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Composite additive manufacturing (AM) is a rapidly growing technology with numerous 
applications in the aerospace industry. A limiting factor in expanding the application of 3D 
printed composites is the frequent presence of processing defects. Methods for monitoring and 
mitigating defects can be helpful in this context. This study focuses on the use of thermography 
in conjunction with deep learning to identify defects in Onyx, a mixture of chopped carbon 
fiber and nylon, composite prints. Use of thermography can reveal defect patterns in a printed 
part before the defects are even visible. The inclusion of a novel zero-bias deep neural network 
to classify given images can also show real-time monitoring of defects in composite prints as a 
realizable goal.  

I. Introduction 
 Committee F42 of the American Society of Testing and Materials (ASTM) defines additive manufacturing 
(AM) as a “general term for technologies that successively join materials to create physical objects specified by 
3D model data” [1]. AM, especially of advanced materials such as composites, can be very appealing for many 
applications owing to its ease of prototyping and ability to achieve high geometrical complexity. Because of these 
advantages, the aerospace industry is becoming a major consumer of AM technology [2]. Fused deposition 
modeling (FDM), which has been extensively used to fabricate continuous fiber composites, using thermoplastic 
matrix materials [3], while direct ink writing (DIW) has been used for short fibers and particulate composites with 
various matric materials [4].  
 Despite these advantages, the frequent occurrence of manufacturing defects has limited the application of 
additively manufactured composites. Defects can occur at any point in the 3D printing process due to any aspect 
of the printer, printing process, or part geometry [5]. The printing speed, part thickness, line spacing, overhangs, 
and even the size of a part can contribute to the formation of defects such as warping, void formation, and over-
extrusion [6]. The nature of these defects can result in parts that have a fatigue life half as long as the same parts 
which were produced using traditional subtractive manufacturing methods [7]. Deviations from the optimal range 
of material and process parameters that affect solidification and curing can cause defects in layer-by-layer 
construction, such as warping and cracks [5]. Inferior rheological properties lead to instabilities, causing critical 
geometrical defects, such as inconsistent filaments, stringing, and bulges. This research primarily focuses on the 
occurrence of warping, void formation, over-extrusion, bed obstructions, and poor bed adhesion in structures made 
using Onyx, a composite material made from nylon and chopped carbon fibers, produced through fused deposition 
modeling (FDM).  

 
1 M.S. Student, Aerospace Engineering, Email: Nicholas.Phillips@my.erau.edu 
2 Ph.D. Student, Aerospace Engineering, Email: Deepak.Kumar@my.erau.edu 
3 Assistant Professor, Mathematics, Email: Youngxin.Liu@my.erau.edu 
4 Professor, Aerospace Engineering, Email: Sirish.Namilae@my.erau.edu 

D
ow

nl
oa

de
d 

by
 S

iri
sh

 N
am

ila
e 

on
 Ju

ly
 2

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
24

-0
26

4 

 AIAA SCITECH 2024 Forum 
 8-12 January 2024, Orlando, FL 

 10.2514/6.2024-0264 

 Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2024-0264&domain=pdf&date_stamp=2024-01-04


2 
 

 Insitu measurement of parameters that impacted by defect occurrence, such as thermal expansion and cooling 
patterns, can help understand defect evolution and improve the quality of the printed parts. Thermal imaging 
cameras are a common method of in-situ data collection and have been used extensively to monitor manufacturing 
processes [8]. Thermography allows us to detect defects in parts, typically as colder regions, either in the form of 
a foreign object, the lack of material, or unusual cooling patterns. 
 Deep neural networks (DNN) are learning algorithms that can identify patterns from a training set of images 
and use the data from the training images to classify new images based on how closely the new data matches the 
training data. A few researchers have used various DNN models and approaches for defect detection in additive 
manufacturing [9-14]. Despite accurate prediction, some of the processes are limited to specific anomaly and data 
types depending on the training data set. In this study, we used an improved deep neural network (DNN) approach 
to detect defects. The last dense layer modification of the regular DNN model allowed us to detect unknown 
anomalies without any prior training of model on any type of abnormal data. If a defect was detected in each image, 
it would be given its own classification.  

 

II. Experimentation 

A. Experiment Setup 
   The Onyx plates with a layer thickness of 0.2 mm, nozzle temperature of 275°C, and print orientation of 45°/-
45°/45°/-45°/45° were fabricated using a Markforged Mark Two printer. A printing pause is applied at the end of 
each layer. Defects were introduced into the structure by taping a square-shaped copper film onto a print bed. 
Copper acts as a heat sink to force uneven cooling in the part that leads to defects.  
    A FLIR A655sc thermal camera was used to capture the thermal data of the additively manufactured plates 
during the printing process in real-time. This camera has a resolution of 640 × 480 pixels with a measurable 
temperature range from -40°C to 650°C within +/-2% of the true temperature. The Research-IR software FLIR 
was used to capture videos and convert them into MATLAB files for post-processing.  

 

 
Fig. 1 (left) labeled experiment setup (right) copper layout 

B. Zero-Bias Deep Neural Network Setup 
 Deep neural network models are capable of learning intricate patterns from numerous structured picture 
datasets and can generate precise predictions based on training data. They are comprised of an input layer, at least 
one hidden layer, and an output layer, where the output of one layer is the input of another layer. The neurons 
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within a layer have thresholds that trigger the activation of data transference from that neuron to the neurons of 
the next layer. DNNs can significantly reduce the amount of time required to classify data, such as image 
classification. However, these traditional methods require high levels of model training, using both non-defected 
and defective data sets [15-17]. This process limits their capabilities to detect the non-trained image data set and 
unknown images are forcefully classified into one of the known classes. 
 In this study, we utilized a novel method for transforming a standard deep neural network model into an 
abnormality detection model by adding zero bias layers. This method was first developed to detect abnormal fight 
landings using aviation ADS-B signal data [18]. Recently, we adapted it to additive manufacturing by modifying 
the input from signal to image to work with image datasets [19]. This approach enables us to detect untrained faults 
while using only non-defective data sets for training. The last dense layer was modified into two distinct layers—
one standard dense layer and the other zero-bias layer. We initially trained the zero-bias DNN model using non-
defective datasets and then extracted the feature vector of known data sets from the zero-bias layer. The feature 
vectors of these known datasets are then utilized to calculate the centroid of each known class and a cutoff distance 
based on the Mahalanobis Distance (MD) [20] between the class-centered and furthermost feature vectors of each 
input data sample. If an input's MD from the centroid of each class is more than the cutoff distance for all classes, 
it is considered an abnormal input. A schematic of the process is shown in Figure 2. 
 

 

 
 

Fig. 2 Flowchart detailing the model training 
 

III. Results 

A.  In-situ Thermal Characterization of Composite Printing  
The Onyx composites were printed in an alternating 45°/-45° layup, which gave the thermal mappings of the 

layers’ distinctive patterns depending on the orientation in which they were printed. The thermal images are 
captured after each layer is printed. In the 45° layers, which are also odd-numbered layers, the printing starts at 
the top-left corner and moves toward the bottom-right corner, therefore the thermal image after printing shows 
higher temperature at the bottom-right corner. In contrast, the -45° printing pattern starts at top-right and ends at 
bottom-left resulting in higher temperatures at the bottom-left corner in the thermal images. Sample thermal images 
are shown in Figures 2 (a, b), respectively. It may be noted that the 45° layers displayed a more concentrated hot 
zone compared to -45° layers which exhibited a flattened and elongated hot zone. This visual matches observations 
from other studies regarding how ply direction can impact thermal conductivity in a composite [22,23]. In both 
cases, the cooling patterns were uniform, showing gradual expansion of the gradients without any distortions to 
the shape, indicating the absence of defects.   
 

D
ow

nl
oa

de
d 

by
 S

iri
sh

 N
am

ila
e 

on
 Ju

ly
 2

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
24

-0
26

4 



4 
 

 
 

(a) (b) 
 

Fig. 3 Thermal mappings of the first two layers of the clean Onyx print (a) 45o (b) -45o 

 
The defective set of prints displayed similar color gradients to the defect free samples; however, they had clear 

distortions of colder regions in the shape of the copper squares wrapped around the gradients, as shown in Figure 
4. Image subtraction was performed between the defective and non-defective image sets to better highlight the 
defect locations, which are yellow in the images, as shown in Figure 5.  
 

 
(a) (b) 

 
Fig. 4 Thermal mappings of the first two layers of the defective Onyx print (a) 45o(b) -45o 
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Fig. 5 Subtraction of the images of defects from the images of clean prints 

 

B.  Zero bias Deep Neural Network Results 
A zero-bias deep neural network framework was utilized to analyze the thermal image data to identify defects. The 

model was trained using thermal images of samples without defects. 80% of this dataset was used for training and 
20% was used for validation. This yielded a training accuracy of 95.28%. Subsequently, the trained model was used 
to identify defects using an expanded dataset incorporating both normal and abnormal images.  The model predictions 
were recorded as True Positive (TP) if an abnormal image input was correctly predicted as an abnormality, and True 
Negative (TN) if any normal image was correctly predicted as a normal image. All incorrect predictions are labeled 
as false negatives (FN) for abnormal images and false positives (FP) for normal images. All the recorded values are 
plotted in Figure 6 (b), and the overall accuracy was calculated based on the overall prediction rate.   
 

 

 
 

(a)                                                                                               (b)  
 

Fig. 6 Zero bias DNN model results of the thermal model (a) Classification of test data sets (b) 
Abnormality detection performance 

 
We used a graphical approach to visualize known and unknown dataset variations in the latent decision space. 

Because the zero-bias layer acts as a similarity-matching layer, we can consider its weights as a class fingerprint for 
an input image. The dimension of each extract feature vector from the zero bias layer is reduced by using a nonlinear 
dimension reduction method t-distributed stochastic neighbor embedding (t-SNE) [21] and plotted using a Voronoi 
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diagram. The class fingerprint extracted from the zero-bias layer is represented by a triangle, as shown in Figure 7. In 
Figure 8, each dot filled with color represents a known data (normal) input and each empty dot represents an abnormal 
image input, which in the case of this research is a defect. Inset in Figure 7 shows a zoomed-in of what appears to be 
a single data point from Figures 7 and 8 but reveals that these points are clusters of smaller points.   
 

 

  
Fig. 7 Voronoi diagram of the thermal test without defects (left) and zoom in on a “point” (right) 

 

 
Fig. 8 Voronoi diagram of the thermal test with defects 

 

D
ow

nl
oa

de
d 

by
 S

iri
sh

 N
am

ila
e 

on
 Ju

ly
 2

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
24

-0
26

4 



7 
 

IV.    Discussion 

In this study, a unique approach based on a zero-bias deep neural network was used to detect defects in additively 
manufactured composites. A regular DNN model was modified by adding a new zero-bias layer after the regular dense 
layer, which was later used to extract the feature vector of each input sample. The overall anomaly detection theory   
was based on the condition that the feature vector of the defective sample had a higher MD than the without defect 
sample from all known class centers. We targeted these differences between the feature vectors of the normal and 
abnormal samples and converted a regular DNN model into an abnormality detection model. This explainable 
approach overcomes some of the limitations of the currently available methods for defect detection, such as the lack 
of information about the hidden layer calculation for defected and undetected sample input. An explainable DNN 
model is more acceptable in terms of trustworthiness and accuracy for real applications.  Another limitation of most 
available methods is that they must be trained on all possible abnormal and normal sample inputs prior to detecting 
anomalies, which increases the requirement of training data, training time, and computational power. However, the 
zero-bias approach used in this study is independent of anomaly types, shape, and location, and only needs to be 
trained on normal datasets. This characteristic of the zero-bias approach makes it more suitable for multiple future 
modifications and applications such as real-time process monitoring for defect detection and mitigation. The approach 
developed in this study is material independent and can be easily adapted to different material combinations using 
FDM, as well as other similar additive manufacturing processes.  

V. Conclusion 

In this study, in-situ thermal imaging was used to observe and analyze defect formation in composite additive 
manufacturing during the printing process. The thermal data displayed notable differences in cooling patterns between 
clean and defective prints. The data collected from the in-situ observations was further analyzed using a deep neural 
network to classify images and detect abnormalities. The DNN was modified to include a zero-bias layer which 
ensured that generic defective images could be identified without explicitly training on defective images. This study 
was able to produce a model training accuracy of 95.28%, which was adequate to identify anomalies during the 
additive manufacturing process. 
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