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ABSTRACT

Graph Neural Networks (GNNs) have received increasing attention
due to their ability to learn from graph-structured data. However,
their predictions are often not interpretable. Post-hoc instance-level
explanation methods have been proposed to understand GNN pre-
dictions. These methods seek to discover substructures that explain
the prediction behavior of a trained GNN. In this paper, we shed
light on the existence of the distribution shifting issue in existing
methods, which affects explanation quality, particularly in applica-
tions on real-life datasets with tight decision boundaries. To address
this issue, we introduce a generalized Graph Information Bottleneck
(GIB) form that includes a label-independent graph variable, which
is equivalent to the vanilla GIB. Driven by the generalized GIB, we
propose a graph mixup method, MixupExplainer, with a theoretical
guarantee to resolve the distribution shifting issue. We conduct
extensive experiments on both synthetic and real-world datasets
to validate the effectiveness of our proposed mixup approach over
existing approaches. We also provide a detailed analysis of how our
proposed approach alleviates the distribution shifting issue.
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1 INTRODUCTION

Graph Neural Networks (GNNs) [29], a powerful technology for
learning knowledge from graph-structured data, are gaining in-
creasing attention in today’s world, where graph-structured data
such as social networks [12, 27], molecular structures [6, 25], traffic
flows [19, 21, 41, 47], and knowledge graphs [32] are widely used.
GNNs work by propagating and fusing messages from neighbor-
ing nodes on the graph using message-passing mechanisms. These
networks have achieved state-of-the-art performance in tasks like
node classification, graph classification, graph regression, and link
prediction.

Despite their success, GNNs, like other neural networks, lack
interpretability. Understanding how GNNs make predictions is
crucial for several reasons. First, it can increase user confidence
when using GNNs in high-stakes applications [23, 52]. Second, it
enhances the transparency of the models, making them suitable for
use in sensitive fields such as healthcare and drug discovery, where
fairness, privacy, and safety are critical concerns [22, 44, 55]. Thus,
exploring the interpretability of GNNs is essential.

A common solution to improve GNN models’ transparency is
applying post-hoc instance-level explainability methods. These
methods identify key substructures in input graphs to explain pre-
dictions made by trained GNN models, making it easier for humans
to understand the models’ inner workings. Examples of such meth-
ods include GNNExplainer [50], which determines the importance
of nodes and edges through perturbation, and PGExplainer[24],
which trains a graph generator to incorporate global information.
Recent studies in the field [11, 30] also contribute to the develop-
ment of these methods. Post-hoc explainability methods can be
classified under a label-preserving framework, where the expla-
nation is a substructure of the original graph and preserves the
information about the predicted label. On top of the intuitive prin-
ciple, Graph Information Bottleneck (GIB) [26, 46, 51] maximizes
the mutual information I(G*,Y) between the target label Y and
the explanation G* while constraining the size of the explanation
as the mutual information between the original graph G and the
explanation G*.

Approximating the mutual information between the label Y and
explanation G* is challenging due to its intractability, so previ-
ous works [24, 26, 50] usually estimate I(G*, Y) using I(f(G*),Y),
the mutual information between the predictions f(G*) from GNN
model f and its label Y. However, this approximation overlooks
the distribution shifting issue between the original graph G and
explanation G* after the processing of the prediction model f. Due
to differences in properties like the number of nodes or the struc-
tures in G, G* could have a different distribution from G. As seen in
Figure 1, the visualization of the embeddings for the original graph
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Figure 1: Visualization of original graphs G, explanation sub-
graphs G, and our generated graphs G(mix) There is a large
distributional divergence between explanation subgraphs
G* and original graphs G. G, and G, are two graphs in the
original dataset. More experimental results on the existence
of the distributional divergence can be found in Section 5.3.

and its explanation shows that the explanation embeddings are out
of distribution with respect to the original graphs, which leads to
impaired safe usage of the approximation because of the inductive
bias in f. The negative impact of the distribution shifting problem
on explanation quality is especially pronounced when applied to
complex real-world datasets with tight decision boundaries.

While the distribution shifting issue in post-hoc explanations
has gained growing attention in computer vision [5], this issue is
less explored in the graph domain. In computer vision, [5] optimizes
image classifier explanations to highlight contextual information
relevant to the prediction and consistent with the training dis-
tribution. [28] addresses the distribution shifting issue in image
explanation via a module that quantifies affinity between perturbed
data and original dataset distribution. In the graph domain, while
a recent work [11] attempts to address distribution shifting by an-
nealing the size constraint coefficient at the start of the explanation
process, the distribution shifting issue still persists throughout the
explanation process.

To address the distribution shifting issue in post-hoc graph ex-
planation, we introduce a general form of Graph Information Bottle-
neck (GIB) that includes another label-independent graph variable
G2, This new form of GIB is proven equivalent to vanilla GIB.
By having G” in the objective, we can alleviate the distribution
shifting problem with theoretical guarantees. To further improve
the explanation method, we propose MixupExplainer using an im-
proved Mixup approach. The MixupExplainer assumes that a non-
explainable part of a graph is label-independent and mixes the
explanation with a non-explainable structure from another ran-
domly sampled graph. The explanation substructure is obtained
by minimizing the difference between the predicted labels of the
original graph and the mixup graph.

To the end, we summarize our contributions as follows.

o For the first time, we point out that the distribution shifting
problem is prevalent in the most popular post-hoc explana-
tion framework for graph neural networks.
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e We derive a generalized framework with a solid theoretical
foundation to alleviate the problem and propose a straight-
forward yet effective instantiation based on mixing up the
explanation with a randomly sampled base structure by align-
ing the graph and mixing the graph masks.

Comprehensive empirical studies on both synthetic and real-
life datasets demonstrate that our method can dramatically
and consistently improve the quality of the explanations,
with up to 35.5% in AUC scores.

2 RELATED WORK

2.1 Graph Neural Networks

The use of graph neural networks (GNN) is on the rise for analyzing
graph structure data, as seen in recent research studies [7, 12, 14].
There are two main types of GNNs: spectral-based approaches [4, 18,
34] and spatial-based approaches [1, 10, 48]. Despite the differences,
message passing is a common framework for both, using pattern
extraction and message interaction between layers to update node
embeddings. However, GNNss are still considered a black box model
with a hard-to-understand mechanism, particularly for graph data,
which is harder to interpret compared to image data. To fully utilize
GNNs, especially in high-risk applications, it is crucial to develop
methods for understanding how they work.

2.2 GNN Explanation

Many attempts have been made to interpret GNN models and ex-
plain their predictions [24, 31, 33, 42, 50, 53]. These methods can be
grouped into two categories based on granularity: (1) instance-level
explanation, which explains the prediction for each instance by
identifying significant substructures [31, 50, 53], and (2) model-
level explanation, which seeks to understand the global decision
rules captured by the GNN [2, 24, 33]. From a methodological per-
spective, existing methods can be classified as (1) self-explainable
GNNs [2, 8], where the GNN can provide both predictions and
explanations, and (2) post-hoc explanations [24, 50, 53], which use
another model or strategy to explain the target GNN. In this work,
we focus on post-hoc instance-level explanations, which involve
identifying instance-wise critical substructures to explain the pre-
diction. Various strategies have been explored, including gradient
signals, perturbed predictions, and decomposition.

Perturbed prediction-based methods are the most widely used
in post-hoc instance-level explanations. The idea is to learn a per-
turbation mask that filters out non-important connections and
identifies dominant substructures while preserving the original pre-
dictions. For example, GNNExplainer [50] uses end-to-end learned
soft masks on node attributes and graph structure, while PGEx-
plainer [24] incorporates a graph generator to incorporate global
information. RG-Explainer [31] uses reinforcement learning tech-
nology with starting point selection to find important substructures
for the explanation.

However, most of these methods fail to consider the distribution
shifting issue. The explanation should contain the same information
that contributes to the prediction, but the GNN is trained on a data
pattern that consists of an explanation subgraph relevant to labels,
and a label-independent structure, leading to a distribution shifting
problem when feeding the explanation directly into the GNN. Our
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method aims to capture the distribution information of the graph
and build the explanation with a label-independent structure to help
the explainer better minimize the objective function and retrieve a
higher-quality explanation.

2.3 Graph Data Augmentation with Mixup

Data augmentation addresses issues such as noise, scarcity, and out-
of-distribution problems. One popular data augmentation approach
is using Mixup [54] strategy to generate synthetic training examples
based on feature mixing and label mixing. Specifically, [40, 43] mix
the graph representation learned from GNNs to avoid dealing with
the arbitrary structure in the input space for mixing a node or
graph pair. ifMixup [13] interpolates both the node features and
the edges of the input pair based on feature mixing and graph
generation. [15] and [45] generate interpolated graphs with the
estimation of the properties in the graph data, like the graphon of
each class or nearest neighbors of target nodes. All the previous
methods [13, 15, 39, 40, 43] aim to generalize the mixup approach to
improve the performance of classification models like GNNs. Unlike
existing graph mixup approaches, this paper solves a different task,
which is to generalize the explanations for GNN.

3 PRELIMINARY

3.1 Notations and Problem Definition
We denote a graph as G = (V, &; X, A), where V = {v1,02, ...,0n}
represents a set of n nodes and & € V X V represents the edge set.
Each graph has a feature matrix X € R"*4 for the nodes, where
in X, x; € R14 is the d-dimensional node feature of node v;. & is
described by an adjacency matrix A € {0, 1}"*". A;; = 1 means
that there is an edge between node v; and vj; otherwise, A;; = 0.
For graph classification task, each graph G; has a label Y; € C,
with a GNN model f trained to classify G; into its class, i.e., f :
(X, A) — {1,2,...,C}. For the node classification task, each graph
G; denotes a K-hop sub-graph centered around node v;, with a
GNN model f trained to predict the label for node v; based on the
node representation of v; learned from G;.

PROBLEM 1 (PosT-HOC INSTANCE-LEVEL GNN EXPLANATION). Given
a trained GNN model f, for an arbitrary input graph G = (V, &; X, A),
the goal of post-hoc instance-level GNN explanation is to find a sub-
graph G* that can explain the prediction of f on G.

Informative feature selection has been well studied in non-graph
structured data [20], and traditional methods, such as concrete
autoencoder [3], can be directly extended to explain features in
GNN:ss. In this paper, we focus on discovering important typologies.
Formally, the obtained explanation G* is depicted by a binary mask
M € {0,1}"" on the adjacency matrix, e.g., G* = (V,E,A 0
M; X), © means elements-wise multiplication. The mask highlights
components of G which are essential for f to make the prediction.

3.2 Graph Information Bottleneck

The Information Bottleneck (IB) [35, 36] provides an intuitive prin-
ciple for learning dense representations that an optimal represen-
tation should contain minimal and sufficient information for the
downstream prediction task. Based on IB, a recent work unifies
the most existing post-hoc explanation methods for GNN, such as
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GNNExplainer [50], PGExplainer [24], with the graph information
bottleneck (GIB) principle [26, 46, 51]. Formally, the objective of
explaining the prediction of f on G can be represented by

argminI(G, G*) — aI(G*,Y), (1)
G*

where G* is the explanation subgraph, Y is the original or ground
truth label, and « is a hyper-parameter to get the trade-off between
minimal and sufficient constraints. GIB uses the mutual information
I(G, G*) to select the minimal explanation that inherits only the
most indicative information from G to predict the label Y by maxi-
mizing I(G*,Y), where I(G, G*) avoids imposing potentially biased
constraints, such as the size or the connectivity of the selected sub-
graphs [26]. Through the optimization of the subgraph, G* provides
model interpretation. Further, from the definition of mutual infor-
mation, we have I(G*,Y) = H(Y) — H(Y|G*), where the entropy
H(Y) is static and independent of the explanation process. Thus,
minimizing the mutual information between the explanation sub-
graph G* and Y can be reformulated as maximizing the conditional
entropy of Y given G*. Formally, we rewrite the GIB objective as
follows:

argminI(G, G*) + aH(Y|G"), (2
7

As is shown in Figure 2(a), the objective function in Eq. (2) optimizes
G” to have the minimal mutual information with the original graph
G, which could be expressed as a subgraph from G with a smaller
size, or scattered components in G, while at the same time provides
maximum mutual information for Y, which is equivalent to have
minimum entropy H(Y|G").

Due to the intractability of entropy of the label conditioned on
explanation, a widely-adopted approximation in previous meth-
ods [24, 50, 56] is:

argmin I(G,G") + aH(Y|G") ~ argmin I(G,G*) + aCE(Y, Y"),
G* G*

®3)
where Y* = f(G") is the predicted label of G* made by the model
to be explained, f and the cross-entropy CE(Y, Y*) between the
ground truth label Y and Y* is used to approximate H(Y|G").

4 METHODOLOGY

In this section, we first introduce an overlooked problem in the GIB
objective. Then we propose a generalized GIB objective to address
the problem, which directly inspires our method through a mixup
approach.

4.1 Generalized GIB

4.1.1 Diverging Distributions in Eq. (3). Although prevalent, the
approximation with Y* = f(G*) in Eq. (3) overlooks the distri-
butional divergence between the original graph G and the dense
subgraph G* after the processing of the prediction model f. An
intuitive example from the MUTAG dataset [9] is shown in Figure 1.
The prediction model f, represented by a hypothesis line, performs
well in classifying the positive and negative samples. Due to the dis-
tribution shifting problem naturally inherent in f(G) and f(G*) on
explanation subgraphs, f maps some explanation subgraphs across
the decision boundary to the negative region. As a result, the expla-
nation subgraph achieved by Eq. (3) may be suboptimal and even



KDD ’23, August 6-10, 2023, Long Beach, CA, USA

H(G) H(Y) H(G) H(®Y) H(G) H(Y)
o G Go
0 IG,GY)
W s =1(G"Y) 08 Ss=H(Y|6", 6% When S, =0,
S, = H(Y|G*) B S, = 162 Y|67) S;=S5,

(a) Previous GIB Objective (b) Our Generalized GIB Objective
Figure 2: Illustration of GIB and our proposed new objec-
tive. (a) Previous vanilla GIB objective aims to minimize
I(G*,Y) and H(Y|G*), with a smaller overlap between G* and
G. (b) Our generalized GIB objective has the same objective
as vanilla GIB, with a larger lap between G and G* + G2, re-
sulting in less distribution shifting issue.

far away from the ground truth explanation due to the significant
divergence between f(G*) and f(G). The existing GIB framework
could work for simple synthetic datasets by relying on the implicit
knowledge associated with the class and assuming a large decision
margin between the two or more classes. However, in more prac-
tical scenarios like MUTAG, the existing approximation may be
heavily affected by the distribution shifting problem [11, 26].

4.1.2  Addressing with Label-independent Subgraph. To address the
above challenge in the previous GIB methods, we first generalize
the existing GIB framework by taking a label-independent subgraph
G’ into consideration. The intuition is that for an original graph
G, with label Yy, the label-independent subgraph G4 also contains
useful information. For example, G5 makes sure that connecting it
with the label-preserving subgraph G}, will not lead to another label.
Formally, given a graph variable G* that satisfies I(G®, Y|G*) = 0,
the GIB objective can be generalized as follows.

argminI(G,G") + aH(Y|G*,G?), st I(GPY|G*)=0. (4)
G*

As shown below, our generalized GIB has the following property.

Property 1. The generalized GIB objective, Eq. (4) is equivalent to
vanilla GIB, Eq. (2).

This can be proved by the definition of conditional entropy.
With the condition that I(G2, Y|G*) = 0, we have H(Y|G*) =
H(Y|G*)+I(G?, Y|G*) = H(Y|G*, G?). Thus, the optimal solutions
of GIB and our generalized version are equivalent. In addition,
the advantage of our objective is that by choosing a suitable G*
that minimizes the distribution distance, D(G* + GA, G), we can
approximate the GIB without including the distribution shifting
problem. An intuitive illustration is given in Figure 2(b).

Following exiting work [24, 50], we can further approximate
H(Y|G*,G?) with CE(Y, Y™), where Y™ = f(G* + G™) is the pre-
dicted label of G* + G® made by the model f to be explained. Es-
pecially when G is an empty graph, our objective degenerates to
the vanilla approximation. Formally, we derive our new objective
for GNN explanation as follows:

3289

Jiaxing Zhang, Dongsheng Luo, & Hua Wei

argmin I(G,G") + aCE(Y,Y™)
GAGH (5)
st D(G* +G",G) = 0,I(G”, Y|G*) = 0.

4.2 MixupExplainer

Inspired by Eq. 5, in this section, we introduce a straightforward yet
theoretically guaranteed instantiation, MixupExplainer, to resolve
the distribution shifting issue. Figure 3 demonstrates the overall
framework of the proposed MixupExplainer and the differences be-
tween MixupExplainer and previous GIB methods. MixupExplainer
includes a graph generation phase after extracting the explanation
of the graph with the explainer. Specifically, we instantiate the
G from the distribution of label-independent subgraphs from the
graph dataset, denoted as P 5 , and connect G* and G to generate

a new graph GMX) Formally,

G ~Pgw, G™¥ =G"+G". (6)
To avoid the trivial case that G = G(™X) when sampling G2, we
dismiss the original graph itself. In addition, since G? is sampled
without considering the label information, we can make a safe
assumption that I(G2, Y|G*) = 0.

As stated in Problem 1, given a graph G, = (Ag4 X,)! and a
to-be-explained model f, an explanation model g aims to learns a
subgraph G}, represented with the edge mask M, = g(G,) on the
adjacency matrix A,. To generate a graph distributed similarly to
Gg, we need to generate a label-independent subgraph, where we
randomly sample another graph instance from the dataset, denoted
by Gy, without considering the label information. With the expla-
nation model g, we obtain the corresponding edge mask M, for
Gp. Then, we mix these two graphs by connecting the informative
part in G, and the label-independent part in Gy,. We first assume
that G, and Gy, share the same set of nodes, and more general cases
are discussed in the next section. Formally, the mask of the mixed

graph, M,Emi"), is calculated as follows.

M) =AM, + (A — AMy), )

where A is the adjacency matrix of graph Gy and A is a hyper-
parameter to support flexible usage of mixup operation. Then, we
have Gémix) = (Xa Mt(lmix) ). The mask matrix M, and M, denote
the weight of the edges in A, and Ay, respectively, with the same
size of the matrix. By default, we mix up G}, with the rest part of the
Gy, by setting A = 1 and above formula could be further simplified
as:

M = M, + (A — M), (8)

Note that our proposed mixup approach is different from tradi-
tional mixup approaches [15, 49, 54] in data augmentation, where
they usually follow a form similar to M™% = M, + (1 — 1) Mp.
This form of mixup does not differentiate label-dependent from
label-independent parts. On the contrary, our proposed mixup ap-
proach in Eq. (7) includes the label-dependent part in G, with AM,
and excludes the label-dependent part in G by subtracting the
same A on My, from Ay.

1We dismiss V and & to simplify the notations.



MixupExplainer: Generalizing Explanations for Graph Neural Networks with Data Augmentation

minI(G,G")

l Explanation I

v modl v
Original o, A oS
graph G AL, —— ‘
| Explanation
subgraph G*

“
To-be-explained
prediction model f [l]Iﬂl fmlﬂl
)4 e

(a) Vanilla GIB

fﬂllﬂl

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Task-irrelevant

. * -~
minI(G,G") Y subgraph G*~P
_____ { -
Explanation \
del
Kf' ' Mixup .3. Y
L > ey 0
() — I
¢ Y e ( N 7
> Graph G (M%)
Explanation [m]
subgraph G* f l
v y(mix)

min CE(Y; ¥ %))

(b) Our MixupExplainer Framework

Figure 3: Illustration of the GIB-based explanation and our proposed MixupExplainer. (a) Vanilla GIB directly minimizes
CE(Y,Y*), which is the cross entropy between the original prediction Y and the prediction of explanation subgraph G* made by
the to-be-explained model f. (b) Our MixupExplainer first generates an augmented graph G(mix) by mixing up the explanation
subgraph G* with the label-independent part from another randomly sampled graph. Then we minimize the cross entropy

between Y and Y(™iX) the prediction made by f on G(mix)

4.2.1 Implementation. In this section, we introduce the implemen-
tation details of the mixup function and provide the pseudo-code
of graph mixup in Algorithm 1.

Given a graph G, with n, nodes and another graph G;, with
np, nodes, the addition in Eq. (7) between two matrices requires
M, and M;, have the same dimensions, i.e., G, and Gy have the
same number of nodes. However, in real-world graph datasets,
this assumption may not hold, leading to a mismatch between the
dimensions of M, and My, In order to merge two graphs with
different sets of nodes, we first extend node sets in G, and Gy, to a
single node set V,; UV}, and their adjacency matrices are calculated
with the following functions:

el 4

where 0, and 0, are zero matrices with shapes n, X ng and ny, X ny,
respectively.

0
0p

Oa
0

0

ext _ Aa
A; —[ o A, ©)

After extending G, and Gp,, we then merge them into G(™¥) =
(X(mix),MEIMix) © AMX)) where X (M%) = [X4; Xp] is the con-
catenation of node features X, and Xp; A(™X) is the merged adja-
cency matrix; Mﬁ{”ix) is the edge mask indicating the edge weights
for the explanation.

Specifically, the adjacency matrix of G (™) jg:

(10)

where A. is a matrix indicating the cross-graph connectivity be-
tween the nodes in G, and Gp. In practice, we randomly sample n
cross-graph edges to connect G, and Gy, at each mixup step to en-
sure the mixed graph is a connected graph to be optimized together
on both label-dependent and label-independent subgraphs.
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Similarly, the edge mask matrix is obtained from extended M,
and M, and calculated with Eq. (7). Formally, we have

AM, M,
ML A, - M,
where the explainer g gives the M, and My, M, is the weight matrix
on the randomly-sampled cross-graph edges corresponding with
A, where the values are randomly sampled on connected edges in
A, at each mixup step and thus will not be optimized by g.
Finally, we can mixup the edge weight matrices Mt and MlejXt

M{m) (11)

(mix)

together with Eq. (7). The mixed graph G, is then fed into the
GNN model f to calculate the predicted result Y ™*) The detailed
implementation is shown in Algorithm 1.

4.2.2 Computational Complexity Analysis. Here, we analyze the
computational complexity of our mixup approach. Given a graph
Gg and a randomly sampled graph Gy, the complexity of graph
extension on adjacency matrices and edge masks is O(|Eq4| + |Ep),
where |Eg4| and |Ep| denote the number of edges in G, and Gy,
respectively. To generate 5 cross-graph edges, the computational
complexity is O(1). For mixup, the complexity is O(|E,4| + |Epl).
By considering 7 as a small constant, the overall complexity of our
mixup approach is O(|E,4| + |Ep|)-

4.2.3 Theoretical Justification. In the following, we theoretically
prove that: the proposed mixup approach could reduce the distance
between the explanation and original graphs. Formally, we have the
following theorem:

THEOREM 1. Given an original graph G, graph explanation G* and
G(mix) generated by Eq. (7), we have KL(G, G*) > KL(G, G(mix)),

ProOF SKETCH. According to the previous work [24, 50], a graph
G canbe treated as G = G(¢) + G where G(©) presents the under-
lying subgraph that makes important contributions to GNN’s predic-
tions, which is the expected explanatory graph, and G consists of
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the remaining label-independent edges for predictions made by the
GNN. Assuming the graph G'© and G independently follow the
distribution P ) and P g respectively, denoted as G ~Pp g
and G ~ P g(», we randomly sample G, = Glge) + Gl(;i) from the
data set. Both G and G}, follow the distribution Pg = [Pg(g)’g(,-).
We could get our Mixup explanation:

(12)

Then, we have Pgmix) = Pge) * Pgw = Pg. Itis easy to show
that KL(G, G(MX)) = 0. Thus, we have

G = G 4 (G, - G\)) =G + GV,

KL(G,G*) > KL(G, G™mix)) (13)

O

The theoretical justification shows that our objective function
could better estimate the explanation distribution and resolve the
distribution shifting issue than the previous approach. In addition,
with a safe assumption that I(G2, Y|G*) = 0, as discussed in Eq. (6),
we have MixupExplainer satisfy the s.t. condition in Eq. (5). Thus,
we can simplify the objective for MixupExplainer as:

argmin (G, G*) + aCE(Y, Y(™)) (14)
e

5 EXPERIMENTAL STUDY

We conduct comprehensive experimental studies on benchmark
datasets to empirically verify the effectiveness of the proposed
MixupExplainer. Specifically, we aim to answer the following re-
search questions:

e RQ1: Can the proposed framework outperform the GIB in
identifying explanatory substructures for GNNs?

e RQ2: Is the distribution shifting issue severe in the exist-
ing GNN explanation methods? Could the proposed Mixup
approach alleviate this issue?

e RQ3: How does the proposed approach perform under dif-
ferent hyperparameters?

5.1 Experiment Settings

5.1.1 Datasets. We focus on analyzing the effects of the distribu-
tion shifting problem between the ground truth explanation and the
original graphs. Thus, we select six publicly available benchmark
datasets with ground truth explanations in our empirical studies 2.

e BA-Shapes [50]: This is a node classification dataset based
on a 300-node Barabasi-Albert (BA) graph, to which 80 "house"
motifs have been randomly attached. The nodes are labeled
for use by GNN classifiers, while the edges within the corre-
sponding motif serve as ground truth for explainers. There
are four classes in the classification task, with one class indi-
cating nodes in the base graph and the others indicating the
relative location of nodes in the motif.

¢ BA-Community [50]: This extends the BA-Shapes dataset
to more complex scenarios with eight classes. Two types of
motifs are attached to the base graph, with nodes in different
motifs having different labels.

2All the dataset and codes can be found in https://github.com/jz48/MixupExplainer
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e Tree-Circles [50]: This is a node classification dataset with
two classes, with a binary tree serving as the base graph
and a 6-node cycle structure as the motif. The labels only
indicate if the nodes are in the motifs.

Tree-Grid [50]: This is a node classification dataset created
by attaching 80 grid motifs to a single 8-layer balanced binary
tree. The labels only indicate if the nodes are in the motifs,
and edges within the relative motif are used as ground-truth
explanations.

BA-2motifs [24]: This is a graph classification dataset where
the label of the graph depends on the type of motif attached
to the base graph, which is a BA random graph. The two
types of motifs are a 5-node house structure and a 5-node
circle structure.

MUTARG [9]: Unlike other synthetic datasets, MUTAG is a
real-world molecular dataset commonly used for graph clas-
sification explanations. Each graph in MUTAG represents a
molecule, with nodes representing atoms and edges repre-
senting bonds between atoms. The labels for the graphs are
based on the chemical functionalities of the corresponding
molecules.

5.1.2  Baselines. To assess the effectiveness of the proposed frame-
work, we use representative GIB-based explanation methods, GN-
NExplainer [50] and PGExplainer [24] as baselines. We include these
two backbone explainers in our framework MixupExplainer and
replace the GIB objective with the new proposed mixup objective.
The methods are denoted by MixUp-GNNExplainer and MixUp-
PGExplainer, respectively. We also include other types of post-
hoc explanation methods for comparison, including GRAD [50],
ATT [38], SubgraphX [53], MetaGNN [33], and RG-Explainer [31].

GRAD [50]: GRAD learns weight vectors of edges by com-
puting gradients of GNN’s objective function.

ATT [38]: ATT distinguishes the edge attention weights in
the input graph with the self-attention layers. Each edge’s
importance is obtained by averaging its attention weights
across all attention layers.

SubgraphX [53]: SubgraphX uses Monte Carlo Tree Search
(MCTS) to find out the connected sub-graphs, which could
preserve the predictions as explanations.

MetaGNN [33] MetaGNN proposes a meta-explainer for
improving the level of explainability of a GNN directly at
training time by training the GNNs and the explainer in turn.
RG-Explainer [31]: RG-Explainer is an RL-enhanced ex-
plainer for GNN, which constructs the explanation subgraph
by starting from a seed and sequentially adding nodes with
an RL agent.

GNNExplainer [50]: GNNExplainer is a post-hoc method,
which provides explanations for every single instance by
learning an edge mask for the edges in the graph. The weight
of the edge could be treated as important.

PGExplainer [24]: PGExplainer extends GNNExplainer by
adopting a deep neural network to parameterize the gener-
ation process of explanations, which enables PGExplainer
to explain the graphs in a global view. It also generates the
substructure graph explanation with the edge importance
mask.
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Table 1: Explanation faithfulness in terms of AUC-ROC on edges under six datasets. The higher, the better. Our mixup approach
achieves consistent improvements over backbone GIB-based explanation methods.

BA-Shapes BA-Community Tree-Circles Tree-Grid BA-2motifs MUTAG
GRAD 0.882 0.750 0.905 0.612 0.717 0.783
ATT 0.815 0.739 0.824 0.667 0.667 0.765
SubgraphX 0.548 0.473 0.617 0.516 0.610 0.529
MetaGNN 0.851 0.688 0.523 0.628 0.500 0.680
RG-Explainer 0.985 0.919 0.787 0.927 0.657 0.873
GNNExplainer | 0.884.0.002 0.682+0.004 0.68310.0090 0.37910.001 0.660+0.006 0.539+0.002
+ MixUp 0.890+0.004 0.788+0.006 0.6904+0.014 0.50140.003 0.869+0.004 0.61210.043
(improvement) 0.60% 15.5% 1.02% 32.2% 31.7% 13.5%
PGExplainer | 0.999.0.001 0.829.40.040 0.762+0.014 0.679+0.008 0.679+0.043 0.843.+0.084
+ MixUp 0.999.0.001 0.95540.017 0.77410.004 0.71240.000 0.920+0.031 0.8714+0.079
(improvement) 0.00% 15.2% 1.57% 4.86% 35.5% 3.32%

5.1.3 Configurations. The experiment configurations are set fol-
lowing prior research [16]. A three-layer GCN model was trained
on 80% of each dataset’s instances as the target model. All expla-
nation methods used the Adam optimizer with a weight decay of
5e-4 [17]. The learning rate for GNNExplainer was initialized to
0.01, with 100 training epochs. For PGExplainer, the learning rate
was set to 0.003, and the training epoch was 30. The weight of
mix-up processing, controlled by A, was determined through grid
search. Explanations are tested in all instances. While running our
approach MixUp-GNNExplainer and MixUp-PGExplainer and com-
paring them to the original GNNExplainer and PGExplainer, we set
them with the same configurations, respectively. Hyperparameters
are kept as the default values in other baselines.

5.1.4  Evaluation Metrics. Due to the existence of gold standard
explanations, we follow existing works [16, 24, 50] and adopt AUC-
ROC score on edge importance to evaluate the faithfulness of differ-
ent methods. Other metrics, such as fidelity [53], are not included
because the metrics themselves are affected by the distribution
shifting problem, making them unsuitable in our setting.

To quantitatively measure the distribution shifting between the
original graph and the explanation graph, we use Cosine score and
Euclidean distance to measure the distances between the graph
embeddings learned by the GNN model. For the Cosine score, the
range is [—1, 1], with 1 being the most similar and -1 being the least
similar. For the Euclidean distance, the smaller, the better.

5.2 Quantitative Evaluation (RQ1)

To answer RQ1, we compare MixupExplainer with other baseline
methods in terms of the AUC-ROC score. Our approach is evaluated
using the weighted vector of the graph generated by the explain-
ers, which serves as the explanation and is compared against the
ground truth to calculate the AUC-ROC score. Each experiment is
conducted 10 times with random seeds. We summarize the average
performances in Table 1.

As shown in Table 1, across all six datasets, with both GNNEx-
plainer or PGExplainer as the backbone methods, MixupExplainer
can consistently and significantly improve the quality of obtained
explanations. Specifically, Mixup-GNNExplainer improves the AUC
scores by 12.3%, on average, on the node classification datasets, and

22.6% on graph classification tasks. Similarly, MixUp-PGExplainer
achieves average improvements of 5.41% and 19.4% for node/graph
classification tasks, respectively. The comparisons between our
MixupExplainer and the original counterparts indicate the advan-
tage of the proposed explanation framework. In addition, MixUp-
PGExplainer achieves competitive and even state-of-the-art per-
formances compared with other sophisticated baselines, such as
reinforcement learning-based RG-Explainer.

5.3 Alleviating Distribution Shifts (RQ2)

In the previous section, we showed that our MixUp approach out-
performs existing explanation methods in terms of AUC-ROC. In
this section, we show the existence of the distribution shifting issue
and show our proposed mixup approach alleviates this issue and
improves the performance in explanation w.r.t. AUC.

Visualizing Distributing Shifting,. In this section, we show the ex-
istence of the distribution shifting issue by visualizing the distribu-
tion vector (the output of the last layer in a well-trained GNN model
f) for the original graph G, the explanation from MixupExplainer
G(MX) "and the ground truth explanation G* with t-Distributed
Stochastic Neighbor Embedding(t-SNE) [37]. To calculate distribu-
tion vectors, we use the output of the last GNN layer in f as the
representation vector h for the original graph. Ground truth expla-
nations G* and the mixup graph from MixupExplainer, G(™X) are
also fed into the model to achieve corresponding representations,
denoted by h*, h(™X) | respectively. The visualization results can
be found in Figure 4. The red points represent the vectors from
original graphs G; the blue points represent vectors from substruc-
ture explanations G’, and the green points represent the vectors
from the mixup explanations G, ; . Note that for BA-2motifs, while
there are multiple graphs in the dataset, with only two kinds of
motifs as explanations, t-SNE only shows two blue points, which
are actually multiple overlapping blue points. From Figure 4, we
have the following observations:

o The blue points shift away from the red points in most datasets,
including both synthetic and real-world datasets. It means that the
distribution shifting issue exists in most cases, where most existing
work overlooked this issue.

e The green points are inseparable from the red points in most
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Table 2: The Cosine score and Euclidean distance between the distribution vectors of the original graph h, explanation subgraph
h*, and our mixup graph h(miX) o different datasets. Large Cosine scores and small Euclidean distances indicate high similarities
between representations. The standard deviations of Avg. Cosine(h, h*) and Avg. Euclidean(h, h*) are not included because they

are static without random processes.

BA-Shapes BA-Community Tree-Circles Tree-Grid BA-2motifs MUTAG
Avg. Cosine(h, h*) 0.574 0.483 0.962 0.629 0.579 0.775
Avg. Cosine(h, h(mlx)) 0.940+0.005 0.644.0.006 0.95340.006 0.810+0.004 0.901+09.000 0.852+0.006
Avg. Euclidean(h, h*) 1.30 1.31 0.213 0.921 1.32 1.07
Avg. Euclidean(h, k(™)) | 0.44010 14 1.10.40.010 0.21140.011  0.58240.006 0.587+0.001 0.81640.011
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Figure 4: Visualizations of the distribution shifting issue with t-SNE on six datasets. The points are generated with the output
before the last layer of the model to be explained f, which is then plotted with t-SNE. The red points mean original graphs G,
the blue points mean substructure explanations G*, and the green points mean mixup explanations G(mix) Green dots align

well with red dots, while blue dots shift away from red dots.

datasets. It means that the explanation from MixupExplainer aligns
well with the original graph’s distribution, which indicates our
mixup approach’s effectiveness in alleviating the distribution shift-
ing issue.

o The shifting between blue points and red points is more obvi-
ous in the MUTAG dataset, where the green points generated by
MixupExplainer still align well with the red points. This shows our
method with mixup works well not only in synthetic datasets but
also in the real-world dataset.

Measuring Distances. In this section, we quantitatively assess the
distribution shifting issue by measuring the distances between the
distribution vector h from the original graphs and the explanation
subgraphs h* and h(MX) We report the averaged Cosine score and
the Euclidean distance between different types of representation
vectors in Table 2. From the results, we can see that, on average,
R(MX) hag a higher Cosine score and a smaller Euclidean distance
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with h than h*, indicating more similarity of distribution between
G™MX) and G than that between G* and G. The smaller distances be-
tween representation vectors demonstrate that our Mixup approach
can effectively alleviate the distribution shifting problem caused
by the inductive bias in the prediction model f. As Gmix) petter
estimates the distribution of the original graphs, MixupExplainer
can consistently improve the performance of existing explainers.

Correlation with Performance Improvements. We quantita-
tively evaluate the correlation between the improvements of AUC-
ROC scores of MixupExplainer over basic counterparts and the
improvements in distances with our mixup approach. We calculate
the improvements of AUC-ROC scores from GNNExplainer and PG-

Explainer over GNNExplainer and PGExplainer without mixup (de-
GNNExplainer d APGExplainer
AUC and 2ayc

ments of average Cosine(h, R(mix)) gyer average Cosine(h, h*) is

denoted by Acogine, and the improvements on Euclidean distance is

noted as A , respectively). The improve-
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Figure 5: Correlation between improvements of AUC-ROC
scores in explanation performance and the improvements of
distribution distances on different datasets. The value of r
indicates the Pearson correlation coefficient, and the values
with * indicate statistical significance for correlation, where
*** indicates the p-value for testing non-correlation p < 0.001.
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(a) AUC for different A (b) Distances for different A
Figure 6: Hyper parameter analysis of 1 on BA-2motifs with
Mixup-PGExplainer. (a) The performance of explanation w.r.t
AUC. The blue line represents the mean AUC score with stan-
dard deviations over ten runs with different random seeds
on each A value. The red line represents the performance of
the baseline PGExplainer. (b) The distances between h and
h(MiX) for different 1. The blue and yellow lines represent
the mean of the Cosine score and Euclidean distance with
standard deviations, respectively.

AgRyclidean- Figure 5 shows the correlation between ACNNExplainer

AUC >
PGExplainer
Apuc , Acosines and Agyclidean- We can see that all these four

improvements strongly correlated to each other with statistical sig-
nificance, indicating the improvements achieved by MixupExplainer
in explanations accuracy own to the successful alleviation of the
distribution shifting issue.
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Figure 7: Hyperparameter analysis of 1 on BA-2motifs with
Mixup-PGExplainer. (a) The performance of explanation w.r.t
AUC. (b) The distances between h and h(™X) for different n.

5.4 Parameter Study (RQ3)

In this section, we investigate the hyperparameters of our approach,
which include A and 7, on the BA-2motifs dataset. The hyperparam-
eter A controls the weight on the original graph during the mixup
process. We find the optimal value of A by tuning it within the
[0, 1] range. Note that, with A = 0, Eq. (7) is trivial and doesn’t help
explain G, with only Aj. The experimental results can be found
in Figure 6. We can see that the best performance is achieved with
A = 0.1 and that the approach consistently outperforms the best
performance from baselines with A € [0.05, 1]. The hyperparame-
ter 5 is the number of cross-graph edges during mixup, indicating
the connectivity between label-dependent explanations and label-
independent subgraphs. We tune it within the [1, 20] range on the
BA-2motifs dataset. The results in Figure 7 show that the best per-
formance is achieved with n = 1. With different 7, our approach
shows stable and consistently better performance than the best
baseline.

6 CONCLUSION

In this work, we study the distribution shifting problem to obtain
robust explanations for GNNs, which is largely neglected by the
existing GIB-based post-hoc instance-level explanation framework.
With a close analysis of the explanation methods of GNNs, we
emphasize the possible distribution shifting issue induced by the
existing framework. We propose a simple yet effective approach to
address the distribution shifting issue by mixing up the explana-
tion with a randomly sampled base graph structure. The designed
algorithms can be incorporated into existing methods with no ef-
fort. Experiments validate its effectiveness, and further theoretical
analysis shows that it is more effective in alleviating the distribu-
tion shifting issue in graph explanation. In the future, we will seek
more robust explanations. Increased robustness indicates stronger
generality and could provide better class-level interpretation at the
same time.
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