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Selecting Source Tasks for Transfer Learning of
Human Preferences

Heramb Nemlekar , Naren Sivagnanadasan , Subham Banga , Neel Dhanaraj , Satyandra K. Gupta ,
and Stefanos Nikolaidis

Abstract—We address the challenge of transferring human pref-
erences for action selection from simpler source tasks to complex
target tasks. Our goal is to enable robots to support humans
proactively by predicting their actions — without requiring demon-
strations of their preferred action sequences in the target task.
Previous research has relied on human experts to design or select a
simple source task that can be used to effectively learn and trans-
fer human preferences to a known target. However, identifying
such source tasks for new target tasks can demand substantial
human effort. Thus, we focus on automating the selection of source
tasks, introducing two new metrics. Our first metric selects source
tasks in which human preferences can be accurately learned from
demonstrations, while our second metric selects source tasks in
which the learned preferences, although not as accurate, can match
the preferred human actions in the target task. We evaluate our
metrics in simulated tasks and two human-led assembly studies.
Our results indicate that selecting high-scoring source tasks on
either metric improves the accuracy of predicting human actions in
the target task. Notably, tasks chosen by our second metric can be
simpler than the first, sacrificing learning accuracy but preserving
prediction accuracy.

Index Terms—Assembly, human-robot collaboration, transfer
learning.

I. INTRODUCTION

W E CONSIDER the problem of learning human prefer-
ences for action selection without the need for lengthy
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Fig. 1. We generate a set of source tasks with just 6 actions (e.g., A and B) and
select the best source task (i.e., A) based on our behavioral equivalence classes
similarity metric for accurately transferring human preferences to the target task
of assembling a model airplane, consisting of 17 actions.

and laborious human demonstrations of the target task. Specifi-
cally, we want to enable robots to anticipate human actions and
offer proactive assistance in complex tasks, such as a model
airplane assembly, based on demonstrations of their preferred
action sequences in much simpler tasks (see Fig. 1).

Previous research suggests that we can transfer the prefer-
ences of users from a short source task to a longer target task
by representing them as a function of task-agnostic features,
such as the effort required for user actions [1] or graph-based
features of the user positions [2]. These features are common
to both the source and target tasks, enabling the robot to learn
user preferences from demonstrations in the source task and
apply them for predicting user actions in the target task. For
instance, users who started with the least-effort actions in a
source assembly task also exhibited the same preference in the
target assembly [3].

However, in these approaches, the source tasks are either
pre-specified or manually designed based on human intuition
and trial and error. For example, to learn user preferences for
starting with actions that required the least effort, the source
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assembly task included actions with varying levels of effort
and allowed the user to choose between these actions when
providing demonstrations. Designing such a source task can
require significant human effort and there is limited research on
selecting a suitable source task without human guidance. Thus,
in this work, we focus on the research question:

How can we automatically select a good source task such
that human preferences transferred from that task can enable
accurate anticipation of the human actions in the target task?

We assume that human actions are guided by a reward
function, which is a weighted sum of relevant task-agnostic
features [3]. The feature weights specify a user’s preference and
we employ inverse reinforcement learning (IRL) [4] to learn
the user’s weights from their demonstrations in a source task.
However, there are often many weights that can explain the user’s
demonstrations, making it difficult to pinpoint the actual user
weights [5]. If the weights learned in the source task differ from
the actual user weights, they may not produce the same actions
as the user in the target task. Therefore, our first approach
is to select the most informative source task such that user
preferences (i.e., weights) can be accurately learned from their
demonstrations.

Just as multiple weights can explain the user demonstrations
in a source task, there can be many weights that produce the
same actions as the user in the target task. Hence, to accurately
predict user actions, our key insight is that the weights learned
in the source task can differ from the actual user weights as
long as they are behaviorally equivalent (i.e., produce the same
actions) in the target task. Therefore, our second approach is to
select the source task where the learned weights are most likely
to be behaviorally equivalent to the actual user weights in the
target task.

In summary, we propose two metrics for automatically select-
ing the best source task from a set of candidate tasks:

1) Information Gain: measures the reduction in uncertainty
when learning the actual weights of any user from their
demonstrations in a given source task.

2) Behavioral Equivalence Classes Similarity (BECS): mea-
sures the likelihood of the weights learned for any user in
the source task being behaviorally equivalent to the actual
weights of the same user in the target task.

We evaluate the benefit of selecting source tasks using our
proposed metrics in simulation and across two studies: one
with 22 users playing an assembly game online, and another
involving 19 users performing real-world assembly tasks in
person. We find that, for certain target tasks, using BECS allows
us to find shorter source tasks compared to information gain
while achieving similar accuracy in predicting user actions.
Overall, our results show that preferences transferred from short
source tasks with high scores on either metric lead to improved
prediction accuracy in larger target tasks.

II. RELATED WORK

Prior research in transfer learning has primarily focused on
efficiently training simulated agents [6], [7], [8] and robots [9],
[10] to optimally perform the target tasks. The problem of
transferring human preferences is distinct from this body of
work because it focuses on using the transferred knowledge
to predict human behavior for offering robot assistance. Yet,
much like transfer learning for synthetic agents [11], we can
divide the problem of transferring human preferences into three

steps: (i) selecting an appropriate source task to learn human
preferences, (ii) establishing the relationship between the source
and target tasks, and (iii) effectively transferring the preferences
to the target task.

Similar to recent work in transferring human preferences [1],
[2], prior work in transfer learning for synthetic agents has also
relied on human experts to select the source task and provide
a mapping to the target task. In robot soccer [6], the weights
for the new states and actions in a 4-vs-3 game are initialized
by duplicating the weights learned for similar states and actions
in a 3-vs-2 game. Similarly, preferences of a simulated human
from a block stacking task with 2 red and 3 blue blocks are used
to expedite learning in a target task with 1 extra red block [12].

More generally, the source and target tasks can differ along
various dimensions [13] like the objectives, states, actions, con-
straints, or dynamics of the two tasks. They may have the same
states and actions but differ only on the reward function [10]
or have the same reward structure but different state and action
spaces [14]. While there is some work on learning the mapping
between the states [15] and objects [16] of the source and target
tasks, there is limited research on generating and selecting the
source tasks automatically.

Prior work suggests that a good source task can be selected
from a set of candidate tasks by measuring their similarity with
the target task [17]. Their similarity metrics require computing
the performance of the learned policy in the target task or
computing the number of states where the rewards or values
of the two tasks are similar. The similarity between tasks can
also be computed based on the likelihood of observing samples
from the target task in the candidate source tasks [18]. However,
these metrics assume that the tasks have similar state and action
spaces or that the robot has access to data samples in the target
task.

In this work, we allow for differences in the states and actions
of the source and target tasks. We assume that the only shared
aspect is the reward function, which is represented by a common
set of task-agnostic features. Unlike prior work, our goal is
to select the best source task without having access to any
user demonstrations. Most importantly, all of the prior research
in selecting source tasks was for training synthetic agents to
optimally perform the target task. To our knowledge, ours is
the first to do so for transferring human preferences. The key
distinction here is that we want to select a source task that can
facilitate the transfer of a broad range of user preferences, as
opposed to a single optimal policy.

III. PROBLEM FORMALISM

A. Task Definition

We model each task as a Markov Decision Process (MDP)
M := (S,A, T,R, Sstart, Send); where S is a finite set of states
in the given task, A is a finite set of discrete human actions,
T (st+1|st, at) is the transition probability function, Sstart and
Send are the sets of starting and terminal states, and R(st) is the
human’s reward function. We assume that S, A, T , Sstart, and
Send are known for a given task, while R captures the unknown
user preference.

The user policy, π : S ×A �→ [0, 1], is a mapping from the
states to a probability distribution over actions. We assume
that users choose actions to optimize for their preferences, i.e.,
maximize their long-term reward. In a state s, users will choose
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action a� based on their optimal Q-value function.

a� = arg max
a∈A

max
π

Qπ(s, a) (1)

Qπ = Rw(s) + γEs′∼T (·|s,a)[V
π(s′)] (2)

V π(s) = E

[
N∑
t=0

γtRw(st)

∣∣∣∣π, s0 = s

]
(3)

Here, V π is the value of being in a state s and N is the time
step at which a terminal state is reached. We assume that the
users can optimize their sequence of actions for the entire task
without discounting future rewards (γ = 1).

B. Transfer Learning

Our goal is to estimate the user policy in a target task MT
based on their demonstrations Ξ in a source task MS . For this,
we represent the user’s reward function as a weighted sum of d
task-agnostic features, φ : {SS , ST } �→ R

d [1].

Rw(s) = wTφ(s) ∀s ∈ {SS , ST } (4)

Here, SS and ST are the state spaces of the source and target
task, respectively.

The task-agnostic features φ(s) = [φ1(s), . . . , φd(s)] are as-
pects shared by the states of both tasks that dictate how users
prefer to sequence their actions. These features can be extracted
from abstract representations of the task states, such as the
graph-based features of user locations [2], or hand-crafted based
on domain knowledge [3]. We follow the latter approach in this
work. The weightsw = [w1, . . . , wd] indicate how each user pri-
oritizes these features and encodes their individual preference.
With this representation, we can learn the feature weights ŵ (i.e.,
preference) from user demonstrations in the source task and use
them to compute the rewards and estimate the user policy π̂T in
the target task.

C. Inverse Reinforcement Learning

We assume that each user operates according to a ground-truth
weight w and provides demonstrations Ξw by executing the
optimal policy based on these weights. Every demonstration,
ξ ∈ Ξw, is a sequence of task states and user actions, i.e.,
[(s0, a0, s1), . . . , (st, at, st+1), . . . , (sN−1, aN−1, sN )].

We use inverse reinforcement learning (IRL) [19] to learn the
weights of a given user from their demonstrations in the source
task, ŵ = IRL(Ξ). Specifically, we assume an IRL approach
that maps user demonstrations to a weight ŵ in a space of user
preferences W , by matching the expected feature count of the
learner’s optimal policy, μπ , to the mean feature count of the
user demonstrations, μΞ.

μπ = E

[
N∑
t=0

φ(st)

∣∣∣∣π
]

μΞ =
1

|Ξ|
∑
ξ∈Ξ

∑
st∈ξ

φ(st) (5)

In practice, we can compute μπ by simulating the optimal
demonstrations, Ξŵ, for the learner’s current estimate.

D. Problem Definition

Our focus is on selecting an appropriate source task for the
transfer learning of human preferences. Specifically, given the
target task MT , the task-agnostic features φ, and a set of source

tasksMS , we want to find the best source task,M�
S ∈ MS , such

that the policy π̂T computed with weights learned from user
demonstrations in M�

S , accurately predicts the users’ actions in
that target task.

IV. SOURCE TASK SELECTION

Consider the example shown in Fig. 2, where a robot has to
guide users to their end locations in the target task. Each user
can have their own preference,w = [w1, w2], for minimizing the
total time (φ1) and money (φ2) required to reach the end. For
example, users that have a ground-truth weight ofw = [0.8, 0.2]
will follow the blue path shown in the target task because they
have a lower weight for spending money than time. Given a set
of source tasks, such as A, B, and C, we want to quantify the ef-
fectiveness of each source task in facilitating accurate prediction
of user actions in the target task based on user demonstrations
in that source task.

A. Information Gain

If the weights learned from user demonstrations in a source
task match the ground-truth weights, i.e., ŵ = w, the robot
can accurately reproduce the user’s actions in the target task.
However, IRL is an ill-posed problem [19]. Often, there can be
many weights, ŵ ∈ W , for which the optimal policy produces
similar demonstrations as the ground-truth weights.

This uncertainty in determining the user’s weights can be
representational, e.g., W may contain scalar multiples of w, or
experimental, e.g., if every w ∈ W results in the same demon-
strations in the source task [5]. For example, source task A in
Fig. 2 forces every user to follow the same path, while in source
task B, every demonstration has the same total feature count, i.e.,
costs the same amount of time and money. Thus, we cannot gain
any information about the user’s preference from demonstrations
in such tasks.

On the other hand, in source task C, users can choose to spend
either time or money. The demonstrations, ξ ∈ Ξw, of any user
with w = [0.8, 0.2] will follow the path shown in blue, avoiding
the grey cells. When learning from the user’s demonstrations,
the IRL approach would map to ŵ ∈ W , for which the optimal
demonstrations Ξŵ have the same mean feature count as Ξw.

However, in the space of weights for source task C, any weight
in the shaded blue region, say ŵ = [0.8, 0.9], would also result
in the same set of demonstrations and thus have the same mean
feature count asΞw. Therefore, for the IRL approach, any weight
in this blue region is a valid solution for ŵ. We refer to the set
of all such weights as the behavioral equivalence class (BEC)
of w in the source task MS [20].

BEC(w|MS) = {ŵ ∈ W |μΞŵ = μΞw in MS} (6)

The volume of BEC(w|MS) measures the uncertainty in
pinpointing the ground-truth weights w. In the worst case, all
weights belong to the same BEC, as observed in source tasks
A and B, while in the most ideal case, each weight results in
a unique set of demonstrations and belongs to a separate BEC.
Hence, our first approach is to select a source task in which fewer
weights are behaviorally equivalent to one another, allowing the
IRL approach to estimate the ground-truth weights with greater
certainty. We use entropy to measure the amount of information
that can be obtained from user demonstrations in a source
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Fig. 2. Navigation assistance: We want the robot to anticipate the user’s preferred path in a target map. The user can move up, down, left, or right, unless prevented
by a wall. Each yellow cell requires the user to spend 2 units of money, while every other cell requires 1 unit of time. The shaded blue regions in the space of user
weights represent the behavioral equivalence class of the user’s demonstration in the corresponding task.

task MS .

H(MS) = −
k∑

i=1

Pi log2(Pi) (7)

where, k is the number of behavioral equivalence classes (BECs)
of weights in the source task, and Pi is the proportion of weights
in the i-th BEC. The number of BECs in a source task can range
from 1 to |W |. For example, in task C, the space of preferences
is divided into two BECs. We can see that the value of H(MS)
increases as we increase the number of BECs in the space of
weights.

In our experiments, we computePi by uniformly sampling the
space of weights, simulating their demonstrations in the source
task, and comparing their feature counts. If all weights belong to
the same BEC, H(MS) = 0. Conversely, if each weight belongs
to a different BEC, H(MS) = log2 |W |.

Given a set of source tasks MS , we select the best source task
M�

S , by maximizing the information gain.

M�
S = arg max

MS∈MS

H(MS) (8)

B. Behavioral Equivalence Classes Similarity

A key motivation in transfer learning of human preferences
is to have a short source task for reducing the time and effort
required to obtain user demonstrations. However, with our first
approach, the ideal source task would have to allow for as many
unique demonstrations as the number of distinct weights in W .
Such a task may have a large state and action space, requiring
lengthy user demonstrations.

Here, we make an observation that, even in the target task,
there can be many weights that can produce demonstrations with
the same mean feature count as the actual user demonstrations.
For example, any weight in the shaded blue region of the target
task in Fig. 2, including the ground-truth weight, will produce the
same demonstration shown in blue. We refer to the set of these
weights as the behavioral equivalence class of the ground-truth
weights in the target task, BEC(w|MT ).

If the weights learned in a source task, ŵ, are behaviorally
equivalent to the user’s ground-truth weights, w, in a target
task, MT , the learned weights would produce demonstrations
that visit the same features as the user in the target task. In
our example, the optimal demonstrations for ŵ would spend
the same amount of time and money as w in the target task, if
ŵ ∈ BEC(w|MT ).

For instance, the demonstration shown in source task C can be
provided by a user withw = [0.8, 0.2], but mapped to a different
weight ŵ = [0.8, 0.9]. Even if ŵ �= w, we can see that ŵ will
produce the same demonstration as w in the target task. This

illustrates that the learned weights only need to be as accurate
as necessary to reproduce the user’s behavior in the target task.

Thus, our key insight is the weights learned in the source
task need to only be behaviorally equivalent to the ground-truth
weights in the target task for anticipating user actions. We
introduce a new metric called Behavioral Equivalence Classes
Similarity (BECS), to measure the likelihood of the weights
learned in a source task, MS , belonging to the same BEC as
the ground-truth weights in a target task, MT .

BECS(MS ,MT ) =
1

|W |
∑

wi∈W
P (wi,MS ,MT ) (9)

P (wi,MS ,MT ) measures the proportion of weights in
BEC(wi|MS) that also belong to BEC(wi|MT ). In our ex-
periments, we compute P by uniformly sampling weights from
the BECs corresponding to the weight wi.

P (wi,MS ,MT )

=

∑
ŵj∈BEC(wi|MS)

δ (ŵj ∈ BEC(wi|MT ))

|BEC (wi|MS)|
(10)

where δ is an indicator function.
Given a set of source tasks MS , we select the best source task

M�
S with the objective of maximizing the BECS.

M�
S = arg max

MS∈MS

BECS(MS ,MT ) (11)

If BECS(MS ,MT ) = 1, any weights learned from user
demonstrations in the source task are behaviorally equivalent to
the user’s ground-truth weight in the target. As BECS reduces,
the probability of accurately anticipating the user’s behavior in
the target task based on their source task demonstrations also
decreases.

In summary, while information gain focuses on accurately
learning the weights for the task-agnostic features, BECS di-
rectly focuses on accurately reproducing the user’s actions in a
specific target task. Thus, if the target task is fixed, we select
the shortest source task that receives the maximum BECS score.
Conversely, if the target task is changing but the task-agnostic
features remain the same, we can select the shortest source task
that is the most informative.

V. SIMULATION EXPERIMENTS

We start by evaluating the proposed metrics with simulated
users. Specifically, we measure the accuracy of predicting the
(simulated) user actions in randomly generated target tasks,
using weights learned from their (simulated) demonstrations
in source tasks having varying scores for informativeness and
BECS. Our aim is to assess whether the prediction accuracy
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improves when we utilize source tasks with higher scores on the
proposed metrics. We make the following hypotheses:

H1. Transferring user preferences from more informative
source tasks would improve the accuracy of predicting
user actions in the target tasks.

H2. Transferring user preferences from source tasks with
higher BECS scores would improve the accuracy of
predicting user actions in the corresponding target task.

A. Implementation

To select the best source tasks using our proposed metrics, we
first need access to the set of candidate source tasks MS , the
task-agnostic feature function φ, and the space of user weights
W . Here, we briefly describe how we acquire these inputs in our
experiments.

As stated in Section III-A, each source task MS ∈ MS is
an MDP with a fixed set of actions A, a set of states S, and
a transition function T . We use the following procedure to
generate each source task in MS :

Actions — We assume that users need to perform each action
a ∈ A to complete the source task but have the flexibility to
perform these actions in their preferred sequence. We let A
contain N actions. Here, N is chosen to be smaller than the
number of actions in the target task to ensure that the source tasks
are shorter. When generating a source task, we start with A = ∅
and randomly sample N actions from a space P that describes
the properties of each action, such as the type of motion (e.g.,
screwing or inserting), the objects that it uses (e.g., screwdriver),
or the effort it takes to perform.

Transitions — Next, to generate the transition function T ,
we assume that each action in the source task is deterministic.
We let users perform the first sampled action at any step of
the source task. For each subsequent action that we sample, we
randomly decide if users can perform it in any sequence or only
after performing the previously sampled action when executing
the task. In this way we impose constraints on how the actions
can be sequenced. Since we assign the constraints at random,
the number of all possible action sequences in a source task can
range from 1 to N factorial.

States — We let each state s ∈ S in the source task be a
vector of N booleans; where each boolean corresponds to an
action in A and indicates whether it has been performed. For
example, in a source task with N = 4 actions, the state after
the user has performed the second and third sampled actions
is s = [0, 1, 1, 0]. The starting state when no actions have been
performed is �0, while the terminal state is �1.

In this manner, we generate the states S, actions A, and
transitions T of each source task in MS . We now design the
task-agnostic features that constitute the users’ rewards.

Task-agnostic features — We compute the feature valuesφ(s)
for every state s ∈ S based on the properties of the actions
performed by users to reach that state. For example, to design a
feature that measures the total effort spent in reaching the state
s = [0, 1, 1, 0], we sum the efforts required for the second and
third sampled actions.

Space of weights — We restrict the weights W to positive
values on a d-dimensional sphere of unit radius. This ensures
thatW does not include weights that are scalar multiples of each
other and mitigates the representational uncertainty (mentioned

in Section IV-A). The dimensionality of W aligns with the
dimensionality of the task-agnostic features.

We emphasize that our metrics are independent of these
implementations and can be applied to any MS , φ, and W ,
as defined in Section III.

B. Selecting Informative Tasks

We generate a set of 512 candidate source tasks in which
half of the tasks have N = 2 actions and the rest have N = 4
actions. We randomly sample the actions from a 2-D space
P = [0., 0.5, 1.0]2 and manually design a 2-D task-agnostic fea-
ture function φ based on the action properties. One such source
task C, shown in Fig. 3, has two actions a1 = [0.5, 0.5] and a2 =
[0, 1]. Starting from sstart = [0, 0], users can sequence these
actions in any order to reach send = [1, 1]. The task-agnostic
features for each state are the sum of the action properties,
e.g., φ(send) = [0.5, 1.5]. We do not assign any meaning to the
properties in our simulations.

Following the same procedure, we generate 32 target tasks
having 4, 6, 8, and 10 actions, each. For each source task,
we measure the information gain and compute the BECS with
each target task. We then measure the mean prediction accuracy
for that source task using 64 newly sampled users (i.e., actual
weights). We simulate the demonstrations of each user in the
source task, learn their weights via maximum entropy IRL [4],
and use the learned weights to predict their simulated actions in
each of the target tasks.

Fig. 5 shows the scores for each generated source task on the
information gain metric. We see that the difference between
the learned weights and the actual weights is smaller when
learning from informative source tasks. A Pearson correlation
coefficient showed a strong negative correlation between the
information gain score and the error in learning the weights,
r(510) = −0.98, p < 0.001. Accordingly, we see that the mean
prediction accuracy in target tasks improves as we use source
tasks that score higher on the information gain metric. We
perform a linear regression analysis to test if the metric scores
affected the mean prediction accuracy across the 128 target tasks.
Our results indicated that the information gain scores explained
93% of the variance and significantly affected the mean predic-
tion accuracy (R2 = 0.93, F (1, 510) = 6783, p < 0.001). This
supports H1.

The prediction accuracy is high, even for less informative
source tasks, for two reasons. First, since the space of user
weights was small (2-D), many sampled users had identical
action sequences in the target tasks, particularly in those with
just 4 actions. Second, even if the sequences were different
overall, users had matching actions in certain states because of
the sequencing constraints. As the number of actions in the target
tasks increases, the difference between the prediction accuracy
of the least and most informative source tasks also increases.
This is because larger target tasks can allow the users to express
a wider range of distinct preferences, and thus we need more
informative source tasks to learn their preferences and predict
their actions accurately.

C. BECS vs Information Gain

Fig. 6 (Right) shows the BECS scores and mean prediction
accuracy for each source task with respect to a specific target
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Fig. 3. Behavioral equivalence classes (BECs) of weights in different source tasks and the chosen target task I. Each BEC in a task is numbered and represented
by a different color, e.g., the target task has 3 BECs. The prediction accuracy improves as the BECS score increases from A to D.

Fig. 4. Behavioral equivalence classes of weights in two other target tasks
with 10 actions, differing from those in target task I.

Fig. 5. Information Gain: (Left) Mean difference between the weights learned
in the source task and the actual weights. (Right) mean accuracy of predicting
actions in the target tasks based on learned weights.

Fig. 6. BECS: (Left) Average difference between the weights learned in the
source task and the actual weights, and (Right) mean accuracy of predicting
actions in a specific target task based on learned weights.

task having 10 actions. We specifically choose a target task
that divides the space of user weights into multiple behavioral
equivalence classes (BECs).

A Pearson correlation coefficient showed a strong positive
correlation between BECS and the mean prediction accuracy,
r(510) = 0.98, p < 0.001. The best-scoring source task with
BECS = 1, i.e. task D, achieves maximum prediction accuracy.
Fig. 3 shows the behavioral equivalence classes of weights in

specific source tasks and the chosen target task. We see that
the best source task D divides the space of weights into similar
BECs as the target task I. In contrast, in the worst-scoring source
task A, all weights are behaviorally equivalent and lead to the
same set of demonstrations. Consequently, task A achieves the
lowest prediction accuracy. The prediction accuracy increases
with decreasing differences between the BECs in the source
and target tasks as we move from task A to task D. This result
supports H2.

An interesting observation is that source task B is as infor-
mative as the best source task D since both tasks divide the
space of weights into the same number of classes with a similar
proportion of users in each class. Yet, it achieves lower prediction
accuracy because it has a lower BECS score. Likewise, task C
divides the weights into just two BECs and has a lower score
on the information gain metric than task B. Still, it achieves a
higher prediction accuracy than task B because the second class
in its BECs overlaps with the third class in the target task I BECs,
resulting in higher BECS.

A multiple regression analysis indicated that both metrics
explained 97% of the variance (R2 = 0.97, F (2, 509) = 8619,
p < 0.001), withBECS (β = 0.25, t = 24.04, p < 0.001) hav-
ing a greater effect on the prediction accuracy than information
gain (β = 0.02, t = 6.71, p < 0.001).

Another important observation is that task C has only 2 actions
while task B, which is more informative, has 4 actions. There-
fore, when considering both prediction accuracy and the human
effort required to provide demonstrations, task C is a better
source task than task B for target task I. For a different target task
II with BECs shown in Fig. 4 (Left), task B (BECS = 0.98)
is a better source task than tasks C (BECS = 0.77) and D
(BECS = 0.79). Similarly, task C is the shortest, best-scoring
source task (BECS = 1.) for the target task III shown in
Fig. 4 (Right), compared to task B (BECS = 0.94) and D
(BECS = 1).

Key takeaway: These results demonstrate that while informa-
tion gain effectively finds source tasks that perform well across
all target tasks in general, BECS is better at finding shorter source
tasks tailored to a specific target task.

VI. ASSEMBLY GAME EXPERIMENT

We now test our proposed approach with real users playing
an assembly game on a computer. Specifically, we measure the
accuracy of predicting user actions in a target assembly task
based on their demonstrations in the best-scoring source tasks
on the information gain metric.
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Fig. 7. Target Task: The parts are initially placed in the blue section on the
left and the tools are placed in the yellow region on the right, at the top of the
screen. The grey shapes in the assembly station indicate where the parts must
be placed, while the small red and blue squares represent the assembly actions
of welding and screwing, respectively.

Our hypothesis is that the prediction accuracy in the target
task will be higher when transferring the preferences of real
users from the most informative source task (H3).

A. Task Description

In the assembly game, users control a character to move parts
to an assembly station and connect them using tools of the appro-
priate color (see Fig. 7). The target task has 14 actions and resem-
bles a satellite assembly. The only sequencing constraint is that
the horizontal rods must be connected to the satellite before the
square panels can be placed. In a pilot study of users playing the
game, we found that user preferences depended on the number of
times they wanted to change the tools and parts during the task.
Based on the user responses, we manually designed a 4-d feature
function,φ = [keep_part, keep_tool, change_part, change_tool]
to measure whether user kept the same part or tool when moving
to the next task state. We select the best-scoring source task
on the information gain metric from 256 candidate tasks; each
having 6 actions and generated similarly to our simulations. We
sample the action properties from known sets of parts and tools,
P = [{panel, rod, . . .}, {welding, screwing}]. As the baseline,
we select the worst-scoring source task on our metric.

B. Online Study

We recruited 22 participants from Amazon Mechanical Turk
(MTurk). Each participant played the assembly game on the
Trinket app and performed all three tasks: the best-scoring
source task, the worst-scoring source task, and the target as-
sembly task. For each task, the participants were first provided a
practice round to understand the states, actions, and transitions
in that task, and determine their preference. After each practice
round, the participants demonstrated their preferred sequence of
actions in the task. Fig. 8 shows the best and worst scoring tasks
for the information gain metric.

For each user, we use their demonstrations in the source task
to learn their preference (i.e., weights) and then measure the ac-
curacy of predicting their demonstration in the target task based
on the learned weights. A two-tailed paired t-test showed a sta-
tistically significant difference (t(21) = 2.09, p = 0.048) in the
mean prediction accuracy for the best (M = 0.42,SE = 0.025)
and worst (M = 0.36, SE = 0.011) scoring tasks. We noticed
that a fair number of MTurk participants provided sub-optimal
demonstrations and often changed their preferences across tasks,

Fig. 8. Information Gain: The dot inside the red and blue squares indicates that
the sequencing constraints for that action have been satisfied. Only one action
(marked with an arrow) is available at the start of the worst-scoring task and each
subsequent action is constrained to the previous action, forcing users to follow
the same sequence of actions. On the other hand, the actions in the best-scoring
task can be performed in any sequence.

resulting in lower prediction accuracy overall. Yet, this result
supports hypothesis H3 and shows the benefit of selecting in-
formative source tasks with real users.

Key takeaway: We found that the least informative task con-
strains users to identical demonstrations, while the most infor-
mative task allows users to express their preferences distinctly,
leading to improved predictions in the target task.

VII. HUMAN-ROBOT ASSEMBLY

Finally, we conduct a user study where real users perform
actual assembly tasks in collaboration with a Kinova robotic
arm. While the assembly game study showed the benefit of
selecting the best-scoring tasks on our first metric, the worst-
scoring tasks chosen as the baseline were straightforward. Even
without assessing the source tasks using our metrics, it is evident
that a source task that forces every user to provide the same
demonstration would not be ideal for the transfer learning of
user preferences. Thus, in this study, we compare a high-scoring
source task on our second metric (BECS) to a low-scoring source
task that allows users to perform the actions in any sequence
they prefer. Our hypothesis is that the accuracy of predicting
user actions in a real-world assembly task would be higher
when transferring preferences from a high-scoring source task,
compared to a low-scoring source task on the BECS metric (H4).

A. Task Description

The target task is a model airplane assembly (see Fig. 1)
with 17 actions. Users perform the assembly actions with the
help of a robot that supplies the tools and parts required for
each user action. In a pilot study of users performing the target
task, we observed that users prefer to sequence their actions
in increasing or decreasing order of effort, along with keeping
or changing the parts and tools. Based on the user responses
in our pilot study, we designed 6 task-agnostic features φ =
{increasing_effort, decreasing_effort, keep_part, change_part,
keep_tool, change_tool} by referring prior work on transfer of
human preferences in assembly tasks [3].

We generate 600 source tasks with only 6 actions each.
To ensure that the tasks can be designed in the real world,
we randomly sample the actions from a space of properties
that includes 4 primitive actions and a set of generic parts —
P = [{screw_short_bolt, insert_short_wire, screw_long_bolt,
insert_long_wire}, {box1, box2, box3}]. The primitive actions
require increasing levels of effort and were obtained from [3].
Here, we do not impose any constraints on action sequenc-
ing. The high-scoring source task A, with BECS = 0.47, and
low-scoring source task B, with BECS = 0.15, are shown in
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Fig. 1. The low-scoring task featured at least one instance of
each primitive action, while interestingly, the high-scoring task
omitted one of the primitive actions.

B. Offline Evaluations

We recruited 19 participants from the student population at
the University of Southern California (USC). The study was
approved by USC’s Institutional Review Board (UP-21-00695).
Each participant performed both the source tasks and the target
task, using a graphic interface to request parts and tools from
the robot. We offered a practice round for each task so that
participants could determine their preferred action sequence
before demonstrating it in the task. We also counterbalanced
the order of the source tasks to mitigate sequencing effects.

We use the demonstrations of each user in the source task
to learn their weights and compute the accuracy of predicting
their demonstration in the target task. A two-tailed paired t-
test showed a statistically significant difference (t(18) = 2.542,
p = 0.020) in the prediction accuracy for the high (M = 0.81,
SE = 0.025) and low (M = 0.75, SE = 0.012) scoring tasks
on BECS, supporting H5.

Since both source tasks include actions with varying effort
levels, the robot could learn whether users prefer to sequence
actions in increasing or decreasing order of effort from their
demonstrations in either task. However, in the low-scoring task,
every action that requires the same tool (e.g., screwing) also re-
quires the same part, preventing the robot from learning whether
users would prefer keeping the ‘same part’ more than keeping the
‘same tool’ or vice versa. In contrast, since BECS tries to find
a source task in which we can differentiate between weights
that have distinct behavior in the target task, the high-scoring
task included two pairs of actions that require the same tool
but different parts. This allowed the robot to also learn user
preferences for keeping the ‘same part’ or ‘same tool’ (see
supplementary video).

VIII. CONCLUSION

In summary, we propose two metrics to select source tasks
for effectively transferring human preferences. Our first metric
selects the most informative source tasks to accurately learn the
preferences, while our second metric selects source tasks with
similar classes of user preferences to the target task. Through
simulation experiments and two user studies, we show that short
source tasks selected using our proposed metrics improve the
accuracy of predicting user actions in longer target tasks. This
can enable robots to assist users according to their preferences
without any demonstrations in the target task, thus reducing
human effort.

While our work focused on proposing metrics for automating
the selection of source tasks, designing the source tasks is
another challenge. In our user studies, we manually designed
the selected source tasks in the real world, although doing so for
multiple target tasks can be burdensome. One approach to tackle
this issue is by selecting a generic source task using our informa-
tion gain metric. This metric focuses only on accurately learning
user preferences over the relevant task-agnostic features, without
being limited to a particular target task. However, the problem of
selecting a generic source task to transfer human preferences to

multiple target tasks with distinct features remains unresolved
and needs further investigation. Moreover, randomly generating
the source tasks and robustly computing their metric scores can
be challenging in complex domains, e.g., with high-dimensional
feature spaces and continuous actions. We are excited about
future research on the efficient generation and design of short
source tasks for transferring human preferences to complex
target tasks.
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