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Molecular lattice clocks enable the search for new physics, such as fifth forces or temporal variations of
fundamental constants, in a manner complementary to atomic clocks. Blackbody radiation (BBR) is a
major contributor to the systematic error budget of conventional atomic clocks and is notoriously difficult
to characterize and control. Here, we combine infrared Stark-shift spectroscopy in a molecular lattice clock
and modern quantum chemistry methods to characterize the polarizabilities of the Sr2 molecule from dc to
infrared. Using this description, we determine the static and dynamic blackbody radiation shifts for all
possible vibrational clock transitions to the 10−16 level. This constitutes an important step toward
millihertz-level molecular spectroscopy in Sr2 and provides a framework for evaluating BBR shifts in other
homonuclear molecules.
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Frequency standards are the cornerstone of precision
measurement. Optical atomic clocks set records in both
precision and accuracy and are poised to redefine the
second [1–7]. There is a growing interest in precision
measurements with molecules [8–12]. The simple structure
of homonuclear diatoms like Sr2 makes them ideal test beds
to probe new physics, including searching for corrections to
gravity at short distances [13–16] and temporal variation of
fundamental constants [12,17–26]. Thus, there is interest in
improving techniques for molecular spectroscopy. Even for
ultraprecise atomic clocks, the blackbody radiation (BBR)
shift remains a primary contribution to the uncertainty of
the clock measurement [3,4,27–32] and is notoriously
difficult to control and characterize [33–35]. State-of-the-
art evaluations of BBR shift rely on measurements of the
differential dc polarizability of the clock states in con-
junction with modeling of dynamic contributions [36–40].
Previously, we demonstrated record precision and

accuracy for a molecular lattice clock by measuring a
32-THz transition between two vibrational levels in ultra-
cold Sr2 molecules, reaching a 4.6 × 10−14 systematic
uncertainty [41]. Estimates of the BBR contribution to
this uncertainty relied on preliminary theoretical modeling
of polarizabilities that lacked experimental verification.
Here, we determine room-temperature BBR shifts for our
molecular clock to the 10−16 level. To do so, we employ
modern quantum chemistry methods to determine the

differential polarizabilities for all vibrational clock tran-
sitions and verify our theory directly by measuring Stark
shifts induced by a midinfrared laser for a wide variety of
molecular clock transitions (Fig. 1). Given this combined
experimental and theoretical picture, we develop a com-
plete description of the BBR effect for all vibrational levels
within the ground-state potential of 88Sr2 molecules.
The experimental sequence closely follows that of our

previous works [9,41–43]. A 2-μK sample of ultracold
strontium atoms is trapped in a one-dimensional, horizon-
tal, near-infrared optical lattice. We form weakly bound
molecules via a photoassociation pulse tuned to the
−353-MHz 1u resonance [44]. This bound state predomi-
nantly decays to a pair of rotational J ¼ 0, 2 states of the
top vibrational state, v0 ¼ 62, in the ground-state potential.
We then apply a two-photon Raman pulse to probe selected
clock transitions. We detect the number of remaining
v0 ¼ 62 molecules by photodissociation [45] and counting
the recovered atoms. Unless otherwise specified, we always
refer to rotationless J ¼ 0 states in the electronic ground-
state potential and list the lower-energy state first for a
given transition, regardless of where the molecular pop-
ulation is initialized.
We rely on narrow-linewidth Raman transitions between

the least bound v0 ¼ 62 vibrational state and selected
deeply bound vibrational states v [Fig. 1(a)]. We address
each of these transitions via intermediate states v00 in the
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electronically excited ð1Þ0þu potential. The vibrational
splittings are determined by the difference in the pump
(v0 → v00) and anti-Stokes (v00 → v) laser frequencies. We
select intermediate states with favorable Franck-Condon
factors for the pump and anti-Stokes transitions for each
interrogated pair of clock states (Table I). We address clock
states throughout the potential well using three different
intermediate states in the excited ð1Þ 0þu potential: v00 ¼ 11

[at −57 084 156.51ð12Þ MHz from the 1S0 þ
3P1 thresh-

old], v00 ¼ 15 [at −48 855 512.13ð18Þ MHz], and v00 ¼ 16

[at −47 036 433.95ð23Þ MHz]. The selection of intermedi-
ate states is a balancing act between available lasers and
transition strengths and required several diode lasers in the
727–735 and 760–800 nm wavelength ranges.
We locate the vibrational states v using Autler-Townes

spectroscopy: We first induce molecular loss with the pump
laser and then scan the anti-Stokes laser until the line is split
into a doublet [43,47–51]. While high-precision absolute
determinations of these binding energies are beyond the
scope of this Letter, we list the vibrational splittings fv↔v0

to < 100 kHz (Table I). The uncertainty is fully dominated
by light shifts [52].
By employing several strategies to achieve 1-kHz

spectroscopic resolution, we can determine ac Stark
shifts to ∼150 Hz using Lorentzian fits (Supplemental
Material [52]). After initially locating the transitions, we
switch to a Raman configuration by detuning þ30 MHz
from the intermediate resonance to narrow down our
transition linewidth. We stabilize the pump laser to a
high-finesse (>3 × 105) cavity using a Pound-Drever-
Hall lock [56,57], which, in turn, provides a stable
reference for the repetition rate of an optical frequency
comb. We then lock our anti-Stokes clock laser to the
frequency comb. This locking scheme ensures the stability
of the frequency difference between the two Raman lasers.
In addition to stabilizing our clock lasers, we rely on magic
trapping to reduce inhomogenous broadening. Our method
utilizes polarizability crossings generated by the dispersive
behavior of the target state polarizability near transitions to
the electronically excited ð1Þ1u potential [9]. We select
ð1Þ1u states such that the line strength S [42] is greater than
∼10−5ðea0Þ

2 (here, e is the electron charge and a0 is the
Bohr radius). Large line strengths correspond to large
magic detunings, allowing few-millisecond molecular life-
times and Fourier-limited linewidths of 1 kHz or better. Our
lattice laser is wavemeter locked to ∼30 MHz precision.
To determine differential polarizabilities we induce ac

Stark shifts on these clock transitions using an additional
1.95-μm laser. We typically observe ac Stark shifts of up to
20 kHz [as shown for 0↔ 62 in Fig. 1(b)]. We measure ac
Stark shifts of each transition as a function of 1.95-μm laser
power relative to the 27↔ 62 transition [Fig. 1(c)]. We do
not observe any significant hyperpolarizability [41], and,
therefore, we fit a simple proportion. To determine the
differential polarizability, we need to adequately character-
ize the intensity of the 1.95-μm light at our molecules. To
do so, we compare the ac Stark shift of the 27↔ 62

transition to that of the Δm ¼ 0 component of atomic
intercombination 1S0 →

3P1 transition with a differential
polarizability of þ326.2ð3.6Þ a:u: [58]. For our maximum
power of 1.7 W, we have an intensity of 6.8 kW=cm2.
For most transitions, this scheme allows us to determine
the differential polarizabilities to 5% as listed in Table I
and shown in Fig. 2. Any thermal shifts stemming
from our 5-μK sample [59] are negligible (Supplemental
Material [52]).
To calculate the BBR shifts, we need a model of the

differential polarizabilities at all wavelengths from dc to
infrared. The overwhelming majority of the BBR spectrum
falls below 2 μm. While we cannot experimentally probe
this entire range of wavelengths, we can leverage close
agreement between theory and experiment at 1.95 μm and
extend theoretical models to provide a full description of
the BBR shift. We use modern quantum chemistry methods
to calculate the differential polarizabilities for all molecular

(b) (c)

(a)

FIG. 1. Stark-shift spectroscopy in Sr2 on the example 0↔ 62

transition. (a) We rely on narrow two-photon Raman transition
via an intermediate state in the ð1Þ 0þu (red arrows) in a magic
lattice that couples the deeply bound clock state v to an excited
ð1Þ 1u state (blue arrow). (b) We induce Stark shifts to probe
differential polarizabilities of ground rovibrational states with
1.95-μm light. (c) Example light shift measurement. The en-
circled point corresponds to (b).

PHYSICAL REVIEW LETTERS 131, 263201 (2023)

263201-2



clock transitions thusly: First, we calculate ab initio elec-
tronic polarizabilities of the strontium dimer as a function
of internuclear distance R, and, second, we obtain the
polarizability for each vibrational level as an average of the
electronic polarizability over the vibrational wave function.
In homonuclear molecules, only electronic transitions

contribute to polarizabilities and BBR shifts. To calculate
the electronic polarizability, we employ the approach based
on asymmetric analytical derivative of the coupled-
cluster energy with single and double excitations [60], as
implemented in the Q-Chem 5 package [61]. We use the
ECP28MDF pseudopotential and its dedicated valence
basis set [62].
For any given light frequency ω, we first calculate the

molecular interaction-induced polarizability αintij ðω;RÞ ¼

αijðω;RÞ − 2αatomðωÞ, where αijðωÞ are tensor components
of the total molecular polarizability and αatomðωÞ is the

atomic polarizability at frequency ω. Since we use
only isotropic J ¼ 0 states, we take the trace polariz-
ability αintðω;RÞ ¼ ½αintzz ðω;RÞ þ 2αintxxðω;RÞ�=3 [63,64].
We extend the model for large R using a fitted long-range
form αintðω; RÞ ∼ A6ðωÞR

−6 þ A8ðωÞR
−8 þ A10ðωÞR

−10

[65]. Figure 3 shows the isotropic component αintðω;RÞ at
1.95 μm as a function of R.
Second, we calculate the polarizability of each vibra-

tional level v by averaging the electronic polarizability
αintðRÞ over the level’s vibrational wave function ΨvðRÞ:

αintv ðωÞ ¼

Z

∞

0

jΨvðRÞj
2αintðω;RÞdR; ð1Þ

where the differential polarizability for a transition
v↔ v0 is

Δαv↔v0ðωÞ ¼ αint
v0
ðωÞ − αintv ðωÞ: ð2Þ

We obtain the vibrational wave functions by solving the
Schrödinger equation ½−ðℏ2=2μÞðd2=dR2ÞþVðRÞ�ΨvðRÞ¼
EvΨvðRÞ, using a matrix method [68,69]. We use an
empirical molecular potential VðRÞ [70]; the reduced
mass μ equals half the mass of a Sr atom. The uncertainties
of the potential curve are negligible for our pur-
poses (Supplemental Material [52]). Figure 2 shows calcu-
lated differential dc and ac polarizabilities for v↔ 62

transitions. It is noteworthy that this approach is valid
only when the adiabaticity condition is maintained, that is,
that the ground-state potential does not cross any of the
excited-state potentials if shifted upward by the energy of
the incident photon. In Sr2, this limits the photon wave
number to about 8000 cm−1 (1.25 μm). Both our 1.95-μm
(5128-cm−1) laser and room-temperature BBR are well
within this margin.
We first validate the ab initiomodel using polarizabilities

of the ground-state Sr atom. At dc we find a polarizability of
þ197.327 a:u:, in excellent agreement with the state-of-the-
art semiempirical value ofþ197.14ð20Þ a:u: [40]. Similarly,

FIG. 2. Differential polarizability with respect to the least-
bound v ¼ 62 state in ground-state Sr2. Points denote exper-
imentally measured ac polarizabilities at λ ¼ 1.95 μm. Lines are
ab initio polarizabilities from dc to λ ¼ 1.25 μm.

TABLE I. Investigated 88Sr2 molecular states. The initial state is always the rotationless top v0 ¼ 62 level; v denotes the target level in
the 1S0 þ

1S0 0þg ground state, and λmagic is the magic wavelength. The differential polarizabilities are expressed in atomic units of
e2a20=Eh, where e is the electron charge, a0 is the Bohr radius, and Eh is the Hartree energy [46]. The error bars on theoretical
polarizabilities stem from comparison to experiment. “Exp.” and “Th.” stand for experiment and theory, respectively.

Clock transitions Differential polarizability αv↔v0ðωÞ (a.u.)

X0þg v↔ v0 v00 fv↔v0 (MHz) R̃v (a.u.) λmagic (nm) Exp. (1.95 μm) Th. (1.95 μm) Th. (dc) Δfv↔v0 (Hz)

61↔ 62 15 1263.673 58(20) [45] 43.6 � � � −0.41ð0.52Þ −0.1326ð35Þ −0.1080ð28Þ þ9.32ð25Þ × 10−4

55↔ 62 15 108 214.221(10) 21.6 � � � −3.68ð0.38Þ −2.985ð78Þ −2.429ð63Þ þ0.02099ð56Þ
41↔ 62 11 2 177 876.735(81) 13.6 996.4379(10) −21.67ð0.88Þ −19.10ð50Þ −15.60ð41Þ þ0.1349ð37Þ
27↔ 62 11 8 075 406.280(18) 11.1 1006.5787(10) −40.4ð1.8Þ −39.3ð1.0Þ −31.99ð84Þ þ0.2768ð75Þ
12↔ 62 16 19 176 451.651(35) 9.62 1007.7634(10) −60.1ð4.0Þ −61.3ð1.6Þ −49.7ð1.3Þ þ0.430ð12Þ
7↔ 62 15 24 031 492.422(24) 9.27 1007.1334(10) −66.0ð2.5Þ −68.3ð1.8Þ −55.1ð1.4Þ þ0.477ð13Þ
1↔ 62 11 30 640 159.753(75) 8.91 1016.9714(10) −75.7ð3.3Þ −76.0ð2.0Þ −61.1ð1.6Þ þ0.529ð15Þ
0↔ 62 11 31 825 183.207 5928(51) [41] 8.86 1004.7720(10) −76.4ð3.6Þ −77.2ð2.0Þ −62.1ð1.7Þ þ0.538ð15Þ
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our ac polarizability of þ207.524 a:u: at 1.95 μm agrees
perfectly with the value of þ208.2ð1.1Þ a:u: [58].
The key test of our model is the direct comparison and

strong agreement of measured differential polarizability at
1.95 μm with the calculated values (Fig. 2). For example,
the theoretical differential polarizability for the 0↔ 62

clock transition, Δα0↔62ðωÞ ¼ −77.2 a:u: compares well
to the experimental −76.4ð3.6Þ a:u: Moving to more
weakly bound target states, the differential polarizabilities
decrease monotonically. We elucidate this using the R-
centroid approximation [71] and the concept of a LeRoy
radius RLR [66,67]. First, the R-centroid approximation
allows us to estimate the interaction-induced polarizability
at the mean internuclear distance R̃v of state v using the
differential polarizability of a v↔ 62 transition:

αintðω; R̃vÞ ≈ −Δαv↔62ðωÞ; ð3Þ

where R̃v ¼
R

∞

0
jΨvðRÞj

2RdR. We neglect the small inter-
action-induced polarizability of the v0 ¼ 62 state. Thus,
different vibrational transitions effectively serve as probes
of polarizabilities, each at a different internuclear separa-
tion (Fig. 3).
The range of investigated target levels from the ground

v ¼ 0 to the second-to-least bound v ¼ 61 states spans
internuclear distances from 8.86a0 (approximately the

equilibrium distance Re) to 43.6a0. Beyond the LeRoy
radius RLR ¼ 16.6a0, the interaction-induced polarizability
is negligible: Sr2 becomes a “physicist’s molecule” [49]
whose polarizability is that of two strontium atoms. At
shorter internuclear separations, it becomes a “chemist’s
molecule” and picks up over 80 a.u. of extra polarizability
due to molecular bonding of the two constituent atoms. The
qualitative boundary between the two extremes is set by
RLR ¼ 2ðrA þ rBÞ, where rA ¼ rB ¼ 4.15a0 are the rms
charge radii of the two atoms [72]. By selecting vibrational
levels with different mean internuclear distances, we
scan the interaction-induced polarizabilities at different
internuclear separations, interpolating between the two
extremes of chemist’s and physicist’s molecules.
To estimate the relative uncertainty of our theoretical

model, we fit it to the experimental data by simple scaling.
The best least-squares fit is achieved by scaling the model
up by þ1.8ð2.4Þ%. This is compatible with zero, showing
that no model scaling is necessary; in fact, the reduced chi-
square χ2=d:o:f: ¼ 1.78 for the scaled model (d:o:f: ¼ 7) is
worse than χ2=d:o:f: ¼ 1.69 (d:o:f: ¼ 8) for the original
unscaled model. Thus, our ab initio model for the molecu-
lar polarizability contains no free parameters, justifying its
use for all photon wavelengths. Out of caution, we combine
the 2.4% uncertainty from the scaling factor with an
additional 1.8% possible systematic error to obtain a “type
B” uncertainty [73] of 2.6%.
Finally, we calculate the BBR shift Δfv↔v0 by inte-

grating the ac Stark shift over the BBR spectrum
[37,39,74]:

Δfv↔v0 ¼ −

1

2h

Z

∞

0

4π

ϵ0c
BωðTÞΔαv↔v0ðωÞdω: ð4Þ

FIG. 3. Interaction-induced ac polarizability at 1.95 μm. In
addition to the ab initio result, we show absolute experimental
polarizabilities in relation to mean internuclear distances R̃

(Table I). Horizontal bars indicate the range ½R̃v − SRv
;

R̃v þ SRv
] of internuclear distances probed by the vibrational

wave functions shown in the lower panel. Here, R̃v and SRv
are

the mean and standard deviation internuclear distances for wave
function squared treated as a probability distribution, respec-
tively. Re and RLR are the equilibrium distance and the LeRoy
radius, respectively [66,67].

(c)

(b)(a)

FIG. 4. (a) Differential polarizabilities in selected clock tran-
sitions. Below, a plot of a BBR spectral radiance BωðTÞ at 300 K.
(b) Absolute BBR shift for 0↔ v0 clock transitions. (c) Relative
BBR uncertainty in the same clock configurations.
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The BBR spectral radiance at temperature T is

BωðTÞ ¼
ℏω3

4π3c2
1

expðℏω=kBTÞ − 1
: ð5Þ

Typically, BBR shifts for atomic clocks are determined
using sum over states to calculate the static and dynamic
terms [37,38,40,74,75], but we already have computed the
dynamic polarizabilities. We can directly integrate the BBR
shift. Since practically all of the BBR spectrum falls below
any resonance frequencies in our system, we expand the
polarizability using Cauchy coefficients [75]:Δαv↔v0ðωÞ ¼

Δα
ð0Þ
v↔v0

þ Δα
ð2Þ
v↔v0

ω2 þ Δα
ð4Þ
v↔v0

ω4 þ � � � that we fit to tenth
order to numerical polarizabilities [Fig. 4(a)]. This allows
expressing the BBR shift as a series:

Δfv↔v0 ¼
X

n¼0;2;…

Δf
ðnÞ
v ¼

X

n¼0;2;…

−

cnΔα
ðnÞ
v↔v0

4π3ϵ0c
3

�

kBT

ℏ

�

4þn

;

ð6Þ

where the Planck integrals cn ¼
R

∞

0
u3þn=ðeu − 1Þdu

appear in Table II (SupplementalMaterial [52]). The leading
term is the well-known static contribution [39,40], while
further terms constitute a dynamic correction η on the order
of 0.5%–0.6% (Table II). Here, terms beyond the second
order are negligible.
Since the molecular clock uniquely provides an array of

available clock states, we calculate the BBR shift for other
clock transitions. In Fig. 4(b), we plot the BBR shift for
v↔ 62 transitions, Δfv↔62 (red line). For our previously
measured clock transition [41] Δf0↔62 ¼ þ538ð15Þ mHz,
giving a BBR contribution to fractional uncertainty of
uðΔfv↔v0Þ=fv↔v0 ¼ 4.7 × 10−16. Furthermore, the BBR
contribution to fractional uncertainty of the molecular
clock transition can be reduced by handpicking 0↔ v0

clock transitions (blue line) between deeply bound vibra-
tional states [Fig. 4(c)]. This configuration could allow
fractional uncertainties as low as 1.8 × 10−16, a factor of
∼2.5 lower than the 0↔ 62 transition.
Clock transitions between deeply bound states could

allow magic wavelengths further detuned from excited
molecular resonances due to a smaller polarizability gap
to overcome. That could improve molecular trap lifetimes
and Q factors. These can also be improved by switching to

vertical lattice geometry. Conversely, this requires the use of
Stimulated Raman Adiabatic Passage (STIRAP) [43,76,77]
to initialize the molecule population in a deeply bound state,
increasing experimental complexity.
In the future, our technique can be pushed further. The

polarizability measurement relies on frequency shifts that
could be determined at the full Hertz-level clock accuracy.
It also depends on semiempirical atomic polarizabilities
that currently contribute about 10% of the error bar.
However, with better measurements, the ab initio model
will cease to agree with experiment. Scaling is an option,
but a complementary approach is possible where polar-
izabilities are measured at different wavelengths and
Cauchy coefficients are instead fitted to experiment.
In conclusion, we have determined the BBR shift in a

strontium molecular lattice clock. We leveraged agreement
between precision spectroscopy and modern quantum
chemistry to provide a robust description of the polar-
izabilities of ground-state Sr2 molecules. Specifically, we
performed ac Stark-shift spectroscopy of several molecular
clock transitions throughout the ground-state potential
induced by an additional midinfrared laser. These mea-
surements were in excellent agreement with ab initio

calculations of molecular polarizability, lending credence
to extending this model to other wavelengths. This deter-
mination will allow us to control the BBR shift systematic
to the 10−16 level. Selecting a clock transition between
deeply bound vibrational states (v < 10) could further
suppress the BBR effect. Additional measurements of ac
or dc Stark shifts, such as by direct application of an electric
field [37] or with a CO2 laser [78,79], could further
constrain the theoretical model and improve control of
the BBR systematic. A next-generation molecular clock
could search for new interactions beyond the standard
model or probe the variations of fundamental constants.
This Letter paves the way toward millihertz-level spectros-
copy in Sr2 molecules.

We thank M. Safronova for providing theoretical atomic
polarizabilities, P. S. Żuchowski for fruitful discussions,
I. Majewska for involvement and discussions at the early
stages of this project, and J. Dai, D. Mitra, and Q. Sun for
experimental assistance. This work was supported by NSF
Grant No. PHY-1911959, AFOSR MURI FA9550-21-1-
0069, ONR Grant No. N00014-21-1-2644, the Brown
Science Foundation, and the Polish National Science

TABLE II. Contributions to the BBR shift at 300 K for the 0↔ 1 and 0↔ 62 transitions.

n cn Δf
ðnÞ
0↔1 (Hz) Δf

ðnÞ
0↔1=f0↔1 Δf

ðnÞ
0↔62 (Hz) Δf

ðnÞ
0↔62=f0↔62

0 π4=15 þ0.0081 þ6.8 × 10−15 þ0.53 þ1.7 × 10−14

2 8π6=63 þ6.1 × 10−5 þ5.1 × 10−17 þ0.0033 þ1.0 × 10−16

4 8π8=15 þ6.5 × 10−7 þ5.5 × 10−19 þ6.3 × 10−5 þ2.0 × 10−18

ηð%Þ 0.54 0.62

PHYSICAL REVIEW LETTERS 131, 263201 (2023)

263201-5



Centre (NCN) Grant No. 2016/21/B/ST4/03877. M. B. was
partially funded by the Polish National Agency for
Academic Exchange within the Bekker Programme,
Project No. PPN/BEK/2020/1/00306/U/00001, and by
NCN, Grant No. 2017/25/B/ST4/01486. W. S. acknow-
ledges Polish high-performance computing infrastructure
PLGrid (HPC Centers: ACK Cyfronet AGH) for providing
computer facilities and support within computational Grant
No. PLG/2022/015675.

*These authors contributed equally to this work.
†mateusz@cold-molecules.com
‡tanya.zelevinsky@columbia.edu

[1] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, An
optical lattice clock, Nature (London) 435, 321 (2005).

[2] H. Katori, Optical lattice clocks and quantum metrology,
Nat. Photonics 5, 203 (2011).

[3] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K.
Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M.
Schioppo, T. H. Yoon, and A. D. Ludlow, Atomic clock
performance enabling geodesy below the centimetre level,
Nature (London) 564, 87 (2018).

[4] T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L.
Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, JILA SrI
optical lattice clock with uncertainty of 2 × 10−18, Metro-
logia 56, 065004 (2019).

[5] W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D.
Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schäffer, J.
Savory, R. C. Brown, S. Römisch, C. W. Oates, T. E. Parker,
T. M. Fortier, and A. D. Ludlow, Towards the optical
second: Verifying optical clocks at the SI limit, Optica 6,
448 (2019).

[6] J. Lodewyck, On a definition of the SI second with a set of
optical clock transitions, Metrologia 56, 055009 (2019).

[7] S. Bize, The unit of time: Present and future directions, C.R.
Phys. 20, 153 (2019).

[8] M. Borkowski, Optical lattice clocks with weakly bound
molecules, Phys. Rev. Lett. 120, 083202 (2018).

[9] S. S. Kondov, C.-H. Lee, K. H. Leung, C. Liedl, I.
Majewska, R. Moszynski, and T. Zelevinsky, Molecular
lattice clock with long vibrational coherence, Nat. Phys. 15,
1118 (2019).

[10] J. Kobayashi, A. Ogino, and S. Inouye, Measurement
of the variation of electron-to-proton mass ratio using
ultracold molecules produced from laser-cooled atoms,
Nat. Commun. 10, 3771 (2019).

[11] D. Hanneke, B. Kuzhan, and A. Lunstad, Optical clocks
based on molecular vibrations as probes of variation of the
proton-to-electron mass ratio, Quantum Sci. Technol. 6,
014005 (2020).

[12] G. Barontini, L. Blackburn, V. Boyer, F. Butuc-Mayer, X.
Calmet, J. R. Crespo López-Urrutia, E. A. Curtis, B.
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S1. DETERMINATION OF MAGIC WAVELENGTHS

For each of the investigated molecular clock transitions we
have determined its corresponding magic wavelength. Our
process for finding magic wavelengths consists of several
steps and combines theoretical modelling and experiment.

The polarizability of the initial weakly-bound molecular
state is approximately twice the polarizability of the con-
stituent strontium atoms and only has a very weak dependence
on the wavelength of the lattice laser. On the other hand,
the polarizability for the deeply-bound states has many res-
onances due to strong transitions to the vibrational states sup-
ported by the 1u state correlating to the 1S0+3P1 asymptote.
We exploit this to tune the polarizability of the deeply-bound
state to that of the weakly-bound state to achieve the magic
condition.

We first employ a theoretical interaction model to calcu-
late transition dipole moments for transitions from the deeply
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FIG. S1. Search for the magic wavelength on the example of the
v = 12 ´ v′ = 62 molecular clock transition. Points denote the
experimental lattice-induced ac Stark shift as a function of lattice
laser wavelength ¼. The fitted function is Eq. (S1). The red square
indicates the magic wavelength ¼magic = 1007.7634(10) nm, where
the Stark shift ∆Stark is cancelled out.

bound molecular clock state v to vibrational states in the (1) 1u

excited-state potential. We select (1) 1u states such that the
line strength S is greater than ∼10−5 e2a2

0 (here e is the elec-
tron charge, a0 is the Bohr radius) [S1]. Then, we predict the
magic wavelengths by calculating the differential polarizabil-
ity of the clock transition using a sum-over-states approach.
This provides a starting point for the final experimental search.
By varying the power of the lattice beam, we measure the
Stark shift ∆Stark of the molecular clock line at several wave-
lengths spread over ∼10 GHz centered around the predicted
magic wavelength (Figure S1). Then, we fit a simple formula

∆Stark(¼) =
a

¼ − ¼0
+ b (S1)

to lattice Stark shifts measured as a function of frequency to
find the zero crossing, ¼magic = ¼0 − a/b. Our lattice wave-
length is stabilized to a wavemeter at ∼30 MHz precision. It
should also be pointed out that the absolute calibration of the
wavemeter is on the order of 0.001 nm as indicated in Table 1
in the main text.

S2. MEASUREMENTS OF LINE POSITIONS

We measure the relative binding energies by scanning the
frequency difference between the two Raman lasers, detuned
by +30 MHz from the intermediate state, a molecular level of
(1) 0+u symmetry. The Raman pump laser is locked to a high
finesse cavity, and the repetition rate of an optical frequency
comb is in turn referenced to this laser. The carrier envelope
offset of the frequency comb, as well as acousto-optical mod-
ulators used on both Raman lasers, are referenced to a com-
mercial rubidium clock at a ∼10−12 precision [S2]. Finally,
the anti-Stokes laser of the Raman pair is phase-locked to the
optical frequency comb.

The line positions are measured through scans of the rel-
ative Raman frequency (Figure S2). We fit the scans with a
Lorentzian lineshape with a background,

n(∆) = n0 −
A

2Ã
µ

(∆ − ∆c)2 + (µ/2)2
, (S2)

where n0 is the background dissociated atom number, A is the
area, µ is the full width at half maximum, and ∆c is the center
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Δα = +326.2(3.6) a.u.

Sr atomic line Sr2 molecular lines
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FIG. S2. Example lineshapes seen in our ac Stark shift measure-
ments. To determine the differential ac polarizability, we measure a
lineshape each with the extra ac Stark laser off (dark blue) and on
(light red). To determine the differential polarizabilities ∆³ we mea-
sure ratios of ac Stark shift slopes between different transitions. As
an absolute reference we used the narrow 1S0´

3P1 atomic intercom-
bination transition with a known ∆³ = +326.2(3.6) a.u. [S3]. The
molecular ac Stark shifts would be compared to a common 27 ´ 62
transition which would then be calibrated to the atomic line.

frequency. We typically operate with 1 kHz peak widths and
can measure peak position to ∼100 Hz.

Since precise determination of transition frequencies is not
the main purpose of this paper, we did not characterize the
Stark shifts experimentally. Instead, we calculate a conserva-
tive upper bound on the uncertainty of the binding energy by
combining estimated lattice and Raman laser Stark shifts.

Using the Stark shift measured during magic wavelength
determination, we fit a linear slope to Stark shift vs. lattice
frequency near the operational magic wavelength. We then
use this slope to convert the wavemeter-limited uncertainty of
the lattice wavelength to a Stark shift, and take this Stark shift
as our lattice contribution to the uncertainty of the binding
energy.

Using measured laser power and waist, as well as ab initio

polarizabilities calculated using the sum-over-states approach
[S4], we calculate the Raman Stark shifts,

∆ fclock =
IR

2hϵ0c
[³0 (¼R) − ³62 (¼R)] , (S3)

where Ip is the intensity of each Raman laser, ³ is polariz-
ability for each vibrational state, and ¼ is the wavelength. We
note that contributions from the Raman lasers have opposite
signs [S5]. We assign an additional conservative value of 50%
to the ab initio polarizabilities, significantly larger than the
discrepancy observed in comparison with measured polariz-
ability ratios [S2].

After estimating the lattice and Raman Stark shifts individ-
ually, we combine them to get total uncertainty on binding
energy position. We find that the lattice Stark shift is about an
order of magnitude greater than Raman Stark shift.

S3. FINITE SAMPLE TEMPERATURE

Our experiment relies on Stark-induced shifts to molecular
clock lines. Here we estimate the effect of finite sample tem-

perature on the determination of differential polarizabilities
from observed shifts.

In the absence of the Stark laser the molecules, whether
in their initial (v), or target (v′) vibrational states are trapped
in the same magic-wavelength lattice potential. For a single
lattice site this may be approximated by a harmonic trap po-
tential:

V(x, y, z) =
1
2

MÉ2
r

(

x2
+ y2

)

+
1
2

MÉ2
z z2. (S4)

Here M is the mass of the molecule and Ér,z are the radial (r)
and axial (z) trapping frequencies.

We induce an ac Stark shift on the molecular clock v ´ v′

transition by adding an extra collimated laser coaligned with
the lattice which gives rise to an extra potential,

W(x, y, z) =
1
2

MΩ2
v,v′

(

x2
+ y2

)

− Uv,v′ , (S5)

whereΩv,v′ are the state-dependent radial trapping frequencies
and Uv,v′ are the extra trapping depths. Both Ω2

v,v′ and Uv,v′

are directly proportional to the ac polarizabilites ³v,v′ that we
aim to measure. The increase in trap depth Uv,v′ leads to a
temperature-independent line shift that is the basis for our ex-
periment. However, the extra trapping frequency leads to a
non-trivial temperature-dependent shift that we will evaluate
here.

The total trapping potential of the combined laser beams is

Vv,v′ +Wv,v′ =
1
2

M
(

É2
r + Ω

2
v,v′

) (

x2
+ y2

)

+
1
2

MÉ2
z z2 − Uv,v′ .

(S6)
This is equivalent to a three-dimensional harmonic oscillator
with state-dependent trapping frequencies. As carrier transi-
tions preserve the motional quantum numbers, the total shift
may be evaluated as a difference of the quantum thermal av-
erages of the trapping hamiltonians Hv,v′ = T + V +Wv,v′ :

〈

¶E
〉

=

〈

Hv′

〉

−
〈

Hv

〉

= −∆U + ℏ∆É
[〈

nx

〉

+

〈

ny

〉

+ 1
]

, (S7)

where ∆U = Uv′ − Uv and the change in radial trapping fre-
quency is

∆É =

√

É2
r + Ω

2
v′ −

√

É2
r + Ω

2
v′ − ∆(Ω2

v,v′ ). (S8)

For us the transition-dependent term ∆(Ω2
v,v′ ) = Ω

2
v′ − Ω

2
v is

on the whole substantially smaller than either of the trapping
frequencies Ω2

v or É2
r , hence we can expand ∆É as

∆É ≈

√

É2
r + Ω

2
v′















1
2
∆(Ω2)

É2
r + Ω

2
v′

−
1
8

(

∆(Ω2)

É2
r + Ω

2
v′

)2












. (S9)

Importantly, the first term is linear in the measured differential
polarizability as ∆(Ω2

v,v′ ) is directly proportional to ∆³v,v′ .
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The mean vibrational quantum numbers for radial motion
can be evaluated by averaging over the grand canonical en-
semble:

〈

nx,y

〉

=
1
Z

∞
∑

n=1

e
−En (x,y)

kBT ≈
kBT

ℏÉr

, (S10)

(S11)

where we used the partition function [S6]

Z = Tr(e−Hv′ /kBT ) =
1
2

csch(ℏÉ/2kBT ). (S12)

Finally, the total thermally averaged shift to the line is

〈

¶E
〉

= −∆U + kBT
∆É

Ér

. (S13)

The first term is the temperature-independent ac Stark shift.
The second term is a temperature-dependent correction.

In our experiment the incoming lattice beam has a power
of Pl = 0.27 W and a waist of wl = 36 µm. For all the
measured transitions the wavelength of the lattice is chosen
to achieve a magic condition. This means that the polarizabil-
ity at the lattice wavelength for both the initial v′ and target
v molecular states is the same and can be modeled as twice
the atomic polarizability. For the magic wavelengths rang-
ing from ¼magic = 996.4379 nm to ¼magic = 1016.9714 nm
the atomic polarizabilities range from ³magic = 250.2 a.u. to
³magic = 247.6 a.u., respectively. This corresponds to total
atomic trap depths

Ul = 4³Pl/(Ãw2
l cϵ0) (S14)

between 622 kHz× h and 616 kHz× h (approximately 30 µK).
The factor of four stems from constructive interference be-
tween the incident and reflected lattice beams. Conversely,
the radial trapping frequencies

Ér =
2
wl

√

Ul/M (S15)

of Ér = 2Ã × 469.9 Hz to 2Ã × 467.5 Hz. The molecular
sample temperature is estimated at 5 µK. For weakly-bound
molecules the trap depth is twice that for atoms (because the
polarizability is that of two atoms), however, the trapping fre-
quencies are the same for atoms and molecules, as the extra
trap depth cancels out with the twice larger mass M of the
molecule.

The extra Stark shift laser has a wavelength of ¼ = 1950 nm
and a maximum power of P = 1.7 W at a waist of w =

125.9 µm. This provides an extra trap depth

Uv = ³x,vP/(Ãw2cϵ0) (S16)

between 67.1 kHz × h and 79.4 kHz × h per atom in the

molecule and an extra radial confinement that varies from
Ωv = 2Ã × 44.1 Hz to Ωv = 2Ã × 48.0 Hz. The polarizability
per atom varies between ³x = 210.1 a.u. for the most weakly

bound state and ³x = 248.5 a.u. for the rovibrational ground
state.

The temperature-independent shift ∆U of up to 12.3 kHz×h

by far outweighs the temperature-dependent term. Note that
the total shift for the diatomic molecule is 2∆U and it there-
fore reaches 24.6 kHz × h. The extra temperature-dependent
term stems from the change in the total radial confinement of
the effective trap created by the lattice and ac Stark laser. The
contribution to radial trapping from the ac Stark laser is an
order of magnitude smaller than the baseline provided by the
lattice laser. The figure of merit is the difference in the extra
confinement between different vibrational states as compared
to the lattice radial frequency. We find ∆É to vary between
2Ã × 6.4 × 10−4 Hz for a v = 61 ´ v′ = 62 transition and
2Ã×0.38 Hz for a v = 0 ´ v′ = 62 line. The total temperature-
dependent shift, kBT (∆É/Ér) is consistently below 0.7% of
the temperature-independent shift, at most 84.3 Hz× h for the
v = 0 ´ v′ = 62 transition. This is already significantly
smaller than our experimental error bars.

We also point out that most of the thermal shift is, just like
∆U, directly proportional to the differential polarizability we
aim to measure. In fact, the linear term in the Taylor expansion
for ∆É, Eq. (S9) overestimates the real value by at most 0.4%
making the nonlinear systematic negligible for this work.

Another possible source of systematic error is the variation
in magic wavelength and the corresponding lattice radial con-
finenement between the different molecular lines. We find that
this variation contributes at most a 1.2% relative uncertainty to
the temperature-dependent shift. Again, for us this contribu-
tion is two order of magnitude smaller than our experimental
uncertainty and therefore negligible.

S4. UNCERTAINTY OF THE THEORETICAL

POLARIZABILITIES DUE TO EMPIRICAL POTENTIAL

To calculate the blackbody radiation shifts we needed the
vibrational wavefunctions for all nonrotating vibrational states
of strontium molecules in their electronic ground state. These
were obtained by solving the radial Schrödinger equation us-
ing an accurate potential obtained empirically from Fourier
transform spectroscopy [S7]. The potential was provided in
two versions: one in terms of a piecewise function and as a
Morse/Long-Range (MLR) fit [S8]. We used the latter.

In the paper we estimated the uncertainty of the theoretical
model by comparing theoretical ac polarizabilities to exper-
imental data and concluded that model is accurate to within
2.6%. We expect that most of this error bar is coming from
the combination of the limited accuracy of the ab initio polar-
izabilities and the experimental accuracy. Here, we addition-
ally look at the uncertainty of the theoretical model stemming
from the use of an empirical potential [S7]. To estimate the
sensitivity of the theoretical polarizabilities to the experimen-
tal uncertainty we vary three of the most important param-
eters of the potential – dissociation energy De, equilibrium
distance Re and the leading van der Waals coefficient C6 and
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1FIG. S3. Contributions to the uncertainty of the theoretical polar-
izabilities due to the use of empirical potential from Ref. [S7]. For
all investigated transitions the contributions are all at least one order
(typically more than two) of magnitude smaller than the error bar as-
signed to our theoretical model through comparison with experiment.

rerun our calculation. The parameters Re = 4.6720(1) Å and
De = 1081.64(2) cm−1 [S7] are varied within their stated ex-
perimental uncertaintes whereas C6 was varied such that the
(well known) position of the near-threshold v = 62 bound
state at −137 MHz shifted by at most 1 MHz.

The contributions to due to De, Re and C6 are shown in
Fig. S3. The variation of each parameter influences the pre-
dicted polarizabilities in a distinct manner. As the polariz-
ability depends chiefly on the mean internuclear distance of
a given vibrational level, scaling the potential depth De, for
example, has little influence on the polarizability of deeply
bound states. On the other hand, these states are naturally
more sensitive to varying the equilibrium distance Re. Lastly,
weakly bound states are the most sensitive to the variation
of the long-range van der Waals interaction coefficient, C6.
Nevertheless, we find that all of these error contributions are
at least one order of magnitude smaller than the uncertainty
we assigned to the model via direct measurements of ac Stark
shifts and for our purposes are negligible.

S5. THE PLANCK INTEGRALS

Our calculation of the blackbody radiation shift relies on
expanding the differential polarizability of a transition in
terms of a series of Cauchy coefficients. Averaging each con-
tribution to the polarizability over the Planck distribution in-
volves calculating integrals of the following type:

cn =

∫ ∞

0

u3+n

exp(u) − 1
du = Lin+4(1)Γ(n + 4) (S17)

for even n. Here Lis(z) is the polylogarithm function of or-
der s,

Lis(z) =
∞
∑

k=1

zk

ks
, (S18)

and Γ(x) is Euler’s gamma function. While for our purposes it
was enough to cut the series off at n = 4, in the future higher
orders might be needed. For future reference, here we list the
first eight integrals:

c0 =
Ã4

15
≈ 6.49393940226683 . . .

c2 =
8Ã6

63
≈ 122.081167438134 . . .

c4 =
8Ã8

15
≈ 5060.54987523764 . . .

c6 =
128Ã10

33
≈ 363240.911422383 . . .

c8 =
176896Ã12

4095
≈ 39926622.9877311 . . .

c10 =
2048Ã14

3
≈ 6227402193.41097 . . .

c12 =
3703808Ã16

255
≈ 1307694352218.91 . . .

c14 =
1437433856Ã18

3591
≈ 355688785859224 . (S19)
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