
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06412-y

1 3

Libsignal: an open library for traffic signal control

Hao Mei1,3 · Xiaoliang Lei2 · Longchao Da1,3 · Bin Shi2 · Hua Wei1,3 

Received: 9 March 2023 / Revised: 3 August 2023 / Accepted: 3 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
This paper introduces a library for cross-simulator comparison of reinforcement learn-
ing models in traffic signal control tasks. This library is developed to implement recent
state-of-the-art reinforcement learning models with extensible interfaces and unified cross-
simulator evaluation metrics. It supports commonly-used simulators in traffic signal con-
trol tasks, including Simulation of Urban MObility(SUMO) and CityFlow, and multiple
benchmark datasets for fair comparisons. We conducted experiments to validate our imple-
mentation of the models and to calibrate the simulators so that the experiments from one
simulator could be referential to the other. Based on the validated models and calibrated
environments, this paper compares and reports the performance of current state-of-the-
art RL algorithms across different datasets and simulators. This is the first time that these
methods have been compared fairly under the same datasets with different simulators.

Keywords  Reinforcement learning · Traffic signal control · Benchmark and dataset ·
Evaluation

Editors: Emma Brunskill, Minmin Chen, Omer Gottesman, Lihong Li, Yuxi Li, Yao Liu, Zonging Lu,
Niranjani Prasad, Zhiwei Qin, Csaba Szepesvari, Matthew Taylor

Hao Mei, Xiaoliang Lei have contributed equally to this work.

 *	 Bin Shi
	 shibin@xjtu.edu.cn

 *	 Hua Wei
	 hua.wei@asu.edu

	 Hao Mei
	 hmei7@asu.edu

	 Xiaoliang Lei
	 shawlenleo@stu.xjtu.edu.cn

	 Longchao Da
	 longchao@asu.edu

1	 Department of Informatics, New Jersey Institute of Technology, Newark, NJ, USA
2	 School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an,

People’s Republic of China
3	 School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

http://orcid.org/0000-0002-3735-1635
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06412-y&domain=pdf

	 Machine Learning

1 3

1  Introduction

Traffic signals coordinate the traffic movements at the intersection, and a smart traffic sig-
nal control algorithm is the key to transportation efficiency. Traffic signal control remains
an active research topic because of the high complexity of the problem. The traffic situ-
ations are highly dynamic and thus require traffic signal plans to adjust to different situ-
ations. People have recently started investigating reinforcement learning (RL) techniques
for traffic signal control. Several studies have shown the superior performance of RL tech-
niques over traditional transportation approaches (Wei et al., 2018, 2019; Xu et al., 2021;
Oroojlooy et al., 2020; Ma and Wu, 2020). The most significant advantage of RL is that it
directly learns how to take the next actions by observing the feedback from the environ-
ment after previous actions.

In literature, a number of traffic signal control methods have been proposed (Yau et al.,
2017; Wei et al., 2019), and it has attracted much attention to facilitate the implementation
or use of these proposed methods. However, as shown in Table 1, current methods are dis-
tributed among different simulators and datasets. As we will show later in this paper, data-
sets, simulators, and even evaluation metrics vary the performance of the same algorithm.
In addition, reinforcement learning is also sensitive to hyperparameters. All these make it
difficult for new traffic signal control methods to ensure effective and uniform improve-
ment. Therefore, there is an urgent need for a cross-platform, unified process with an exten-
sible code base that supports multiple models.

This paper presents a unified, flexible, and comprehensive traffic signal control library
named LibSignal. Our library is implemented based on PyTorch and includes all the nec-
essary steps or components related to traffic signal control into a systematic pipeline. We
consider two mainstream simulators, SUMO and CityFlow, and provide various datasets,
models, and utilities to support data preparation, environment calibration, model instantia-
tion, and performance evaluation for the two kinds of simulators.

Contributions: To the best of our knowledge, LibSignal is the first open-source library
that provides benchmarking results for traffic signal control methods across various data-
sets and simulators. The main features of LibSignal can be summarized in three aspects:

•	 Unified: LibSignal builds a systematic pipeline to implement, use and evaluate traffic
signal control models in a unified platform. We design cross-simulator data configura-
tion, unified model instantiation interfaces, and standardized evaluation procedures.

•	 Comprehensive: 10 models covering two traffic simulators have been reproduced to
form a comprehensive model warehouse. Meanwhile, LibSignal collects 9 commonly
used datasets from different sources, makes them compatible with both simulators, and
implements a series of widely used evaluation metrics and strategies for performance
evaluation.

•	 Extensible: LibSignal enables a modular design of different components, allowing users
to insert customized components into the library flexibly. It also has an OpenAI Gym
interface (Brockman et al., 2016) which allows easy deployment of standard RL algo-
rithms.

 What LibSignal isn’t: Despite the ability to train and test across different simulators,
LibSignal does not claim the performances of the same model on different simulators are
identical. There are some differences in internal mechanisms between different simulators,
for example, vehicle maneuver behaviors, and our emphasis is on the relative performance

Machine Learning	

1 3

Ta
bl

e 
1  

S
um

m
ar

y
of

 th
e

st
at

e-
of

-th
e-

ar
t m

od
el

s (
a

pa
rti

al
 li

st)
, s

or
te

d
by

 c
ita

tio
ns

 fr
om

 G
oo

gl
e

Sc
ho

la
r b

y
20

22
/0

6/
08

Th
e

fu
ll

lis
t c

an
 b

e
fo

un
d

in
 h

ttp
s:

//​d
ar

l-​l
ib

si
​gn

al
.​g

ith
ub

.​io
/.

M
et

ho
d

Ve
nu

e
C

ite
Si

m
ul

at
or

D
at

as
et

 (*
 m

ea
ns

 o
pe

n
ac

ce
ss

ed
)

M
ai

n
m

et
ric

s

In
te

lli
Li

gh
t (

W
ei

 e
t a

l.,
 2

01
8)

K
D

D
 2

01
8

32
1

SU
M

O
Jin

an
 1

 x
 1

Tr
av

el
 ti

m
e,

 sp
ee

d,
 q

ue
ue

 le
ng

th
,

ap
pr

ox
im

at
ed

 d
el

ay
ID

Q
N

 (
Zh

en
g

et
 a

l.,
 2

01
9)

ar
X

iv
 2

01
9

53
SU

M
O

LA
 1

 x
 4

*,
 Ji

na
n

1
x

1,
 H

an
gz

ho
u

1
x

1
Tr

av
el

 ti
m

e
M

A
PG

 (C
hu

 e
t a

l.,
 2

01
9)

TI
TS

 2
01

9
30

8
SU

M
O

G
rid

 4
 x

 4
, m

on
ac

o*
A

pp
ro

xi
m

at
ed

 d
el

ay
, q

ue
ue

 le
ng

th
C

oL
ig

ht
 (W

ei
 e

t a
l.,

 2
01

9)
C

IK
M

 2
01

9
11

6
C

ity
Fl

ow
H

an
gz

ho
u

4
x

4*
, J

in
an

 3
 x

 4
*,

M
an

ha
tta

n
3

x
27

*
Tr

av
el

 ti
m

e

M
PL

ig
ht

 (C
he

n
et

 a
l.,

 2
02

0)
A

A
A

I 2
02

0
98

C
ity

Fl
ow

G
rid

 4
 x

 4
, m

an
ha

tta
n

Tr
av

el
 ti

m
e,

 th
ro

ug
hp

ut
Pr

es
sL

ig
ht

 (W
ei

 e
t a

l.,
 2

01
9)

K
D

D
 2

01
9

93
C

ity
Fl

ow
Jin

an
 1

 x
 3

, S
ta

te
 C

ol
le

ge
*,

 M
ah

at
ta

n*
Tr

av
el

 ti
m

e
FR

A
P

(Z
he

ng
 e

t a
l.,

 2
01

9)
C

IK
M

 2
01

9
67

C
ity

Fl
ow

H
an

gz
ho

u
1

x
1*

, A
tla

nt
a

1
x

5*
Tr

av
el

 ti
m

e
M

et
aL

ig
ht

 (Z
an

g
et

 a
l.,

 2
02

0)
A

A
A

I 2
02

0
43

C
ity

Fl
ow

H
an

gz
ho

u
1

x
1*

, A
tla

nt
a

1
x

5*
,

H
an

gz
ho

u
4

x
4*

, J
in

an
 3

 x
 4

*
Tr

av
el

 ti
m

e

D
em

oL
ig

ht
 (X

io
ng

 e
t a

l.,
 2

01
9)

C
IK

M
 2

01
9

22
C

ity
Fl

ow
H

an
gz

ho
u

1
x

1*
Tr

av
el

 ti
m

e
FM

A
2C

 (
M

a
an

d
W

u,
 2

02
0)

A
A

M
A

S
20

20
16

SU
M

O
4

x
4

G
rid

, M
on

ac
o*

Q
ue

ue
 le

ng
th

, t
hr

ou
gh

pu
t,

de
la

y
TP

G
 (R

iz
zo

 e
t a

l.,
 2

01
9)

K
D

D
 2

01
9

15
SU

M
O

Ro
un

da
bo

ut
Q

ue
ue

 le
ng

th
, w

ai
tin

g
tim

e,
th

ro
ug

hp
ut

, s
pe

ed
A

tte
nd

Li
gh

t (
O

ro
oj

lo
oy

 e
t a

l.,
 2

02
0)

N
eu

rI
PS

 2
02

0
12

C
ity

Fl
ow

H
an

gz
ho

u
4

x
4*

, A
tla

nt
a

1
x

5*
Tr

av
el

 ti
m

e
H

iL
ig

ht
 (X

u
et

 a
l.,

 2
02

1)
A

A
A

I 2
02

1
12

C
ity

Fl
ow

H
an

gz
ho

u
4

x
4*

, J
in

an
 3

 x
 4

*,
M

an
ha

tta
n

3
x

27
*,

 S
he

nz
he

n*
Tr

av
el

 ti
m

e,
 th

ro
ug

hp
ut

IG
-R

L
(D

ev
ai

lly
 e

t a
l.,

 2
02

1)
TI

TS
 2

02
1

11
SU

M
O

M
an

ha
tta

n
A

pp
ro

xi
m

at
ed

 d
el

ay
Ex

pl
ai

nP
G

 (R
iz

zo
 e

t a
l.,

 2
01

9)
IT

SC
 2

01
9

11
SU

M
O

Ro
un

da
bo

ut
W

ai
tin

g
tim

e,
 th

ro
ug

hp
ut

R
A

C
S-

R
 (W

an
g

et
 a

l.,
 2

02
1)

TI
TS

 2
02

1
6

SU
M

O
M

on
ac

o*
W

ai
tin

g
tim

e,
 q

ue
ue

 le
ng

th
G

en
er

aL
ig

ht
 (Z

ha
ng

 e
t a

l.,
 2

02
0)

C
IK

M
 2

02
0

4
C

ity
Fl

ow
H

an
gz

ho
u

1
x

1*
, A

tla
nt

a
1

x
5*

,
H

an
gz

ho
u

4
x

4*
Tr

av
el

 ti
m

e

O
P-

TS
C

 (Y
en

 e
t a

l.,
 2

02
0)

IT
SC

 2
02

0
4

SU
M

O
Sy

nt
he

tic
D

el
ay

D
FC

 (R
ae

is
 &

 L
eo

n-
G

ar
ci

a,
 2

02
1)

IT
SC

 2
02

1
2

SU
M

O
Sy

nt
he

tic
W

ai
tin

g
tim

e
D

yn
ST

G
A

T
(W

u
et

 a
l.,

 2
02

1)
C

IK
M

 2
02

1
0

C
ity

Fl
ow

H
an

gz
ho

u
4

x
4*

, J
in

an
 3

 x
 4

*,
 G

rid
 4

 x
 4

*
Tr

av
el

 ti
m

e,
 th

ro
ug

hp
ut

EM
V

 (C
ao

 e
t a

l.,
 2

02
2)

TI
TS

 2
02

2
0

SU
M

O
H

an
gz

ho
u

4
x

4*
W

ai
tin

g
tim

e,
 q

ue
ue

 le
ng

th

https://darl-libsignal.github.io/

	 Machine Learning

1 3

of compatible policies we provide. This makes LibSignal a possible testbed for Sim-to-
Real transfer (Zhao et al., 2020; Peng et al., 2018), which is not covered by this paper.

2 � Background

2.1 � Reinforcement learning for traffic signal control

Problem formulation We now introduce the general setting of the RL-based traffic signal
control problem, in which an RL agent or several RL agents control the traffic signals.
The environment is the traffic conditions on the roads, and the agents control the traffic
signals’ phases. At each time step t, a description of the environment (e.g., signal phase,
waiting time of cars, the queue length of cars, and positions of cars) will be generated
as the state �t . Then, the agents will predict the next actions �t to take that maximize the
expected return, where the action of a single intersection could be changing to a certain
phase. Finally, the actions �t will be executed in the environment, and a reward �t will be
generated, where the reward could be defined on the traffic conditions of the intersections.

Basic components of RL-based traffic signal control A key question for RL is how to
formulate the RL setting, i.e., the reward, state, and action definition. For more discussions
on the reward, state, and action, we refer interested readers to Yau et al. (2017); Rasheed
et al. (2020); Wei et al. (2021). There are three main components to formulate the problem
under the framework of RL:

•	 Reward design. As RL is learning to maximize a numerical reward, the choice of
reward determines the direction of learning. A typical reward definition for traffic sig-
nal control is one factor or a weighted linear combination of several components, such
as queue length, waiting time, and delay.

•	 State design. The state captures the situation on the road and converts it to values. Thus
the choice of states should sufficiently describe the environment. For example, the state
features queue length, the number of cars, waiting time, and the current traffic signal
phase. Images of vehicles’ positions on the roads can also be considered in the state.

•	 Selection of action scheme. Different action schemes also have influences on the per-
formance of traffic signal control strategies. For example, if the action of an agent is
acyclic, i.e., “which phase to change to”, the traffic signal will be more flexible than a
cyclic action, i.e., “keep current phase or change to the next phase in a cycle”.

2.2 � Difficulties in evaluation

In practice, the evaluation of traffic signal control methods could be largely influenced by
simulation settings, including the evaluation metrics and simulation environments.

Evaluation metrics Various measures have been proposed to quantify the efficiency
of the intersection from different perspectives, including the average delay of vehicles,
the average queue length in the road network, the average travel time of all vehicles, and
the throughput of the road network. Signal induced delay is another widely used metric,
and previous work suggested real-time approximation as the difference between the vehi-
cle’s current speed and the maximum speed limit over all vehicles. But as we will show in
Sect. 4.2, this approximated delay is not reflecting the actual delay. Queue length is another

Machine Learning	

1 3

mainly used metric (Wei et al., 2018), while different definitions of a “queuing” state of a
vehicle could largely influence the performance of the same method. In comparison, travel
time and throughput are more robust to ad-hoc definitions and approximations. As we will
show later, with the same experimental setting, the performance of the same method could
be different under different metric, and we aim to provide as comprehensive and flexible
metrics as possible in this paper to benchmark methods with a comprehensive view.

Simulation environments Since deploying and testing traffic signal control strategies
in the real world involve high cost and intensive labor, simulation is a valuable alternative
before actual implementation. Different choices of simulator could lead to different evalua-
tion performances.

Currently, there are two representative open-source microscopic simulators: Simula-
tion of Urban MObility (SUMO)1 Lopez et al. (2018) and CityFlow2 Zhang et al. (2019).
SUMO is widely accepted in the transportation community and is a reasonable testbed
choice. Compared with SUMO, CityFlow is a simulator optimized for reinforcement learn-
ing with faster simulation, while it is not widely used in the transportation field yet.

Because of these different simulation environments, methods adopted by different simu-
lators in their original papers are hard to evaluate. As we will show later, methods perform
differently under different well-calibrated simulators, and the efficiency of the training pro-
cess is also different under different simulators. For the first time, this paper compares the
performances of the same model under the same traffic datasets under different simulators.

2.3 � Existing libraries and tools

Reinforcement Learning for Traffic Signal Control 2022 is an open-source library that
provides a bunch of RL-based traffic signal control methods with traffic datasets only on
CityFlow (Zhang et al., 2019). Flow (Kheterpal et al., 2018) and RESCO (Ault & Sharon,
2021) are reinforcement learning frameworks that can support the design and experimen-
tation of traffic signal control methods only on SUMO (Lopez et al., 2018). TSLib (Tran
et al., 2021) is another library that could work under both SUMO and CityFlow, yet it has
limited extensibility: (1) it is challenging to deploy standard RL algorithms since it does
not have an OpenAI Gym interface; (2) there is no benchmarking dataset that works across
both simulators, which makes it challenging to help determine which algorithm results in
state-of-the-art performance.

3 � LibSignal toolkit

We propose LibSignal library integrating different influential traffic flow simulators and
denote it as a standard RL traffic control testbed. The primary purposes of this standard
testbed are:

1.	 Provide a converter to transform configurations, including road networks and traffic flow
files across different simulators, enabling comparisons between different algorithms
originally conducted in different simulators.

2.	 Standardized implementation of state-of-the-art RL-based and traditional traffic control
algorithms.

1  http://​sumo.​sourc​eforge.​net..
2  https://​cityf​low-​proje​ct.​github.​io/.

http://sumo.sourceforge.net
https://cityflow-project.github.io/

	 Machine Learning

1 3

3.	 A cross-simulator environment provides highly unified functions to interact with dif-
ferent baselines or user-defined models and supports performance comparisons among
them.

3.1 � Traffic signal control environment

LibSignal is open source and free to use/modify under the GNU General Public License
3. The code is built on top of GeneraLight (Zhang et al., 2020) and is available on GitHub
at https://​darl-​libsi​gnal.​github.​io/. The embedded traffic datasets are distributed with their
licenses from Reinforcement Learning for Traffic Signal Control 2022 and Ault & Sharon
(2021), whose licenses are under the GNU General Public License 3. SUMO is licensed
under the EPL 2.0, and CityFlow is under Apache 2.0. The overall framework of LibSignal
is presented in Fig. 1, and the implementation details will be introduced in the following
sections.

Tasks We consider each traffic scenario a distinguishable task in the traffic signal con-
trol environment. The traffic scenario consists of traffic network configurations and pre-
recorded traffic flows. In our library, we include nine traffic configurations, and multiple
traffic flows under each traffic configuration. Details can be referred to Sect. 3.2. In each
task, the goal is to minimize the average travel time of all vehicles entering and leaving the
road network.

Agents LibSignal provides different configurable observation spaces and reward func-
tions. This section provides a general description of observation space, actions space, and
reward information.

•	 Observation space: The observation could be both lane-level and road-level features
of each intersection. We provide the state of each lane and concatenate ones that
belong to the same intersection as the observation. Since the intersection configuration
could be different, the observation space varies based on the number of lanes at the
intersection, and the state of each lane contains vehicle information. We provide
different information that can be used as State in our library; each combination could

Fig. 1   Overall framework of LibSignal 

https://darl-libsignal.github.io/

Machine Learning	

1 3

be used as the observations. The state dimension should be the number of lanes in each
intersection or the number of chosen information times the number of lanes. Road-level
features are the aggregation of lane-level features which consists of the same road. The
dimension should be the number of roads in each intersection or the number of chosen
information times the number of roads. Details of information are in Table 2.

•	 Action Space: We take phase, which is a combination of non-conflict movement signals
as action and does not have an assumption on a cycle-based signal plan. The action
space is a predefined set of phases. After taking actions, the environment will execute
a given period Δt called action interval. To make agent more flexible, we also provide
RLFXAgent class which control phase and duration of the phase at the same time.
Details illustration of phase can be found in Fig. 2.

•	 Reward information: Reward information is specific to each intersection. They are
aggregated lane-level information over given action intervals at each intersection.
The reward is a scale on each intersection. Details of reward information are shown in
Table 3.

•	 Episode Dynamics: We set each task episode the same length of time, which is 3600 s
in our setting. The simulation step length in different simulation environments is 1 s.
And each action interval is default set as 10 s, though it could be configured manually.

3.2 � Data preparation

To enable fair comparison, LibSignal preprocesses comprehensive datasets making it run-
nable under different simulators. Users can easily choose to specify datasets and simulators
for their experiments.

Comprehensive datasets By surveying the recent literatures on traffic prediction, we
selected 225 representative or survey papers (more details can be found in Table 1). We
collected all the open datasets used by these papers and kept 9 datasets according to the
factors of popularity, which can cover 65% papers of our reproduced model list and all the

Table 2   Information returned from World class and used as State

State information Description

lane_count Number of vehicles on each lane
lane_waiting_count Number of vehicles stopped each lane
lane_waiting_time_count Waiting time of vehicles on each lane. Since their last action
lane_delay The delay of vehicles on each lane
pressure Difference of vehicle density between the in-coming lane and the out-going lane
vehicle_map An image representation of vehicles’ position in this intersection
passed_count Number of vehicles that passed the intersection during time interval Δt after the

last action
passed_time_count Total time spent on approaching lanes of vehicles that passed the intersection

during time interval Δt after the last action
cur_phase (index) Combination of movement signals
cur_phase (one hot) One hot encoded index of phase

	 Machine Learning

1 3

two simulators LibSignal supports. To directly use these datasets in LibSignal, we have
converted all the 9 datasets into the format of atomic files, and provided the conversion
tools for new datasets. Please refer to our GitHub page for dataset statistics, preprocessed
copies, and conversion tools at https://​darl-​libsi​gnal.​github.​io/.

Cross-simulator atomic files To make the experimental configuration adaptive across
different simulators, we consider two basic units called “atomic files” that can map to the
different simulation environments. (1) Road network file stores the basic structure of a
traffic network consisting of road, lane, and traffic light information. The atomic file under
the SUMO environment is in the format of .net.xml while in CityFlow it’s .json. (2)
Traffic flow file stores the vehicles information and is in .rou.xml and .json format
in SUMO and CityFlow respectively. To make experiments comparable among different
simulators, we also provide a converter.py tool to convert basic atomic files between
different simulators. For example, it takes in Road network file and Traffic flow file from
the source simulator and generates new files in the target simulator’s formation, which

Fig. 2   Definition of movement and phase

Table 3   Information returned from World class and used as Reward

Reward information Description

lane_count Number of vehicles on the same intersection
lane_waiting_count Number of stopped vehicles on the same intersection
lane_waiting_time_count Waiting time of vehicles on the same intersection since their last action
lane_delay The delay of vehicles on the same intersection
pressure The sum of the difference in vehicle density between the in-coming lane and the

out-going lane under currently enabled movement on the same intersection
passed_count Number of vehicles that passed the intersection during time interval Δt after the

last action
passed_time_count Total time spent on approaching lanes of vehicles that passed the intersection

during time interval Δt after the last action

https://darl-libsignal.github.io/.

Machine Learning	

1 3

could later be used in experiments. Figure 4 shows the converted network between different
simulators. We also provide a conversion example from SUMO to CityFlow in Listing 1.

3.3 � Traffic signal control API

Once the necessary parameters have been set up for simulation and agents, we can start
a traffic light control task experiment. The World environment is highly homogeneous
across different simulators and could provide unified interfaces to communicate with
different agents.

Homogeneous world In LibSignal, World module provides the basic information
from different simulators in the unified interface, which could later be utilized for
interacting between different simulators and Agent. The unified interface TSCEnv
module is designed for unifying the management of different Worlds to interact
with Agent; it is also compatible with OpenAI Gym (Brockman et al., 2016), which
allows LibSignal easily deploy the other standard RL algorithms. The TSCEnv module
contains World and Agent, and users can decide which simulator to use to interact
with Agent by specifying the World and the corresponding engine. In TSCEnv
module, it will call reset function to initialize the world environment when an
episode starts, and call step function to make the World perform the new action, then
return obs, rewards, and other information from the updated environment. In Listing 2,
we present how to initialize TSCEnv class, specify which simulator and its engine are
being used, and define its basic functions. To better support multi-agent reinforcement
learning, we also provide TSCMAEnv which has the same interface with TSCEnv. This
environment inherent PettingZoo (Terry et al., 2021) AEC environment and is safer and
more flexible for multiple agents interacting with the environment. More details about
World class implementation can be found in Appendix A.2.

1 python converter.py
2

3 # conversion type: CityFlow2SUMO(c2s) or SUMO2CityFlow(s2c)
4 --typ s2c
5

6 # SUMO road network file to be converted
7 --or_sumonet sumofile.net.xml
8

9 # SUMO traffic flow file to be converted
10 --or_sumotraffic sumofile.rou.xml
11

12 # SUMO configuration file
13 --sumocfg sumofile.sumocfg
14

15 # CityFlow road network file to be generated
16 --cityflownet cityflow_roadnet.json
17

18 # CityFlow traffic flow file to be generated
19 --cityflowtraffic cityflow_flow.json

Listing 1   A conversion example from SUMO to CityFlow

	 Machine Learning

1 3

Unified interfaces LibSignal provides unified interfaces to process common informa-
tion with Generator module and Metrics module, it also provides Task module and
Trainer module to manage the entire process of a task to make the framework more
extensible.

•	 Generator class. For lane-level and intersection-level information, including state,
reward, phase, and other metrics, we provide Generator module, which could inter-
act with different World classes and then sort and pass information to different Agent
classes. The information will later be utilized by Agent module to train their models
or decide next step actions and feedback to World module. Details of Generator
are shown in Table 4.

•	 Metrics class. We also implement several metrics in Metrics module so that dif-
ferent agents can be compared under the same standard. It updates various metrics by
interacting with Agent and Generators after each step during the training or evalu-
ation process. LibSignal currently supports five metrics. Details of Metrics definition
are shown in Table 5.

•	 Task and Trainer class. In LibSignal, Task module is designed to manage the
entire process, including training and evaluation, aiming to improve its extensibility and
make it suitable for different tasks. Trainer module decouples and implements the
different stages of a Task. In Listing 3, we present core codes on building TSCTask
and TSCTrainer for traffic signal control tasks.

1 import gym
2

3 class TSCEnv(gym.Env):
4 def __init__(self , world , agents , metric):
5 self.agents = agents
6 self.metric = metric
7

8 # select which simulator is being used
9 self.world = world

10 self.eng = self.world.eng
11

12 def step(self , actions):
13 # call the world to execute the actions
14 self.world.step(actions)
15

16 # get the latest information from the updated environment
17 obs = [agent.get_ob () for agent in self.agents]
18 rewards = [agent.get_reward () for agent in self.agents]
19 dones = [False] * len(self.agents)
20 infos = {}
21 return obs , rewards , dones , infos
22

23 def reset(self):
24 self.world.reset()
25 obs = [agent.get_ob () for agent in self.agents]
26 return obs

Listing 2   Different worlds managed in one environment

Machine Learning	

1 3

3.4 � Comprehensive models

LibSignal implements three baseline controllers and seven RL-based controllers covering
Q-learning and Actor-Critic methods, as is shown in Table 6. These methods can also be
integrated with existing RL implementation packages and customized on their state, action,
and reward design.

Extensible design LibSignal provides a flexible interface to help users customize their
own RL model and RL design (state, reward, and action).

•	 Agent class. Users can define their model through Agent module by completing
abstract methods predefined in BaseAgent class. Existing RL libraries like pfrl
can also be integrated into Agent class. LibSignal also provides different state and
reward functions by instantiating Generator with subscribed function names in
info_functions to retrieve queue length, pressure, average lane speed, etc. For
example, for RL-based agent, it would create state, phase, reward, queue length and
delay Generators to retrieve the corresponding information. We provide an example
for creating Generators for RL-based agent in Listing 4. Users could also customize
their own reward or state functions by constructing a key-value mapping between newly

Table 4   Details of generator class

Generator class Supported outputs Description

IntersectionPhaseGenerator cur_phase Generate information based on statistics
of intersection phases

IntersectionVehicleGenerator vehicle_map,
passed_count,
passed_time_count
and cur_phase

Generate intersection- level information

LaneVehicleGenerator lane_count,
lane_waiting_count,
lane_waiting_time_count,
lane_delay and pressure

Generate lane-level information

Table 5   Metrics definition

Evaluation metrics Description

Average travel time (travel time) The average time that each vehicle spent on traveling within the network, including
waiting time and actual travel time

Queue length (queue length) The average queue length over time, where the queue length at time t is the sum of
the number of vehicles waiting on lanes

Approximated delay (delay) Averaged difference between the current speed of the vehicle and the maximum

speed limit of this lane over all vehicles, calculated from 1 −
∑

n

i=1
v
i

n∗v
max

 (Ault &
Sharon, 2021)

Real delay (real delay) The time a vehicle has traveled within the network minus the expected travel time
Throughput (throughput) The number of vehicles that have finished their trips until the current simulation

step

	 Machine Learning

1 3

defined functions and info_functions, which could be carried to Agent later by
Generator class.

Finally, users can use code in Listing 5 to run the model pipeline.

4 � Experiment

This section presents our results and verifies that our implementation is consistent with
previous publications. In the second part, we compare different algorithms’ performance
with varying datasets in both SUMO and CityFlow. Finally, we test the feasibility of Lib-
Signal to verify it can properly run on large-scale and complex road networks. Further,
we also adapt algorithms from widely used RL library to testify our Agent module is
flexible and easy to manipulate. Along the experiments, we will discuss the answers to sev-
eral questions that motivate LibSignal: Which simulator should I conduct experiments on?
Which evaluation metrics should I use? Which RL method should I choose? Is LibSignal
suitable for my research?

4.1 � Validation and calibration

For testifying our PyTorch benchmark algorithms implementation, we compare the learn-
ing curves and final performances of the RL algorithms originally implemented in the Ten-
sorFlow library. The simulator setting and observed traffic information are chosen to be
similar to those used in previous publications.

TensorFlow to PyTorch validation To validate the model’s performance under the
framework, LibSignal re-implemented some of the previous models from Tensorflow
with PyTorch. For example, IDQN (Zheng et al., 2019) and CoLight (Wei et al., 2019) are
originally implemented in Tensorflow, we reproduce the experiments of these models and
compare their performance in CityFlow simulator. Figure 3 presents the learning curves
and final performance of the original TensorFlow and our PyTorch implementation. On
CityFlow1x1, the average travel time (in seconds) of our IDQN implementation converges
to 108.44, which is also close to the original’s 127.07 from Zheng et al. (2019). On
HangZhou4x4, our CoLight implementation converges to 344.41 on average travel time
metric, which is close to TensorFlow’s 344.49 from Wei et al. (2019).

SUMO and CityFlow calibration To validate that the algorithms’ performances are
consistent in both SUMO and CityFlow, we calibrate under three roads networks Grid4x4,
Cologne1x1 and HangZhou4x4. Their road network is shown in Fig. 4. In addition, we
compare MaxPressure, SOTL, and FixedTime algorithms’ performance since these three
algorithms are deterministic given fixed network and traffic flow files. Table 7 shows the
overall performance before and after calibration. We have the following observations:

•	 Under gird-like networks (Grid4x4, HangZhou4x4), SUMO and CityFlow could
achieve similar performance. Different agents’ performance is not identical across sim-
ulators, but their rank within the same simulator is relatively consistent.

•	 The discrepancy appears under more complex networks like Cologne1x1 before cali-
bration. Before calibration, we can see that FixedTime and SOTL perform worse than

Machine Learning	

1 3

MaxPressure. After calibration, the same agent’s performance is close and within an
acceptable discrepancy between SUMO and CityFlow. Moreover, the ranking of the
performances for different agents is consistent across different simulators after cali-
bration. To double-check check our calibration is correct, IDQN algorithms are also
trained under Cologne1x1 with different simulators. In CityFlow and SUMO simula-
tor, the results are 58.0771 and 61.7014 in Cologne1x1 w.r.t average travel time (in
seconds), proving our calibration is correct.

SUMO and CityFlow discrepancy We modified some default settings in SUMO to
compare the algorithms’ performance under different simulators as comprehensively and

1 class TSCTask(BaseTask):
2 def run(self):
3 # train and evaluate the model
4 self.trainer.train ()
5 self.trainer.test()
6

7 class TSCTrainer(BaseTrainer):
8 def __init__(self):
9 super().__init__ ()

10 self.create_world ()
11 self.create_agents ()
12 self.create_metrics ()
13 self.create_env ()
14

15 def train(self):
16 total_num = 0
17 for e in range(self.episodes):
18 obs = self.env.reset()
19 for i in range(self.steps):
20 actions = []
21 for idx , ag in enumerate(self.agents):
22 action = ag.get_action(obs[idx])
23 actions.append(action)
24 obs , rewards , dones , _ = self.env.step(actions)
25

26 # update the metrics
27 self.metric.update(rewards)
28 total_num += 1
29

30 # update the model and the target model
31 if total_num % self.update_model_rate == 0:
32 [ag.train () for ag in self.agents]
33 if total_num % self.update_target_rate == 0:
34 [ag.update_target_network () for ag in self.agents]
35

36 # log the model’s performance
37 self.writeLog(’TRAIN’,self.metric)
38

39 def test(self):
40 obs = self.env.reset()
41 for i in range(self.steps):
42 actions = []
43 for idx , ag in enumerate(self.agents):
44 action = ag.get_action(obs[idx])
45 actions.append(action)
46 obs , rewards , dones , _ = self.env.step(actions)
47 self.metric.update(rewards)
48 self.writeLog(’TEST’,self.metric)

Listing 3   An example to build Task and Trainer for traffic signal control tasks

	 Machine Learning

1 3

Ta
bl

e 
6  

D
et

ai
le

d
de

si
gn

 o
f i

m
pl

em
en

te
d

m
od

el
s i

n
Li

bS
ig

na
l 

A
ge

nt
St

at
e

A
ct

io
n

Re
w

ar
d

M
et

ho
d

D
es

cr
ip

tio
n

Fi
xe

dT
im

e
–

C
yc

lic
–

N
on

-R
L

Th
is

 a
ge

nt
 g

iv
es

 a
 p

re
de

fin
ed

 ti
m

e
du

ra
tio

n
an

d
ph

as
e

or
de

r
SO

TL
–

A
cy

cl
ic

–
N

on
-R

L
Th

is
 a

ge
nt

 se
le

ct
s t

he
 p

ha
se

 a
m

on
g

al
l t

o
m

ax
im

iz
e

th
e

pr
es

su
re

 c
al

cu
-

la
te

d
fro

m
 th

e
up

str
ea

m
 a

nd
 d

ow
ns

tre
am

 q
ue

ue
 le

ng
th

M
ax

Pr
es

su
re

–
A

cy
lic

–
N

on
-R

L
Th

is
 a

ge
nt

 d
et

er
m

in
es

 n
ex

t p
ha

se
 b

y
co

ns
id

er
in

g
co

m
pe

tit
iv

e
ph

as
es

ID
Q

N
La

ne
 v

eh
ic

le
 c

ou
nt

, p
ha

se
A

cy
lic

La
ne

 w
ai

tin
g

ve
hi

cl
e

co
un

t
Q

-L
ea

rn
in

g
Th

is
 a

ge
nt

 d
et

er
m

in
es

 e
ac

h
in

te
rs

ec
tio

n’
s a

ct
io

n
w

ith
 it

s o
w

n
in

te
rs

ec
tio

n
in

fo
rm

at
io

n
C

oL
ig

ht
La

ne
 v

eh
ic

le
 c

ou
nt

, p
ha

se
A

cy
lic

La
ne

 w
ai

tin
g

ve
hi

cl
e

co
un

t
Q

-L
ea

rn
in

g
Th

is
 a

ge
nt

 c
on

si
de

rs
 n

ei
gh

bo
r i

nt
er

se
ct

io
ns

’ c
oo

pe
ra

tio
n

th
ro

ug
h

gr
ap

h
at

te
nt

io
n

ne
tw

or
ks

Pr
es

sL
ig

ht
la

ne
 v

eh
ic

le
 c

ou
nt

, p
ha

se
A

cy
lic

Pr
es

su
re

Q
-L

ea
rn

in
g

Th
is

 a
ge

nt
 c

oo
rd

in
at

es
 tr

affi
c

si
gn

al
s b

y
le

ar
ni

ng
 M

ax
Pr

es
su

re
IP

PO
la

ne
 v

eh
ic

le
 c

ou
nt

, p
ha

se
A

cy
lic

La
ne

 v
eh

ic
le

 w
ai

tin
g

tim
e

co
un

t
A

ct
or

-C
rit

ic
Th

is
 a

ge
nt

 is
 im

po
rte

d
fro

m
 p
f
r
l

 w
ith

 p
ro

xi
m

al
 p

ol
ic

y
op

tim
iz

at
io

n
M

A
PG

la
ne

 v
eh

ic
le

 c
ou

nt
A

cy
lic

La
ne

 w
ai

tin
g

ve
hi

cl
e

co
un

t
A

ct
or

-C
rit

ic
Th

is
 a

ge
nt

 o
pt

im
iz

es
 a

ge
nt

 c
on

tro
l p

ol
ic

y
w

ith
 m

ut
i-a

ge
nt

 p
ol

ic
y

gr
ad

ie
nt

m

et
ho

d
FR

A
P

La
ne

 v
eh

ic
le

 c
ou

nt
, p

ha
se

A
cy

lic
La

ne
 w

ai
tin

g
ve

hi
cl

e
co

un
t

Q
-L

ea
rn

in
g

Th
is

 a
ge

nt
 c

ap
tu

re
s t

he
 p

ha
se

 c
om

pe
tit

io
n

re
la

tio
n

be
tw

ee
n

tra
ffi

c
m

ov
e-

m
en

ts
 th

ro
ug

h
a

m
od

ifi
ed

 n
et

w
or

k
str

uc
tu

re
.

M
PL

ig
ht

Pr
es

su
re

, p
ha

se
A

cy
lic

Pr
es

su
re

Q
-L

ea
rn

in
g

Th
is

 a
ge

nt
 is

 b
as

ed
 o

n
FR

A
P

an
d

in
te

gr
at

es
 p

re
ss

ur
e

in
to

 st
at

e
an

d
re

w
ar

d
de

si
gn

.

Machine Learning	

1 3

fairly as possible, e.g., disabled the feature of dynamic routing and set teleport to -1. But
it is worth noting that there are still some discrepancies that our current calibration cannot
address. Here are the differences between CityFlow and SUMO, which will affect the
performance of models:

•	 Traffic signals. There only exists red and green traffic signals in CityFlow, but in
SUMO, more traffic signals are provided to deal with complicated traffic conditions.
For example, SUMO has pedestrian traffic signals that CityFlow does not support,
where vehicles will decelerate when they encounter the pedestrian traffic signals in
SUMO, but in CityFlow the vehicles will pass the intersection at normal speed. In this
case, the traffic signal information is not consistent between CityFlow and SUMO.

•	 Vehicles definition. In CityFlow, we can define a vehicle and its behavior by setting
parameters such as shape, acceleration, deceleration, etc. While SUMO provides more
parameters to define the behavior of the running vehicle, many of which are unavail-
able in CityFlow. For example, the vehicles in SUMO will randomly decelerate accord-
ing to their attributes when approaching a traffic signal, even though the traffic signal
is located further away. In comparison, the vehicles in CityFlow will not have such
randomness.

•	 Lane select model. In CityFlow, the vehicle will automatically select the correspond-
ing lanes according to the pre-defined route and generally will not change lanes during
traveling, while in SUMO, it will change lanes according to the current road conditions
so that the routes of the vehicle on different simulators are not identical.

Due to these reasons, different methods’ performance varies across simulators, but the
rankings of these methods in the same simulator are generally consistent.

4.2 � Overall performance

All benchmark RL models and traditional traffic control algorithms were compared under
different simulator environments for comparative purposes. All observations and rewards
are set to be the same if not explicitly mentioned, and all the hyperparameters are set

1 class RLAgent(BaseAgent):
2 def __init__(self , world , inter_obj):
3 super().__init__(world)
4 # create state generator
5 self.ob_generator = LaneVehicleGenerator (world , inter_obj , ["

lane_count"])
6

7 def get_ob(self):
8 # get observation from environment
9 return self.ob_generator.generate ()

10

11 def get_action(self , ob):
12 # generate action
13 actions = self.model(ob)
14 return numpy.argmax(actions , axis =1)

Listing 4   An example to create Generators for RL-based agent

	 Machine Learning

1 3

according to the original implementations. We represent the final results truncated at 200
training iterations for a fair comparison since most algorithms could converge within this
period. While IPPO and MAPG are noticeable for their high demand for training time, we
provide the full converge curve in Appendix A.6.2. The results are summarized in Table 8.
We have the following observations:

Listing 5   An example to run
LibSignal

1 python run.py
2

3 # set the task as traffic signal control
4 --task tsc
5

6 # set the model as DQN
7 --agent dqn
8

9 # set the simulator environment as CityFlow
10 --world cityflow
11

12 # set the dataset as cityflow1x1
13 --network cityflow1x1

Fig. 3   Convergence curve of models implemented in their original form (Tensorflow) and LibSignal
(PyTorch). Y-axis is the testing result w.r.t. average travel time (in seconds). Validation for more models can
be found in Appendix A.3

Fig. 4   Road networks in different simulators for calibration. The pictures with a gray background are the
visualization of networks in the SUMO simulator, and the ones with the white background are in CityFlow.
These are the outlines of traffic structures transferred between each other(More networks can be found in
Appendix A.4)

Machine Learning	

1 3

Ta
bl

e 
7  

P
er

fo
rm

an
ce

 c
om

pa
ris

on
 o

f a
ge

nt
s w

.r.
t.

av
er

ag
e

tra
ve

l t
im

e
(in

 se
co

nd
s)

 b
ef

or
e

an
d

af
te

r c
al

ib
ra

tio
n

C
al

ib
ra

tio
n

B
ef

or
e

A
fte

r

D
at

as
et

G
rid

4x
4

C
ol

og
ne

1x
1

H
an

gZ
ho

u4
x4

G
rid

4x
4

C
ol

og
ne

1x
1

H
an

gZ
ho

u4
x4

A
vg

. t
ra

ve
l t

im
e

C
ity

flo
w

SU
M

O
C

ity
flo

w
SU

M
O

C
ity

flo
w

SU
M

O
C

ity
flo

w
SU

M
O

C
ity

flo
w

SU
M

O
C

ity
flo

w
SU

M
O

M
ax

Pr
es

su
re

16
1.

28
78

15
4.

14
93

51
.2

78
5

55
.2

01
3

36
5.

06
34

25
5.

00
52

16
0.

87
78

15
4.

14
93

63
.3

87
4

55
.2

01
3

36
1.

66
11

34
7.

63
05

Fi
xe

dT
im

e
29

0.
95

25
22

2.
13

24
15

6.
65

99
24

0.
45

72
68

9.
02

21
30

0.
66

85
25

9.
33

20
22

2.
13

24
17

5.
16

46
24

0.
45

72
62

8.
03

42
57

2.
90

87
SO

TL
18

5.
88

46
23

0.
95

40
13

56
.6

03
7

66
.2

66
3

35
4.

12
50

38
9.

78
81

19
6.

31
91

23
0.

95
40

11
87

.2
79

5
1
2
1
9
.
0
5
3
1

37
2.

25
21

39
7.

02
27

	 Machine Learning

1 3

Ta
bl

e 
8  

P
er

fo
rm

an
ce

 o
f a

ge
nt

s i
n

C
ity

Fl
ow

 a
nd

 S
U

M
O

 w
ith

 b
es

t a
nd

 se
co

nd
 b

es
t p

er
fo

rm
an

ce
 h

ig
hl

ig
ht

ed

N
et

w
or

k
C

ity
flo

w
 1

x1

Si
m

ul
at

or
C

ity
Fl

ow
SU

M
O

M
et

ric
Tr

av
el

 ti
m

e
Q

ue
ue

D
el

ay
Th

ro
ug

hp
ut

Tr
av

el
 ti

m
e

Q
ue

ue
D

el
ay

Th
ro

ug
hp

ut

Fi
xe

dT
im

e(
t_

fix
ed

=
10

)
72

3.
77

59
10

6.
07

22
4.

89
22

12
38

77
2.

79
64

90
.7

88
9

5.
27

11
11

15
Fi

xe
dT

im
e(

t_
fix

ed
=

30
)

53
2.

84
81

99
.5

52
8

5.
32

96
14

79
47

0.
75

93
81

.5
80

6
5.

70
98

15
12

M
ax

Pr
es

su
re

15
2.

89
16

46
.9

05
6

5.
89

29
19

32
11

3.
38

81
24

.4
77

8
5.

35
66

19
66

SO
TL

23
4.

92
43

67
.6

41
7

5.
26

10
18

35
19

4.
83

25
58

.2
08

3
5.

26
21

19
05

ID
Q

N
10

8.
43

64
24

.8
52

8
0.

61
42

19
84

10
4.

36
16

19
.9

75
0

0.
55

29
19

66
M

A
PG

33
8.

96
54

12
2.

55
83

0.
69

93
16

98
11

8.
14

72
52

.7
52

8
0.

63
72

14
13

IP
PO

24
1.

42
31

52
.7

05
6

0.
69

44
18

46
12

3.
91

52
81

.0
72

2
0.

73
26

13
09

Pr
es

sL
ig

ht
11

2.
66

35
28

.0
63

9
0.

67
15

19
76

10
7.

86
61

21
.8

47
2

0.
57

16
19

56
FR

A
P

11
2.

65
71

26
.9

44
4

0.
61

94
19

77
10

6.
39

67
21

.2
02

8
0.

61
37

19
56

M
PL

ig
ht

11
3.

66
11

28
.7

08
3

0.
65

71
19

77
11

0.
68

22
23

.6
97

2
0.

61
46

19
54

N
et

w
or

k
C

ol
og

ne
 1

x1
Si

m
ul

at
or

C
ity

Fl
ow

SU
M

O
M

et
ric

Tr
av

el
 ti

m
e

Q
ue

ue
D

el
ay

Th
ro

ug
hp

ut
Tr

av
el

 ti
m

e
Q

ue
ue

D
el

ay
Th

ro
ug

hp
ut

Fi
xe

dT
im

e(
t_

fix
ed

=
10

)
17

5.
16

46
48

.0
88

9
3.

92
34

18
89

24
0.

45
72

60
.1

05
6

5.
77

77
18

57
Fi

xe
dT

im
e(

t_
fix

ed
=

30
)

16
6.

92
64

48
.6

22
2

4.
14

68
19

04
17

6.
07

27
48

.6
50

0
5.

81
19

19
27

M
ax

Pr
es

su
re

63
.3

87
4

7.
69

44
2.

77
39

 2
00

2
55

.2
01

3
7.

39
44

3.
14

52
19

97
SO

TL
11

87
.2

79
5

94
.6

91
7

5.
06

66
61

8
1
2
1
9
.
0
5
3
1

1
1
1
.
3
4
4
4

7
.
1
1
3
3

4
2
1

ID
Q

N
 5

8.
07

71
9.

02
78

0.
35

06
20

03
 6

1.
70

14
9.

81
67

0.
44

23
 1

99
6

M
A

PG
73

.6
46

4
12

.7
27

8
 0

.3
88

2
19

92
85

.0
58

3
14

.0
88

9
0.

47
71

19
74

IP
PO

51
.0

23
9

6.
70

83
0.

30
98

19
98

58
.3

77
8

9.
08

33
0.

43
20

19
96

Pr
es

sL
ig

ht
58

.2
83

4
 9

.5
80

6
0.

35
50

 1
99

4
62

.0
06

0
9.

43
33

0.
42

38
 1

99
6

FR
A

P
59

.4
61

5
10

.7
27

8
0.

39
94

19
99

75
.2

95
0

15
.4

50
0

0.
54

26
19

83
M

PL
ig

ht
60

.2
68

0
10

.4
38

9
0.

40
41

19
93

85
.3

38
2

19
.0

41
7

0.
56

91
19

84

Machine Learning	

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

 N
et

w
or

k
C

ol
og

ne
 1

x3

Si
m

ul
at

or
C

ity
Fl

ow
SU

M
O

M
et

ric
Tr

av
el

 ti
m

e
Q

ue
ue

D
el

ay
Th

ro
ug

hp
ut

Tr
av

el
 ti

m
e

Q
ue

ue
D

el
ay

Th
ro

ug
hp

ut

Fi
xe

dT
im

e(
t_

fix
ed

=
10

)
50

2.
43

04
16

.0
88

9
2.

39
16

19
06

12
4.

68
69

6.
99

44
2.

45
59

28
01

Fi
xe

dT
im

e(
t_

fix
ed

=
30

)
99

.4
55

7
6.

98
24

1.
87

01
27

82
15

3.
01

52
10

.5
79

6
3.

21
54

27
69

M
ax

Pr
es

su
re

53
.5

78
9

1.
48

80
1.

08
25

27
88

74
.2

23
8

1.
63

52
1.

42
91

28
10

SO
TL

99
2.

75
96

41
.4

04
6

3.
37

24
11

45
1
1
9
6
.
4
3
7
5

6
4
.
1
7
8
7

5
.
4
9
5
7

9
3
0

ID
Q

N
49

.6
13

2
0.

44
91

0.
09

64
27

92
80

.8
11

3
1.

26
76

0.
19

70
28

03
M

A
PG

50
.8

57
1

0.
79

91
0.

12
22

27
91

70
.8

35
1

1.
29

91
0.

20
40

28
14

IP
PO

49
.6

50
7

0.
34

63
0.

09
52

27
92

78
.0

80
0

8.
85

37
0.

26
66

25
86

Pr
es

sL
ig

ht
49

.2
66

1
0.

45
37

0.
09

93
27

92
71

.0
01

4
1.

32
50

 0
.2

03
8

28
19

FR
A

P
65

.8
11

1
2.

34
81

0.
19

73
27

92
10

8.
32

85
6.

81
67

0.
40

21
27

82
M

PL
ig

ht
59

.5
70

0
1.

21
57

0.
13

60
27

92
91

.9
11

5
2.

76
20

0.
28

29
28

01

 N
et

w
or

k
G

rid
4x

4

Si
m

ul
at

or
C

ity
Fl

ow
SU

M
O

M
et

ric
Tr

av
el

 ti
m

e
Q

ue
ue

D
el

ay
Th

ro
ug

hp
ut

Tr
av

el
 ti

m
e

Q
ue

ue
D

el
ay

Th
ro

ug
hp

ut

Fi
xe

dT
im

e(
t_

fix
ed

=
10

)
25

9.
33

20
2.

99
67

2.
22

19
14

73
22

2.
13

24
2.

66
84

1.
58

31
14

43
Fi

xe
dT

im
e(

t_
fix

ed
=

30
)

29
8.

87
44

4.
16

72
2.

45
80

14
68

28
4.

19
13

4.
24

57
2.

13
71

14
27

M
ax

Pr
es

su
re

16
0.

87
78

0.
68

65
0.

97
26

14
73

 1
54

.1
49

3
0.

85
56

0.
63

15
14

60
SO

TL
19

6.
31

91
1.

42
00

1.
39

35
14

73
23

0.
95

40
2.

88
28

1.
60

66
14

36
ID

Q
N

14
3.

09
57

0.
25

61
0.

05
25

14
73

14
9.

09
38

0.
68

98
0.

04
24

14
61

M
A

PG
75

2.
65

92
16

.6
79

9
0.

29
34

13
29

45
8.

29
09

16
.3

71
9

0.
26

21
94

2
IP

PO
54

5.
42

97
11

.0
55

9
0.

14
54

14
37

23
7.

53
05

8.
94

58
0.

12
37

11
31

Pr
es

sL
ig

ht
14

9.
73

39
0.

41
27

0.
06

30
14

73
15

2.
80

56
0.

80
14

0.
04

86
14

61

	 Machine Learning

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

 N
et

w
or

k
G

rid
4x

4

Si
m

ul
at

or
C

ity
Fl

ow
SU

M
O

M
et

ric
Tr

av
el

 ti
m

e
Q

ue
ue

D
el

ay
Th

ro
ug

hp
ut

Tr
av

el
 ti

m
e

Q
ue

ue
D

el
ay

Th
ro

ug
hp

ut

C
oL

ig
ht

15
1.

54
92

0.
46

75
0.

06
38

14
73

15
4.

09
91

0.
81

44
0.

04
83

14
62

FR
A

P
 1

40
.2

89
9

0.
20

80
0.

04
97

14
73

14
7.

40
10

0.
66

51
0.

04
11

14
64

M
PL

ig
ht

13
9.

21
66

0.
18

47
0.

04
79

14
73

14
7.

18
88

0.
65

30
0.

04
13

14
63

Re
su

lts
 w

ith
 th

e
be

st
pe

rfo
rm

an
ce

 a
re

 h
ig

hl
ig

ht
ed

 in
 b

ol
d

an
d

un
de

rli
ne

d,
 a

nd
 th

e
se

co
nd

-b
es

t p
er

fo
rm

an
ce

 is
 u

nd
er

lin
ed

. F
or

 T
ra

ve
l t

im
e,

 Q
ue

ue
, a

nd
 D

el
ay

, t
he

 lo
w

er
, t

he

be
tte

r.
Fo

r T
hr

ou
gh

pu
t,

th
e

hi
gh

er
, t

he
 b

et
te

r

Machine Learning	

1 3

•	 Under the same dataset and simulator, the performance of the same model varies w.r.t.
current four metrics. Travel time and queue length are consistent with each other in most
cases. Throughput sometimes is hard to differentiate the identical results under certain
datasets. For example, in Grid4x4, most of the methods served the same number of
vehicles. Delay sometime aligns with queue length and travel time but can be different
from all the other three metrics in some cases, e.g., Cologne1x1 and Grid4x4 under
SUMO. This is because the delay is approximated from the average speed proposed
by Ault & Sharon (2021) and is not the actual delay calculated by vehicles’ total travel
time and desired travel time under maximum speed.

•	 Traditional transportation methods like MaxPressure can achieve consistent satisfactory
performance though it is not the best. IDQN performs the best in single intersection
scenarios. With more complex road networks like Cologne1x3, PressLight achieves
better performance.

We also conducted experiments for different network scalability and complexity, and the
results can be found in Appendix A.6.

4.3 � Discussion

Which simulator should I conduct experiments on?
From the running time comparison in Table 9 between SUMO and CityFlow simula-

tor, we find that CityFlow and SUMO (with Libsumo)’s time cost is around ten times less
than SUMO (with TraCI) which indicates its higher running efficiency. Different from Cit-
yFlow, SUMO provides a more accurate depiction of vehicles’ state and more complex
traffic operations, including changing lanes and ’U-turn’. Also, SUMO provides users with
more realistic settings, including pedestrians, driver imperfection, collisions, and dynamic
routing. Thus, it is more powerful on complex networks and reflecting real-world scenario.

Which evaluation metrics should I use?
Average travel time is generally a good metric to evaluate algorithms’ performance on

traffic control tasks. But for settings with dynamic routing, the travel time would not be
a good metric as the average travel time of a vehicle can change with dynamic routing.
In LibSignal, the simulation under SUMO disabled the dynamic routing feature so that
the travel time would be good on the current settings. From Table 8, we can see that lane
delay and throughput are not always consistent between different simulators and even in
the same simulator environment. Sometimes they often show contradictory performances

Table 9   Performance comparison w.r.t. the running time (in seconds) of different methods under two
simulators

Running time Simulator FixedTime MaxPressure SOTL IDQN IPPO PressLight

Cityflow1x1 CityFlow 5.7593 9.5857 6.0272 2461.7496 2450.7397 1960.7932
SUMO(Libsumo) 6.0006 4.2174 4.2988 3691.8403 2833.0523 3619.1282
SUMO(Traci) 73.6791 46.5712 51.488 30279.5201 37662.9677 27697.9098

Cologne1x1 CityFlow 3.3049 2.7601 4.6527 1641.6128 3148.0649 3066.7189
SUMO(Libsumo) 4.3649 3.1411 3.2771 2649.0341 2581.8182 2863.9526
SUMO(Traci) 133.6334 24.9327 71.7565 11243.2917 31431.1760 11535.0851

	 Machine Learning

1 3

in different datasets. Therefore, we suggest researchers report travel time as a necessity and
other metrics of their interest in their papers.

Which RL method should I choose?
From our experiments in Table 8, we can see that Actor-Critic based RL algorithms

need a long time to converge. In Grid4x4, MAPG and IPPO algorithms still perform
poorly after 2000 iterations. IDQN and other Q-learning-based algorithms are generally
good choices in all four datasets. We can see that they outperform traditional non-RL
algorithms all the time. Comparing results in large-scale networks, e.g., Grid4x4, we find
FRAP and MPLight could bring improvement compared to IDQN algorithm.

When should I use LibSignal?
Since LibSignal provides a highly unified interface to help users choose or define their

functions and extract information from the simulator’s environment, it is a powerful plat-
form for users to investigate the best combination of state and reward functions for cur-
rent state-of-the-art or implemented models. Also, users could compare their algorithms
with our implemented baseline model using the evaluation metrics we provided. In addi-
tion, since LibSignal supports multiple simulation environments, users could also conduct
experiments in the different simulation environments to validate that their algorithms are
robust and achieve generally good performance under different settings. It makes LibSignal
a unique testbed for Sim2Real (Zhao et al., 2020; Peng et al., 2018) in the traffic signal
control domain.

5 � Conclusion

In this paper, we introduced LibSignal, a highly unified, extensible, and comprehensive
library for traffic signal control tasks. We collected and filtered nine commonly used data-
sets and implemented ten different baseline models across two influential traffic simulators,
including SUMO and CityFlow. We both conducted experiments to prove our PyTorch
implementation could achieve the same level of performance as the original TensorFlow
official code and calibrated simulators to improve the reliability of our cross-simulator
environment. Moreover, the performance of all implemented algorithms was compared
under various datasets and simulators. We further provided the discussion for research-
ers interested in this topic with our benchmarking results. In the future, we will imple-
ment more state-of-the-art RL-based algorithms and continually support more simulator
environments. Further calibration efforts will be made to help different algorithms’ perfor-
mance comparisons across different simulators.

Machine Learning	

1 3

Appendix

A.1: Documentation and license

LibSignal is open source and free to use/modify under the GNU General Public License
3. The code and documents are available on Github at https://​darl-​libsi​gnal.​github.​io/.
The embedded traffic datasets are distributed with their own licenses from Reinforcement
Learning for Traffic Signal Control 2022 and Ault & Sharon (2021), whose licenses are
under the GNU General Public License 3. SUMO is licensed under EPL 2.0 and City-
Flow is under Apache 2.0. All experiments can be reproduced from the source code, which
includes all hyper-parameters and configurations. The authors will bear all responsibil-
ity in case of violation of rights, etc., ensure access to the data and provide the necessary
maintenance.

A.2: Details of world class

World class can extract and integrates the information and then pass the information to
Agent. Specifically, in the initialization phase of the World, it would create an engine
for the user-specified simulator and read the road network from the atomic file in the
format of .json or .net.xml, then create Intersection, info_functions
object, and other necessary variables to describe and process the information. In the
training or evaluating phase, it would take step() function to interact with the simula-
tor and then update the information.

•	 Intersection class. Intersection is the basic component of the World.
All of the information is stored in variables of Intersection class, for example,
roads, phases, and etc.

•	 info_functions object. In the World class, we provide an info_functions
object inside to help retrieve information from different simulator environments and
update information after each simulator performs a step. The info_functions
contain state information including lane_count, lane_waiting_count,
lane_waiting_time count, pressure, phase, and metrics including
throughput, average_travel_time, lane_delay, lane_vehicles.
These info_functions will later be called by Generator class and pass infor-
mation into Agent.

•	 step() function. It is another common function shared between different World
classes. It takes in actions returned from Agent class and passes them into the sim-
ulator for next step execution. And action is either sampled from action space for
exploration or calculated from the model after optimization. Generally, the action
space contains eight phases. However, in highly heterogenous traffic structures, the
action space may differ and is provided by the simulators whose action parameters
are taken from configuration files.

https://darl-libsignal.github.io/

	 Machine Learning

1 3

Listing 6 presents an example for creating a World for the CityFlow simulator environ-
ment, including 3 sections: (1) initialization. (2) create Intersections, roads, lanes,
and other necessary parameters. 3) define info_functions to facilitate retrieve
information.

A.3: Validation

To validate our PyTorch re-implementations performance, we compare the performance
of four originally implemented in TensorFlow. Figure 5 shows the converge curve of
MAPG, PressLight, IDQN, and CoLight in both the train and test phase, which are
not provided in Sect. 4.1. The final performance in Table 10 shows that all four new
implementations are consistent with their original TensorFlow implementations.

1 import cityflow
2 class World(object):
3 def __init__(self , cityflow_config):
4 # section 1: initialization
5 # create the engine for the specified simulator
6 self.eng = cityflow.Engine(cityflow_config)
7

8 #read road network from atomic file
9 self.roadnet = self._get_roadnet(cityflow_config)

10

11 # section 2: get intersections , roads and lanes
12 self.intersections = self._get_intersections ()
13 self.all_roads = self._get_roads ()
14 self.all_lanes = self._get_lanes ()
15

16 # section 3: define info_functions
17 self.info_functions = {
18 "lane_delay": self.get_lane_delay , # get road network delay
19 "phase": self.get_cur_phase , # get the current phase
20 "pressure": self.get_pressure # get the pressure
21 }
22

23 def step(self , actions):
24 #Take actions and update information
25 for i, action in enumerate(actions):
26 self.intersections[i].step(action)
27

28 # interact with simulator
29 self.eng.next_step ()
30

31 # update information in self.info_functions
32 self._update_infos ()

Listing 6   An example to create World class

Machine Learning	

1 3

A.4: Network conversion

Current LibSignal includes 9 datasets which are converted and calibrated. Their road
networks are shown in Fig. 6. Other configurations of CityFlow1x1 datasets are similar
to CityFlow1x1 that appeared in the full paper in road network structure, which will not
be shown here.

A.5: Calibration steps

To validate that the performance of the algorithms is consistent in both SUMO and Cit-
yFlow, we calibrate the simulators in the following aspects:

•	 Calibration from SUMO to CityFlow: To make the conversion of complex net-
works from SUMO compatible with CityFlow, we redesign the original convert files
from Zhang et al. (2019) with the following: (1) For those .rou files in SUMO
that only specify source and destination intersections and ignore roads that would

Fig. 5   Convergence curve of models implemented in their original form (TensorFlow) and in LibSignal
(PyTorch). Y-axis is the testing result w.r.t. average travel time (in seconds)

Table 10   Best episode
performance w.r.t. average
travel time (in seconds). The
performance of models is
consistent under TensorFlow and
PyTorch

Library TensorFlow PyTorch

MAPG on CityFlow1x1 125.79 180.61
IDQN on CityFlow1x1 131.80 108.44
PressLight on HangZhou4x4 342.36 344.75
CoLight on HangZhou4x4 344.49 341.41

	 Machine Learning

1 3

be passing, the router command line in SUMO should be applied to generate full
routes before converting it into CityFlow’s .json traffic flow file. (2) We treat all
the intersections without traffic signals in SUMO as “virtual” nodes in CityFlow’s
.json road network file. (3) We keep the time interval the same for red and yellow
signals in SUMO and CityFlow. (4) SUMO has a feature of the dynamic routing of
vehicles that CityFlow does not have, currently all the simulations under SUMO in
LibSignal disables the dynamic routing. (5) To reduce the differences in the results
of different simulators caused by the fact that the phases in the SUMO environment
cannot fully be transferred to the phases in the CityFlow environment (SUMO pro-
vides more abundant phases than CityFlow), we modify the judgment conditions of
phase transformation.

•	 Calibration from CityFlow to SUMO: (1) The vehicles in CityFlow’s traffic flow
file need to be sorted according to their departure time because the SUMO traffic file
defaults to the depart time of the preceding vehicle earlier than the following vehicle.
(2) The type of vehicle should be clearly indicated in order to limit the max speed of the
vehicle.

A.6: Supplementary results

We conduct experiments on all nine datasets and also provide results of the best episode,
full converge curves and standard deviations of the performance on the four datasets in the
full paper.

A.6.1: Other comparison studies on datasets not shown in full paper

Table 11 shows the result of performance on the other five datasets. It shows PressLight
and IDQN are the most stable algorithms most of the time.

Fig. 6   Road networks in different simulators for calibration

Machine Learning	

1 3

Table 11   Performance of agents in CityFlow and SUMO on additional datasets that are not shown in
Sect. 4.2 with best and second best performance highlighted

Network Cityflow 1x1(Config2)

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel time Queue Delay Throughput

FixedTime(t_
fixed=10)

702.0847 90.3417 4.3542 914 444.5625 74.9 4.095 832

FixedTime(t_
fixed=30)

305.9428 62.9361 4.3038 1246 181.3847 42.9972 4.2947 1310

MaxPressurre 91.4333 11.3806 4.5774 1388 85.7407 8.7333 4.1472 1377
SOTL 116.2653 20.0139 3.6794 1381 96.8388 13.2667 3.1959 1371
IDQN 79.6013 7.5806 0.4253 1390 78.0051 5.8111 0.3648 1379
MAPG 262.1785 75.3056 0.6467 1237 125.3895 61.075 0.5812 955
IPPO 733.7248 130.7694 0.6963 748 90.9229 10.6 0.4447 1375
PressLight 84.7516 9.2889 0.4454 1385 85.873 8.9639 0.4318 1378

 Network Cityflow 1x1(Config3)

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel time Queue Delay Throughput

FixedTime(t_
fixed=10)

461.2692 33.5944 2.3989 531 284.4235 29.9806 2.2208 503

FixedTime(t_
fixed=30)

228.8520 24.0667 2.7021 659 173.1985 21.3167 2.8096 680

MaxPressurre 69.7295 2.2250 1.8415 729 69.9601 1.6167 1.4375 726
SOTL 89.2005 5.5556 1.8778 729 84.9169 4.4556 1.7441 722
IDQN 66.9865 1.6833 0.1816 730 68.7369 1.2556 0.1396 726
MAPG 183.2719 25.7778 0.4086 651 115.5654 26.3361 0.3421 543
IPPO 79.4778 3.8333 0.2672 729 78.8072 3.0500 0.2373 726
PressLight 67.4899 1.8861 0.1945 731 73.4509 2.4250 0.2169 723

 Network Cityflow 1x1(Config4)

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel time Queue Delay Throughput

FixedTime(t_
fixed=10)

686.7469 96.7222 4.4683 925 469.5721 81.7778 4.0367 811

FixedTime(t_
fixed=30)

339.3052 63.7750 4.4226 1290 204.3520 51.7611 4.5938 1358

MaxPressurre 136.5470 31.9083 5.1600 1556 98.8589 17.3444 4.6113 1602
SOTL 158.4722 40.2611 4.5164 1562 113.0794 23.7389 3.7165 1587
IDQN 101.9282 18.7278 0.5685 1614 90.0737 12.8278 0.4912 1614
MAPG 435.5595 77.6861 0.6195 1179 137.0363 78.4028 0.6875 1130
IPPO 226.4010 58.2306 0.6641 1453 115.8968 52.4528 0.4787 1037
PressLight 90.1724 13.2667 0.4820 1630 91.8277 13.7250 0.5153 1608

	 Machine Learning

1 3

A.6.2: Converge curve of Table 8

Figure 7 shows the full converge curve of 2000 episodes for IPPO and MAPG agents. The
result shows that compared to Q-learning agents, Actor-Critic agents are hard to converge
on some large or complex datasets, and the convergence time needed is more than ten times
of Q-learning methods.

∗ Results shown as (-) indicate that no RL methods can be trained within acceptable time and resource
in SUMO in Manhattan’s road network

Table 11   (continued)

 Network HangZhou4x4

Simulator CityFlow SUMO

Metric Travel
time

Queue Delay Throughput Travel
time

Queue Delay Throughput

FixedTime(t_
fixed=10)

689.0221 13.9837 0.9636 2385 535.0060 7.9405 2.1130 2495

FixedTime(t_
fixed=30)

575.5565 12.3694 1.8439 2645 580.5826 10.3816 2.4246 2355

MaxPressurre 365.0634 3.5972 1.7891 2928 350.4125 1.2870 0.9678 2732
SOTL 354.1250 2.7229 1.0208 2916 386.7881 3.3717 1.4937 2695
IDQN 322.9068 1.2141 0.0679 2929 341.8509 1.2097 0.0689 2730
MAPG 782.3319 24.0474 0.1406 2331 436.2691 25.1415 0.2374 1442
IPPO 727.9460 15.5786 0.1068 2306 418.0365 7.2328 0.1560 2496
PressLight 329.7855 1.6380 0.0841 2932 354.0689 1.4884 0.0803 2728
Colight 331.4348 1.7658 0.0906 2931 343.4998 1.3083 0.0714 2733

 Network Manhattan7x28

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel
time

Queue Delay Throughput

FixedTime(t_
fixed=10)

1575.7847 20.7651 1.2703 7531 953.9797 19.3563 1.4353 2123

FixedTime(t_
fixed=30)

1582.1030 22.3561 1.6659 7801 1144.1702 20.2811 1.8234 2379

MaxPressurre 1335.7877 17.3380 1.3035 9745 797.4855 15.2944 1.3298 4614
SOTL 1612.2468 23.6984 1.4968 8244 869.6206 17.8344 1.4543 3010
IDQN 1319.4959 17.4697 0.0916 9035 – – – –
MAPG 1586.3388 21.2705 0.1159 7481 – – – –
IPPO 1468.4135 19.4304 0.1130 8300 – – – –
PressLight 1338.7183 18.1332 0.0961 9123 – – – –
CoLight 1493.4200 19.5024 0.1007 8287 – – – –

Machine Learning	

1 3

Fig. 7   Full converge curve of Table 8

	 Machine Learning

1 3

Result of best episode

Table 12 gives the episode number of all datasets. It supports the conclusion that
PressLight, followed by IDQN, has the best sample efficiency compared with other
algorithms.

A.6.4: Performance on the benchmark with standard deviations

Table 13 shows the standard deviation of the performance on the four datasets in the full
paper.

Extension to other simulators

LibSignal is a cross-simulator library for traffic control tasks. Currently, we support the
most commonly used CityFlow and SUMO simulators, and our library is open to other
new simulation environments. CBEngine is a new simulator that served as the simulation
environment in the KDD Cup 2021 City Brain Challenge 3 and is designed for executing
traffic control tasks on large traffic networks. We integrate this new simulator into our
traffic control framework to extend LibSignal ’s usage in other simulation environments.
We show the result of MaxPressure, SOTL, FixedTime, and IDQN’ performance under
CBEngine in Table 14.

Table 12   The episode of best
results for different agents w.r.t.
different methods

∗ Though MAPG and IPPO has the best results in the first few epi-
sodes,
their performances are still worse than the other agents

Network Simulator IDQN MAPG IPPO PressLight

Cityflow1x1 CityFlow 193 1205 185 197
SUMO 187 188 194 185

Cologne1x1 CityFlow 95 1870 172 101
SUMO 189 1992 346 193

Cologne1x3 CityFlow 133 597 1977 159
SUMO 177 30* 195* 164

Grid4x4 CityFlow 163 6* 172* 172
SUMO 186 2* 188* 143

3  http://​www.​yunqi​acade​my.​org/​poster

http://www.yunqiacademy.org/poster

Machine Learning	

1 3

Hyperparameters

Table 15 provides the parameters of each algorithm, training environment, and hardware
parameters on the server.

Table 13   The standard deviations of Table 8

Network Cityflow 1x1

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel time Queue Delay Throughput

IDQN 9.474 2.5995 0.0221 3.0496 2.507 0.6804 0.4424 0.0092
MAPG 10.746 0.2149 1.7188 0.0152 14.182 0.6544 0.4391 0.0031
IPPO 23.020 0.0011 1.9196 0.0055 12.179 0.0446 7.7187 0.015
PressLight 3.335 1.334 0.0127 2.5884 1.960 3.261 3.4475 0.0141
FRAP 3.0118 1.4411 1.5028 0.0106 0.6933 0.3848 0.4273 0.0095

 Network Cologne 1x1

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel time Queue Delay Throughput

IDQN 2.100 0.6913 0.7502 0.0095 0.144 0.6317 0.3986 0.0087
MAPG 2.186 0.0359 0.2659 0.0072 12.283 0.0088 0.0744 0.0001
IPPO 28.048 0.0003 0.0495 0.0015 0.950 0.0013 0.1982 0.0008
PressLight 2.274 0.3753 0.3161 0.0066 0.767 0.6011 0.6375 0.0106

 Network Cologne 1x3

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel time Queue Delay Throughput

IDQN 5.891 0.9075 0.1778 0.0053 0.875 0.0711 0.0111 0.0017
MAPG 2.883 0.0637 0.1467 0.0047 15.494 3.5459 0.5764 0.0134
IPPO 0.950 0.0 0.0159 0.002 4.107 0.0002 0.1743 0.0078
PressLight 0.619 0.124 0.0405 0.0026 4.982 2.3948 0.798 0.0123

 Network Grid4x4

Simulator CityFlow SUMO

Metric Travel time Queue Delay Throughput Travel time Queue Delay Throughput

IDQN 2.006 0.0117 0.0006 0.0 0.795 0.1733 0.0098 0.0005
MAPG 13.330 1.1346 0.071 0.0044 5.420 3.6906 0.2473 0.0049
IPPO 2.432 0.0003 0.0495 0.0015 3.465 0.0004 0.0346 0.0004
PressLight 0.880 0.0491 0.0022 0.0 0.636 0.1045 0.0132 0.0003
CoLight 0.8315 0.0161 0.0009 0.0 1.1633 0.621 0.0384 0.0017

Table 14   Performance on
CBEngine simulator

CityFlow1x1 FixedTime MaxPressure SOTL IDQN

Avg. Travel Time 654.4848 150.7677 96.0025 84.5404

	 Machine Learning

1 3

Ta
bl

e 
15

  
H

yp
er

pa
ra

m
et

er
s o

f m
od

el
s,

se
rv

er
s a

nd
 tr

ai
ni

ng

M
od

el
 p

ar
am

et
er

s

Fi
xe

dT
im

e
t_

fix
ed

30
bu

ffe
r_

si
ze

0
le

ar
ni

ng
_r

at
e

0
le

ar
ni

ng
_s

ta
rt

0
up

da
te

_m
od

el
_r

at
e

0
up

da
te

_t
ar

ge
t_

ra
te

0
sa

ve
_r

at
e

0
tra

in
_m

od
el

Fa
ls

e
te

st_
m

od
el

tru
e

on
e_

ho
t

fa
ls

e
ph

as
e

fa
ls

e
ep

is
od

es
1

M
ax

Pr
es

su
re

t_
m

in
10

bu
ffe

r_
si

ze
0

le
ar

ni
ng

_r
at

e
0

le
ar

ni
ng

_s
ta

rt
0

up
da

te
_m

od
el

_r
at

e
0

up
da

te
_t

ar
ge

t_
ra

te
0

sa
ve

_r
at

e
0

tra
in

_m
od

el
Fa

ls
e

te
st_

m
od

el
tru

e
on

e_
ho

t
fa

ls
e

ph
as

e
fa

ls
e

ep
is

od
es

1
SO

TL
t_

m
in

5
m

in
_g

re
en

_v
eh

ic
le

3
m

ax
_r

ed
_v

eh
ic

le
6

bu
ffe

r_
si

ze
0

le
ar

ni
ng

_r
at

e
0

le
ar

ni
ng

_s
ta

rt
0

up
da

te
_m

od
el

_r
at

e
0

up
da

te
_t

ar
ge

t_
ra

te
0

sa
ve

_r
at

e
0

tra
in

_m
od

el
fa

ls
e

te
st_

m
od

el
tru

e
on

e_
ho

t
Fa

ls
e

ph
as

e
fa

ls
e

ep
is

od
es

1
ID

Q
N

le
ar

ni
ng

_r
at

e
0.

00
1

le
ar

ni
ng

_s
ta

rt
10

00
gr

ap
hi

c
fa

ls
e

bu
ffe

r_
si

ze
50

00
ba

tc
h_

si
ze

6
4

ep
is

od
es

20
0

ep
si

lo
n

0.
1

ep
si

lo
n_

de
ca

y
0.

99
5

ep
si

lo
n_

m
in

0.
01

up
da

te
_m

od
el

_r
at

e
1

up
da

te
_t

ar
ge

t_
ra

te
10

sa
ve

_r
at

e
20

on
e_

ho
t

tru
e

ph
as

e
tru

e
ga

m
m

a
0.

95
ste

ps
36

00
te

st_
ste

ps
36

00
ve

hi
cl

e_
m

ax
1

gr
ad

_c
lip

5
tra

in
_m

od
el

Fa
ls

e
te

st_
m

od
el

tru
e

ac
tio

n_
in

te
rv

al
10

M
A

PG
ta

u
0.

01
le

ar
ni

ng
_r

at
e

0.
00

1
le

ar
ni

ng
_s

ta
rt

50
00

gr
ap

hi
c

Fa
ls

e
bu

ffe
r_

si
ze

10
00

0
ba

tc
h_

si
ze

25
6

ep
is

od
es

20
00

ep
si

lo
n

0.
5

ep
si

lo
n_

de
ca

y
0.

99
ep

si
lo

n_
m

in
0.

01
up

da
te

_m
od

el
_r

at
e

30
up

da
te

_t
ar

ge
t_

ra
te

30
sa

ve
_r

at
e

10
00

on
e_

ho
t

FL
A

SE
ph

as
e

fa
ls

e
ga

m
m

a
0.

95
ste

ps
36

00
te

st_
ste

ps
36

00
ve

hi
cl

e_
m

ax
1

gr
ad

_c
lip

5
tra

in
_m

od
el

fa
ls

e
te

st_
m

od
el

tru
e

ac
tio

n_
in

te
rv

al
10

IP
PO

le
ar

ni
ng

_r
at

e
0
.
0
0
0
2
5

le
ar

ni
ng

_s
ta

rt
3
6
0

gr
ap

hi
c

fa
ls

e
v
a
l
u
e

_f
u
n
c

_c
o
e
f

1
.
0

ba
tc

h_
si

ze
64

ep
is

od
es

20
00

cl
ip

_e
ps

_v
f

0.
02

e
n
t
r
o
p
y

_c
o
e
f

0.
00

1
m
a
x

_g
r
a
d

_n
o
r
m

0.
5

g
a
m
m
a

0
.
9
9

l
a
m
b
d
a

0.
95

sa
ve

_r
at

e
10

00
on

e_
ho

t
tru

e
ph

as
e

tru
e

tra
in

_m
od

el
tru

e
ste

ps
36

00
te

st_
m

od
el

tru
e

te
st_

ste
p

36
00

m
ax

_v
eh

ic
le

1
ac

tio
n_

in
te

rv
al

10

Machine Learning	

1 3

Ta
bl

e 
15

  (
co

nt
in

ue
d)

M
od

el
 p

ar
am

et
er

s

Pr
es

sL
ig

ht
d_

de
ns

e
20

n_
la

ye
r

2
no

rm
al

_f
ac

to
r

20
pa

tie
nc

e
10

le
ar

ni
ng

_r
at

e
0.

00
1

le
ar

ni
ng

_s
ta

rt
10

00
gr

ap
hi

c
fa

ls
e

bu
ffe

r_
si

ze
50

00

ba
tc

h_
si

ze
64

ep
is

od
es

20
0

ep
si

lo
n

0.
1

ep
si

lo
n_

de
ca

y
0.

99
5

ep
si

lo
n_

m
in

0.
01

up
da

te
_m

od
el

_r
at

e
1

up
da

te
_t

ar
ge

t_
ra

te
10

sa
ve

_r
at

e
20

on
e_

ho
t

tru
e

ph
as

e
tru

e
ga

m
m

a
0.

95
ste

ps
36

00

te
st_

ste
ps

36
00

ve
hi

cl
e_

m
ax

1
gr

ad
_c

lip
5

tra
in

_m
od

el
Fa

ls
e

te
st_

m
od

el
tru

e
ac

tio
n_

in
te

rv
al

10
FR

A
P

d_
de

ns
e

20
n_

la
ye

r
2

on
e_

ho
t

fa
ls

e
ph

as
e

Tr
ue

le
ar

ni
ng

_r
at

e
0.

00
1

le
ar

ni
ng

_s
ta

rt
10

00
gr

ap
hi

c
fa

ls
e

bu
ffe

r_
si

ze
50

00
ro

ta
tio

n
tru

e
co

nfl
ic

t_
m

at
rix

tru
e

m
er

ge
m

ul
tip

ly
de

m
an

d_
sh

ap
e

1
ba

tc
h_

si
ze

64
ep

is
od

es
20

0
ep

si
lo

n
0.

1
ep

si
lo

n_
de

ca
y

0.
99

5
ep

si
lo

n_
m

in
0.

01
up

da
te

_m
od

el
_r

at
e

1
up

da
te

_t
ar

ge
t_

ra
te

10
sa

ve
_r

at
e

20
te

st_
ste

ps
36

00
te

st_
m

od
el

tru
e

ac
tio

n_
in

te
rv

al
10

tra
in

_m
od

el
Tr

ue
M

PL
ig

ht
d_

de
ns

e
20

n_
la

ye
r

2
on

e_
ho

t
fa

ls
e

ph
as

e
Tr

ue
le

ar
ni

ng
_r

at
e

0.
00

1
le

ar
ni

ng
_s

ta
rt

-1
gr

ap
hi

c
fa

ls
e

bu
ffe

r_
si

ze
10

00
0

ro
ta

tio
n

tru
e

co
nfl

ic
t_

m
at

rix
tru

e
m

er
ge

m
ul

tip
ly

de
m

an
d_

sh
ap

e
1

ba
tc

h_
si

ze
32

ep
is

od
es

20
0

ep
s_

st
ar

t
1

ep
s_

en
d

0
ep

s_
de

ca
y

22
0

ta
rg

et
_u

pd
at

e
50

0
ga

m
m

a
0.

99
sa

ve
_r

at
e

20
te

st_
ste

ps
36

00
te

st_
m

od
el

tru
e

ac
tio

n_
in

te
rv

al
10

tra
in

_m
od

el
Tr

ue

	 Machine Learning

1 3

Ta
bl

e 
15

  (
co

nt
in

ue
d)

M
od

el
 p

ar
am

et
er

s

C
oL

ig
ht

ne
ig

hb
or

_n
um

4
ne

ig
hb

or
_e

dg
e_

nu
m

4
n_

la
ye

r
1

in
pu

t_
di

m
[1

28
,1

28
]

ou
tp

ut
_d

im
[1

28
,1

28
]

no
de

_e
m

b_
di

m
[1

28
,1

28
]

nu
m

_h
ea

ds
[5

,5
]

no
de

_l
ay

er
_d

im
s_

ea
ch

_h
ea

d
[1

6,
16

]

ou
tp

ut
_l

ay
er

s
[]

le
ar

ni
ng

_r
at

e
0.

00
1

le
ar

ni
ng

_s
ta

rt
10

00
gr

ap
hi

c
Tr

ue

bu
ffe

r_
si

ze
50

00
ba

tc
h_

si
ze

64
ep

is
od

es
20

0
ep

si
lo

n
0.

8

ep
si

lo
n_

de
ca

y
0.

99
95

ep
si

lo
n_

m
in

0.
01

up
da

te
_m

od
el

_r
at

e
1

up
da

te
_t

ar
ge

t_
ra

te
10

sa
ve

_r
at

e
20

on
e_

ho
t

tru
e

ph
as

e
fa

ls
e

ga
m

m
a

0.
95

ste
ps

36
00

te
st_

ste
ps

36
00

ve
hi

cl
e_

m
ax

1
gr

ad
_c

lip
5

tra
in

_m
od

el
fa

ls
e

te
st_

m
od

el
tru

e
ac

tio
n_

in
te

rv
al

10
Se

rv
er

 p
ar

am
et

er
s

pc
1

C
PU

In
te

l(R
) X

eo
n(

R
) P

la
tin

um
 8

16
3

C
PU

 @
 2

.5
0G

H
z

cp
u

co
re

s
24

M
em

 to
ta

l
25

1.
55

G
B

pc
2

C
PU

In
te

l(R
) X

eo
n(

R
) P

la
tin

um
 8

12
4

M
 C

PU
 @

 3
.0

0G
H

z
cp

u
co

re
s

18
M

em
 to

ta
l

25
1.

54
G

B
Tr

ai
ni

ng
 p

ar
am

et
er

s
Th

re
ad

4
ng

pu
-1

ac
tio

n_
pa

tte
rn

“s
et

”
if_

gu
i

Tr
ue

D
eb

ug
Fa

ls
e

In
te

rv
al

1
Sa

ve
re

pl
ay

Tr
ue

rlt
ra

ffi
cl

ig
ht

Tr
ue

Machine Learning	

1 3

Author contribution  All authors contributed to the experimental design. Code and experiments are written
and conducted by HM, XL, and HW. Documentation is provided by HM, XL, and LD. The manuscript was
written by HM, XL, BS, and HW. All authors read and approved the final manuscript.

Funding  The work was supported by NSF award #2153311.

Data availability  All dataset are publicly available at https://​github.​com/​DaRL-​LibSi​gnal/​LibSi​gnal/​tree/​
master/​data/​raw_​data.

Code availability  All code associated with this paper is publicly available from https://​github.​com/​DaRL-​
LibSi​gnal/​LibSi​gnal.

Declarations 

 Conflicts of interest  Not applicable.

 Ethical approval  Not applicable.

Consent to participate  Hao Mei agrees to participate. Xiaoliang Lei agrees to participate. Longchao Da
agrees to participate. Bin Shi agrees to participate. Hua Wei agrees to participate.

 Consent for publication  Hao Mei agrees that his individual data and image are published. Xiaoliang Lei
agrees that her individual data and image are published. Longchao Da agrees that his individual data and
image are published. Bin Shi agrees that his individual data and image are published. Hua Wei agrees that his
individual data and image are published.

References

Ault, J., & Sharon, G. (2021). Reinforcement learning benchmarks for traffic signal control. In 35th
Conference on neural information processing systems datasets and benchmarks track (Round 1).

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
OpenAI Gym

Cao, M., Li, V. O., & Shuai, Q. (2022). A gain with no pain: Exploring intelligent traffic signal control for
emergency vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17899–17909.

Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., & Li, Z. (2020). Toward a thousand
lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In Proceedings
of the AAAI conference on artificial intelligence (vol. 34, pp. 3414–3421).

Chu, T., Wang, J., Codecà, L., & Li, Z. (2019). Multi-agent deep reinforcement learning for large-scale
traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3), 1086–1095.

Devailly, F.-X., Larocque, D., & Charlin, L. (2021). Ig-rl: Inductive graph reinforcement learning for
massive-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 23(7),
7496–7507.

Kheterpal, N., Parvate, K., Wu, C., Kreidieh, A., Vinitsky, E., & Bayen, A. (2018). Flow: Deep
reinforcement learning for control in sumo. EPiC Series in Engineering, 2, 134–151.

Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel,
J., Wagner, P., & Wießner, E. (2018). Microscopic traffic simulation using sumo. In 2018 21st
international conference on intelligent transportation systems (ITSC) (pp. 2575–2582). IEEE.

Ma, J., & Wu, F. (2020). Feudal multi-agent deep reinforcement learning for traffic signal control. In
Proceedings of the 19th international conference on autonomous agents and multiagent systems
(AAMAS) (pp. 816–824).

Oroojlooy, A., Nazari, M., Hajinezhad, D., & Silva, J. (2020). Attendlight: Universal attention-based
reinforcement learning model for traffic signal control. Advances in Neural Information Processing
Systems, 33, 4079–4090.

Peng, X.B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Sim-to-real transfer of robotic control
with dynamics randomization. In 2018 IEEE international conference on robotics and automation
(ICRA) (pp. 3803–3810). IEEE.

https://github.com/DaRL-LibSignal/LibSignal/tree/master/data/raw_data
https://github.com/DaRL-LibSignal/LibSignal/tree/master/data/raw_data
https://github.com/DaRL-LibSignal/LibSignal
https://github.com/DaRL-LibSignal/LibSignal

	 Machine Learning

1 3

Raeis, M., & Leon-Garcia, A. (2021). A deep reinforcement learning approach for fair traffic signal control.
In 2021 IEEE international intelligent transportation systems conference (ITSC) (pp. 2512–2518).
IEEE.

Rasheed, F., Yau, K.-L.A., Noor, R. M., Wu, C., & Low, Y.-C. (2020). Deep reinforcement learning for
traffic signal control: A review. IEEE Access, 8, 208016–208044.

Reinforcement Learning for Traffic Signal Control. https://​traff​ic-​signal-​contr​ol.​github.​io/. Accessed 22 May
2022.

Rizzo, S.G., Vantini, G., & Chawla, S. (2019). Reinforcement learning with explainability for traffic signal
control. In 2019 IEEE intelligent transportation systems conference (ITSC) (pp. 3567–3572). IEEE.

Rizzo, S.G., Vantini, G., & Chawla, S. (2019). Time critic policy gradient methods for traffic signal
control in complex and congested scenarios. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining (pp. 1654–1664).

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos, L. S., Dieffendahl, C.,
Horsch, C., Perez-Vicente, R., et al. (2021). Pettingzoo: Gym for multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 34, 15032–15043.

Tran, T.V., Doan, T.-N., & Sartipi, M. (2021). Tslib: A unified traffic signal control framework using deep
reinforcement learning and benchmarking. In 2021 IEEE international conference on big data (Big
Data) (pp. 1739–1747). https://​doi.​org/​10.​1109/​BigDa​ta525​89.​2021.​96719​93

Wang, M., Wu, L., Li, J., & He, L. (2021). Traffic signal control with reinforcement learning based on
region-aware cooperative strategy. IEEE Transactions on Intelligent Transportation Systems, 23(7),
6774–6785.

Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., & Li, Z. (2019). Presslight: Learning max pressure
control to coordinate traffic signals in arterial network. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining (pp. 1290–12980).

Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., Zhang, W., Zhu, Y., Xu, K., & Li, Z. (2019).
Colight: Learning network-level cooperation for traffic signal control. In Proceedings of the 28th ACM
international conference on information and knowledge management (pp. 1913–1922)

Wei, H., Zheng, G., Gayah, V., & Li, Z. (2019). A survey on traffic signal control methods. arXiv preprint
arXiv:​1904.​08117

Wei, H., Zheng, G., Yao, H., & Li, Z. (2018). Intellilight: A reinforcement learning approach for intelligent
traffic light control. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining (pp. 2496–2505).

Wei, H., Zheng, G., Gayah, V., & Li, Z. (2021). Recent advances in reinforcement learning for traffic signal
control: A survey of models and evaluation. ACM SIGKDD Explorations Newsletter, 22(2), 12–18.

Wu, L., Wang, M., Wu, D., & Wu, J. (2021). Dynstgat: Dynamic spatial-temporal graph attention network
for traffic signal control. In Proceedings of the 30th ACM international conference on information &
knowledge management (pp. 2150–2159).

Xiong, Y., Zheng, G., Xu, K., & Li, Z. (2019). Learning traffic signal control from demonstrations. In
Proceedings of the 28th ACM international conference on information and knowledge management
(pp. 2289–2292).

Xu, B., Wang, Y., Wang, Z., Jia, H., & Lu, Z. (2021). Hierarchically and cooperatively learning traffic signal
control. In Proceedings of the AAAI conference on artificial intelligence (vol. 35, pp. 669–677).

Yau, K.-L.A., Qadir, J., Khoo, H. L., Ling, M. H., & Komisarczuk, P. (2017). A survey on reinforcement
learning models and algorithms for traffic signal control. ACM Computing Surveys (CSUR), 50(3),
1–38.

Yen, C.-C., Ghosal, D., Zhang, M., & Chuah, C.-N. (2020). A deep on-policy learning agent for traffic
signal control of multiple intersections. In 2020 IEEE 23rd international conference on intelligent
transportation systems (ITSC) (pp. 1–6). IEEE.

Zang, X., Yao, H., Zheng, G., Xu, N., Xu, K., & Li, Z. (2020). Metalight: Value-based meta-reinforcement
learning for traffic signal control. In Proceedings of the AAAI conference on artificial intelligence (vol.
34, pp. 1153–1160).

Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., & Li, Z. (2019).
Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In The
world wide web conference (pp. 3620–3624).

Zhang, H., Liu, C., Zhang, W., Zheng, G., & Yu, Y. (2020). Generalight: Improving environment
generalization of traffic signal control via meta reinforcement learning. In Proceedings of the 29th
ACM international conference on information & knowledge management (pp. 1783–1792).

Zhao, W., Queralta, J.P., & Westerlund, T. (2020). Sim-to-real transfer in deep reinforcement learning for
robotics: A survey. In 2020 IEEE symposium series on computational intelligence (SSCI) (pp. 737–
744). IEEE.

https://traffic-signal-control.github.io/
https://doi.org/10.1109/BigData52589.2021.9671993
http://arxiv.org/abs/1904.08117

Machine Learning	

1 3

Zheng, G., Xiong, Y., Zang, X., Feng, J., Wei, H., Zhang, H., Li, Y., Xu, K., & Li, Z. (2019). Learning phase
competition for traffic signal control. In Proceedings of the 28th ACM international conference on
information and knowledge management (pp. 1963–1972).

Zheng, G., Zang, X., Xu, N., Wei, H., Yu, Z., Gayah, V., Xu, K., & Li, Z. (2019). Diagnosing reinforcement
learning for traffic signal control. arXiv . https://​doi.​org/​10.​48550/​ARXIV.​1905.​04716. https://​arxiv.​
org/​abs/​1905.​04716

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.48550/ARXIV.1905.04716
https://arxiv.org/abs/1905.04716
https://arxiv.org/abs/1905.04716

	Libsignal: an open library for traffic signal control
	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement learning for traffic signal control
	2.2 Difficulties in evaluation
	2.3 Existing libraries and tools

	3 LibSignal toolkit
	3.1 Traffic signal control environment
	3.2 Data preparation
	3.3 Traffic signal control API
	3.4 Comprehensive models

	4 Experiment
	4.1 Validation and calibration
	4.2 Overall performance
	4.3 Discussion

	5 Conclusion
	Appendix
	A.1: Documentation and license
	A.2: Details of world class
	A.3: Validation
	A.4: Network conversion
	A.5: Calibration steps
	A.6: Supplementary results
	A.6.1: Other comparison studies on datasets not shown in full paper
	A.6.2: Converge curve of Table 8
	Result of best episode
	A.6.4: Performance on the benchmark with standard deviations

	Extension to other simulators
	Hyperparameters

	References

