into discrete events or points, and exhibit path dependence.
While we focus on agglomeration in this study, the approach can potentially
be extended to other nucleation and growth-type processes.
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