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ABSTRACT
Graph Neural Networks (GNNs) have received increasing attention

due to their ability to learn from graph-structured data. However,

their predictions are often not interpretable. Post-hoc instance-level

explanation methods have been proposed to understand GNN pre-

dictions. These methods seek to discover substructures that explain

the prediction behavior of a trained GNN. In this paper, we shed

light on the existence of the distribution shifting issue in existing

methods, which affects explanation quality, particularly in applica-

tions on real-life datasets with tight decision boundaries. To address

this issue, we introduce a generalized Graph Information Bottleneck

(GIB) form that includes a label-independent graph variable, which

is equivalent to the vanilla GIB. Driven by the generalized GIB, we

propose a graph mixup method, MixupExplainer, with a theoretical

guarantee to resolve the distribution shifting issue. We conduct

extensive experiments on both synthetic and real-world datasets

to validate the effectiveness of our proposed mixup approach over

existing approaches. We also provide a detailed analysis of how our

proposed approach alleviates the distribution shifting issue.
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• Computing methodologies → Neural networks; Artificial
intelligence; • Human-centered computing→ Human computer
interaction (HCI).
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1 INTRODUCTION
Graph Neural Networks (GNNs) [29], a powerful technology for

learning knowledge from graph-structured data, are gaining in-

creasing attention in today’s world, where graph-structured data

such as social networks [12, 27], molecular structures [6, 25], traffic

flows [19, 21, 41, 47], and knowledge graphs [32] are widely used.

GNNs work by propagating and fusing messages from neighbor-

ing nodes on the graph using message-passing mechanisms. These

networks have achieved state-of-the-art performance in tasks like

node classification, graph classification, graph regression, and link

prediction.

Despite their success, GNNs, like other neural networks, lack

interpretability. Understanding how GNNs make predictions is

crucial for several reasons. First, it can increase user confidence

when using GNNs in high-stakes applications [23, 52]. Second, it

enhances the transparency of the models, making them suitable for

use in sensitive fields such as healthcare and drug discovery, where

fairness, privacy, and safety are critical concerns [22, 44, 55]. Thus,

exploring the interpretability of GNNs is essential.

A common solution to improve GNN models’ transparency is

applying post-hoc instance-level explainability methods. These

methods identify key substructures in input graphs to explain pre-

dictions made by trained GNN models, making it easier for humans

to understand the models’ inner workings. Examples of such meth-

ods include GNNExplainer [50], which determines the importance

of nodes and edges through perturbation, and PGExplainer[24],

which trains a graph generator to incorporate global information.

Recent studies in the field [11, 30] also contribute to the develop-

ment of these methods. Post-hoc explainability methods can be

classified under a label-preserving framework, where the expla-

nation is a substructure of the original graph and preserves the

information about the predicted label. On top of the intuitive prin-

ciple, Graph Information Bottleneck (GIB) [26, 46, 51] maximizes

the mutual information 𝐼 (𝐺∗, 𝑌 ) between the target label 𝑌 and

the explanation 𝐺∗
while constraining the size of the explanation

as the mutual information between the original graph 𝐺 and the

explanation 𝐺∗
.

Approximating the mutual information between the label 𝑌 and

explanation 𝐺∗
is challenging due to its intractability, so previ-

ous works [24, 26, 50] usually estimate 𝐼 (𝐺∗, 𝑌 ) using 𝐼 (𝑓 (𝐺∗), 𝑌 ),
the mutual information between the predictions 𝑓 (𝐺∗) from GNN

model 𝑓 and its label 𝑌 . However, this approximation overlooks

the distribution shifting issue between the original graph 𝐺 and

explanation𝐺∗
after the processing of the prediction model 𝑓 . Due

to differences in properties like the number of nodes or the struc-

tures in𝐺 ,𝐺∗
could have a different distribution from𝐺 . As seen in

Figure 1, the visualization of the embeddings for the original graph
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Figure 1: Visualization of original graphs𝐺 , explanation sub-
graphs 𝐺∗, and our generated graphs 𝐺 (mix) . There is a large
distributional divergence between explanation subgraphs
𝐺∗ and original graphs 𝐺 . 𝐺𝑎 and 𝐺𝑏 are two graphs in the
original dataset. More experimental results on the existence
of the distributional divergence can be found in Section 5.3.

and its explanation shows that the explanation embeddings are out

of distribution with respect to the original graphs, which leads to

impaired safe usage of the approximation because of the inductive

bias in 𝑓 . The negative impact of the distribution shifting problem

on explanation quality is especially pronounced when applied to

complex real-world datasets with tight decision boundaries.

While the distribution shifting issue in post-hoc explanations

has gained growing attention in computer vision [5], this issue is

less explored in the graph domain. In computer vision, [5] optimizes

image classifier explanations to highlight contextual information

relevant to the prediction and consistent with the training dis-

tribution. [28] addresses the distribution shifting issue in image

explanation via a module that quantifies affinity between perturbed

data and original dataset distribution. In the graph domain, while

a recent work [11] attempts to address distribution shifting by an-

nealing the size constraint coefficient at the start of the explanation

process, the distribution shifting issue still persists throughout the

explanation process.

To address the distribution shifting issue in post-hoc graph ex-

planation, we introduce a general form of Graph Information Bottle-

neck (GIB) that includes another label-independent graph variable

𝐺Δ
. This new form of GIB is proven equivalent to vanilla GIB.

By having 𝐺Δ
in the objective, we can alleviate the distribution

shifting problem with theoretical guarantees. To further improve

the explanation method, we propose MixupExplainer using an im-

proved Mixup approach. The MixupExplainer assumes that a non-

explainable part of a graph is label-independent and mixes the

explanation with a non-explainable structure from another ran-

domly sampled graph. The explanation substructure is obtained

by minimizing the difference between the predicted labels of the

original graph and the mixup graph.

To the end, we summarize our contributions as follows.

• For the first time, we point out that the distribution shifting

problem is prevalent in the most popular post-hoc explana-

tion framework for graph neural networks.

• We derive a generalized framework with a solid theoretical

foundation to alleviate the problem and propose a straight-

forward yet effective instantiation based on mixing up the

explanationwith a randomly sampled base structure by align-

ing the graph and mixing the graph masks.

• Comprehensive empirical studies on both synthetic and real-

life datasets demonstrate that our method can dramatically

and consistently improve the quality of the explanations,

with up to 35.5% in AUC scores.

2 RELATED WORK
2.1 Graph Neural Networks
The use of graph neural networks (GNNs) is on the rise for analyzing

graph structure data, as seen in recent research studies [7, 12, 14].

There are twomain types of GNNs: spectral-based approaches [4, 18,

34] and spatial-based approaches [1, 10, 48]. Despite the differences,

message passing is a common framework for both, using pattern

extraction and message interaction between layers to update node

embeddings. However, GNNs are still considered a black box model

with a hard-to-understand mechanism, particularly for graph data,

which is harder to interpret compared to image data. To fully utilize

GNNs, especially in high-risk applications, it is crucial to develop

methods for understanding how they work.

2.2 GNN Explanation
Many attempts have been made to interpret GNN models and ex-

plain their predictions [24, 31, 33, 42, 50, 53]. These methods can be

grouped into two categories based on granularity: (1) instance-level

explanation, which explains the prediction for each instance by

identifying significant substructures [31, 50, 53], and (2) model-

level explanation, which seeks to understand the global decision

rules captured by the GNN [2, 24, 33]. From a methodological per-

spective, existing methods can be classified as (1) self-explainable

GNNs [2, 8], where the GNN can provide both predictions and

explanations, and (2) post-hoc explanations [24, 50, 53], which use

another model or strategy to explain the target GNN. In this work,

we focus on post-hoc instance-level explanations, which involve

identifying instance-wise critical substructures to explain the pre-

diction. Various strategies have been explored, including gradient

signals, perturbed predictions, and decomposition.

Perturbed prediction-based methods are the most widely used

in post-hoc instance-level explanations. The idea is to learn a per-

turbation mask that filters out non-important connections and

identifies dominant substructures while preserving the original pre-

dictions. For example, GNNExplainer [50] uses end-to-end learned

soft masks on node attributes and graph structure, while PGEx-

plainer [24] incorporates a graph generator to incorporate global

information. RG-Explainer [31] uses reinforcement learning tech-

nology with starting point selection to find important substructures

for the explanation.

However, most of these methods fail to consider the distribution

shifting issue. The explanation should contain the same information

that contributes to the prediction, but the GNN is trained on a data

pattern that consists of an explanation subgraph relevant to labels,

and a label-independent structure, leading to a distribution shifting

problem when feeding the explanation directly into the GNN. Our
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method aims to capture the distribution information of the graph

and build the explanation with a label-independent structure to help

the explainer better minimize the objective function and retrieve a

higher-quality explanation.

2.3 Graph Data Augmentation with Mixup
Data augmentation addresses issues such as noise, scarcity, and out-

of-distribution problems. One popular data augmentation approach

is usingMixup [54] strategy to generate synthetic training examples

based on feature mixing and label mixing. Specifically, [40, 43] mix

the graph representation learned from GNNs to avoid dealing with

the arbitrary structure in the input space for mixing a node or

graph pair. ifMixup [13] interpolates both the node features and

the edges of the input pair based on feature mixing and graph

generation. [15] and [45] generate interpolated graphs with the

estimation of the properties in the graph data, like the graphon of

each class or nearest neighbors of target nodes. All the previous

methods [13, 15, 39, 40, 43] aim to generalize the mixup approach to

improve the performance of classification models like GNNs. Unlike

existing graph mixup approaches, this paper solves a different task,

which is to generalize the explanations for GNN.

3 PRELIMINARY
3.1 Notations and Problem Definition
We denote a graph as 𝐺 = (V, E;𝑿 ,𝑨), whereV = {𝑣1, 𝑣2, ..., 𝑣𝑛}
represents a set of 𝑛 nodes and E ∈ V ×V represents the edge set.

Each graph has a feature matrix 𝑿 ∈ R𝑛×𝑑
for the nodes, where

in 𝑿 , 𝒙𝑖 ∈ R1×𝑑
is the 𝑑-dimensional node feature of node 𝑣𝑖 . E is

described by an adjacency matrix 𝑨 ∈ {0, 1}𝑛×𝑛 . 𝐴𝑖 𝑗 = 1 means

that there is an edge between node 𝑣𝑖 and 𝑣 𝑗 ; otherwise, 𝐴𝑖 𝑗 = 0.

For graph classification task, each graph 𝐺𝑖 has a label 𝑌𝑖 ∈ C,
with a GNN model 𝑓 trained to classify 𝐺𝑖 into its class, i.e., 𝑓 :

(𝑿 ,𝑨) ↦→ {1, 2, ...,𝐶}. For the node classification task, each graph

𝐺𝑖 denotes a 𝐾-hop sub-graph centered around node 𝑣𝑖 , with a

GNN model 𝑓 trained to predict the label for node 𝑣𝑖 based on the

node representation of 𝑣𝑖 learned from 𝐺𝑖 .

Problem 1 (Post-hoc Instance-levelGNNExplanation). Given
a trained GNNmodel 𝑓 , for an arbitrary input graph𝐺 = (V, E;𝑿 ,𝑨),
the goal of post-hoc instance-level GNN explanation is to find a sub-
graph 𝐺∗ that can explain the prediction of 𝑓 on 𝐺 .

Informative feature selection has been well studied in non-graph

structured data [20], and traditional methods, such as concrete

autoencoder [3], can be directly extended to explain features in

GNNs. In this paper, we focus on discovering important typologies.

Formally, the obtained explanation𝐺∗
is depicted by a binary mask

𝑴 ∈ {0, 1}𝑛×𝑛 on the adjacency matrix, e.g., 𝐺∗ = (V, E,𝑨 ⊙
𝑴 ;𝑿 ), ⊙ means elements-wise multiplication. The mask highlights

components of 𝐺 which are essential for 𝑓 to make the prediction.

3.2 Graph Information Bottleneck
The Information Bottleneck (IB) [35, 36] provides an intuitive prin-

ciple for learning dense representations that an optimal represen-

tation should contain minimal and sufficient information for the

downstream prediction task. Based on IB, a recent work unifies

the most existing post-hoc explanation methods for GNN, such as

GNNExplainer [50], PGExplainer [24], with the graph information

bottleneck (GIB) principle [26, 46, 51]. Formally, the objective of

explaining the prediction of 𝑓 on 𝐺 can be represented by

argmin

𝐺∗
𝐼 (𝐺,𝐺∗) − 𝛼𝐼 (𝐺∗, 𝑌 ), (1)

where 𝐺∗
is the explanation subgraph, 𝑌 is the original or ground

truth label, and 𝛼 is a hyper-parameter to get the trade-off between

minimal and sufficient constraints. GIB uses the mutual information

𝐼 (𝐺,𝐺∗) to select the minimal explanation that inherits only the

most indicative information from 𝐺 to predict the label 𝑌 by maxi-

mizing 𝐼 (𝐺∗, 𝑌 ), where 𝐼 (𝐺,𝐺∗) avoids imposing potentially biased

constraints, such as the size or the connectivity of the selected sub-

graphs [26]. Through the optimization of the subgraph,𝐺∗
provides

model interpretation. Further, from the definition of mutual infor-

mation, we have 𝐼 (𝐺∗, 𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝐺∗), where the entropy
𝐻 (𝑌 ) is static and independent of the explanation process. Thus,

minimizing the mutual information between the explanation sub-

graph𝐺∗
and 𝑌 can be reformulated as maximizing the conditional

entropy of 𝑌 given 𝐺∗
. Formally, we rewrite the GIB objective as

follows:

argmin

𝐺∗
𝐼 (𝐺,𝐺∗) + 𝛼𝐻 (𝑌 |𝐺∗), (2)

As is shown in Figure 2(a), the objective function in Eq. (2) optimizes

𝐺∗
to have the minimal mutual information with the original graph

𝐺 , which could be expressed as a subgraph from 𝐺 with a smaller

size, or scattered components in𝐺 , while at the same time provides

maximum mutual information for 𝑌 , which is equivalent to have

minimum entropy 𝐻 (𝑌 |𝐺∗).
Due to the intractability of entropy of the label conditioned on

explanation, a widely-adopted approximation in previous meth-

ods [24, 50, 56] is:

argmin

𝐺∗
𝐼 (𝐺,𝐺∗) + 𝛼𝐻 (𝑌 |𝐺∗) ≈ argmin

𝐺∗
𝐼 (𝐺,𝐺∗) + 𝛼𝐶𝐸 (𝑌,𝑌 ∗),

(3)

where 𝑌 ∗ = 𝑓 (𝐺∗) is the predicted label of 𝐺∗
made by the model

to be explained, 𝑓 and the cross-entropy CE(𝑌,𝑌 ∗) between the

ground truth label 𝑌 and 𝑌 ∗
is used to approximate 𝐻 (𝑌 |𝐺∗).

4 METHODOLOGY
In this section, we first introduce an overlooked problem in the GIB

objective. Then we propose a generalized GIB objective to address

the problem, which directly inspires our method through a mixup

approach.

4.1 Generalized GIB
4.1.1 Diverging Distributions in Eq. (3). Although prevalent, the

approximation with 𝑌 ∗ = 𝑓 (𝐺∗) in Eq. (3) overlooks the distri-

butional divergence between the original graph 𝐺 and the dense

subgraph 𝐺∗
after the processing of the prediction model 𝑓 . An

intuitive example from the MUTAG dataset [9] is shown in Figure 1.

The prediction model 𝑓 , represented by a hypothesis line, performs

well in classifying the positive and negative samples. Due to the dis-

tribution shifting problem naturally inherent in 𝑓 (𝐺) and 𝑓 (𝐺∗) on
explanation subgraphs, 𝑓 maps some explanation subgraphs across

the decision boundary to the negative region. As a result, the expla-

nation subgraph achieved by Eq. (3) may be suboptimal and even
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(a) Previous GIB Objective (b) Our Generalized GIB Objective

Figure 2: Illustration of GIB and our proposed new objec-
tive. (a) Previous vanilla GIB objective aims to minimize
𝐼 (𝐺∗, 𝑌 ) and 𝐻 (𝑌 |𝐺∗), with a smaller overlap between 𝐺∗ and
𝐺 . (b) Our generalized GIB objective has the same objective
as vanilla GIB, with a larger lap between 𝐺 and 𝐺∗ +𝐺Δ, re-
sulting in less distribution shifting issue.

far away from the ground truth explanation due to the significant

divergence between 𝑓 (𝐺∗) and 𝑓 (𝐺). The existing GIB framework

could work for simple synthetic datasets by relying on the implicit

knowledge associated with the class and assuming a large decision

margin between the two or more classes. However, in more prac-

tical scenarios like MUTAG, the existing approximation may be

heavily affected by the distribution shifting problem [11, 26].

4.1.2 Addressing with Label-independent Subgraph. To address the

above challenge in the previous GIB methods, we first generalize

the existing GIB framework by taking a label-independent subgraph

𝐺Δ
into consideration. The intuition is that for an original graph

𝐺𝑎 with label 𝑌𝑎 , the label-independent subgraph 𝐺
Δ
𝑎 also contains

useful information. For example, 𝐺Δ
𝑎 makes sure that connecting it

with the label-preserving subgraph𝐺∗
𝑎 will not lead to another label.

Formally, given a graph variable 𝐺Δ
that satisfies 𝐼 (𝐺Δ, 𝑌 |𝐺∗) = 0,

the GIB objective can be generalized as follows.

argmin

𝐺∗
𝐼 (𝐺,𝐺∗) + 𝛼𝐻 (𝑌 |𝐺∗,𝐺Δ), s.t. 𝐼 (𝐺Δ, 𝑌 |𝐺∗) = 0. (4)

As shown below, our generalized GIB has the following property.

Property 1. The generalized GIB objective, Eq. (4) is equivalent to
vanilla GIB, Eq. (2).

This can be proved by the definition of conditional entropy.

With the condition that 𝐼 (𝐺Δ, 𝑌 |𝐺∗) = 0, we have 𝐻 (𝑌 |𝐺∗) =

𝐻 (𝑌 |𝐺∗)+𝐼 (𝐺Δ, 𝑌 |𝐺∗) = 𝐻 (𝑌 |𝐺∗,𝐺Δ). Thus, the optimal solutions

of GIB and our generalized version are equivalent. In addition,

the advantage of our objective is that by choosing a suitable 𝐺Δ

that minimizes the distribution distance, 𝐷 (𝐺∗ + 𝐺Δ,𝐺), we can
approximate the GIB without including the distribution shifting

problem. An intuitive illustration is given in Figure 2(b).

Following exiting work [24, 50], we can further approximate

𝐻 (𝑌 |𝐺∗,𝐺Δ) with CE(𝑌,𝑌𝑚), where 𝑌𝑚 = 𝑓 (𝐺∗ +𝐺Δ) is the pre-
dicted label of 𝐺∗ +𝐺Δ

made by the model 𝑓 to be explained. Es-

pecially when 𝐺Δ
is an empty graph, our objective degenerates to

the vanilla approximation. Formally, we derive our new objective

for GNN explanation as follows:

argmin

𝐺Δ,𝐺∗
𝐼 (𝐺,𝐺∗) + 𝛼CE(𝑌,𝑌𝑚)

s.t. D(𝐺∗ +𝐺Δ,𝐺) = 0, 𝐼 (𝐺Δ, 𝑌 |𝐺∗) = 0.

(5)

4.2 MixupExplainer
Inspired by Eq. 5, in this section, we introduce a straightforward yet

theoretically guaranteed instantiation, MixupExplainer, to resolve

the distribution shifting issue. Figure 3 demonstrates the overall

framework of the proposed MixupExplainer and the differences be-

tweenMixupExplainer and previous GIBmethods. MixupExplainer

includes a graph generation phase after extracting the explanation

of the graph with the explainer. Specifically, we instantiate the

𝐺Δ
from the distribution of label-independent subgraphs from the

graph dataset, denoted as PG (𝑖 ) , and connect𝐺
∗
and𝐺Δ

to generate

a new graph 𝐺 (mix)
. Formally,

𝐺Δ ∼ PG (𝑖 ) , 𝐺 (mix) = 𝐺∗ +𝐺Δ . (6)

To avoid the trivial case that 𝐺 = 𝐺 (mix)
, when sampling 𝐺Δ

, we

dismiss the original graph itself. In addition, since 𝐺Δ
is sampled

without considering the label information, we can make a safe

assumption that 𝐼 (𝐺Δ, 𝑌 |𝐺∗) = 0.

As stated in Problem 1, given a graph 𝐺𝑎 = (𝑨𝑎,𝑿𝑎)1 and a

to-be-explained model 𝑓 , an explanation model 𝑔 aims to learns a

subgraph 𝐺∗
𝑎 , represented with the edge mask 𝑴𝑎 = 𝑔(𝐺𝑎) on the

adjacency matrix 𝑨𝑎 . To generate a graph distributed similarly to

𝐺𝑎 , we need to generate a label-independent subgraph, where we

randomly sample another graph instance from the dataset, denoted

by 𝐺𝑏 , without considering the label information. With the expla-

nation model 𝑔, we obtain the corresponding edge mask 𝑴𝑏 for

𝐺𝑏 . Then, we mix these two graphs by connecting the informative

part in 𝐺𝑎 and the label-independent part in 𝐺𝑏 . We first assume

that𝐺𝑎 and𝐺𝑏 share the same set of nodes, and more general cases

are discussed in the next section. Formally, the mask of the mixed

graph, 𝑴 (mix)
𝑎 , is calculated as follows.

𝑴 (mix)
𝑎 = 𝜆𝑴𝑎 + (𝑨𝑏 − 𝜆𝑴𝑏 ), (7)

where 𝑨𝑏 is the adjacency matrix of graph 𝐺𝑏 and 𝜆 is a hyper-

parameter to support flexible usage of mixup operation. Then, we

have 𝐺
(mix)
𝑎 = (𝑿𝑎,𝑴

(mix)
𝑎 ). The mask matrix 𝑴𝑎 and 𝑴𝑏 denote

the weight of the edges in 𝑨𝑎 and 𝑨𝑏 , respectively, with the same

size of the matrix. By default, we mix up𝐺∗
𝑎 with the rest part of the

𝐺𝑏 by setting 𝜆 = 1 and above formula could be further simplified

as:

𝑴 (mix)
𝑎 = 𝑴𝑎 + (𝑨𝑏 −𝑴𝑏 ). (8)

Note that our proposed mixup approach is different from tradi-

tional mixup approaches [15, 49, 54] in data augmentation, where

they usually follow a form similar to 𝑴 (mix) = 𝜆𝑴𝑎 + (1 − 𝜆)𝑴𝑏 .

This form of mixup does not differentiate label-dependent from

label-independent parts. On the contrary, our proposed mixup ap-

proach in Eq. (7) includes the label-dependent part in𝐺𝑎 with 𝜆𝑴𝑎

and excludes the label-dependent part in 𝐺𝑏 by subtracting the

same 𝜆 on 𝑴𝑏 from 𝑨𝑏 .

1
We dismiss V and E to simplify the notations.
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Figure 3: Illustration of the GIB-based explanation and our proposed MixupExplainer. (a) Vanilla GIB directly minimizes
CE(𝑌,𝑌 ∗), which is the cross entropy between the original prediction 𝑌 and the prediction of explanation subgraph𝐺∗ made by
the to-be-explained model 𝑓 . (b) Our MixupExplainer first generates an augmented graph𝐺 (mix) by mixing up the explanation
subgraph𝐺∗ with the label-independent part from another randomly sampled graph. Then we minimize the cross entropy
between 𝑌 and 𝑌 (mix), the prediction made by 𝑓 on 𝐺 (mix) .

4.2.1 Implementation. In this section, we introduce the implemen-

tation details of the mixup function and provide the pseudo-code

of graph mixup in Algorithm 1.

Given a graph 𝐺𝑎 with 𝑛𝑎 nodes and another graph 𝐺𝑏 with

𝑛𝑏 nodes, the addition in Eq. (7) between two matrices requires

𝑴𝑎 and 𝑴𝑏 have the same dimensions, i.e., 𝐺𝑎 and 𝐺𝑏 have the

same number of nodes. However, in real-world graph datasets,

this assumption may not hold, leading to a mismatch between the

dimensions of 𝑴𝑎 and 𝑴𝑏 . In order to merge two graphs with

different sets of nodes, we first extend node sets in 𝐺𝑎 and 𝐺𝑏 to a

single node setV𝑎∪V𝑏 , and their adjacency matrices are calculated

with the following functions:

𝑨ext

𝑎 =

[
𝑨𝑎 0
0 0𝑏

]
,𝑨ext

𝑏
=

[
0𝑎 0
0 𝑨𝑏

]
, (9)

where 0𝑎 and 0𝑏 are zero matrices with shapes 𝑛𝑎 ×𝑛𝑎 and 𝑛𝑏 ×𝑛𝑏 ,
respectively.

After extending 𝐺𝑎 and 𝐺𝑏 , we then merge them into 𝐺 (mix) =

(𝑿 (mix) ,𝑴 (𝑚𝑖𝑥 )
𝑎 ⊙ 𝑨(mix) ), where 𝑿 (mix) = [𝑿𝑎 ;𝑿𝑏 ] is the con-

catenation of node features 𝑿𝑎 and 𝑿𝑏 ; 𝑨
(mix)

is the merged adja-

cency matrix; 𝑴 (𝑚𝑖𝑥 )
𝑎 is the edge mask indicating the edge weights

for the explanation.

Specifically, the adjacency matrix of 𝐺 (mix)
is:

𝑨(mix) =
[
𝑨𝑎 𝑨𝑐

𝑨𝑇
𝑐 𝑨𝑏

]
, (10)

where 𝑨𝑐 is a matrix indicating the cross-graph connectivity be-

tween the nodes in 𝐺𝑎 and 𝐺𝑏 . In practice, we randomly sample 𝜂

cross-graph edges to connect 𝐺𝑎 and 𝐺𝑏 at each mixup step to en-

sure the mixed graph is a connected graph to be optimized together

on both label-dependent and label-independent subgraphs.

Similarly, the edge mask matrix is obtained from extended 𝑴𝑎

and 𝑴𝑏 and calculated with Eq. (7). Formally, we have

𝑴 (mix)
𝑎 =

[
𝜆𝑴𝑎 𝑴𝑐

𝑴𝑇
𝑐 𝑨𝑏 − 𝜆𝑴𝑏

]
(11)

where the explainer𝑔 gives the𝑴𝑎 and𝑴𝑏 ,𝑴𝑐 is the weight matrix

on the randomly-sampled cross-graph edges corresponding with

𝑨𝑐 , where the values are randomly sampled on connected edges in

𝑨𝑐 at each mixup step and thus will not be optimized by 𝑔.

Finally, we can mixup the edge weight matrices 𝑴ext

𝑎 and 𝑴ext

𝑏

together with Eq. (7). The mixed graph 𝐺
(mix)
𝑎 is then fed into the

GNN model 𝑓 to calculate the predicted result 𝑌 (mix)
. The detailed

implementation is shown in Algorithm 1.

4.2.2 Computational Complexity Analysis. Here, we analyze the
computational complexity of our mixup approach. Given a graph

𝐺𝑎 and a randomly sampled graph 𝐺𝑏 , the complexity of graph

extension on adjacency matrices and edge masks is O(|E𝑎 | + |E𝑏 |),
where |E𝑎 | and |E𝑏 | denote the number of edges in 𝐺𝑎 and 𝐺𝑏 ,

respectively. To generate 𝜂 cross-graph edges, the computational

complexity is O(𝜂). For mixup, the complexity is O(|E𝑎 | + |E𝑏 |).
By considering 𝜂 as a small constant, the overall complexity of our

mixup approach is O(|E𝑎 | + |E𝑏 |).

4.2.3 Theoretical Justification. In the following, we theoretically

prove that: the proposed mixup approach could reduce the distance
between the explanation and original graphs. Formally, we have the

following theorem:

Theorem 1. Given an original graph𝐺 , graph explanation𝐺∗ and
𝐺 (mix) generated by Eq. (7), we have 𝐾𝐿(𝐺,𝐺∗) ≥ KL(𝐺,𝐺 (mix) ).

Proof Sketch. According to the previous work [24, 50], a graph

𝐺 can be treated as𝐺 = 𝐺 (𝑒 ) +𝐺 (𝑖 )
, where𝐺 (𝑒 )

presents the under-

lying subgraph thatmakes important contributions to GNN’s predic-

tions, which is the expected explanatory graph, and𝐺 (𝑖 )
consists of
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the remaining label-independent edges for predictions made by the

GNN. Assuming the graph𝐺 (𝑒 )
and𝐺 (𝑖 )

independently follow the

distribution PG (𝑒 ) and PG (𝑖 ) respectively, denoted as𝐺
(𝑒 ) ∼ PG (𝑒 )

and 𝐺 (𝑖 ) ∼ PG (𝑖 ) , we randomly sample 𝐺𝑏 = 𝐺
(𝑒 )
𝑏

+𝐺 (𝑖 )
𝑏

from the

data set. Both 𝐺 and 𝐺𝑏 follow the distribution PG = PG (𝑒 ) ,G (𝑖 ) .

We could get our Mixup explanation:

𝐺 (mix) B 𝐺 (𝑒 ) + (𝐺𝑏 −𝐺 (𝑒 )
𝑏

) = 𝐺 (𝑒 ) +𝐺 (𝑖 )
𝑏
, (12)

Then, we have PG (mix) = PG (𝑒 ) ∗ PG (𝑖 ) = PG . It is easy to show

that 𝐾𝐿(𝐺,𝐺 (mix) ) = 0. Thus, we have

𝐾𝐿(𝐺,𝐺∗) ≥ KL(𝐺,𝐺 (mix) ) (13)

□

The theoretical justification shows that our objective function

could better estimate the explanation distribution and resolve the

distribution shifting issue than the previous approach. In addition,

with a safe assumption that 𝐼 (𝐺Δ, 𝑌 |𝐺∗) = 0, as discussed in Eq. (6),

we have MixupExplainer satisfy the s.t. condition in Eq. (5). Thus,

we can simplify the objective for MixupExplainer as:

argmin

𝐺∗
𝐼 (𝐺,𝐺∗) + 𝛼CE(𝑌,𝑌 (mix) ) (14)

5 EXPERIMENTAL STUDY
We conduct comprehensive experimental studies on benchmark

datasets to empirically verify the effectiveness of the proposed

MixupExplainer. Specifically, we aim to answer the following re-

search questions:

• RQ1: Can the proposed framework outperform the GIB in

identifying explanatory substructures for GNNs?

• RQ2: Is the distribution shifting issue severe in the exist-

ing GNN explanation methods? Could the proposed Mixup

approach alleviate this issue?

• RQ3: How does the proposed approach perform under dif-

ferent hyperparameters?

5.1 Experiment Settings
5.1.1 Datasets. We focus on analyzing the effects of the distribu-

tion shifting problem between the ground truth explanation and the

original graphs. Thus, we select six publicly available benchmark

datasets with ground truth explanations in our empirical studies
2
.

• BA-Shapes [50]: This is a node classification dataset based

on a 300-node Barabási-Albert (BA) graph, towhich 80 "house"

motifs have been randomly attached. The nodes are labeled

for use by GNN classifiers, while the edges within the corre-

sponding motif serve as ground truth for explainers. There

are four classes in the classification task, with one class indi-

cating nodes in the base graph and the others indicating the

relative location of nodes in the motif.

• BA-Community [50]: This extends the BA-Shapes dataset

to more complex scenarios with eight classes. Two types of

motifs are attached to the base graph, with nodes in different

motifs having different labels.

2
All the dataset and codes can be found in https://github.com/jz48/MixupExplainer

• Tree-Circles [50]: This is a node classification dataset with

two classes, with a binary tree serving as the base graph

and a 6-node cycle structure as the motif. The labels only

indicate if the nodes are in the motifs.

• Tree-Grid [50]: This is a node classification dataset created

by attaching 80 gridmotifs to a single 8-layer balanced binary

tree. The labels only indicate if the nodes are in the motifs,

and edges within the relative motif are used as ground-truth

explanations.

• BA-2motifs [24]: This is a graph classification dataset where
the label of the graph depends on the type of motif attached

to the base graph, which is a BA random graph. The two

types of motifs are a 5-node house structure and a 5-node

circle structure.

• MUTAG [9]: Unlike other synthetic datasets, MUTAG is a

real-world molecular dataset commonly used for graph clas-

sification explanations. Each graph in MUTAG represents a

molecule, with nodes representing atoms and edges repre-

senting bonds between atoms. The labels for the graphs are

based on the chemical functionalities of the corresponding

molecules.

5.1.2 Baselines. To assess the effectiveness of the proposed frame-

work, we use representative GIB-based explanation methods, GN-

NExplainer [50] and PGExplainer [24] as baselines.We include these

two backbone explainers in our framework MixupExplainer and

replace the GIB objective with the new proposed mixup objective.

The methods are denoted by MixUp-GNNExplainer and MixUp-

PGExplainer, respectively. We also include other types of post-

hoc explanation methods for comparison, including GRAD [50],

ATT [38], SubgraphX [53], MetaGNN [33], and RG-Explainer [31].

• GRAD [50]: GRAD learns weight vectors of edges by com-

puting gradients of GNN’s objective function.

• ATT [38]: ATT distinguishes the edge attention weights in

the input graph with the self-attention layers. Each edge’s

importance is obtained by averaging its attention weights

across all attention layers.

• SubgraphX [53]: SubgraphX uses Monte Carlo Tree Search

(MCTS) to find out the connected sub-graphs, which could

preserve the predictions as explanations.

• MetaGNN [33] MetaGNN proposes a meta-explainer for

improving the level of explainability of a GNN directly at

training time by training the GNNs and the explainer in turn.

• RG-Explainer [31]: RG-Explainer is an RL-enhanced ex-

plainer for GNN, which constructs the explanation subgraph

by starting from a seed and sequentially adding nodes with

an RL agent.

• GNNExplainer [50]: GNNExplainer is a post-hoc method,

which provides explanations for every single instance by

learning an edge mask for the edges in the graph. The weight

of the edge could be treated as important.

• PGExplainer [24]: PGExplainer extends GNNExplainer by
adopting a deep neural network to parameterize the gener-

ation process of explanations, which enables PGExplainer

to explain the graphs in a global view. It also generates the

substructure graph explanation with the edge importance

mask.
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Table 1: Explanation faithfulness in terms of AUC-ROC on edges under six datasets. The higher, the better. Our mixup approach
achieves consistent improvements over backbone GIB-based explanation methods.

BA-Shapes BA-Community Tree-Circles Tree-Grid BA-2motifs MUTAG

GRAD 0.882 0.750 0.905 0.612 0.717 0.783

ATT 0.815 0.739 0.824 0.667 0.667 0.765

SubgraphX 0.548 0.473 0.617 0.516 0.610 0.529

MetaGNN 0.851 0.688 0.523 0.628 0.500 0.680

RG-Explainer 0.985 0.919 0.787 0.927 0.657 0.873

GNNExplainer 0.884±0.002 0.682±0.004 0.683±0.009 0.379±0.001 0.660±0.006 0.539±0.002
+ MixUp 0.890±0.004 0.788±0.006 0.690±0.014 0.501±0.003 0.869±0.004 0.612±0.043

(improvement) 0.60% 15.5% 1.02% 32.2% 31.7% 13.5%

PGExplainer 0.999±0.001 0.829±0.040 0.762±0.014 0.679±0.008 0.679±0.043 0.843±0.084
+ MixUp 0.999±0.001 0.955±0.017 0.774±0.004 0.712±0.000 0.920±0.031 0.871±0.079

(improvement) 0.00% 15.2% 1.57% 4.86% 35.5% 3.32%

5.1.3 Configurations. The experiment configurations are set fol-

lowing prior research [16]. A three-layer GCN model was trained

on 80% of each dataset’s instances as the target model. All expla-

nation methods used the Adam optimizer with a weight decay of

5𝑒-4 [17]. The learning rate for GNNExplainer was initialized to

0.01, with 100 training epochs. For PGExplainer, the learning rate

was set to 0.003, and the training epoch was 30. The weight of

mix-up processing, controlled by 𝜆, was determined through grid

search. Explanations are tested in all instances. While running our

approach MixUp-GNNExplainer and MixUp-PGExplainer and com-

paring them to the original GNNExplainer and PGExplainer, we set

them with the same configurations, respectively. Hyperparameters

are kept as the default values in other baselines.

5.1.4 Evaluation Metrics. Due to the existence of gold standard

explanations, we follow existing works [16, 24, 50] and adopt AUC-

ROC score on edge importance to evaluate the faithfulness of differ-

ent methods. Other metrics, such as fidelity [53], are not included

because the metrics themselves are affected by the distribution

shifting problem, making them unsuitable in our setting.

To quantitatively measure the distribution shifting between the

original graph and the explanation graph, we use Cosine score and
Euclidean distance to measure the distances between the graph

embeddings learned by the GNN model. For the Cosine score, the

range is [−1, 1], with 1 being the most similar and -1 being the least

similar. For the Euclidean distance, the smaller, the better.

5.2 Quantitative Evaluation (RQ1)
To answer RQ1, we compare MixupExplainer with other baseline

methods in terms of the AUC-ROC score. Our approach is evaluated

using the weighted vector of the graph generated by the explain-

ers, which serves as the explanation and is compared against the

ground truth to calculate the AUC-ROC score. Each experiment is

conducted 10 times with random seeds. We summarize the average

performances in Table 1.

As shown in Table 1, across all six datasets, with both GNNEx-

plainer or PGExplainer as the backbone methods, MixupExplainer

can consistently and significantly improve the quality of obtained

explanations. Specifically, Mixup-GNNExplainer improves the AUC

scores by 12.3%, on average, on the node classification datasets, and

22.6% on graph classification tasks. Similarly, MixUp-PGExplainer

achieves average improvements of 5.41% and 19.4% for node/graph

classification tasks, respectively. The comparisons between our

MixupExplainer and the original counterparts indicate the advan-

tage of the proposed explanation framework. In addition, MixUp-

PGExplainer achieves competitive and even state-of-the-art per-

formances compared with other sophisticated baselines, such as

reinforcement learning-based RG-Explainer.

5.3 Alleviating Distribution Shifts (RQ2)
In the previous section, we showed that our MixUp approach out-

performs existing explanation methods in terms of AUC-ROC. In

this section, we show the existence of the distribution shifting issue

and show our proposed mixup approach alleviates this issue and

improves the performance in explanation w.r.t. AUC.

VisualizingDistributing Shifting. In this section, we show the ex-

istence of the distribution shifting issue by visualizing the distribu-

tion vector (the output of the last layer in a well-trained GNNmodel

𝑓 ) for the original graph 𝐺 , the explanation from MixupExplainer

𝐺 (mix)
, and the ground truth explanation 𝐺∗

with t-Distributed

Stochastic Neighbor Embedding(t-SNE) [37]. To calculate distribu-

tion vectors, we use the output of the last GNN layer in 𝑓 as the

representation vector 𝒉 for the original graph. Ground truth expla-

nations 𝐺∗
and the mixup graph from MixupExplainer, 𝐺 (mix)

are

also fed into the model to achieve corresponding representations,

denoted by 𝒉∗, 𝒉(mix)
, respectively. The visualization results can

be found in Figure 4. The red points represent the vectors from

original graphs G; the blue points represent vectors from substruc-

ture explanations G′
, and the green points represent the vectors

from the mixup explanations G′
𝑚𝑖𝑥

. Note that for BA-2motifs, while

there are multiple graphs in the dataset, with only two kinds of

motifs as explanations, t-SNE only shows two blue points, which

are actually multiple overlapping blue points. From Figure 4, we

have the following observations:

• The blue points shift away from the red points in most datasets,

including both synthetic and real-world datasets. It means that the

distribution shifting issue exists in most cases, where most existing

work overlooked this issue.

• The green points are inseparable from the red points in most
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Table 2: The Cosine score and Euclidean distance between the distribution vectors of the original graph 𝒉, explanation subgraph
𝒉∗, and ourmixup graph 𝒉(mix) on different datasets. Large Cosine scores and small Euclidean distances indicate high similarities
between representations. The standard deviations of Avg. Cosine(𝒉,𝒉∗) and Avg. Euclidean(𝒉,𝒉∗) are not included because they
are static without random processes.

BA-Shapes BA-Community Tree-Circles Tree-Grid BA-2motifs MUTAG

Avg. Cosine(𝒉,𝒉∗) 0.574 0.483 0.962 0.629 0.579 0.775

Avg. Cosine(𝒉,𝒉(mix) ) 0.940±0.005 0.644±0.006 0.953±0.006 0.810±0.004 0.901±0.000 0.852±0.006
Avg. Euclidean(𝒉,𝒉∗) 1.30 1.31 0.213 0.921 1.32 1.07

Avg. Euclidean(𝒉,𝒉(mix) ) 0.440±0.014 1.10±0.010 0.211±0.011 0.582±0.006 0.587±0.001 0.816±0.011

(a) BA-Shapes (b) BA-Community (c) Tree-Circles

(d) Tree-Grid (e) BA-2motifs (f) MUTAG

Figure 4: Visualizations of the distribution shifting issue with t-SNE on six datasets. The points are generated with the output
before the last layer of the model to be explained 𝑓 , which is then plotted with t-SNE. The red points mean original graphs 𝐺 ,
the blue points mean substructure explanations 𝐺∗, and the green points mean mixup explanations 𝐺 (𝑚𝑖𝑥 ) . Green dots align
well with red dots, while blue dots shift away from red dots.

datasets. It means that the explanation from MixupExplainer aligns

well with the original graph’s distribution, which indicates our

mixup approach’s effectiveness in alleviating the distribution shift-

ing issue.

• The shifting between blue points and red points is more obvi-

ous in the MUTAG dataset, where the green points generated by

MixupExplainer still align well with the red points. This shows our

method with mixup works well not only in synthetic datasets but

also in the real-world dataset.

Measuring Distances. In this section, we quantitatively assess the

distribution shifting issue by measuring the distances between the

distribution vector 𝒉 from the original graphs and the explanation

subgraphs 𝒉∗ and 𝒉(mix)
. We report the averaged Cosine score and

the Euclidean distance between different types of representation

vectors in Table 2. From the results, we can see that, on average,

𝒉(mix)
has a higher Cosine score and a smaller Euclidean distance

with 𝒉 than 𝒉∗, indicating more similarity of distribution between

𝐺 (mix)
and𝐺 than that between𝐺∗

and𝐺 . The smaller distances be-

tween representation vectors demonstrate that our Mixup approach

can effectively alleviate the distribution shifting problem caused

by the inductive bias in the prediction model 𝑓 . As 𝐺 (mix)
better

estimates the distribution of the original graphs, MixupExplainer

can consistently improve the performance of existing explainers.

Correlation with Performance Improvements. We quantita-

tively evaluate the correlation between the improvements of AUC-

ROC scores of MixupExplainer over basic counterparts and the

improvements in distances with our mixup approach. We calculate

the improvements of AUC-ROC scores from GNNExplainer and PG-

Explainer over GNNExplainer and PGExplainer without mixup (de-

noted asΔ
GNNExplainer

AUC
andΔ

PGExplainer

AUC
, respectively). The improve-

ments of average Cosine(𝒉,𝒉(mix) ) over average Cosine(𝒉,𝒉∗) is
denoted by ΔCosine, and the improvements on Euclidean distance is
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Figure 5: Correlation between improvements of AUC-ROC
scores in explanation performance and the improvements of
distribution distances on different datasets. The value of 𝑟
indicates the Pearson correlation coefficient, and the values
with ∗ indicate statistical significance for correlation, where
∗∗∗ indicates the p-value for testing non-correlation 𝑝 ≤ 0.001.

(a) AUC for different 𝜆 (b) Distances for different 𝜆

Figure 6: Hyper parameter analysis of 𝜆 on BA-2motifs with
Mixup-PGExplainer. (a) The performance of explanationw.r.t
AUC. The blue line represents the mean AUC score with stan-
dard deviations over ten runs with different random seeds
on each 𝜆 value. The red line represents the performance of
the baseline PGExplainer. (b) The distances between 𝒉 and
𝒉(mix) for different 𝜆. The blue and yellow lines represent
the mean of the Cosine score and Euclidean distance with
standard deviations, respectively.

Δ
Euclidean

. Figure 5 shows the correlation between Δ
GNNExplainer

AUC
,

Δ
PGExplainer

AUC
, ΔCosine, and Δ

Euclidean
. We can see that all these four

improvements strongly correlated to each other with statistical sig-

nificance, indicating the improvements achieved byMixupExplainer

in explanations accuracy own to the successful alleviation of the

distribution shifting issue.

(a) AUC for different 𝜂 (b) Distances for different 𝜂

Figure 7: Hyperparameter analysis of 𝜂 on BA-2motifs with
Mixup-PGExplainer. (a) The performance of explanationw.r.t
AUC. (b) The distances between 𝒉 and 𝒉(mix) for different 𝜂.

5.4 Parameter Study (RQ3)
In this section, we investigate the hyperparameters of our approach,

which include 𝜆 and 𝜂, on the BA-2motifs dataset. The hyperparam-

eter 𝜆 controls the weight on the original graph during the mixup

process. We find the optimal value of 𝜆 by tuning it within the

[0, 1] range. Note that, with 𝜆 = 0, Eq. (7) is trivial and doesn’t help

explain 𝐺𝑎 with only 𝑨𝑏 . The experimental results can be found

in Figure 6. We can see that the best performance is achieved with

𝜆 = 0.1 and that the approach consistently outperforms the best

performance from baselines with 𝜆 ∈ [0.05, 1]. The hyperparame-

ter 𝜂 is the number of cross-graph edges during mixup, indicating

the connectivity between label-dependent explanations and label-

independent subgraphs. We tune it within the [1, 20] range on the

BA-2motifs dataset. The results in Figure 7 show that the best per-

formance is achieved with 𝜂 = 1. With different 𝜂, our approach

shows stable and consistently better performance than the best

baseline.

6 CONCLUSION
In this work, we study the distribution shifting problem to obtain

robust explanations for GNNs, which is largely neglected by the

existing GIB-based post-hoc instance-level explanation framework.

With a close analysis of the explanation methods of GNNs, we

emphasize the possible distribution shifting issue induced by the

existing framework. We propose a simple yet effective approach to

address the distribution shifting issue by mixing up the explana-

tion with a randomly sampled base graph structure. The designed

algorithms can be incorporated into existing methods with no ef-

fort. Experiments validate its effectiveness, and further theoretical

analysis shows that it is more effective in alleviating the distribu-

tion shifting issue in graph explanation. In the future, we will seek

more robust explanations. Increased robustness indicates stronger

generality and could provide better class-level interpretation at the

same time.
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A APPENDIX
A.1 Graph Mixup Algorithm

Algorithm 1 Graph Mixup Algorithm

Input: Graph 𝐺𝑎 = (𝑿𝑎,𝑨𝑎), a set of graphs G, the number of

random connections 𝜂, explanation model 𝑔.

Output: Graph 𝐺 (mix)
.

1: Randomly sample a graph 𝐺𝑏 = (𝑨𝑏 ,𝑿𝑏 ) from G
2: Generate mask matrix 𝑴𝑎 = 𝑔(𝐺𝑎)
3: Generate mask matrix 𝑴𝑏 = 𝑔(𝐺𝑏 )
4: Sample 𝜂 random connections between 𝐺𝑎 and 𝐺𝑏 as 𝑨𝑐

5: Mixup adjacency matrix 𝑨(mix)
with Eq. (10)

6: Mixup edge mask 𝑴 (mix)
with Eq. (11)

7: Mixup node features 𝑿 (mix) = [𝑿𝑎 ;𝑿𝑏 ]
8: return 𝐺 (mix) = (𝑿 (mix) ,𝑴 (mix) ⊙ 𝑨(mix) )
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