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Abstract

In practice, it is essential to compare and rank candidate poli-
cies offline before real-world deployment for safety and reli-
ability. Prior work seeks to solve this offline policy ranking
(OPR) problem through value-based methods, such as Off-
policy evaluation (OPE). However, they fail to analyze special
case performance (e.g., worst or best cases), due to the lack of
holistic characterization of policies’ performance. It is even
more difficult to estimate precise policy values when the re-
ward is not fully accessible under sparse settings. In this paper,
we present Probabilistic Offline Policy Ranking (POPR), a
framework to address OPR problems by leveraging expert
data to characterize the probability of a candidate policy be-
having like experts, and approximating its entire performance
posterior distribution to help with ranking. POPR does not rely
on value estimation, and the derived performance posterior can
be used to distinguish candidates in worst-, best-, and average-
cases. To estimate the posterior, we propose POPR-EABC,
an Energy-based Approximate Bayesian Computation (ABC)
method conducting likelihood-free inference. POPR-EABC re-
duces the heuristic nature of ABC by a smooth energy function,
and improves the sampling efficiency by a pseudo-likelihood.
We empirically demonstrate that POPR-EABC is adequate
for evaluating policies in both discrete and continuous action
spaces across various experiment environments, and facili-
tates probabilistic comparisons of candidate policies before
deployment.

Introduction
Policies trained in simulation often encounter performance
drops when deployed in a different simulated environ-
ment (Jayawardana et al. 2022; Wei et al. 2022) or the real
world (Hanna and Stone 2017; Da et al. 2023). With a set
of candidate policies, evaluating and ranking prior to real
deployment is critical for real-world applications. Off-policy
evaluation (OPE) allows one to estimate the goodness of a
policy (often referred to as target/candidate policy) using data
collected from another, possibly unrelated policy (referred
to as behavior policy). Such evaluation is important because
testing and implementing a policy in the real world can be
costly in areas like trading (Liu et al. 2020) and physical
retail (Jenkins et al. 2022, 2020), even vital in situations like

*Corresponding Author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

healthcare (Liao et al. 2020) and transportation (Du et al.
2023; Vlachogiannis et al. 2023; Li et al. 2023).

With growing interest in OPE, the research community has
produced a number of estimators, including importance sam-
pling (IS) (Thomas and Brunskill 2016; Farajtabar, Chow,
and Ghavamzadeh 2018; Jiang and Li 2016), direct meth-
ods (DM) (Harutyunyan et al. 2016; Li et al. 2010; Le,
Voloshin, and Yue 2019; Kostrikov and Nachum 2020) and
distribution correction estimation (DICE) methods (Dai et al.
2020; Zhang, Liu, and Whiteson 2020; Yang et al. 2022).
Importance-sampling-based methods weight the data col-
lected from the behavior policy according to the probability
of transitioning to each state under the target policy, yet they
assume access to a probability distribution over actions from
the behavior policy. DM and DICE do not require knowing
the output probabilities of the behavior policy, where DM
directly learns an environment or value model from offline
data, and DICE methods learn to estimate the discounted
stationary distribution ratios. Most of these methods compute
the point estimates of the policy’s value (Dudı́k, Langford,
and Li 2011; Jiang and Li 2016; Zhang, Liu, and Whiteson
2020; Yang et al. 2020), some of which additionally estimate
the value with confidence intervals (Thomas, Theocharous,
and Ghavamzadeh 2015; Kuzborskij et al. 2020; Feng et al.
2020; Dai et al. 2020; Kostrikov and Nachum 2020).

While various estimators have been proposed for off-policy
evaluation, in many cases, precise policy value estimation
is not necessary. Instead, practitioners often place greater
emphasis on the correctness of comparison and ranking of
candidate policies. Existing work in Supervised Off-Policy
Ranking (SOPR) (Jin et al. 2021) takes a supervised learn-
ing approach to policy ranking, and requires an adequate
training set or policies with explicitly labeled performance.
In practice, this approach is challenging because (1) actual
policy data is typically limited, and (2) access to labeled per-
formance data is a strict assumption. The behavior policy is
usually inaccessible and behavioral data is usually restricted,
such as in healthcare or confidential financial trading domains.
Additionally, when the policies are hard to differentiate from
mean performance, we might care about the performance
under special situations like the worst or best cases (Agarwal
et al. 2021), which none of the above literature could address.

In this paper, we propose the Probabilistic Offline Policy
Ranking (POPR) framework to address the above challenges.
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Figure 1: POPR consists of two parts, posterior estimation and probabilistic comparison. (Left) Given expert datasets and
candidate policies, (Middle) POPR learns the performance posterior of each candidate relative to an expert, in which we propose
POPR-EABC. By bootstrapping, the energy function first calculates a list of energy values between expert action AE

n and policy
π’s action Aπ

n given the same S sampled from D(s,a), and then a pseudo-likelihood (aware of mean and variance from energy
values) is used in M-H algorithm to sample the acceptable probability θ from a proposal distribution. (Right) The sampled
proposals approximate the performance posterior, enabling special case comparison: e.g., worst-case analysis. The heat map
shows pair-wise comparisons. It is hard to compare on mean but easier on the worst case, showing the benefit of POPR-EABC.

POPR does not require access to behavioral policies, nor
the performance value or reward. Instead, it exploits limited
expert data to the maximum extent. Our intuition is that we
can measure the expected behavior of a candidate policy
relative to a static policy generated by an expert, such as a
medical doctor or a driving instructor(Kim et al. 2013). The
more the candidate policy behaves like experts, the better.

Based on this intuition, the performance posterior distri-
bution is estimated, providing a holistic characterization of
the policy’s quality, making it possible to compare the perfor-
mance in the best or worst case. Specifically, we propose a
novel method POPR-EABC, an Energy based Approximate
Bayesian Computation to estimate the posterior distribution.
By using a smooth energy function to measure the similarity
between expert and policy-generated data, we obviate the
need to specify tolerance parameters on summary statistics
and improve the efficiency of ABC. We introduce a pseudo-
likelihood that parameterizes the energy variance and fa-
cilitates Bayesian inference. On both self-trained policies
and open-sourced policies, we perform extensive evaluations
comparing six baselines under different RL tasks covering
both discrete and continuous action spaces. The results prove
the effectiveness of POPR-EABC in offline policy evaluation.
We demonstrate our method could exploit efficiently at small
size expert data and has a high tolerance for data quality.

Preliminaries

In this section, we formalize the Offline Policy Ranking
(OPR) problem and the general process of OPR methods.

Formalization of OPR Problem
We consider a Markov Decision Process (MDP), defined by a
tuple (S,A, T,R, γ), where S and A represent the state and
action spaces, respectively. T (s′|s, a) represents a, possibly
unknown, transition function, where s′ is the next possible
state from s taking action a, s ∈ S, a ∈ A and R(s, a) repre-
sents a reward function. The expected return of a policy π is
defined as V (π) = E[

∑H
t=0 γ

trt], whereH is the horizon of
the MDP, and t is the index of steps.

Definition 1 (Offline Policy Ranking). Given an offline
dataset D, that consists of N observed behavior trajecto-
ries T from behavior policy µ.D = {Ti⟨st, at, rt, st+1⟩}Ni=1
with N trajectories, each having a variable length Li, t ∈ Li.
And given a set of candidate policies Π̂ = {π̂(1), ..., π̂(k)},
where k represents the policies’ index. The goal of offline pol-
icy ranking is to acquire a ranked order O{·} that represents
the true performance of the policies without interacting with
the environment online. In the later section, OPR stands for
Offline Policy Ranking.

Solutions to OPR
OPE Methods It is possible to solve OPR tasks using
Off-policy evaluation by calculating the expected values
E[V (π̂(k)|D)] for each candidate policy π̂(k) and ranking
each π̂(k) ∈ Π̂ accordingly to obtain O{Π̂}. These meth-
ods (Voloshin et al. 2019; Harutyunyan et al. 2016; Precup
2000) aim to precisely estimate the expected value with an
offline dataset D, but they either tend to re-weight (Xie, Ma,
and Wang 2019) or provide correction to the original reward
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values r (Nachum et al. 2019), such reliance on high-quality
and dense value return is a severe challenge for most of OPE
methods in practical use. For scenarios with intrinsic sparse
reward settings (only receive reward signal when the task is
done) or low-quality reward representation (partially observ-
able (s, a) leads to untrackable reward r), the OPE methods
are likely to rank the policies incorrectly.

Supervised Off-Policy Ranking (SOPR) SOPR (Jin et al.
2022) is also able to solve OPR problems by training a rank-
ing model using a policy dataset with labeled performance,
and then minimizing a ranking loss. It considers the overall
performance in the training process but also fails to present
a probabilistic result of the comparison, and is not able to
conduct worst/best case analysis either.

We summarize the current solutions in Table 1, while some
of the OPE methods relax the requirement of the action prob-
ability P (a) from behavior policy, none of them could allevi-
ate the reliance on rewards.

Features OPE SOPRPOPR (ours)
Not Access Value ✗ ✗ ✓
Not Access P (a) ✗/✓ ✓ ✓

Probabilistic Ranking ✗ ✗ ✓
Case Analysis ✗ ✗ ✓

Table 1: Comparison of different solutions for OPR tasks

When two policies perform similarly with mean perfor-
mance, we may wonder what is the probability of one outper-
forming the other and also the comparison in the worst/best
cases behavior, which leads to the probabilistic comparison
and case analysis, while none of the existing work could
solve. Therefore, we provide our probabilistic framework in
Section . to estimate the posterior distribution of the perfor-
mance for policy π̂(k) on the offline data D. The posterior
should contain all the necessary probabilistic information
about π̂(k), helping us to analyze the best or worst-case per-
formance. In the implementation, we introduce an energy-
based inference method with pseudo-likelihood to estimate
the posterior, which helps the evaluation to better consider
the intrinsic uncertainty.

Probabilistic Offline Policy Ranking
In order to correctly rank the candidate policies, we can com-
pare the performance of the candidate policies with experts
as an indicator of the goodness of their performance. Below,
we define a statistic value representation θ, which is the result
of an estimation, that can be used to rank over Π̂, and we
provide a formal definition as below.
Definition 2 (Probabilistic Offline Policy Comparison).
Given an expert dataset De = {⟨s(i)t , a

(i)
t , r

(i)
t , s

(i)
t+1⟩i}Ni=1,

if we define a statistic θ(k) ∈ [0, 1], that measures how con-
sistent the candidate policy π̂(k) is with the expert policy, the
posterior distribution of θ(k) is defined as:

p(θ(k)|De, π̂
(k)) := p[πe(st) = π̂(k)(st)| De] (1)

Note that posterior p(θ(k)|De, π̂
(k)) can be recognized as the

formation of a bag of θ(k) samples.

Under this definition, θ(k) is the probability that the can-
didate policy π̂(k) produces the same behavior as the expert
πe, given the state st. To reduce notational clutter, we use
p(θ(k)|De, π̂

(k)) and p(θ(k)|De) interchangeably in this pa-
per, additionally, we interchange πe(st) and ae since we do
not assume to know the form of the expert policy. We will
refer target policy and behavior policy in OPE scope, whereas
candidate policy and expert policy are in the POPR scope.

Posterior Estimation Due to the limited number of expert
trajectories, real-world environments’ stochasticity, and the
target policy’s decision variance, there is intrinsic uncertainty
in θ(k) when describing the performance of a policy, which
introduces bias to the statistic measurement, further causing
unreliable evaluation. Holistic depictions considering the
variance help to better policies’ performance, so we seek to
estimate the holistic posterior distribution of θ(k) for:

p(θ(k)|De) ∝ p(De|θ(k))p(θ(k)) (2)

Based on the meaning of θ(k), posterior p(θ(k)|De) provides
holistic information on policy π̂(k)’s behavior, and supports
the evaluation of the candidate policies. Posterior estima-
tion approaches are not limited, such as Bayesian Inference,
Markov Chain Monte Carlo, etc. If we notate the posterior
process as f(·), we could represent the framework process:

O{Π̂} = G(f(π̂(k)|Ti ∼ De)) (3)

where Ti ∈ De containing n trajectories, f(·) is the posterior
estimation process based on sampling trajectories T from
dataset De, please note that practitioner could sample multi-
ple times not limited to the total amount n of trajectories. And
function G(·) could be any post-process and analysis proce-
dures on posterior samples S(k)θ , such as statistical calculation
or comparison introduced in Section . S(k)θ represents a bag
of sampled θ for candidate policy π̂(k).

Scoring Functions for Ranking and Comparison From
f(·) process, the derived posterior samples S(k)θ summarize
all of the performance information learned from the behav-
ior of candidate policies π̂(k). We can conduct various tasks
such as policy ranking or probabilistic pair-wise compari-
son, and furthermore, the special cases analysis from the
posterior samples. The different tasks will lead to different
instantiations of a concrete function G(·).
• Ranking on Average: To conduct a ranking task consid-

ering the overall performance, we could use the mean of the
whole samples, we do: E[θ(k)] = 1

|S|
∑

s∈S(k)
θ

s, where |S|
stands for the total amount of θ(k) samples, and then sort
Π̂ = {π̂(1), ..., π̂(k)} by E[θ(k)], we get the resulting O{Π̂}.
• Worst/Best-case Analysis: To conduct special cases anal-

ysis, either ranking or pair-wise comparison, we only need to
conduct one step selection on the pre-ordered S(k)θ . E.g., in
this paper, when it comes to worst-case comparison, only the
bottom 5%× |S| of samples will be selected to keep with the
above two analysis procedures. Note that the proportion of
observation could vary according to the necessity.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20372



• Pair-wise Comparison: To conduct a pair-wise compari-
son between a group of policies, we compare by the expected
Monte Carlo samples (θs), e.g., π̂(k), and π̂(l) by computing
p(θ(k) > θ(l)|De). In other words, p(θ(k) > θ(l)|De) =
1
|S|

∑
s∈S(k)

θ

1(S(k)θ [i] > S(l)θ [i]), i is the index for each

θ ∈ S(k)θ .

POPR-EABC
Following the POPR framework, the primary task is to esti-
mate the posterior of a candidate policy π̂(k)’s performance,
i.e., to derive S(k)θ . Bayesian inference typically requires the
specification of a likelihood function, where the data are as-
sumed to be independent and identically distributed (iid) to
make the likelihood computation tractable. However, such
an assumption is not suitable for policy evaluations since
the observed states and actions in MDP’s are determined by
the environment dynamics, and are not independent from
each other. Thus, we seek to leverage Approximate Bayesian
Computation (ABC), which relies on simulation rather than
likelihood, to measure the relevance of parameters to the data.
An overview of our method is shown in Figure 1.

Energy-based Similarity
The standard ABC paradigm faces the difficulty of designing
a good summary statistic for efficient sampling. In practice,
these methods suffer from very low acceptance rates and
long sampling times (Turner and Van Zandt 2012). To over-
come this challenge, we define a continuous, scalar-valued
energy function, e = E(Te, T̂ ), e ∈ [0, 1] to avoid specifying
a heuristic discrepancy statistic, where Te is the expert tra-
jectory and T̂ is the simulated trajectory taken by candidate
policy π(k), given the same observation sequence Se. We
draw bootstrapped samples of trajectories from our dataset,
de ∈ D, and generate simulated data from our candidate pol-
icy, d̂. We then calculate the normalized energy between these
two data subsets, E(de, d̂) = 1 − ρ(de,d̂)

Z , where Z = |de|
is a normalizing constant, and ρ is could be any universal
distance metric. Intuitively, when the similarity between the
two bootstrapped data sets is high, E approaches unity; when
similarity is low, E approaches zero. In our experiments,
we find out that Jensen–Shannon (JS) divergence (Endres
and Schindelin 2003) is more efficient compared to other
similarity measures, and use it as the default setting.

Calculating the Pseudo-likelihood
The above energy-based statistic helps mitigate the ABC al-
gorithm’s heuristic nature by providing a smooth measure of
similarity between datasets. To estimate the posterior distri-
bution we design a pseudo-likelihood, which uses the boot-
strapped energy values to provide an approximation of the
joint probability of the data in a computationally simpler way
(Besag 1975). Rather than specify a formal likelihood, we fit
a density function to the empirical energy values. This density
contains distributional information about the behavior of the
candidate policy relative to the expert. The pseudo-likelihood,
along with the prior, facilitates the estimation of the posterior.

More formally, we approximate the likelihood as func-
tion of M bootstrapped energy values: L(De|θ(k)) ≈
p(θ(k)|{e1, ...eM}). The energy values, e1, ...eM are cal-
culated by drawing M bootstrapped datasets {D̄1, ...D̄M}
from the expert data, De. This bootstrapping routine in-
duces diversity in both the expert data, and the candidate
policy, and facilitates an estimate of variability in θ. We
assume that the pseudo-likelihood follows a beta distribu-
tion, p(θ|{e1, ...eM}) ∼ Beta(α, β), since the support for
the beta distribution lies in [0, 1] and is conducive for estimat-
ing probabilities. Because the bootstrapped energy values are
all sampled independently, we can use the relatively simple
method of moments estimator (Fielitz and Myers 1975) to fit
the pseudo-likelihood to our data.

α̂ = µ̂

[
µ̂(1− µ̂)

σ̂2
− 1

]
, β̂ = (1− µ̂)

[
µ̂(1− µ̂)

σ̂2
− 1

]
(4)

The parameters, α̂ and β̂, as shown in Eq. 4, are cal-

culated based on the mean ˆ
µ = 1

M

∑M
i=1 ei and variance

σ̂2 = 1
M−1

∑M
i=1(ei−µ̂)2 of the bootstrapped energy values,

which determine the shape and scale of the Beta density and
specify a plausible range of values of θ(k), L(θ(k)|α̂, β̂) =
Beta(α̂, β̂). This, along with the prior, p(θ(k)), form the ac-
ceptance criteria. Detailed explanations to better illustrate the
equation are shown in the Appendix. Intuitively, L(θ(k)|α̂, β̂)
outputs a likelihood over the domain of θ(k), given the boot-
strapped energy values. Figure 2 provides visualization of the
behavior of this function at different θ(k) and energy values.
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Figure 2: A visual depiction of an example pseudo-likelihood
surface. For a given θ, energy tuple, the likelihood of the
combination is shown on the vertical axis. For high energy
values (indicating high agreement between expert and candi-
date), large θ will have a high likelihood (indicating a high
acceptance probability). We incorporate this into the ABC-
MH (Metropolis-Hastings) sampling algorithm to learn the
posterior p(θ(k)|De) of policy performance.

Sampling the Posterior
Consequently, we can apply an adapted Metropolis-
Hastings (M-H) algorithm (Turner and Van Zandt 2012) in
POPR-EABC to sample from the posterior by replacing the
likelihood term with the pseudo-likelihood. After the ex-
ecution of algorithm, the output of POPR-EABC is a set
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Algorithm 1: POPR-EABC Algorithm

Input: Dataset De, candidate policy π̂(k), prior
distribution p(·), proposal distribution q(·),
energy function E(·), pseudo-likelihood L(·)

Output: Set of posterior samples S(k)θ

1 Initialize posterior θ(k) and sample set S(k)θ
2 for i = 1 : N do
3 Get M bootstrapped trajectories D̄e ∼ De

4 Initialize array of energy values, E = {}
5 for j = 1 : M do
6 Get episode, epj = D̄e[j] with length l

7 Initialize synthetic dataset, D̂ = {}
8 for t = 1 : l do
9 st = epj [t], ât = π̂(k)(st)

10 D̂.append([st, ât])
11 end
12 Evaluate energy e = E(D̄e, D̂)
13 E .append(e)
14 end
15 Calculate µ̂, σ̂, α̂, and β̂ from E with Eq.4
16 Propose new theta θ∗ ∼ q(θ∗|θ(k)i )
17 Compute acceptance probability:

18 τ = min

[
1,

L(θ∗|α̂,β̂)p(θ∗)q(θ
(k)
i |θ∗)

L(θ
(k)
i |α̂,β̂)p(θ(k)

i )q(θ∗|θ(k)
i )

]
19 if τ < ϕ ∼ uniform(0, 1) then
20 Accept proposal: Sθ.append(θ∗)
21 θ

(k)
i ← θ∗

22 end
23 else
24 Reject proposal: Sθ.append(θi)(k)
25 end
26 Return Sθ
27 end

of Monte Carlo samples, S(k)θ , which approximate poste-
rior distribution, p(θ(k)|De, π̂

(k)). The full description of the
POPR-EABC algorithm can be found in the Algorithm 1.

We execute the POPR-EABC algorithm with a burn-in pe-
riod of B = 10 iterations, and N = 500 sampling iterations.
Additionally, we set M = 5 for the number of bootstrapped
samples at each iteration. We use a Beta(0.5, 0.5) prior, and
a Beta proposal distribution with parameters, α = 4.0, and
β = 1e− 3.

Experiments
Experimental Settings
Environments We first designed our ToyEnv to ver-
ify the proposal estimation of the posterior, then, we
use POPR-EABC and baseline OPE algorithms to solve the
OPR problem on widely-used complex environments with
discrete or continuous action spaces in the Gym environ-
ment. Detailed descriptions of the experiment and code can

be found in the repository1.

Baselines and Variants We compare POPR with the first
four representative baselines OPE algorithms with their
popular implementation 2, DICE follows (Voloshin et al.
2019). Among the methods, Fitted Q-Evaluation (FQE) (Le,
Voloshin, and Yue 2019; Kostrikov and Nachum 2020) is
a Q-estimation-based OPE method that learns a neural net-
work to approximate the Q-function of the target policy by
leveraging Bellman expectation backup operator (Sutton and
Barto 2018). Qπ(λ) (Harutyunyan et al. 2016) and Tree-
Backup(λ) (Precup, Sutton, and Singh 2000; Munos et al.
2016) can be viewed as two types of generalization from FQE.
Model-based method (MBased) (Paduraru 2012; Kostrikov
and Nachum 2020; Fu et al. 2021) estimates the environ-
ment model to derive the expected return of the target policy,
and Bayesian Distribution Correction Estimation known as
(BayesDICE) (Yang et al. 2022) is the state-of-the-art offline
policy ranking method that estimates the posteriors of distri-
bution correction ratios in DICE methods (Dai et al. 2020;
Zhang, Liu, and Whiteson 2020; Yang et al. 2020). It assumes
the individuality of policies during policy ranking.

We also developed a variant of POPR without the prob-
abilistic capacity as AgreeRank, simply measuring the
agreement Agree(·) of π to the expert πe directly: pi =
Agree(Aπ, Aπe

|De), where s is sampled from the state list
S of D, and Aπ is a action list generated by π(s) in or-
der with the Aπe

taken by πe(s). The pi represents the
performance of policy πi, which can be used to rank ac-
cordingly in the candidate policy set Π̂ to get the O{·}.
The experiment uses negative Euclidean Distance for con-
tinuous action space and 1 − Asame

Atotal
for discrete, where

Asame =
∑

ai
π,a

i
πe

1(aiπ = aiπe
) and Atotal = |A|. Note

that the dataset we used fits the common setting in that it
does not contain the probability of behavior policy; therefore,
the existing IS methods in OPE cannot be utilized.

Evaluation Metrics We evaluate POPR and baseline OPE
algorithms with two metrics to reflect their accuracy of
ranking candidate policies: widely used ranking metric Nor-
malized Discounted Cumulative Gain (NDCG) (Wang et al.
2013), and Spearman’s Rank Correlation Coefficient (SRCC),
adapted by (Paine et al. 2020; Jin et al. 2022). Detailed im-
plementation of metrics is introduced in the Appendix. The
ranges of NDCG and SRCC are [0, 1] and [-1, 1] respectively.
The higher, the better.

Experimental Results
Ranking on Average for Policies with Differentiable Mean
Performance We first evaluate POPR and baseline OPE on
multi-level differentiable policies (by mean performance), the
policies adopt the same network architecture but are trained
with different epochs, we provide a detailed description of the
used policies, training steps, validated ground-truth rank in
the Appendix 3, and we have released pre-trained models and

1https://github.com/LongchaoDa/POPR-EABC.git
2https://github.com/clvoloshin/COBS
3Please find Appendix in arXiv version.
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ToyEnv MountainCar AcroBot Pendulumn

NDCG SRCC NDCG SRCC NDCG SRCC NDCG SRCC

FQE 0.8608 0.8228 0.6135 -0.3771 0.5970 -0.1000 0.6620 -0.087
Tree-Backup (λ) 1.0000 1.0000 0.7321 -0.0629 0.6722 0.1619 0.7562 -0.325

Qπ(λ) 0.6650 -0.274 0.7039 0.1943 0.6108 -0.1070 0.8133 -0.0390
MBased 0.7004 0.0857 0.7093 -0.0001 0.5785 -0.1640 0.5906 -0.2460

BayesDICE 0.5913 -0.466 0.9005 0.2571 0.9033 0.8571 0.7251 0.2976

AgreeRank 1.0000 1.0000 0.9829 0.9357 1.0000 0.9950 0.9421 0.8190

POPR-EABC 1.0000 1.0000 0.9992 0.9663 1.0000 1.0000 0.9908 0.9047

Table 2: Ranking evaluation on multi-level differentiable policies w.r.t. NDCG and SRCC. The higher, the better. Mean values
across 5 times of experiments are shown. Best (bold) and second (underline) indicate POPR-EABC performs ideally.

(a) Online performance. (b) The evaluation results given by different methods.

Figure 3: The evaluation on policies with similar mean. (a) The mean and standard deviation of the online performance for
different candidate policies. The policies have similar mean, making it hard to rank on the mean. (b) The ranking performance of
POPR-EABC and baseline methods to rank under best/worst/mean case scenario.

training scripts in code. The implementation of the policies
is based on a public codebase (Raffin et al. 2021) 4.

Since the policies are from different epochs, they are
clearly differentiable candidates for each task. Therefore,
we use the order ranked by mean of the accumulated reward
of each policy, when deployed for n = 1000 times running as
ground truth O{Π̂mean}. Then we conduct ranking follow-
ing section of Probabilistic Offline Policy Ranking, where
the ranking methods’ performances are measured through the
evaluation metrics by comparing O{Π̂} and O{Π̂mean}. Ta-
ble 2 contains experimental results in different environments.

The results in Table 2 show POPR achieves a higher rank
correlation coefficient and cumulative gain than baseline al-
gorithms, which means POPR can provide ranking results for
different policies with higher accuracy. In addition, POPR
performs the most stably, not having negative rank correlation
results in all the tasks, whereas each baseline OPE algorithm
has one or more negative rank correlation results.

Best/worse-case Analysis for Policies with Similar Mean
Performance In this section, we evaluate POPR and base-
line OPE algorithms on some open-source policies that show
similar mean performance and would like to differentiate the
policies through best- or worst-case performance. All the
policies are publicly available and well-trained by various

4https://github.com/DLR-RM/stable-baselines3

RL algorithms, including DQN, QRDQN, TRPO, PPO, A2C,
and ARS. (Raffin 2020) 5. Figure 3(a) shows the mean and
standard deviation of their online performance with 10000
rounds of rollouts in MountainCar. It can be found that the
performance of different policies is quite similar, while some
show larger standard deviations. Under such cases where
the candidate policies show similar mean performance, their
best/worst case performance would be helpful in practice.

To get the ground truth ranking of the policies under
best/worse case performance, we run each open-sourced pol-
icy on the same environment setting for n = 10000 rounds
and log the reward for each round, upon which we take
their lowest and highest 5% values’ mean as their worst
case and best case performance ground-truth: O{Π̂worst}
and O{Π̂best}. Figure 3 shows the results on environments
of MountainCar, while we also validate in Pendulumn
in the Appendix. From Figure 3, we observe as following:
• POPR-EABC outperforms other baseline evaluation

methods with higher NDCG and SRCC results in all cases,
i.e., best, worst, and mean. In the best/worst cases evaluation,
POPR-EABC is able to outperform other baseline methods
because it benefits from the performance posterior derived,
which we could pay attention to the cases we are caring, while
other OPE methods could only produce an expected policy

5https://github.com/DLR-RM/rl-baselines3-zoo
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Figure 4: Probabilistic evaluation on policies. (a) Mean performance with standard deviation by rolling the policies in the online
environment. Point estimates are hard to tell the differences between some policies as they have the same mean. (b) Kernel
Density Estimates from the posteriors given by POPR-EABC. (c) The Cumulative Probability Estimates from POPR-EABC on
different policies. The more the line closer to the lower right, the policy performs better. POPR-EABC can differentiate different
levels of policy. (d) Pair-wise comparison of different policies. The darker blue the color is, the policy at Y is better than X .

value, and AgreeRank only able to produce an action similar-
ity value. These two groups of approaches fail to effectively
and correctly tell the differences under special cases.
• POPR-EABC shows smaller std in terms of NDCG and

SRCC because it parameterizes the energy value variance in
Eq.4 and considers such information in pseudo-likelihood to
promote a stable and fast convergence to potential posterior.

Probabilistic Pairwise Comparison Different from ex-
isting work, POPR-EABC evaluates policies with detailed
probabilistic values. Hence, we provide our comparison re-
sults from POPR-EABC on policies trained with different
epochs in MountainCar as a case study. Figure 4(a) shows
the mean rewards of each policy 100 rollouts, we could no-
tice point estimates can not tell the differences between some
policies as they have the same value of -200, indicating values
from online rollouts are sometimes inadequate to differentiate
between policies, requiring further evaluations on behaviors.

Figure 4(b) and 4(c) present the probabilistic evaluations
by POPR-EABC with the estimated density of certain PDF,
and its cumulative distribution respectively. Since θ repre-
sents the probability of the current candidate policy being as
good as the potential expert policy, the faster one reaches 1
(right-top line) in Figure 4(c), the better performance of the
evaluated policy, indicating there are more samples of θ closer
to 1 during the evaluation of the policy. Reflected by the den-
sities, The approximation for the probability distribution of θ
is in Figure 4(b). Benefit from the (b) characterization of a
holistic policy feature, in Figure 4(c), POPR-EABC differen-
tiates between policies by estimated performance posterior.

Figure 4(d) presents the pairwise comparison of these poli-
cies given by POPR-EABC. Each cell value represents the
probability of one policy from the Y -axis being better than
the other from the X-axis. The value of 0 means Y has a
probability of zero to be better than X and vice versa when
the value is 1. The results in Figure 4(d) suggest that POPR
provides effective pair-wise probabilistic analysis.

More Analysis More analyses are shown in arXiv Ap-
pendix: the effect of size and quality of expert data, different
similarity measurements, and prior selection choices.

Related Work

Offline Policy Ranking is relevant to Q-function selection
by choosing the best Q-function from a set of candidate
functions. Different from OPE, these methods focus on Q-
function, whereas in the real world, the target policy may
not be in the form of a Q-function. Offline policy rank-
ing has also been studied (Doroudi, Thomas, and Brunskill
2017; Paine et al. 2020; Jin et al. 2022), which considers
point estimates rather than estimating a distribution. Another
work (Yang et al. 2022) in OPR estimates the distribution by
transforming it into an optimization problem with constraints,
whereas this paper uses statistical simulation methods to
estimate the posterior distribution. Off-policy Evaluation
(OPE) has been focused on estimating the expected value
of the target policy. Plenty of OPE methods provide point
estimates for the expected value (Jiang and Li 2016; Zhang,
Liu, and Whiteson 2020; Yang et al. 2020). There are some
OPE methods additionally estimate the value with confidence
intervals (Thomas, Theocharous, and Ghavamzadeh 2015;
Kuzborskij et al. 2020; Feng et al. 2020; Dai et al. 2020;
Kostrikov and Nachum 2020). Recently, another direction is
estimating and bounding the CDF of returns (Chandak et al.
2021; Huang et al. 2021), although these methods are leverag-
ing the distribution estimation, they either require knowledge
of action probabilities under the behavior policy or rely on
dense returns which restrict the scope of applicability.

Conclusion

This paper introduces POPR, a framework of a probability-
based, statistically rigorous solution for offline policy ranking.
Specifically, POPR-EABC is proposed to derive the holistic
posterior of candidate policies performance as an implemen-
tation of POPR, based on an energy pseudo-likelihood, it
profiles the policy behavior through a probabilistic manner,
perceives action variance in Approximate Bayesian Compu-
tation process, brings awareness to the intrinsic uncertainty
of the system. It helps estimate the policy’s performance and
facilitates probabilistic pair-wise candidate policies’ compar-
ison before deployment.
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